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Vector-like leptons

* Heavy counterpart to SM leptons, but with L & R
having same quantum numbers

— Non-chiral or vector-Llike



VLL - motivations

e Can be arbitrarily heavy (not EW scale)

* Unlike new chiral fermions, no strong bounds
from Higgs data

- See discussionin 10.1155/2013/91027/5


https://inspirehep.net/literature/1223750

VLL — BSM motivations

e Can arise from composite Higgs, GUTs, neutrino
mass models

 E.g. current "hot” topic:

- B anomalies — 4321 model predicts LQ + Z' +
colouron + VLQs and VLLs



Vector-like leptons

« Six possible states (if SU®3) SU@Q2)L U(ly

you want them to N
couple to the SM) E




L HC bounds

* Direct searches with first generation couplings:

- Singlets: M > 150 GeV
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Electroweak precision bounds

* For first generation couplings (20):
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Electroweak precision bounds

» For second generation couplings (20):
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How do they alter precision physics?

* In general:

- Tree level: modify Z¢¢ & Zvv (Z pole), and Wiy
(CKM determination, G determination)

- 1-loop: modify (££)(¢¢) contact operator (Gr
determination)



G

e Fromu — evv
- With (£¢)(¢¢) need 1st and 2nd gen coupling
- With W /v only need one

e In principle all V,, determinations depend on Gr

e BUt K, isreally K,2/m,2 => Gr cancels
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G

e CannotreconcileV,.and V,; data with Gralone
- §Gp ~ —5-10"* brings V4 to VK2
- 5Gr ~ —10~2 needed to bring V243 to V. /ir2

- Factor of 20 difference
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Wil

» Slightly more complex, as W /v changes directly
affect semileptonic decays which determine
Vug, but also Gg

- Gp — GF(l + 0pe _|_5[L/L)

 E.g. NP in Wev cancels in beta decay, only
sensitive to W uv
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Wil

* Vus/Vua from K5 /7,5 is independent of both
G r and W /v changes

« VR sensitive to both G'rand Wy, but either
only Wev or Wuv for K3 or K.3respectively

- Important to have separate data
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Explaining CAA with VLLs

2022 with €c ~ 8+ 107°, €., ~ 5-107*
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CKM vs EWPO

* As mentioned, SUZ invariance means changes to
W v also give changes to Z/¢¢

* S0 we must test our CKM solutions against
EWPO

19



CKM vs EWPO

— X-like i
-2 T f T
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{ngy] 1 (p=1TeV) x v* x 103 20
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| FV strikes back

* With a single VLL, giving NP in 1 and e, you get
LFV

- Because Z¢;¢; ~ \/(W@,;Vi)(ngVj)

* And LFV bounds are at least an order of
magnitude stronger than other EWPO
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Beyond simplest model

* With two independent VLLs can avoid LFV
bounds
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Beyond simplest model

e Consider RH
neutrino coupled to
electrons, and >3
(SU(2) triplet
equivalent of RH e)
coupled to muons

e Improves fit by 3o

0.121
0.1F
— 0.08}
(A
c-|:_:5 0.06}
0.04}

0.02f

0.

B 68% CL
| 95% CL
99.7% CL
------- 68% CL NNC
-—-= 95% CL NNC
—-— 99.7% CL NNC

L 2008.01113

23


https://arxiv.org/abs/2008.01113

Conclusions

 VLLs well motivated extensions of the SM

— And can still exist below the TeV scale

e VLLs coupled to muons and electrons can
(partially) resolve the CAA

- But EWPO and LFV are important constraints
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Backup
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arXi1v:2208.09700v1 [hep-ex] 20 Aug 2022

4321 VLLs at CMS?

Search for pair-produced vector-like leptons in final states
with third-generation leptons and at least three b quark jets
in proton-proton collisions at /s = 13 TeV

The CMS Collaboration

Abstract

The first search is presented for vector-like leptons (VLLs) in the context of the
“4321 model”, an ultraviolet-complete model with the potential to explain existing
B physics measurements that are in tension with standard model predictions. The
analyzed data, corresponding to an integrated luminosity of 96.5fb™ !, were recorded
in 2017 and 2018 with the CMS detector at the LHC in proton-proton collisions at
/s = 13TeV. Final states with >3 b-tagged jets and two third-generation leptons (TT,
TV, or v ;) are considered. Upper limits are derived on the VLL production cross
section in the VLL mass range 500-1050 GeV. The maximum likelihood fit prefers the
presence of signal at the level of 2.8 standard deviations, for a representative VLL
mass point of 600GeV. As a consequence, the observed upper limits are approxi-
mately double the expected limits.

Submitted to Physics Letters B

26



Beyond simplest model

e My version of Andi's |
pl.Ot 0.10




Beyond simplest model

2022 with vy /M =~ 0.07,vAs /M ~ 0.1
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L HC bounds

* Direct searches with third generation couplings:
- Singlets: M > ? GeV
— Doublets: M > 790 GeV N
- Triplets: M > ? GeV Ay
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