Electroweak Precision Physics from Beta Decays to the Z Pole October 27, 2022

Electroweak Precision Fits with

Jorge de Blas

University of Granada & CERN

Based on:

J.B., M. Pierini, L. Reina, L. Silvestrini, arXiv: 2204.04204 [hep-ph]

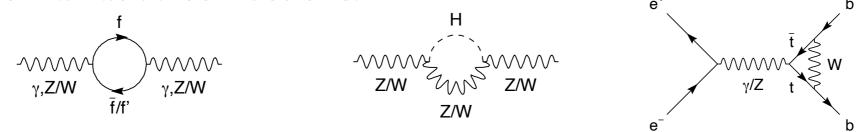
Funded by: FEDER/Junta de Andalucía-Consejería de Transformación Económica, Industria, Conocimiento y Universidades/Project P18-FRJ-3735

- Electroweak precision data: Very precise measurements of the W & Z boson properties
 - ✓ The LEP/SLD legacy, Z-pole observables:

$$\frac{d\sigma_{e^+e^- \to Z \to \bar{f}f}}{d\Omega} = \frac{9}{4} \frac{s\Gamma_e \Gamma_f / M_Z^2}{\left(s - M_Z^2\right)^2 + s^2 \Gamma_Z^2 / M_Z^2} \left[\left(1 + \cos^2\theta\right) \left(1 - P_e A_e\right) + 2\cos\theta A_f \left(-P_e + A_e\right) \right]$$

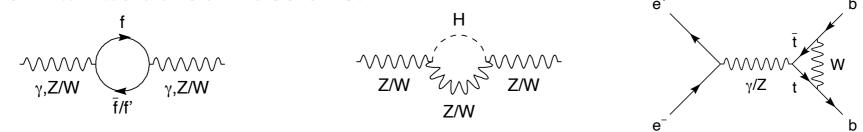
$$M_Z,~\Gamma_Z,~\sigma_{
m had}^0,~\sin^2 heta_{
m Eff}^{
m lept},~P_{ au}^{
m pol},~A_f,~A_{FB}^{0,f},~R_f^0$$

Z-pole obs. (SLD/LEP) **0.002-***O*(1)%


0.02-0(1)%

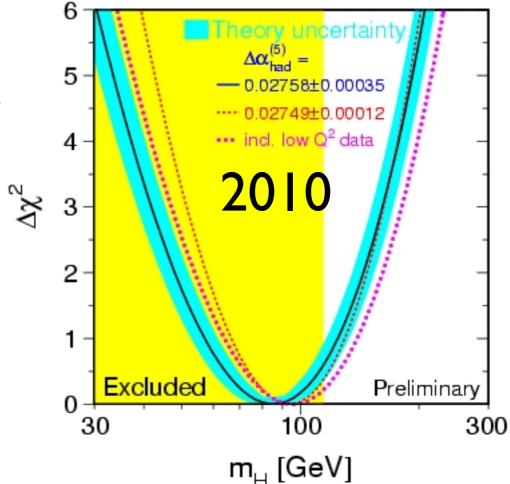
and
$$W$$
 measurements from LEP 2 $M_W, \ \Gamma_W, \ \mathrm{BR}_{W \to \ell \nu}$ \mathbb{W} obs. (LEP2) 0.02- $O(1)\%$

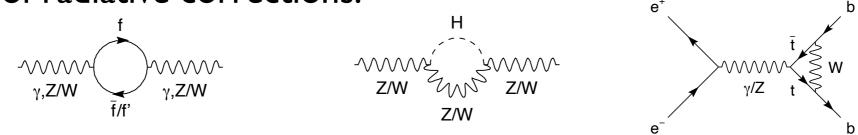
 \checkmark But also receive contributions from Hadron colliders:


$$M_W, \Gamma_W$$
 m_t M_H $0.02-O(1)\%$ 0.4% 0.2% Precision in many cases at per-mille level

 This per-mille level precision makes EWPO a powerful test of SM predictions, to the level of radiative corrections:

- \checkmark Test of the validity of the SM description of EW interactions
- ✓ Sensitive to all SM (or new) particles via loop corrections:

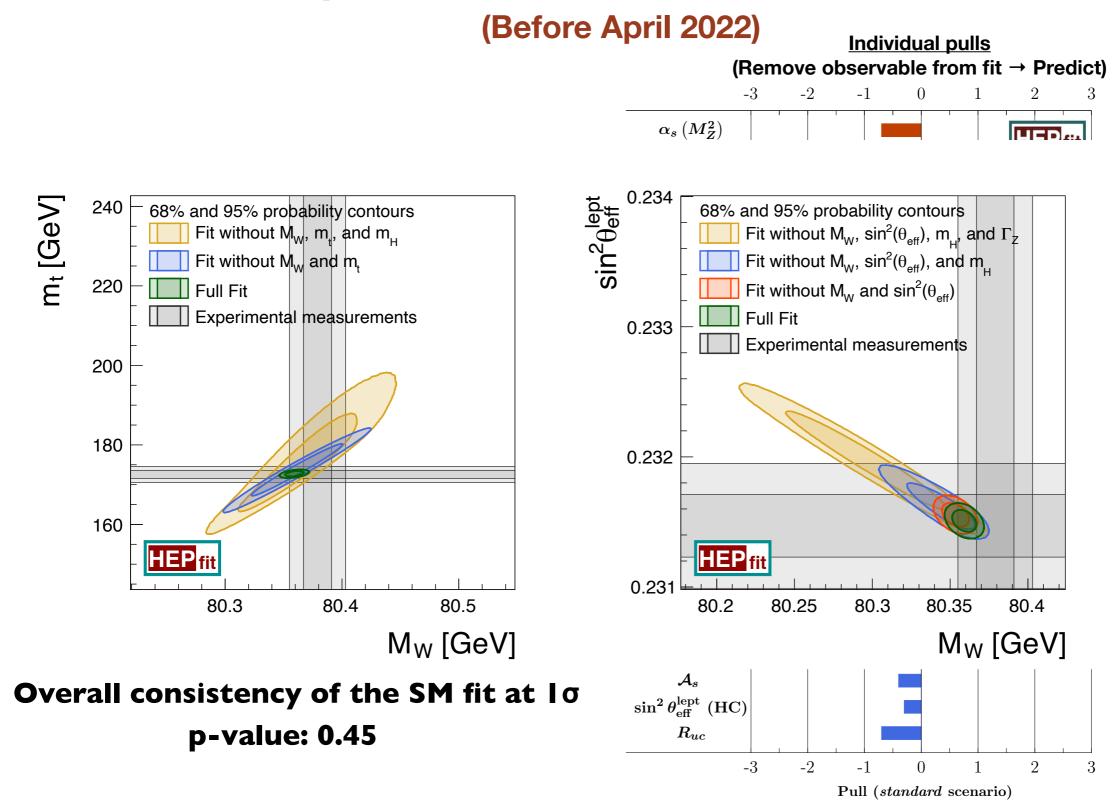

 This per-mille level precision makes EWPO a powerful test of SM predictions, to the level of radiative corrections:


- ✓ Test of the validity of the SM description of EW interactions
- ✓ Sensitive to all SM (or new) particles via loop corrections:

Before Higgs discovery:

- Indirect evidence of a light Higgs
- Interplay SM-NP in EWPO

 This per-mille level precision makes EWPO a powerful test of SM predictions, to the level of radiative corrections:

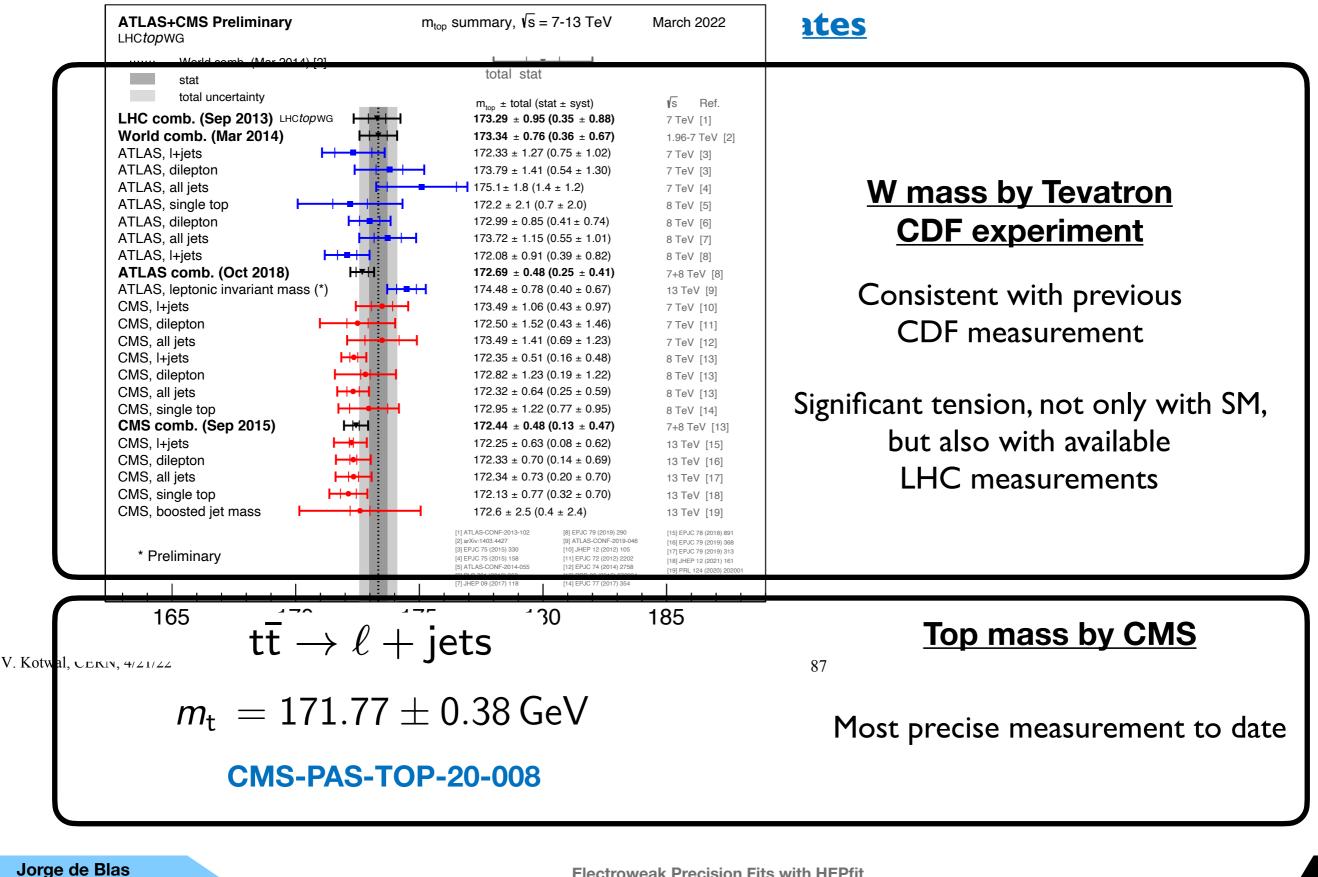


- ✓ Test of the validity of the SM description of EW interactions
- ✓ Sensitive to all SM (or new) particles via loop corrections:

After Higgs discovery:

- ► All inputs of the SM are known
- Observables can be fully predicted in the SM
- Test of new physics (NP): strong (unambiguous) constraints on NP modifying the EW sector (e.g. solutions to the hierarchy problem)

Consistency of the SM with Electroweak Precision Tests



Jorge de Blas Univ. of Granada / CERN

J.B. et al., arXiv: 2112.07274 [hep-ph] (Accepted for pub. In PRD)

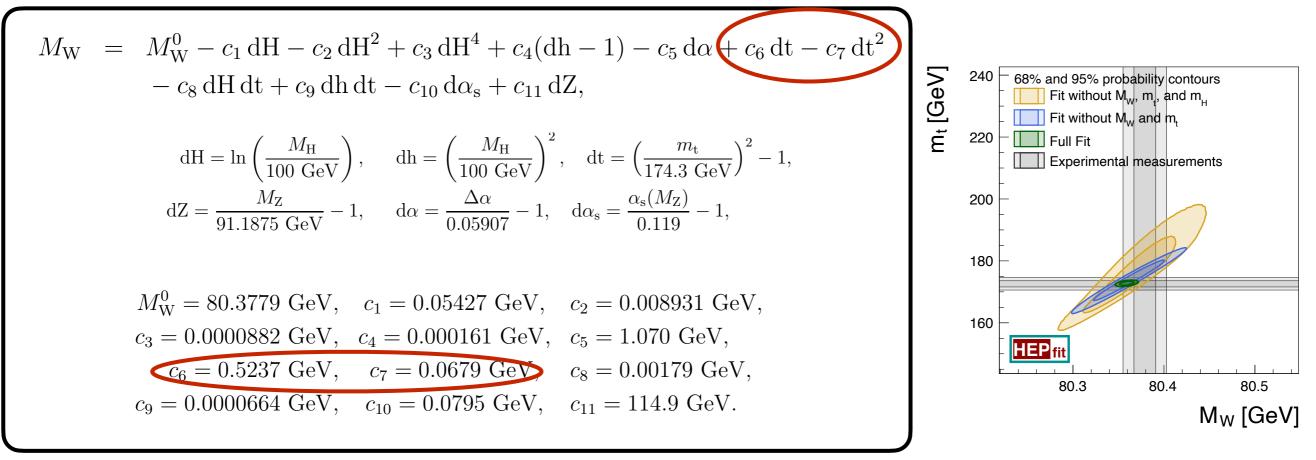
Electroweak Precision Fits with HEPfit October 27, 2022

Univ. of Granada / CERN

Relevance of W-boson mass in EWPO

- One of the most precise observables in the EW sector ~O(0.01%)
- And one for which the SM prediction is known to higher precision

$$\begin{split} M_{\rm W} &= M_{\rm W}^0 - c_1 \,\mathrm{dH} - c_2 \,\mathrm{dH}^2 + c_3 \,\mathrm{dH}^4 + c_4 (\mathrm{dh} - 1) - c_5 \,\mathrm{d\alpha} + c_6 \,\mathrm{dt} - c_7 \,\mathrm{dt}^2 \\ &- c_8 \,\mathrm{dH} \,\mathrm{dt} + c_9 \,\mathrm{dh} \,\mathrm{dt} - c_{10} \,\mathrm{d\alpha_s} + c_{11} \,\mathrm{dZ}, \\ &\mathrm{dH} = \ln \left(\frac{M_{\rm H}}{100 \,\,\mathrm{GeV}}\right), \quad \mathrm{dh} = \left(\frac{M_{\rm H}}{100 \,\,\mathrm{GeV}}\right)^2, \quad \mathrm{dt} = \left(\frac{m_{\rm t}}{174.3 \,\,\mathrm{GeV}}\right)^2 - 1, \\ &\mathrm{dZ} = \frac{M_Z}{91.1875 \,\,\mathrm{GeV}} - 1, \quad \mathrm{d\alpha} = \frac{\Delta \alpha}{0.05907} - 1, \quad \mathrm{d\alpha_s} = \frac{\alpha_s (M_Z)}{0.119} - 1, \\ &M_{\rm W}^0 = 80.3779 \,\,\mathrm{GeV}, \quad c_1 = 0.05427 \,\,\mathrm{GeV}, \quad c_2 = 0.008931 \,\,\mathrm{GeV}, \\ &c_3 = 0.0000882 \,\,\mathrm{GeV}, \quad c_4 = 0.000161 \,\,\mathrm{GeV}, \quad c_5 = 1.070 \,\,\mathrm{GeV}, \\ &c_6 = 0.5237 \,\,\mathrm{GeV}, \quad c_7 = 0.0679 \,\,\mathrm{GeV}, \quad c_8 = 0.00179 \,\,\mathrm{GeV}, \\ &c_9 = 0.0000664 \,\,\mathrm{GeV}, \quad c_{10} = 0.0795 \,\,\mathrm{GeV}, \quad c_{11} = 114.9 \,\,\mathrm{GeV}. \end{split}$$


Full EW 2-loop + leading 3-loop & some 4-loop

- M. Awramik, M. Czakon, A. Freitas, G. Weiglein, Phys. Rev D69 (2004) 053006
- Probe of important SM relations, e.g. custodial symmetry:

$$\rho = \frac{M_W^2}{M_Z^2 \cos^2 \theta_W} \approx 1$$

Relevance of Top-Quark mass in EWPO

• The top quark mass is one of the inputs of the SM \Rightarrow its value of particular relevance, among others for the prediction of the W mass

M. Awramik, M. Czakon, A. Freitas, G. Weiglein, Phys. Rev D69 (2004) 053006

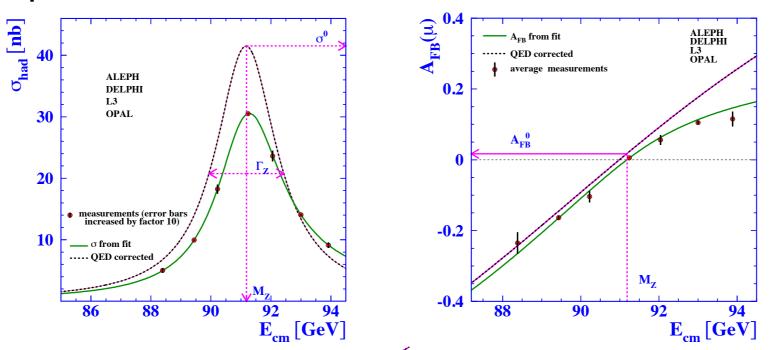
Relevance of Top-Quark mass in EWPO

• The top quark mass is one of the inputs of the SM \Rightarrow its value of particular

relevance, among others for the prediction of the W mass

						standard	scenario
0		Prediction	$\alpha_s(M_Z^2)$	$\Delta \alpha_{\rm had}^{(5)}(M_Z^2)$	M_Z	m_t	Total
	M_W [GeV]	80.3545	± 0.0006	± 0.0018	± 0.0027	± 0.0027	± 0.0042
	$\Gamma_W \; [\text{GeV}]$	2.08782	± 0.00040	± 0.00014	± 0.00021	± 0.00021	± 0.00052
5	$\mathrm{BR}_{W \to \ell \bar{\nu}_{\ell}}$	0.108386	± 0.000024	± 0.000000	± 0.000000	± 0.000000	± 0.000024
	$\sin^2 \theta_{\rm eff}^{ m lept}$	0.231534	± 0.000003	± 0.000035	± 0.000015	± 0.000013	± 0.000041
5	$\Gamma_Z \ [GeV]$	2.49414	± 0.00049	± 0.00010	± 0.00021	± 0.00010	± 0.00056
	σ_h^0 [nb]	41.4929	± 0.0049	± 0.0001	± 0.0020	± 0.0003	± 0.0053
	R^0_ℓ	20.7464	± 0.0062	± 0.0006	± 0.0003	± 0.0002	± 0.0063
	$A_{ m FB}^{0,\ell}$	0.016191	± 0.000006	± 0.000060	± 0.000026	± 0.000023	± 0.000070
	\mathcal{A}_ℓ^{-1}	0.14692	± 0.00003	± 0.00028	± 0.00012	± 0.00010	± 0.00032
	R_b^0	0.215880	± 0.000011	± 0.000001	± 0.000000	± 0.000015	± 0.000019
3	R_c^0	0.172198	± 0.000020	± 0.000002	± 0.000001	± 0.000005	± 0.000020
5	$A^{0,b}_{ m FB}$	0.10300	± 0.00002	± 0.00020	± 0.00008	± 0.00007	± 0.00023
2	$A_{ m FB}^{ar 0,ar c}$	0.07358	± 0.00001	± 0.00015	± 0.00006	± 0.00006	± 0.00018
	\mathcal{A}_b^{+D}	0.934727	± 0.000001	± 0.000023	± 0.000010	± 0.000003	± 0.000025
)	\mathcal{A}_{c}	0.66775	± 0.00001	± 0.00012	± 0.00005	± 0.00005	± 0.00014
	\mathcal{A}_s	0.935637	± 0.000002	± 0.000022	± 0.000010	± 0.000009	± 0.000026
	R_{uc}	0.172220	± 0.000019	± 0.000002	± 0.000001	± 0.000005	± 0.000020

SM parametric uncertainties


 $m_t^{(2021)} = 172.58 \pm 0.45 \text{ GeV}$

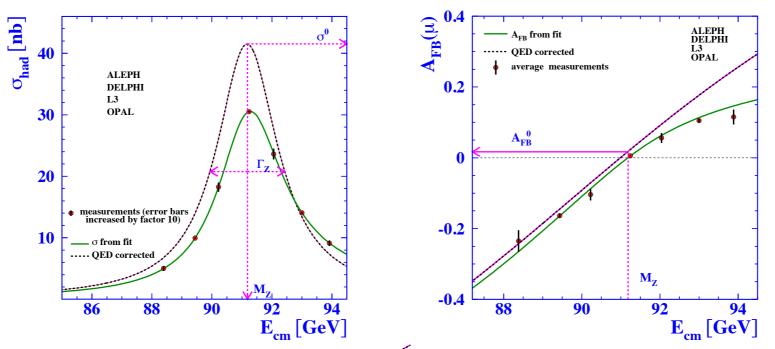
J.B. et al., arXiv: 2112.07274 [hep-ph] (Accepted for pub. In PRD)

Status of EWPO Updates on the M_W and m_t combinations

Z pole measurements

Z lines shape measurements date back to the LEP/SLD era:

LEP and SLD Collaborations, arXiv: 0509008 [hep-ex]


Results depend on measuring precisely the integrated luminosity Obtained via low-angle Bhabha scattering (known to 0.061% during LEP era)

- Recently revisited using updated (more accurate) prediction of Bhabha process:
 - New corrections decrease the Bhabha cross section by 0.048% (uncertainty 0.037%)
 P. Janot, S. Jadach, Phys.Lett.B 803 (2020) 135319
 - Increase the measured luminosity
 Decrease measured value for the on-peak hadronic cross section (Z width also slightly modified)

 $\sigma_{\text{had}}^{0} = 41.4802 \pm 0.0325 \,\text{nb},$ $\Gamma_{\text{Z}} = 2.4955 \pm 0.0023 \,\text{GeV}$

Z pole measurements

Z lines shape measurements date back to the LEP/SLD era: LEP a

LEP and SLD Collaborations, arXiv: 0509008 [hep-ex]

Results depend on measuring precisely the integrated luminosity Obtained via low-angle Bhabha scattering (known to 0.061% during LEP era)

Recently revisited using updated (more accurate) prediction of Bhabha process:

The updated results remove past tension with SM in the value of the effective # of $v : N_v$ $R_{\text{inv}}^0 = N_v \left(\frac{\Gamma_{\nu\overline{\nu}}}{\Gamma_{\ell\ell}}\right)_{\text{SM}}$ with $R_{\text{inv}}^0 = \left(\frac{12\pi R_\ell^0}{\sigma_{\text{had}}^0 m_Z^2}\right)^{\frac{1}{2}} - R_\ell^0 - (3 + \delta_\tau)$ $N_\nu = 2.9840 \pm 0.0082 \longrightarrow N_\nu = 2.9963 \pm 0.0074$ ~2 σ 0.5 σ

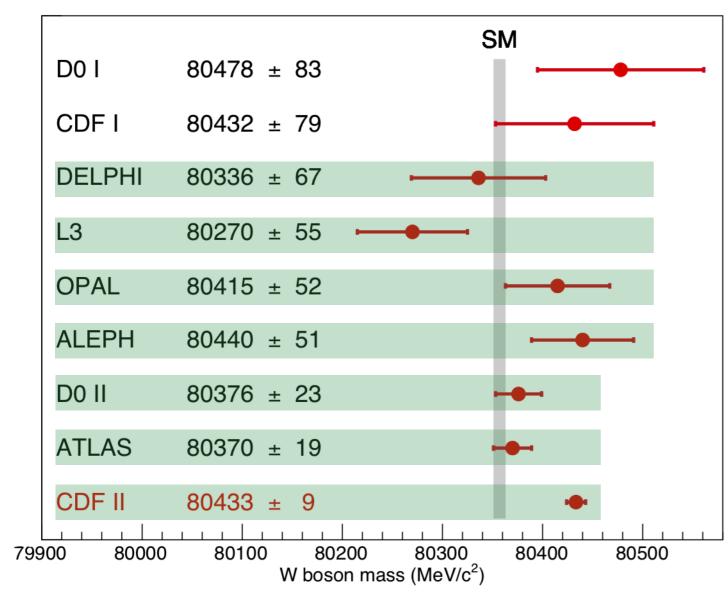
Jorge de Blas Univ. of Granada / CERN

Electroweak Precision Fits with HEPfit October 27, 2022

Z pole measurements

Z-pole forward backward asymmetry of the b-quark:

✓ Longstanding anomaly in the EW fit:					
$A_{ m FB}^{0,b} = 0.0992 \pm 0.0016$	2.6 σ	$A_{ m FB,SM}^{0,b} = 0.1035 \pm 0.0005$			
EXP		2016 SM EW fit			


- Also revisited recently, including:
 - Reassessment of QCD uncertainties using modern Parton shower simulations (Pythia 8)
 - ✓ NNLO (2-loop) massive b-quark corrections

 $A_{
m FB}^{0,b} = 0.0992 \pm 0.0016
ightarrow 0.0996 \pm 0.0016$ (Stat dominated)

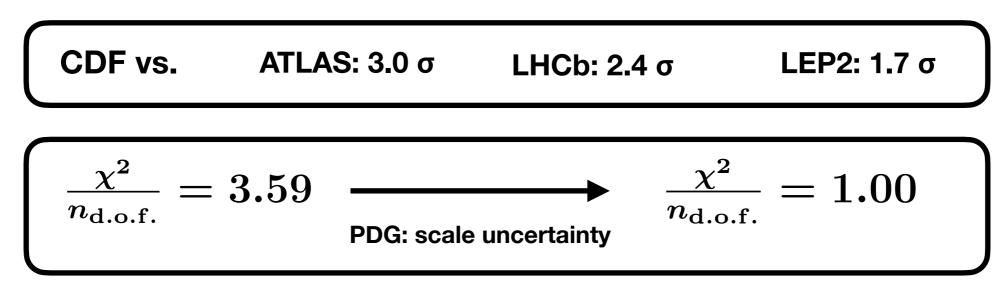
✓ New corrections tend to reduce the discrepancy with the SM (more later)

Naive W mass combination

Theorist combination of W mass measurements:

Total uncertainty Stat. uncertainty ALEPH DELPHI L3 OPAL CDF D0 ATLAS LHCb 1.7 fb⁻¹ Electroweak Fit 80100 80150 80200 80250 80300 80350 80400 80450 80500 m_W [MeV]

Source	Uncertainty (MeV)
Lepton energy scale	3.0
Lepton energy resolution	1.2
Recoil energy scale	1.2
Recoil energy resolution	1.8
Lepton efficiency	0.4
Lepton removal	1.2
Backgrounds	3.3
$p_{\rm T}^{Z}$ model	1.8
$p_{\rm T}^W/p_{\rm T}^Z$ model	1.3
Parton distributions	3.9
QED radiation	2.7
W boson statistics	6.4
Total	9.4


- Combine hadron collider measurements assuming common uncertainty of 4.7 MeV
- ^{ral, CERN, 4/21/2}Combine in an uncorrelated manner with LEP2 result

Naive W mass combination

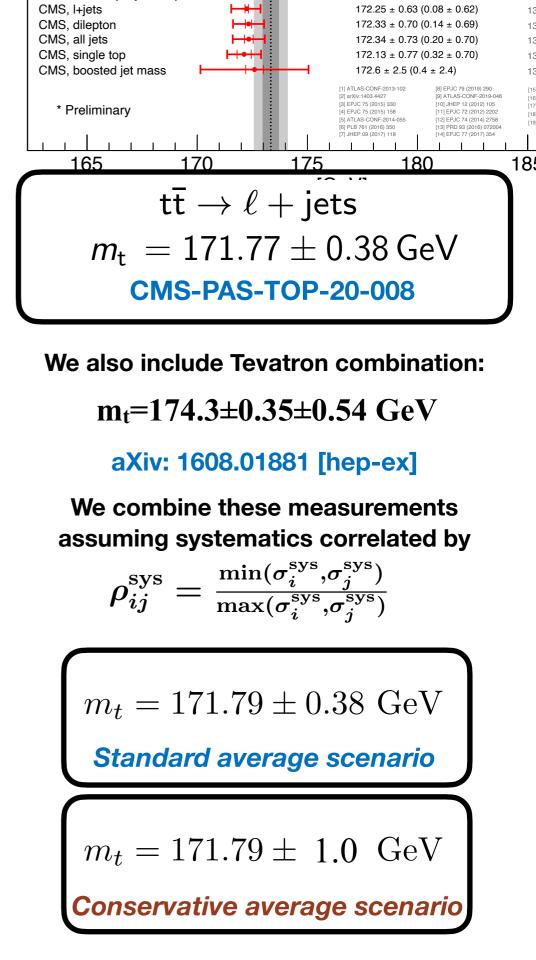
Theorist combination of W mass measurements:

$$M_W = 80.4133 \pm 0.0080 \text{ GeV}$$

Standard average scenario

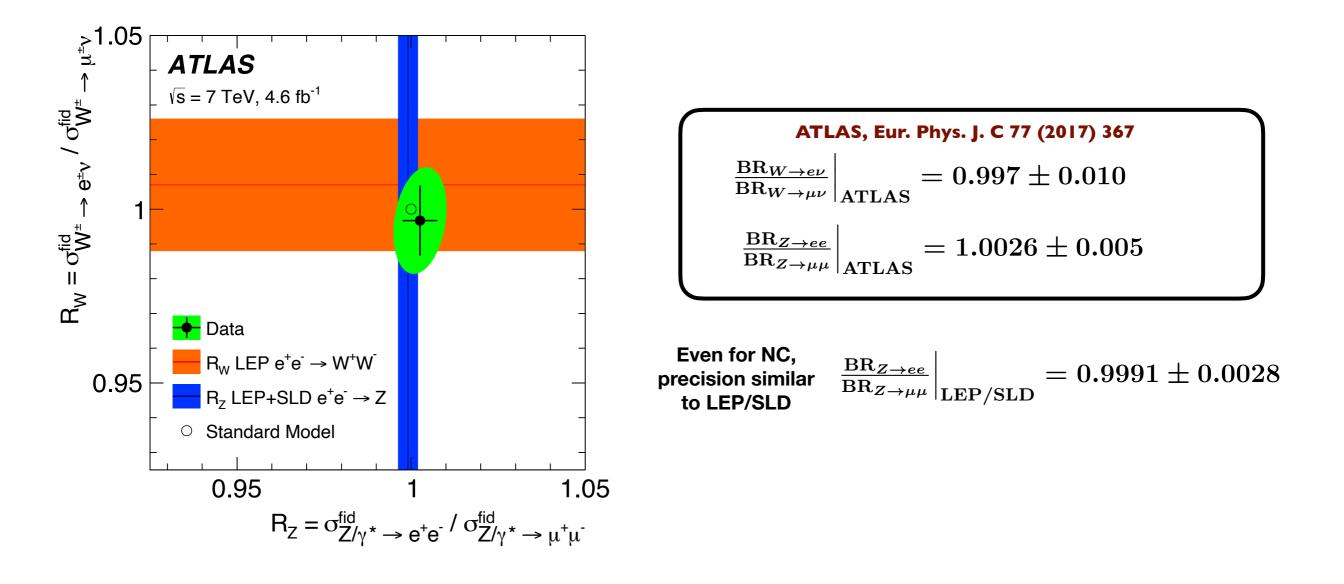
• But this comes from a combination of measurements in significant tension...

• Following the PDG procedure we assume the discrepancy is due to unknown/underestimated systematics and inflate error accordingly:


 $M_W = 80.4133 \pm 0.015 \,\,\mathrm{GeV}$

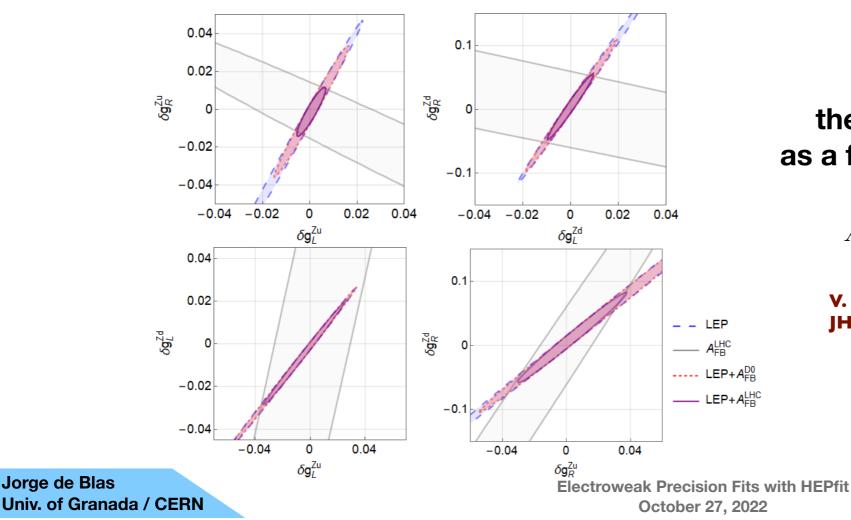
Conservative average scenario

Naive Top mass combination


• Theorist combination of Top quark measureme

LHC relevant observables for the EW fit

- Apart from the Higgs, Top and W mass, the LHC contributes to the EW fit with several observables that become relevant, in particular, to test fermion universality of EW interactions
- Ratios of W and Z decays (tests of lepton universality), e.g. ATLAS:



LHC relevant observables for the EW fit

- Apart from the Higgs, Top and W mass, the LHC contributes to the EW fit with several observables that become relevant, in particular, to test fermion universality of EW interactions
- LHC forward-backward asymmetry in Drell-Yan (for quark non-universal fit)

LEP/SLD Z-pole observables blind to a particular direction of light-quark couplings

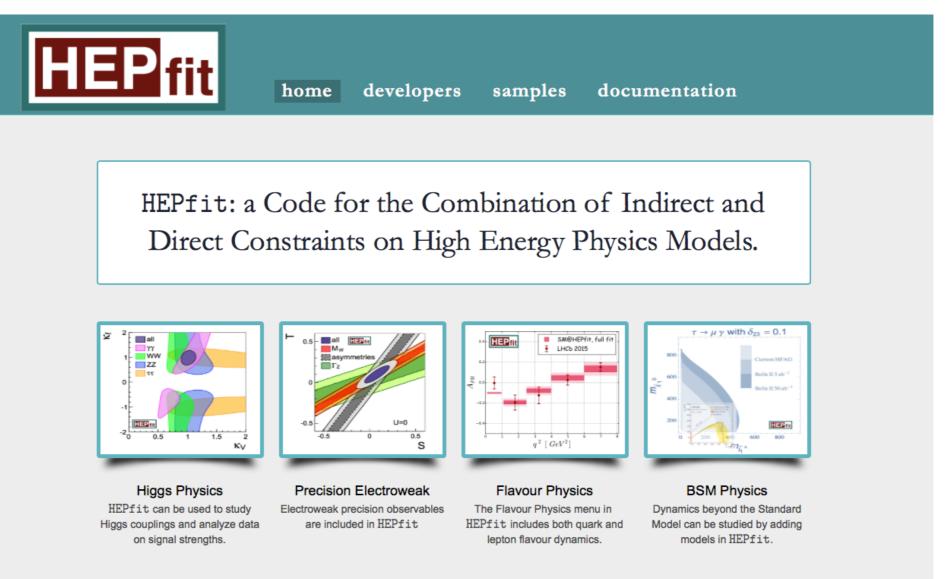
$$\delta g_L^{Zu} + \delta g_L^{Zd} + \frac{3g_L^2 - g_Y^2}{4g_Y^2} \delta g_R^{Zu} + \frac{3g_L^2 + g_Y^2}{2g_Y^2} \delta g_R^{Zd}$$

Can be resolved including the LHC Drell-Yan FB asymmetry as a function of the dilepton rapidity *Y*

$$A_{FB}(Y,\hat{s}) = \frac{\sigma_F(Y,\hat{s}) - \sigma_B(Y,\hat{s})}{\sigma_F(Y,\hat{s}) + \sigma_B(Y,\hat{s})},$$

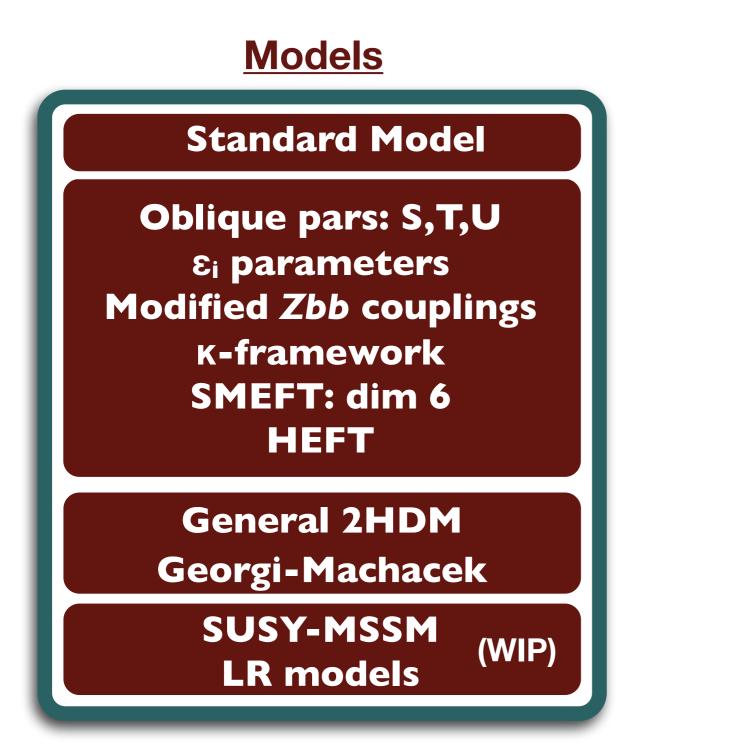
V. Breso-Pla, A. Falkowski, M. Gonzalez-Alonso, JHEP 08 (2021) 021

The Standard Model Electroweak Precision Data Fit



 General High Energy Physics fitting tool to combine indirect and direct searches of new physics (available under GPL on GitHub)

https://github.com/silvest/HEPfit


• Webpage:

http://hepfit.roma1.infn.it

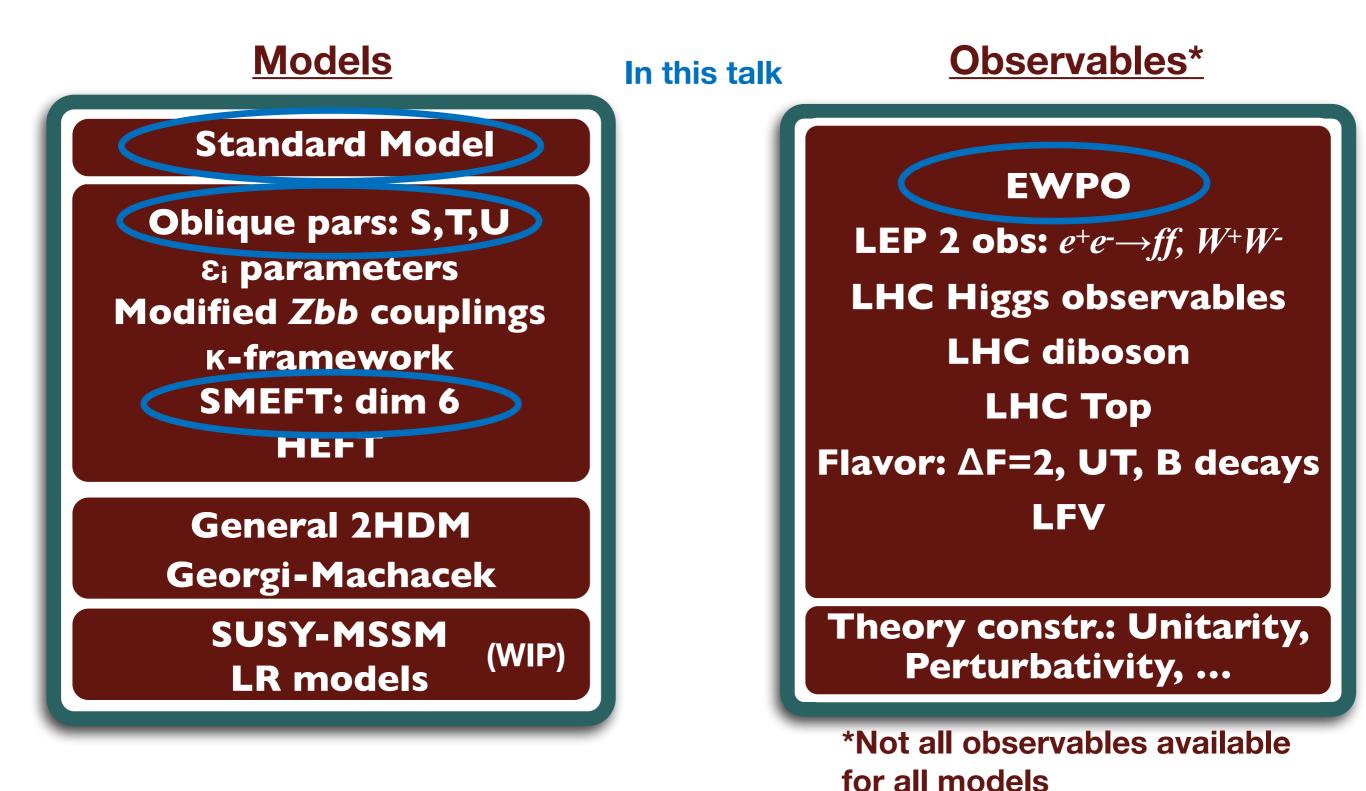
The **HEP**fit code: Models and Observables

Some models/observables already available in the code

Observables*

EWPO LEP 2 obs: e⁺e⁻→ff, W⁺W⁻ LHC Higgs observables LHC diboson LHC Top Flavor: AF=2, UT, B decays LFV

Theory constr.: Unitarity, Perturbativity, ...


*Not all observables available for all models

Jorge de Blas Univ. of Granada / CERN

Electroweak Precision Fits with HEPfit October 27, 2022

The HEPfit code: Models and Observables

Some models/observables already available in the code

Jorge de Blas Univ. of Granada / CERN

Electroweak Precision Fits with HEPfit October 27, 2022

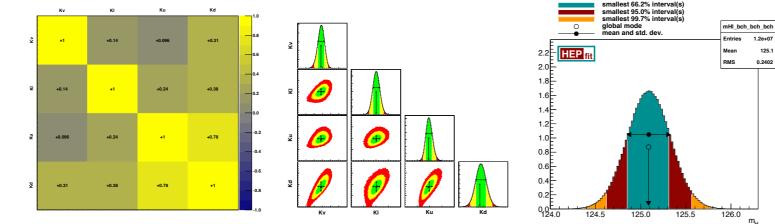
The HEPfit code: EWPO

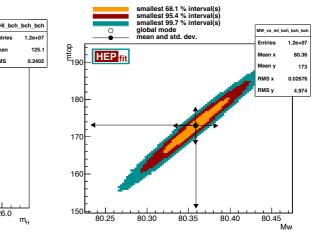
• EWPO implemented using the state-of-the-art of theory calculations:

Leading 3-loop fermionic corrections L. Cheng, A. Freitas, JHEP 07 (2020) 210

• Experimental vs. Theoretical uncertainties:

	$M_{ m W}$	$\Gamma_{\rm Z}$	$\sigma_{ m had}^0$	R _b	$\sin^2 heta_{ m eff}^\ell$
Exp. error	15 MeV	2.3 MeV	37 pb	6.6×10^{-4}	1.6×10^{-4}
Theory error	4 MeV	0.5 MeV	6 pb	1.5×10^{-4}	$0.5 imes 10^{-4}$


A. Freitas, PoS(LL2014)050 [arXiv: 1406.6980]



- Fit methodology:
 - ✓ Bayesian Statistical approach using the built-in HEPfit interface with the Bayesian Analysis Toolkit BAT
 - ✓ SM theoretical uncertainties are included in the fits. Treated as nuisance parameters and marginalized over:

	$M_{ m W}$	$\Gamma_{\rm Z}$	$\sigma_{ m had}^0$	R _b	$\sin^2 heta_{ m eff}^\ell$
Exp. error	15 MeV	2.3 MeV	37 pb	6.6×10^{-4}	1.6×10^{-4}
Theory error	4 MeV	0.5 MeV	6 pb	$1.5 imes 10^{-4}$	$0.5 imes 10^{-4}$

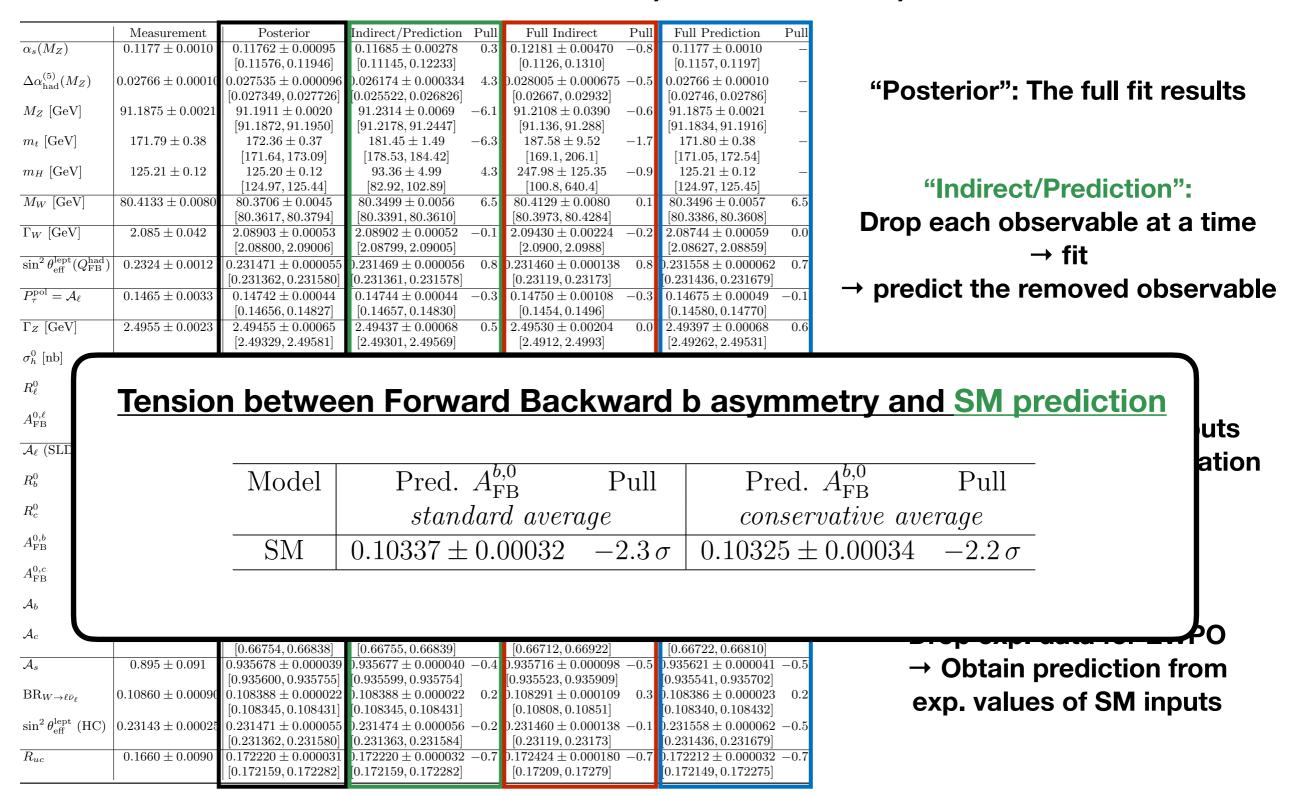
✓ Results expressed in terms of the mean and variance of the posterior predictive from the fit

• SM EW fit results: Different fits to study the consistency between SM/EWPD

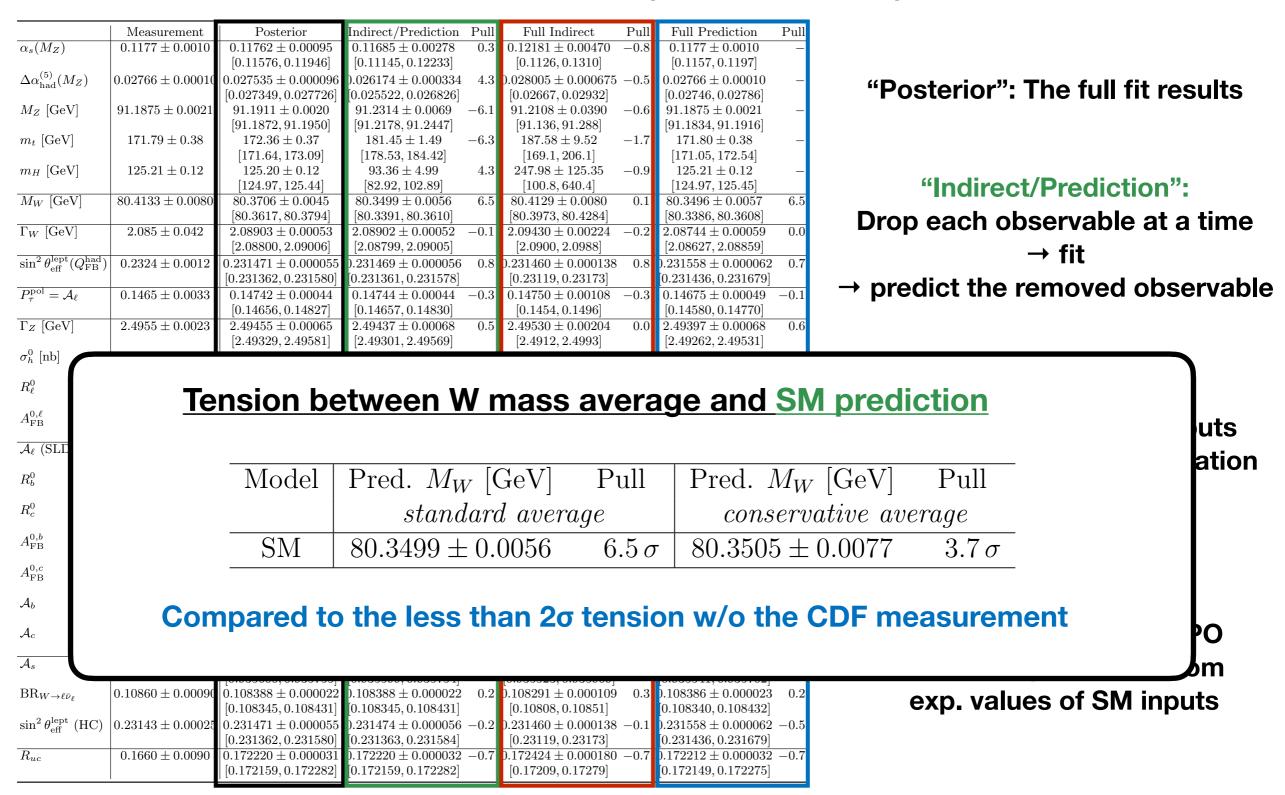
	Measurement	Posterior	Indirect/Prediction	Pull	Full Indirect	Pull	Full Prediction	Pull
$\alpha_s(M_Z)$ (0.1177 ± 0.0010	0.11762 ± 0.00095	0.11685 ± 0.00278	0.3	0.12181 ± 0.00470	-0.8	0.1177 ± 0.0010	
		[0.11576, 0.11946]	[0.11145, 0.12233]		[0.1126, 0.1310]		[0.1157, 0.1197]	
$\Delta \alpha_{\rm had}^{(5)}(M_Z) = 0.$	$.02766 \pm 0.00010$	0.027535 ± 0.000096	0.026174 ± 0.000334	4.3	0.028005 ± 0.000675	-0.5	0.02766 ± 0.00010	_
nad		[0.027349, 0.027726]	[0.025522, 0.026826]		[0.02667, 0.02932]		[0.02746, 0.02786]	
M_Z [GeV] 9	91.1875 ± 0.0021	91.1911 ± 0.0020	91.2314 ± 0.0069	-6.1	91.2108 ± 0.0390	-0.6		_
		[91.1872, 91.1950]	[91.2178, 91.2447]		[91.136, 91.288]		[91.1834, 91.1916]	
$m_t \; [\text{GeV}]$	171.79 ± 0.38	172.36 ± 0.37	181.45 ± 1.49	-6.3	187.58 ± 9.52	-1.7	171.80 ± 0.38	_
		[171.64, 173.09]	[178.53, 184.42]		[169.1, 206.1]		[171.05, 172.54]	
$m_H [{\rm GeV}]$	125.21 ± 0.12	125.20 ± 0.12	93.36 ± 4.99	4.3	247.98 ± 125.35	-0.9	125.21 ± 0.12	_
		[124.97, 125.44]	[82.92, 102.89]		[100.8, 640.4]		[124.97, 125.45]	
M_W [GeV] 8	30.4133 ± 0.0080	80.3706 ± 0.0045	80.3499 ± 0.0056	6.5	80.4129 ± 0.0080	0.1	80.3496 ± 0.0057	6.5
		[80.3617, 80.3794]	[80.3391, 80.3610]		[80.3973, 80.4284]		[80.3386, 80.3608]	
Γ_W [GeV]	2.085 ± 0.042	2.08903 ± 0.00053	2.08902 ± 0.00052	-0.1	2.09430 ± 0.00224	-0.2	2.08744 ± 0.00059	0.0
		[2.08800, 2.09006]	[2.08799, 2.09005]		[2.0900, 2.0988]		[2.08627, 2.08859]	
$\sin^2 \theta_{\text{eff}}^{\text{lept}}(Q_{\text{FB}}^{\text{had}})$ (0.2324 ± 0.0012	0.231471 ± 0.000055	0.231469 ± 0.000056	0.8	0.231460 ± 0.000138	0.8	0.231558 ± 0.000062	0.7
		[0.231362, 0.231580]	[0.231361, 0.231578]		[0.23119, 0.23173]		[0.231436, 0.231679]	
$P_{\tau}^{\rm pol} = \mathcal{A}_{\ell} \qquad ($	0.1465 ± 0.0033	0.14742 ± 0.00044	0.14744 ± 0.00044	-0.3	0.14750 ± 0.00108	-0.3	0.14675 ± 0.00049	-0.1
		[0.14656, 0.14827]	[0.14657, 0.14830]		[0.1454, 0.1496]		[0.14580, 0.14770]	
Γ_Z [GeV] 2	2.4955 ± 0.0023	2.49455 ± 0.00065	2.49437 ± 0.00068	0.5	2.49530 ± 0.00204	0.0	2.49397 ± 0.00068	0.6
		[2.49329, 2.49581]	[2.49301, 2.49569]		[2.4912, 2.4993]		[2.49262, 2.49531]	
σ_h^0 [nb]	41.480 ± 0.033	41.4892 ± 0.0077	41.4914 ± 0.0080	-0.3	41.4613 ± 0.0303	0.4	41.4923 ± 0.0080	-0.4
		[41.4741, 41.5041]	[41.4757, 41.5070]		[41.402, 41.521]		[41.4766, 41.5081]	
R^0_ℓ	20.767 ± 0.025	20.7487 ± 0.0080	20.7451 ± 0.0087	0.8	20.7587 ± 0.0217	0.2	20.7468 ± 0.0087	0.7
		[20.7329, 20.7645]	[20.7281, 20.7621]		[20.716, 20.801]		[20.7298, 20.7637]	
$A_{\rm FB}^{0,\ell}$ (0.0171 ± 0.0010	0.016300 ± 0.000095	0.016291 ± 0.000096	0.8	0.016316 ± 0.000240	0.8	0.01615 ± 0.00011	1.0
		[0.016111, 0.016487]	[0.016102, 0.016480]		[0.01585, 0.01679]		[0.01594, 0.01636]	
\mathcal{A}_{ℓ} (SLD) (0.1513 ± 0.0021	0.14742 ± 0.00044	0.14745 ± 0.00045	1.8	0.14750 ± 0.00108	1.6	0.14675 ± 0.00049	2.1
		[0.14656, 0.14827]	[0.14656, 0.14834]		[0.1454, 0.1496]		[0.14580, 0.14770]	
R_b^0 0.	$.21629 \pm 0.00066$	0.215892 ± 0.000100		0.6	0.215413 ± 0.000364	1.2	0.21591 ± 0.00010	0.6
		[0.215696, 0.216089]	[0.215688, 0.216086]		[0.21469, 0.21611]		$\left[0.21571, 0.21611 ight]$	
R_c^0 (0.1721 ± 0.0030	0.172198 ± 0.000054		-0.1		-0.1	0.172189 ± 0.000054	-0.1
		[0.172093, 0.172302]	[0.172094, 0.172303]		[0.17206, 0.17278]		[0.172084, 0.172295]	
$A_{\rm FB}^{0,b} \tag{0}$	0.0996 ± 0.0016	0.10335 ± 0.00030	0.10337 ± 0.00032	-2.3		-2.1	0.10288 ± 0.00034	-2.0
		[0.10276, 0.10396]	$\left[0.10275, 0.10400 ight]$		[0.10189, 0.10490]		[0.10220, 0.10354]	
$A_{\rm FB}^{0,c} \qquad \qquad$	0.0707 ± 0.0035	0.07385 ± 0.00023	0.07387 ± 0.00023	-0.9		-0.9		-0.8
		[0.07341, 0.07430]	$\left[0.07341, 0.07434 ight]$		[0.07275, 0.07507]		$\left[0.07298, 0.07398 ight]$	
\mathcal{A}_b	0.923 ± 0.020	0.934770 ± 0.000039		-0.6	•			-0.6
		[0.934693, 0.934847]			[0.93426, 0.93491]		[0.934642, 0.934801]	
\mathcal{A}_c	0.670 ± 0.027	0.66796 ± 0.00021	0.66797 ± 0.00021	0.1		0.1		0.1
		[0.66754, 0.66838]	[0.66755, 0.66839]		[0.66712, 0.66922]		[0.66722, 0.66810]	
\mathcal{A}_s	0.895 ± 0.091	0.935678 ± 0.000039		-0.4		-0.5	0.935621 ± 0.000041	-0.5
-			[0.935599, 0.935754]		[0.935523, 0.935909]		[0.935541, 0.935702]	
$BR_{W \to \ell \bar{\nu}_{\ell}} \qquad 0.$	$.10860 \pm 0.00090$			0.2	0.108291 ± 0.000109	0.3	0.108386 ± 0.000023	0.2
9 Jont i i		L / J	[0.108345, 0.108431]		[0.10808, 0.10851]		[0.108340, 0.108432]	
$\sin^2 \theta_{\rm eff}^{\rm lept}$ (HC) 0.	$.23143 \pm 0.00025$			-0.2		-0.1		-0.5
		[0.231362, 0.231580]	[0.231363, 0.231584]		[0.23119, 0.23173]		[0.231436, 0.231679]	
R_{uc} (0.1660 ± 0.0090	0.172220 ± 0.000031	0.172220 ± 0.000032	-0.7	•	-0.7	0.172212 ± 0.000032	
		[0.172159, 0.172282]	[0.172159, 0.172282]		[0.17209, 0.17279]		[0.172149, 0.172275]	

"Posterior": The full fit results

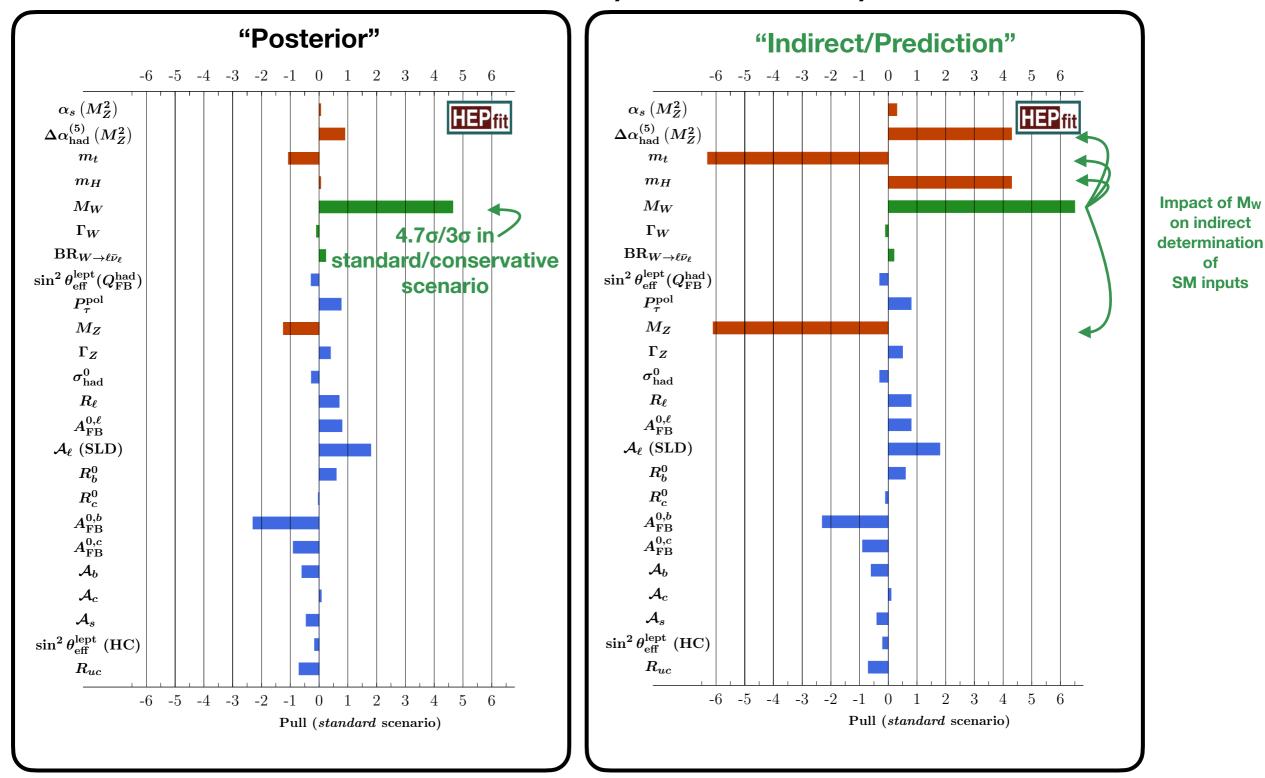
"Indirect/Prediction":


Drop each observable at a time → fit → predict the removed observable

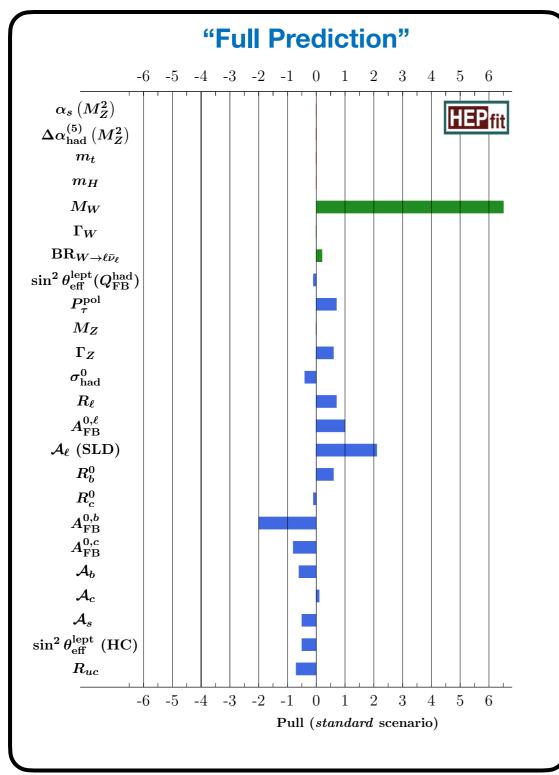
"Full Indirect":


Drop exp. data for SM inputs → Obtain indirect determination from EWPO fit

"Full Prediction":
Drop exp. data for EWPO
→ Obtain prediction from exp. values of SM inputs


• SM EW fit results: Different fits to study the consistency between SM/EWPD

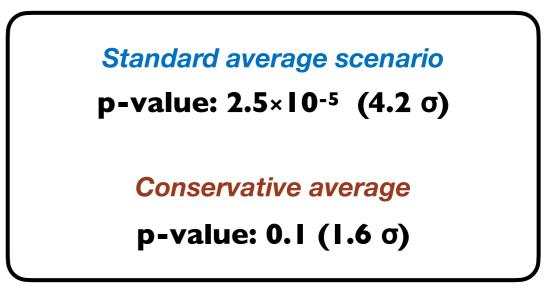
• SM EW fit results: Different fits to study the consistency between SM/EWPD


• SM EW fit results: Different fits to study the consistency between SM/EWPD

Jorge de Blas Univ. of Granada / CERN

Electroweak Precision Fits with HEPfit October 27, 2022

• SM EW fit results: Different fits to study the consistency between SM/EWPD



Overall consistency of the SM fit

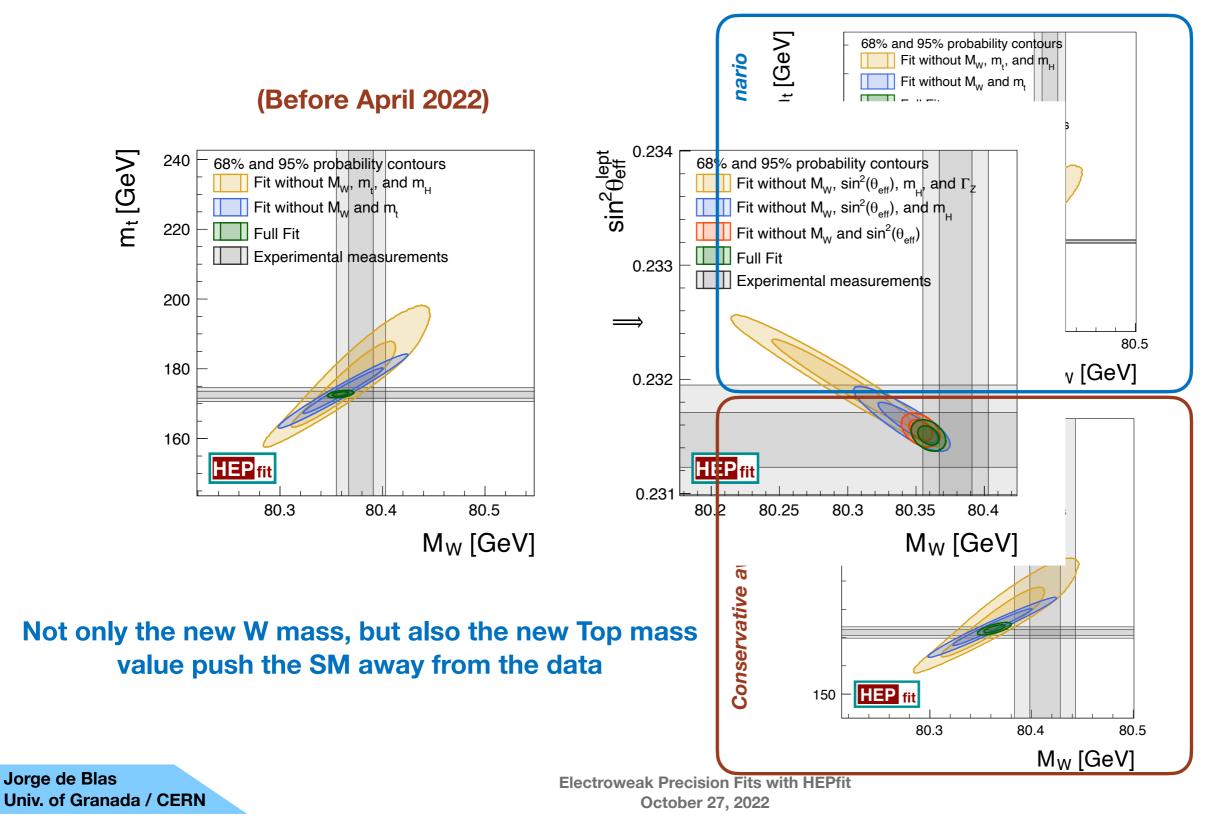
1) Run toy experiments centered around the Full prediction results

2) Compute the fraction of toys in which the largest pull is larger than the one observed in real data

 \rightarrow p value

• Could this discrepancy be due to theory? SM theory prediction:

$$\begin{split} M_{\rm W} &= M_{\rm W}^0 - c_1 \,\mathrm{dH} - c_2 \,\mathrm{dH}^2 + c_3 \,\mathrm{dH}^4 + c_4 (\mathrm{dh} - 1) - c_5 \,\mathrm{d\alpha} + c_6 \,\mathrm{dt} - c_7 \,\mathrm{dt}^2 \\ &- c_8 \,\mathrm{dH} \,\mathrm{dt} + c_9 \,\mathrm{dh} \,\mathrm{dt} - c_{10} \,\mathrm{d\alpha_s} + c_{11} \,\mathrm{dZ}, \\ \\ \mathrm{dH} &= \ln \left(\frac{M_{\rm H}}{100 \,\,\mathrm{GeV}}\right), \quad \mathrm{dh} = \left(\frac{M_{\rm H}}{100 \,\,\mathrm{GeV}}\right)^2, \quad \mathrm{dt} = \left(\frac{m_{\rm t}}{174.3 \,\,\mathrm{GeV}}\right)^2 - 1, \\ \mathrm{dZ} &= \frac{M_{\rm Z}}{91.1875 \,\,\mathrm{GeV}} - 1, \quad \mathrm{d\alpha} = \frac{\Delta\alpha}{0.05907} - 1, \quad \mathrm{d\alpha_s} = \frac{\alpha_{\rm s}(M_{\rm Z})}{0.119} - 1, \\ \\ \\ M_{\rm W}^0 &= 80.3779 \,\,\mathrm{GeV}, \quad c_1 = 0.05427 \,\,\mathrm{GeV}, \quad c_2 = 0.008931 \,\,\mathrm{GeV}, \\ c_3 &= 0.0000882 \,\,\mathrm{GeV}, \quad c_4 = 0.000161 \,\,\mathrm{GeV}, \quad c_5 = 1.070 \,\,\mathrm{GeV}, \\ c_6 &= 0.5237 \,\,\mathrm{GeV}, \quad c_7 = 0.0679 \,\,\mathrm{GeV}, \quad c_8 = 0.00179 \,\,\mathrm{GeV}, \\ c_9 &= 0.0000664 \,\,\mathrm{GeV}, \quad c_{10} = 0.0795 \,\,\mathrm{GeV}, \quad c_{11} = 114.9 \,\,\mathrm{GeV}. \end{split}$$

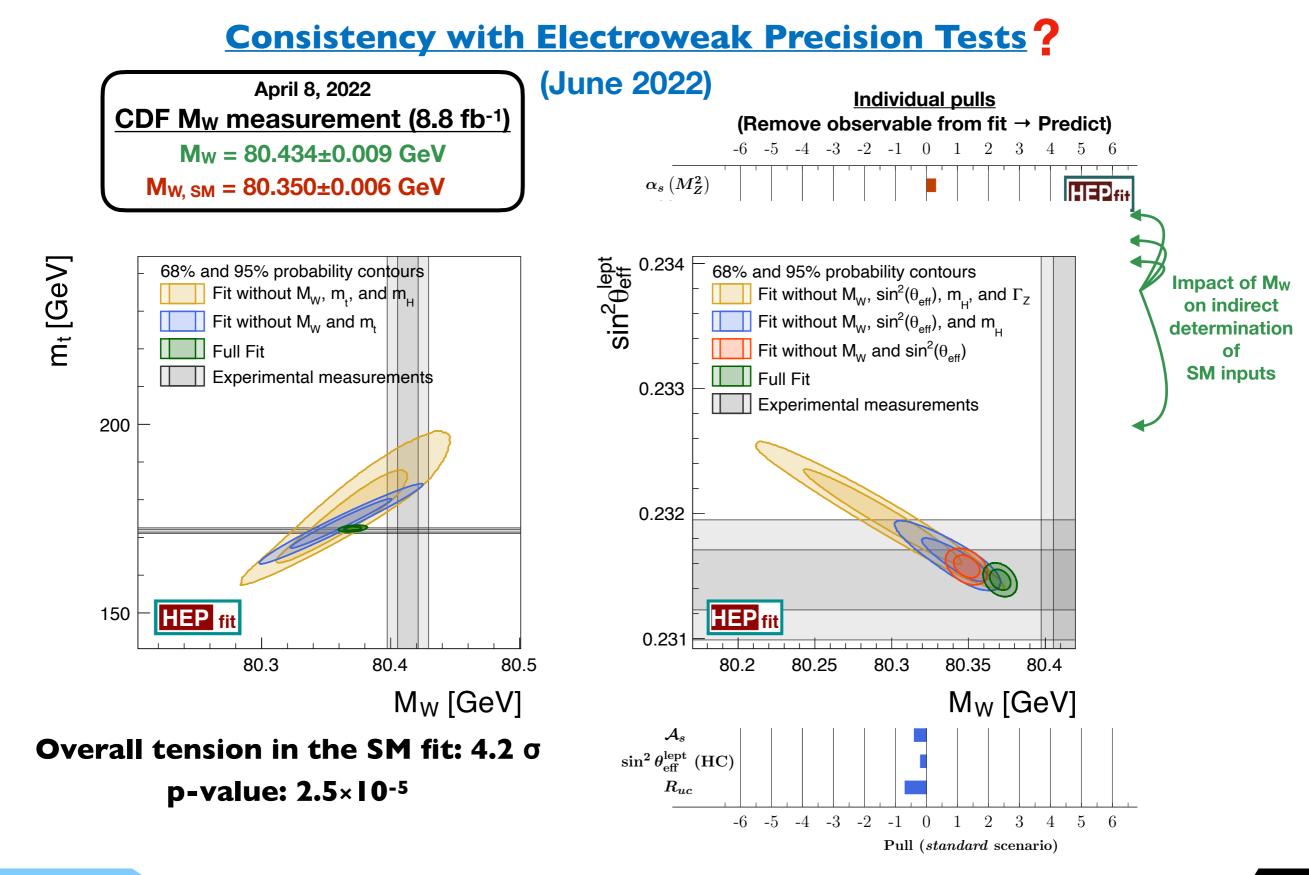

Accurate to <u>better</u> <u>than 0.5 MeV</u> for values of the SM inputs within 2σ from their central values

• Uncertainty in the calculation

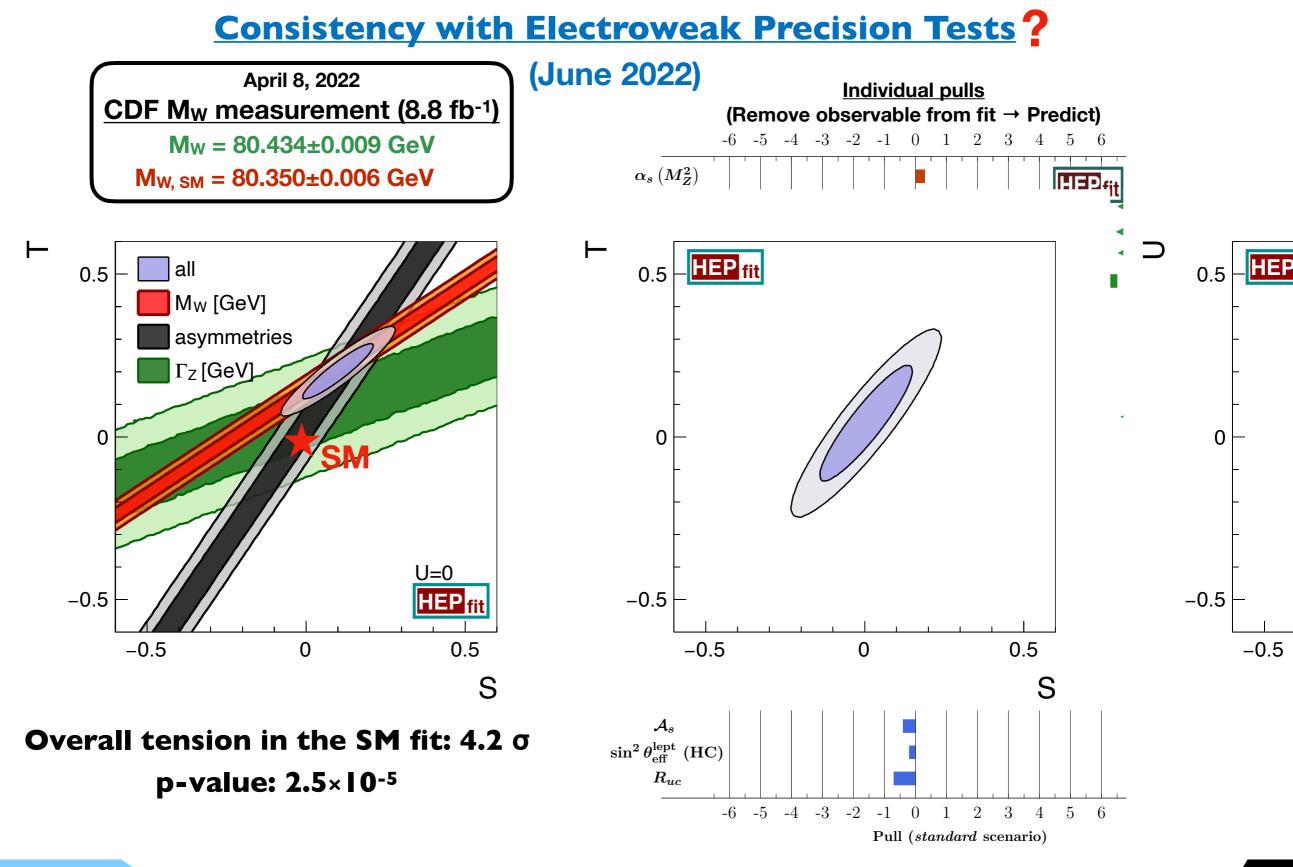
	$M_{ m W}$	-
Exp. error	15 MeV	-
Theory error	4 MeV	⊕ 4/7 MeV (parametric uncertainty)
		$\rightarrow \sim 6-8$ MeV vs. ~ 60 MeV discrepancy

• SM EW fit results: Different fits to study the consistency between SM/EWPD

68% and 95% probability contours in the *M_W-m_t* place


The SM EW fit: Summary

Consistency of the SM with Electroweak Precision Tests

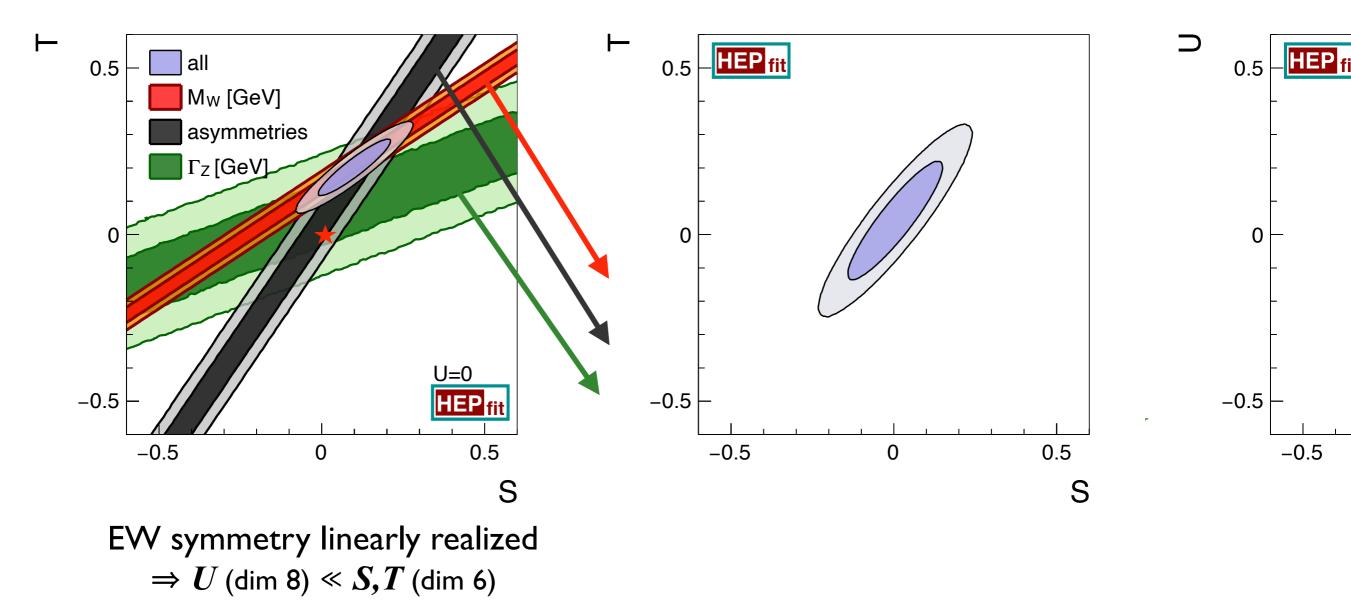

(Before April 2022) Individual pulls (Remove observable from fit \rightarrow Predict) -2 -3 2-1 0 3 $\alpha_s \left(M_z^2 \right)$ 0.234 $sin^2 \theta_{eff}^{lept}$ mt [GeV] 240 68% and 95% probability contours 68% and 95% probability contours Fit without M_w, m, and m Fit without M_w , sin²(θ_{eff}), m, and Γ_z Fit without M_w , sin²(θ_{eff}), and m_{μ} Fit without M_w and m Fit without M_W and $sin^2(\theta_{eff})$ 220 Full Fit Experimental measurements Full Fit 0.233 Experimental measurements 200 180 0.232 160 **EP** fit **EP**fit 0.231 80.5 80.25 80.3 80.2 80.3 80.35 80.4 80.4 M_w [GeV] M_W [GeV] \mathcal{A}_{s} Overall consistency of the SM fit at $I\sigma$ $\sin^2 heta_{ ext{eff}}^{ ext{lept}} ext{ (HC)}$ **p-value: 0.45** R_{uc} -3 -2 -1 0 1 23 Pull (standard scenario)

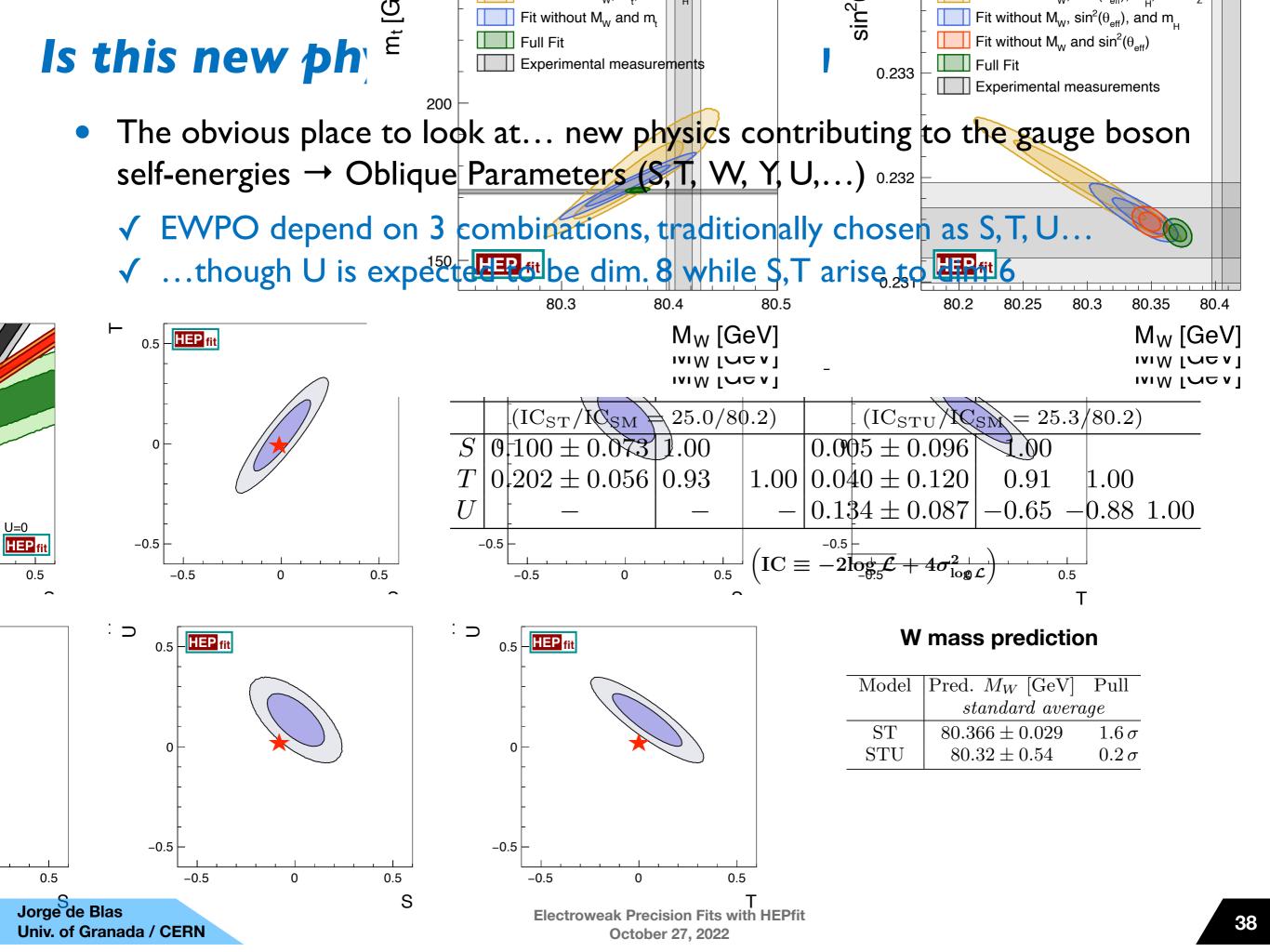
J.B. et al., arXiv: 2112.07274 [hep-ph] (Accepted for pub. In PRD)

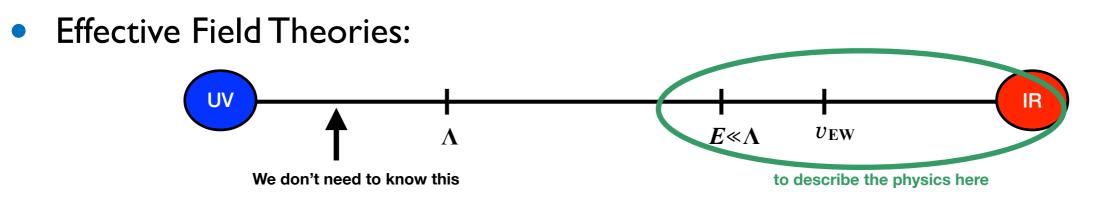
The SM EW fit: Summary

The SM EW fit: New Physics?

Electroweak Precision Fits with HEPfit October 27, 2022


New Physics Interpretations




Is this new physics? Oblique parameters

 The obvious place to look at... new physics contributing to the gauge boson self-energies → Oblique Parameters (S,T, W, Y, U,...)

✓ EWPO depend on 3 combinations, traditionally chosen as S,T,U...
 ✓ ...though U is expected to be dim. 8 while S,T arise to dim 6

• The **SMEFT:** SM particles and symmetries at low energies, with <u>the Higgs</u> <u>scalar in an SU(2)_L doublet</u> + mass gap with new physics (entering at scale Λ)

$$egin{aligned} \mathcal{L}_{\mathrm{UV}}(?) & \longrightarrow & \mathcal{L}_{\mathrm{Eff}} = \sum_{d=4}^\infty rac{1}{\Lambda^{d-4}} \mathcal{L}_d = \mathcal{L}_{\mathrm{SM}} + rac{1}{\Lambda} \mathcal{L}_5 + rac{1}{\Lambda^2} \mathcal{L}_6 + \cdots \ & E \ll \Lambda & & \mathcal{L}_d = \sum_i C_i^d \mathcal{O}_i & & [\mathcal{O}_i] = d & \longrightarrow & igg(rac{q}{\Lambda}igg)^{d-4} \end{aligned}$$

• Leading Order (LO) Beyond the SM effects (assuming B & L)

 \Rightarrow Dim-6 SMEFT: 2499 operators

• In this talk, we will follow the conventions of the Warsaw basis:

 \Rightarrow Only 8 combinations of 10 operators enter at tree-level in the EW fit (under the assumption of flavour universal new physics)

• SMEFT operators and the EW fit (in the $\{\alpha, G_F, M_Z\}$ EW input scheme):

✓ Bosonic operators: contribute to oblique corrections

✓ Non-oblique corrections to EW Vff couplings (7 operators)

$$egin{aligned} \mathcal{O}_{\phi f}^{(1)} &= (\phi^\dagger i \overleftrightarrow{D}_\mu \phi) (\overline{f} \gamma^\mu f) \quad \mathcal{O}_{\phi f}^{(3)} &= (\phi^\dagger i \overleftrightarrow{D}_\mu^a \phi) (\overline{f} \gamma^\mu \sigma_a f) \ \delta g_L^{u(
u),d(e)} &= -rac{1}{2} \left(C_{\phi q(l)}^{(1)} \mp C_{\phi q(l)}^{(3)}
ight) rac{v^2}{\Lambda^2} & \delta g_R^{u,d,e} &= -rac{1}{2} C_{\phi u,d,e}^{(1)} rac{v^2}{\Lambda^2} \ \delta V_L^{q,l} &= C_{\phi q,l}^{(3)} rac{v^2}{\Lambda^2} \end{aligned}$$

✓ Also sensitive to. $\mathcal{O}_{ll} = (\bar{l}\gamma_{\mu}l)(\bar{l}\gamma^{\mu}l)$ through indirect effects: the extraction of G_F from μ decay is corrected by:

$$\delta_{G_F} = \left((C_{\phi\ell}^{(3)})_{11} + (C_{\phi\ell}^{(3)})_{22} - rac{1}{2} ((C_{\ell\ell})_{1221} + (C_{\ell\ell})_{2112})
ight) rac{v^2}{\Lambda^2}$$

- SMEFT operators and the EW fit (in the $\{\alpha, G_F, M_Z\}$ EW input scheme):
 - ✓ Fit combinations:

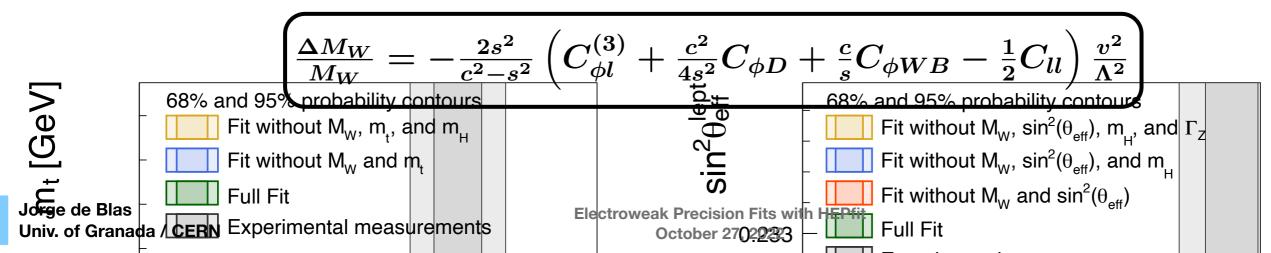
$$\hat{C}_{\varphi f}^{(1)} = C_{\varphi f}^{(1)} - \frac{Y_f}{2} C_{\varphi D}, \quad f = l, q, e, u, d,$$
$$\hat{C}_{\varphi f}^{(3)} = C_{\varphi f}^{(3)} + \frac{c_w^2}{4s_w^2} C_{\varphi D} + \frac{c_w}{s_w} C_{\varphi WB}, \quad f = l, q,$$
$$\hat{C}_{ll} = \frac{1}{2} ((C_{ll})_{1221} + (C_{ll})_{2112}) = (C_{ll})_{1221},$$

✓ Z-pole/EW couplings (7) depend on:

$$\hat{C}_{\varphi f}^{(3)} - \frac{c_w^2}{2s_w^2} \hat{C}_{ll} \qquad \qquad \hat{C}_{\varphi f}^{(1)} + Y_f \hat{C}_{ll}$$

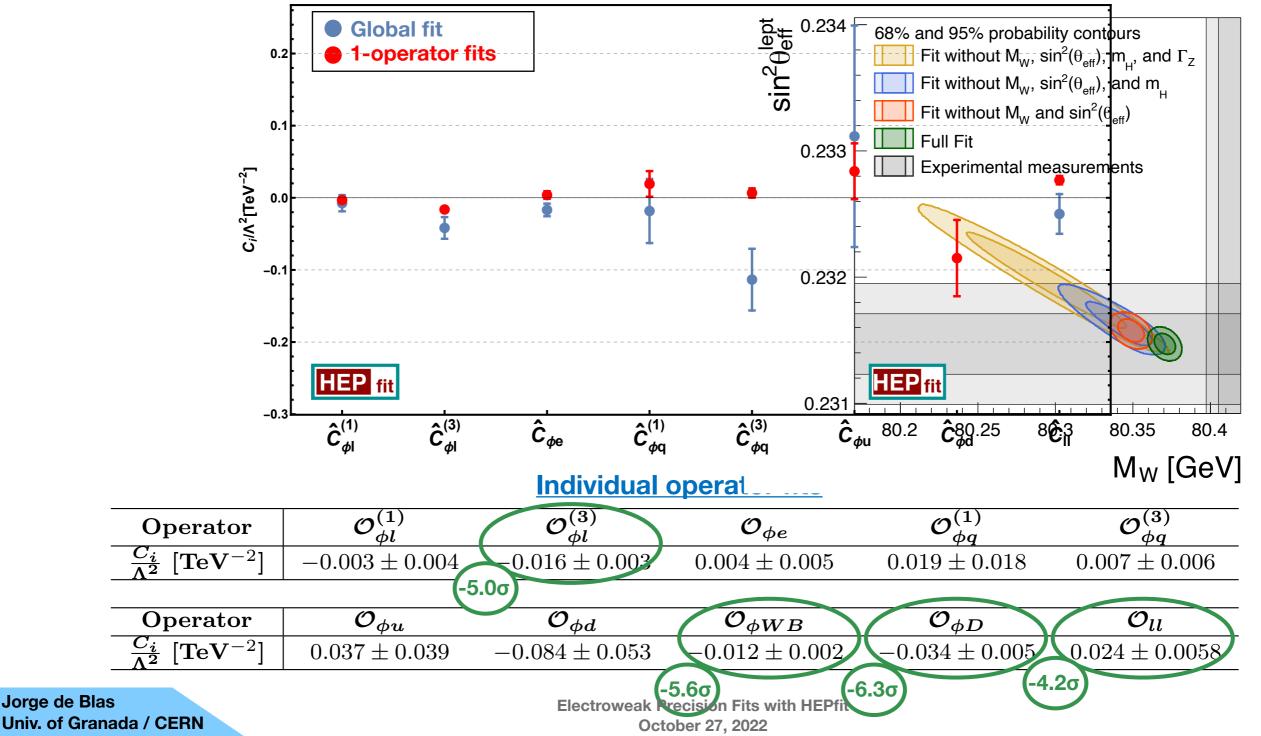
✓ W mass/width depend on:

$$\hat{C}_{\varphi l}^{(3)} - \hat{C}_{ll}/2$$


and breaks the degeneracy (the other 2 degeneracies in this basis can be solved with Higgs or diBoson data)

Jorge de Blas Univ. of Granada / CERN

- SMEFT operators and the EW fit (in the $\{\alpha, G_F, M_Z\}$ EW input scheme):
 - ✓ Fit results under U(3)⁵ flavor assumptions (units of TeV⁻²):

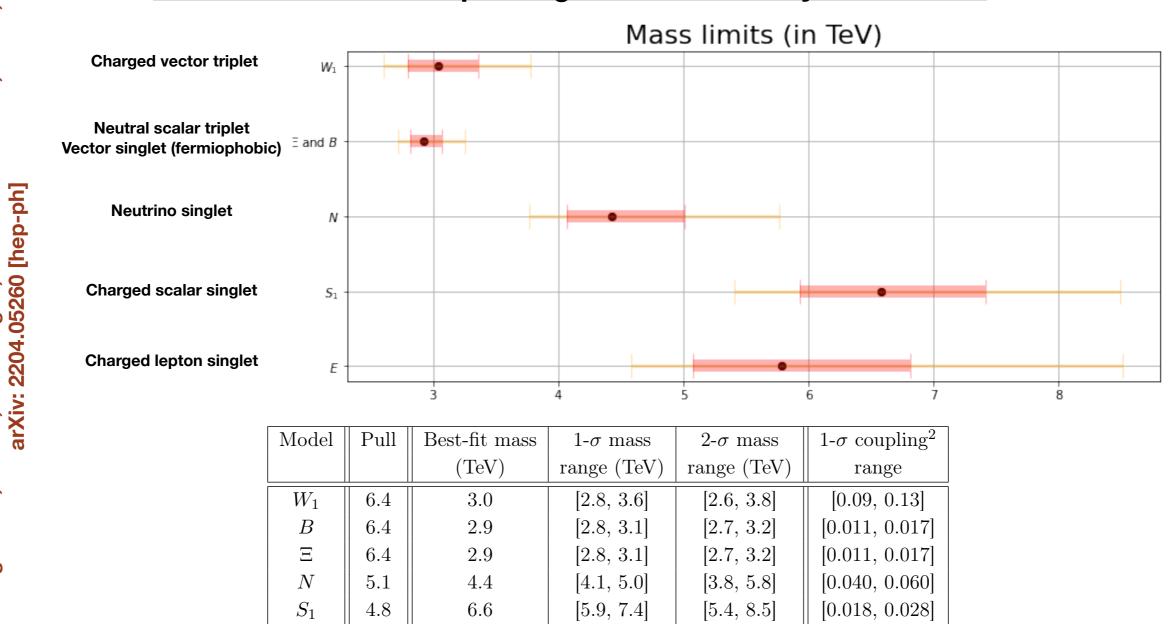

	Result	Correlation Matrix		
		$(\mathrm{IC}_{\mathrm{SMEFT}}/\mathrm{IC}_{\mathrm{SM}} = 31.8/79.7) \qquad (\mathrm{IC} \equiv -2\overline{\log \mathcal{L}} + 4\sigma_{\log \mathcal{L}}^2)$		
$ \hat{C}_{\varphi l}^{(1)} \\ \hat{C}_{\varphi l}^{(3)} \\ \hat{C}_{\varphi e} $	-0.007 ± 0.011	1.00		
$\hat{C}^{(3)}_{\varphi l}$	-0.042 ± 0.015	-0.68 1.00		
$\hat{C}_{arphi e}$	-0.017 ± 0.009	0.48 0.04 1.00		
$\hat{C}^{(1)}_{\varphi q}$	-0.018 ± 0.044	$-0.02 \ -0.06 \ -0.13 \ 1.00$		
1 1		-0.03 0.04 -0.16 -0.37 1.00		
$\hat{C}_{oldsymbol{arphi}} u$	0.090 ± 0.150	0.06 - 0.04 0.04 0.61 - 0.77 1.00		
$\hat{C}_{arphi d}$		$-0.13 \ -0.05 \ -0.30 \ 0.40 \ 0.58 \ -0.04 \ 1.00$		
\hat{C}_{ll}	-0.022 ± 0.028	-0.80 0.95 -0.10 -0.06 -0.01 -0.04 -0.05 1.00		

✓ SM tension with the W mass more apparent when looking at individual fits to the operators modifying that observable

Jorge de Blas

- SMEFT operators and the EW fit (in the $\{\alpha, G_F, M_Z\}$ EW input scheme):
 - \checkmark SM tension with the W mass more apparent when looking at individual fits to the operators modifying that observ

E


3.5

5.8

 Possible new physics explanations explained in several papers, via matching of the SMEFT results to UV completions

J. B., J.C. Criado, M. Pérez- Victoria, J. Santiago, JHEP 1803 (2018) 109

[0.022, 0.039]

Selected scenarios explaining W mass anomaly at tree level

ш

Bagnaschi, J. Ellis, M. Madigan, K. Mimasu. V. Sanz, T. You,

[5.1, 6.8]

[4.6, 8.5]

- SMEFT operators and the EW fit (in the $\{\alpha, G_F, M_Z\}$ EW input scheme):
 - ✓ SM tension with the W mass more apparent when looking at individual fits to the operators modifying that observ

Interplay with other measurements

 The required NP SMEFT contributions is not very large (from the point of view of the NP interaction scale) but still could spoil the agreement with the SM of other <u>precision measurements</u> outside the EW fit, e.g. CKM unitarity (O(0.07%) precision)

-5.6σ

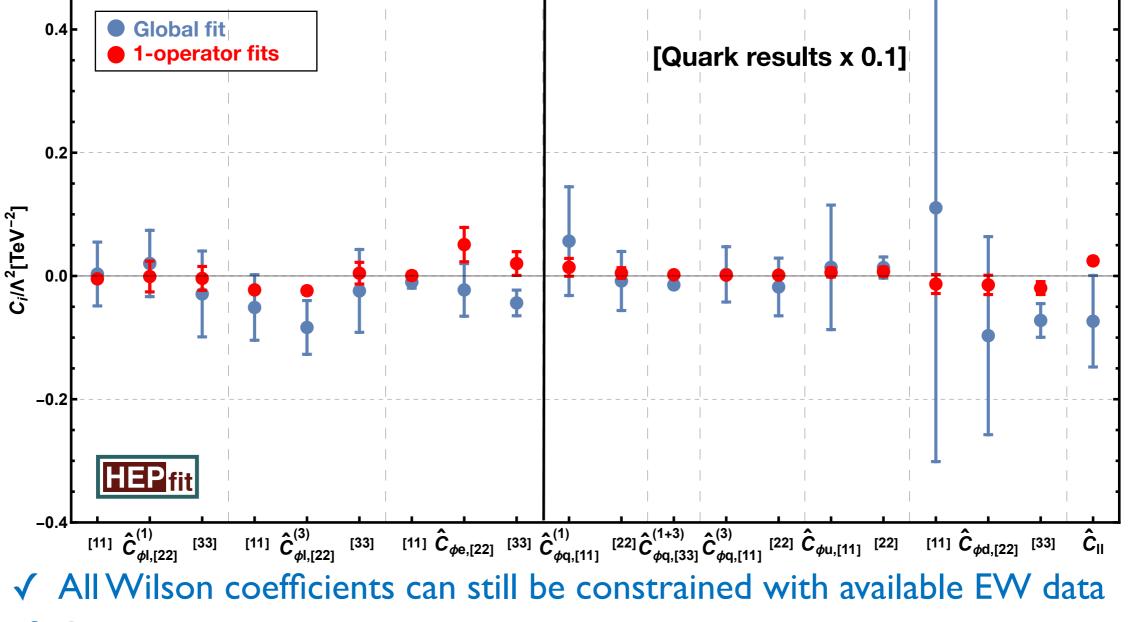
Electroweak Recision Fits with HEP

October 27, 2022

V. Cirigliano et al., Phys.Rev.D 106 (2022) 7, 075001

$$\Delta_{
m CKM} = rac{v^2}{\Lambda^2} \left(2 \left(\hat{C}^{(3)}_{arphi q} - \hat{C}^{(3)}_{arphi l} + \hat{C}_{ll}
ight) - 2 C^{(3)}_{lq}
ight)$$

 $\Delta_{\text{CKM}}^{\text{EWfit}} |_{C_{l_a}^{(3)}=0} = -0.012 \pm 0.005 \text{ vs.} - 0.0015 \pm 0.0007 \text{ (exp)}$

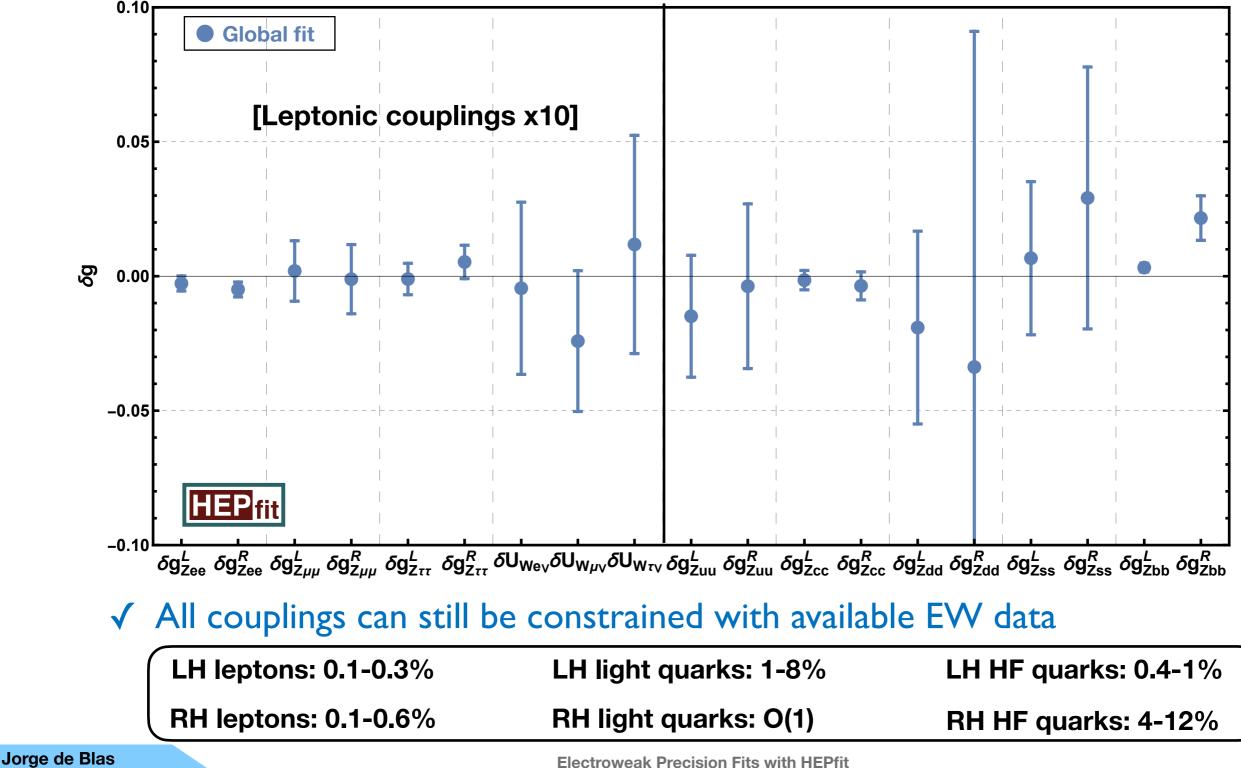

Both sets of constraints can however be decoupled by removing the U(3)⁵ assumption

	Result	Result with CKM
$\hat{C}^{(1)}_{\varphi l}$	-0.007 ± 0.011	-0.013 ± 0.009
$\hat{C}^{(3)}_{\varphi l}$	-0.042 ± 0.015	-0.034 ± 0.014
$\hat{C}_{\varphi l}$ $\hat{C}_{\varphi e}$	-0.017 ± 0.009	-0.021 ± 0.009
$\hat{C}^{(1)}_{\varphi q}$	-0.0181 ± 0.044	-0.048 ± 0.04
$\hat{C}^{(3)}_{\varphi q}$	-0.114 ± 0.043	-0.041 ± 0.015
$\hat{C}_{\varphi u}$	0.086 ± 0.154	-0.12 ± 0.11
$\hat{C}_{arphi d}$	-0.626 ± 0.248	-0.38 ± 0.22
C_{Δ}	-0.19 ± 0.09	-0.027 ± 0.011

·4.2σ

-6.3a

- SMEFT operators and the EW fit (in the $\{\alpha, G_F, M_Z\}$ EW input scheme):
 - ✓ Fit results under general flavor assumptions (units of TeV-2):

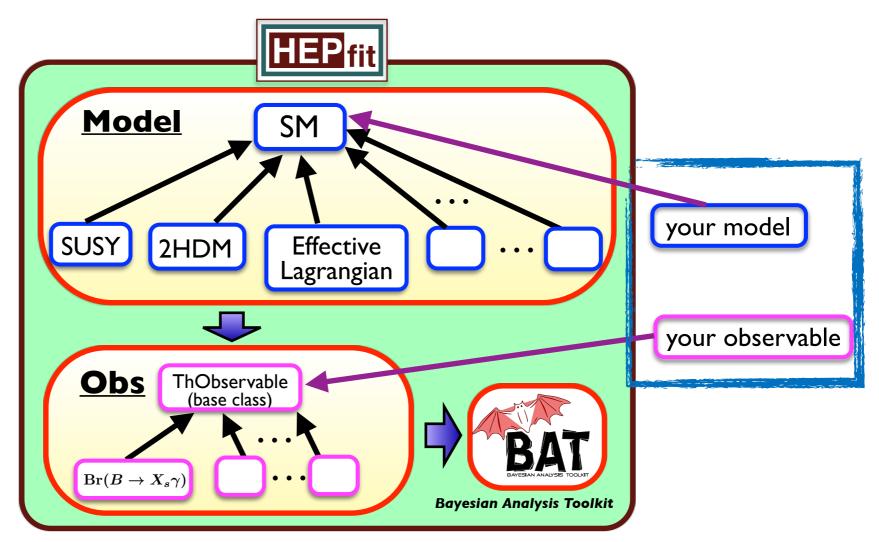


 \checkmark Δ_{CKM} corrected by other weakly constrained operators, e.g. $O_{\varphi ud}$ (RH CC)

Still, the message is the importance of being global in SMEFT analyses, and include all observables of comparable precision to keep track of correlated modifications

Jorge de Blas Univ. of Granada / CERN

- SMEFT operators and the EW fit (in the $\{\alpha, G_F, M_Z\}$ EW input scheme):
 - ✓ Fit results under general flavor assumptions. Allowed coupling deviations:



Univ. of Granada / CERN

If you are interested in the EW fit for other models Or to combine with different observables

 IEPfit functionality is not restricted to the model/observables already implemented in the code

- Users can add new models and/or observables as external modules
- You just need to know a little C++. See backup slides for details

Summary and Conclusions

Summary and Conclusions

- The EW precision data fit has been traditionally a powerful tool to test the consistency of the SM and constrain new physics
- While M_W has been in some tension for a while, the new CDF measurement, with the same central value but a much smaller error increases this tension to
 - ✓ $6.5\sigma/3.7\sigma$ if taking all uncertainties at face value/accounting for the possibility of underestimated systematics → largest tension in the EW fit
- The new CMS m_t measurement also pushes the m_t average towards smaller values, slightly increasing the tension in the EW fit

✓ Impossible to reconcile the SM with M_W within reasonable values of m_t

- Is this new physics?
 - ✓ Easily explained in terms of new physics contributing to the T parameter or other SMEFT operators. Easy to explain within simple specific models.
 - Careful: In presence of a (isolated) tension, global SMEFT analyses combining EW, Higgs, Top, Flavor are even more relevant from model-building point of view
 - E.g. Some directions of SMEFT EW fit not consistent with CKM unitarity

Backup slides Adding your own models/observables

Adding your model and Observables to HEPfit

- Check template in examples/myModel
- In myModel.h:

```
#include <HEPfit.h>
                                    Extend the SM (typically) or, if more convenient,
/**
                                    the NPBase model, or the NPd6SMEFT model, ...
* Oclass myModel
* Obrief My own Model.
*/
class myModel: public StandardModel {
public:
   static const int NmyModelvars = 4; /* Define number of mandatory parameters in the model. */
   static const std::string myModelvars[NmyModelvars]; /* Vector of model variable names. */
double c1, c2, c3, c4; /* Model Parameters */
                                                 Define number and variables for model
                                                 parameters and get methods
double getc1() const { return c1; }
double getc2() const { return c2; }
double getc3() const { return c3; }
double getc4() const { return c4; }
```

Adding your model and Observables to HEPfit

• In myModel.cpp:

/* Model parameters and their derived quantities can be set here. */
void myModel::setParameter(const std::string name, const double& value)

```
{
    if(name.compare("c1") == 0)
        c1 = value;
    else if(name.compare("c2") == 0)
        c2 = value;
    else if(name.compare("c3") == 0)
        c3 = value;
    else if(name.compare("c4") == 0)
        c4 = value;
    else
        StandardModel::setParameter(name,value);
}
```

Link to parameter names to variables and values in the setParameter method

Adding your model and Observables to HEPfit

• Finally register the model in the "Model Factory" in myModel_MCMC.cpp:

/* register user-defined model named ModelName defined in class ModelClass using the following syntax: */
ModelF.addModelToFactory("myModel", boost::factory<myModel*>());

- <u>Custom Observables</u> do not depend on having a custom model or not. Defined as functions of parameters already defined in a HEPfit model, in a custom model or a combination of both
- Need to be added to the ThObsFactory, e.g. in myModel_MCMC.cpp

/* register user-defined ThObservable named ThObsName defined in cla	lass ThObsClass using the following syntax: */
ThObsF.addObsToFactory("BIN1", boost::bind(boost::factory <yield*>(),</yield*>), _1, 1));
ThObsF.addObsToFactory("BIN2", boost::bind(boost::factory <yield*>(),</yield*>), _1, 2));
ThObsF.addObsToFactory("BIN3", boost::bind(boost::factory <yield*>(),</yield*>	Require argument
ThObsF.addObsToFactory("BIN4", boost::bind(boost::factory <yield*>(),</yield*>	(1, 1, 4);
ThObsF.addObsToFactory("BIN5", boost::bind(boost::factory <yield*>(),</yield*>), _1, 5));
ThObsF.addObsToFactory("BIN6", boost::bind(boost::factory <yield*>(),</yield*>), _1, 6));
ThObsF.addObsToFactory("C_3", boost::factory <c_3*>());</c_3*>	
ThObsF.addObsToFactory("C_4", boost::factory <c_4*>());</c_4*>	Do not require extra arguments