

Technische Universität München

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Leptoquark Signatures: from Precision Physics to the LHC

Luc Schnell Electroweak Precision Physics Workshop October 25, 2022

- 1.1 Leptoquark representations
- **1.2 Motivation**
- 1.3 Lagrangian
- 1.4 UV-complete models

1.1 Leptoquark representations

1. Introduction **1.1 Leptoquark representations**

• Leptoquarks (LQs) are hypothetical BSM particles that couple to a quark and a lepton at tree-level.

1.1 Leptoquark representations

- Ten such representations are possible under $SU(3)_c \times SU(2)_L \times U(1)_Y$, of which five are scalar particles and five are vector particles.

• Leptoquarks (LQs) are hypothetical BSM particles that couple to a quark and a lepton at tree-level.

eld	Φ_1	$ ilde{\Phi}_1$	Φ_2	$ ilde{\Phi}_2$	Φ_3	V_1	\tilde{V}_1	V_2	\tilde{V}_2	V_3
$(3)_c$	3	3	3	3	3	3	3	3	3	3
$(2)_{L}$	1	1	2	2	3	1	1	2	2	3
$)_Y$	$-\frac{2}{3}$	$-\frac{8}{3}$	$\frac{7}{3}$	$\frac{1}{3}$	$-\frac{2}{3}$	$\frac{4}{3}$	$\frac{10}{3}$	$-\frac{5}{3}$	$\frac{1}{3}$	$\frac{4}{3}$

1.1 Leptoquark representations

- Ten such representations are possible under $SU(3)_c \times SU(2)_L \times U(1)_Y$, of which five are scalar particles and five are vector particles.

Leptoquarks (LQs) are hypothetical BSM particles that couple to a quark and a lepton at tree-level.

1.1 Leptoquark representations

- Ten such representations are possible under $SU(3)_c \times SU(2)_L \times U(1)_Y$, of which five are scalar particles and five are vector particles.

• Leptoquarks (LQs) are hypothetical BSM particles that couple to a quark and a lepton at tree-level.

		S	LQS	5		U ₁				
eld	Φ_1	$ ilde{\Phi}_1$	Φ_2	$ ilde{\Phi}_2$	Φ_3	V_1	\tilde{V}_1	V_2	\tilde{V}_2	V_3
$(3)_c$	3	3	3	3	3	3	3	3	3	3
$(2)_L$	1	1	2	2	3	1	1	2	2	3
$)_Y$	$-\frac{2}{3}$	$-\frac{8}{3}$	$\frac{7}{3}$	$\frac{1}{3}$	$-\frac{2}{3}$	$\frac{4}{3}$	$\frac{10}{3}$	$-\frac{5}{3}$	$\frac{1}{3}$	$\frac{4}{3}$

• LQs have first been considered in the context of **GUT theories**.

- LQs have first been considered in the context of GUT theories.
- They also appear e.g. in the **R-parity violating MSSM**.

f GUT theories. MSSM.

- LQs have first been considered in the context of GUT theories.
- They also appear e.g. in the **R-parity violating MSSM**.
- LQs attracted particular attention in recent years, because of the flavour anomalies.

- LQs have first been considered in the context of GUT theories.
- They also appear e.g. in the R-parity violating MSSM.
- LQs attracted particular attention in recent years, because of the flavour anomalies.

- LQs have first been considered in the context of GUT theories.
- They also appear e.g. in the R-parity violating MSSM.
- LQs attracted particular attention in recent years, because of the flavour anomalies.

- LQs have first been considered in the context of GUT theories.
- They also appear e.g. in the R-parity violating MSSM.
- LQs attracted particular attention in recent years, because of the flavour anomalies.

- LQs have first been considered in the context of GUT theories.
- They also appear e.g. in the R-parity violating MSSM.
- LQs attracted particular attention in recent years, because of the flavour anomalies.

- LQs have first been considered in the context of GUT theories.
- They also appear e.g. in the R-parity violating MSSM.
- LQs attracted particular attention in recent years, because of the flavour anomalies.

Source: LHCb talk by G.M. Ciezarek

Source: ArXiv:2103.12504 (A. Angelescu, D. Becirevic, D.A. Faroughy, F. Jaffredo, O. Sumensari)

• Simplified S_1 couplings.

• Simplified S_1 couplings.

• Simplified S_1 couplings.

$$\mathcal{L}_{2\Phi} = -\sum_{a=1}^{3} \left(m_a^2 + Y_a \left(H^{\dagger} H \right) \right) \left(\Phi_a^{\dagger} \Phi_a^{\dagger}$$

• One can just introduce a mass term.

• Simplified S_1 couplings.

$$\mathcal{L}_{2\Phi} = -\sum_{a=1}^{3} \left(m_a^2 + Y_a \left(H^{\dagger} H \right) \right) \left(\Phi_a^{\dagger} \Phi_a^{\dagger} \Phi_a^{\dagger} \right)$$

• One can just introduce a mass term.

• Simplified S_1 couplings.

$$\mathcal{L}_{2\Phi} = -\sum_{a=1}^{3} \left(m_a^2 + Y_a \left(H^{\dagger} H \right) \right) \left(\Phi_a^{\dagger} \Phi_a^{\dagger} \Phi_a^{\dagger} \right)$$

• One can just introduce a mass term.

$$\begin{split} Y_{13} \left(H^{\dagger} \left(\sigma \cdot \Phi_{3} \right) H \right) \Phi_{1}^{\dagger} \cdot \\ Y_{123} \Phi_{1,c_{1}} \left(H^{\dagger} \left(\sigma \cdot \Phi_{3,c_{3}} \right) \Phi_{2,c_{2}} \right) \\ Y_{1333} \delta_{c_{1}c_{2}} \delta_{c_{3}c_{4}} \left(\Phi_{1,c_{1}}^{\dagger} \Phi_{3,c_{2}}^{J} \Phi_{3,c_{3}}^{J\dagger} \Phi_{3,c_{4}}^{K} i \epsilon^{IJK} \right) \\ \rightarrow \text{Complete SLQ Lagrangian in FeynRussian Source: ArXiv:2105.04844} (A. Crivellin, LS) \end{split}$$

$$\mathcal{L}_{2\Phi} = -\sum_{a=1}^{3} \left(m_a^2 + Y_a \left(H^{\dagger} H \right) \right) \left(\Phi_a^{\dagger} \Phi_a^{\dagger} \Phi_a^{\dagger} \right)$$

One can just introduce a mass term.

$$\mathcal{L}_{2\Phi} = -\sum_{a=1}^{3} \left(m_a^2 + Y_a \left(H^{\dagger} H \right) \right) \left(\Phi_a^{\dagger} \Phi_a^{\dagger} \Phi_a^{\dagger} \right)$$

One can just introduce a mass term.

$$\mathcal{L}_{2\Phi} = -\sum_{a=1}^{3} \left(m_a^2 + Y_a \left(H^{\dagger} H \right) \right) \left(\Phi_a^{\dagger} \Phi \right)$$

• One can just introduce a mass term.

 \rightarrow How can this be turned into a **UV-complete model**?

• What we want:

$$\frac{g_U}{\sqrt{2}} \left[\beta_L^{ij} \,\bar{Q}^{\,i,a} \gamma_\mu L^j + \beta_R^{ij} \,\bar{d}^{\,i,a} \gamma_\mu e^j \right] l$$

• What we want:

$$\frac{g_U}{\sqrt{2}} \left[\beta_L^{ij} \,\bar{Q}^{\,i,a} \,\gamma_\mu \,L^j + \beta_R^{ij} \,\bar{d}^{\,i,a} \,\gamma_\mu \,e^j \right] U$$

Gauge models:

$$G_{\rm NP} \supset G_{\rm SM}$$

• What we want:

$$\frac{g_U}{\sqrt{2}} \left[\beta_L^{ij} \,\bar{Q}^{\,i,a} \,\gamma_\mu \,L^j + \beta_R^{ij} \,\bar{d}^{\,i,a} \,\gamma_\mu \,e^j \right] l$$

• Gauge models:

$$G_{\rm NP} \supset G_{\rm SM}$$

• First idea: Pati-Salam-type model

• What we want:

$$\frac{g_U}{\sqrt{2}} \left[\beta_L^{ij} \,\bar{Q}^{\,i,a} \,\gamma_\mu \,L^j + \beta_R^{ij} \,\bar{d}^{\,i,a} \,\gamma_\mu \,e^j \right] l$$

• Gauge models:

$$G_{\rm NP} \supset G_{\rm SM}$$

• First idea: Pati-Salam-type model

• What we want:

$$\frac{g_U}{\sqrt{2}} \left[\beta_L^{ij} \,\bar{Q}^{\,i,a} \,\gamma_\mu \,L^j + \beta_R^{ij} \,\bar{d}^{\,i,a} \,\gamma_\mu \,e^j \right] l$$

• Gauge models:

$$G_{\rm NP} \supset G_{\rm SM}$$

• First idea: Pati-Salam-type model

 $G_{\rm NP}^{\rm min} = SU(4) \times SU(2)_L \times U(1)_{T_R^3} ,$

SU(4) generators:

• What we want:

$$\frac{g_U}{\sqrt{2}} \left[\beta_L^{ij} \,\bar{Q}^{\,i,a} \,\gamma_\mu \,L^j + \beta_R^{ij} \,\bar{d}^{\,i,a} \,\gamma_\mu \,e^j \right] l$$

• Gauge models:

$$G_{\rm NP} \supset G_{\rm SM}$$

• First idea: Pati-Salam-type model

What we want: \bullet

$$\frac{g_U}{\sqrt{2}} \left[\beta_L^{ij} \,\bar{Q}^{\,i,a} \,\gamma_\mu \,L^j + \beta_R^{ij} \,\bar{d}^{\,i,a} \,\gamma_\mu \,e^j \right] l$$

• Gauge models:

$$G_{\rm NP} \supset G_{\rm SM}$$

• First idea: Pati-Salam-type model

• What we want:

$$\frac{g_U}{\sqrt{2}} \left[\beta_L^{ij} \,\bar{Q}^{\,i,a} \,\gamma_\mu \,L^j + \beta_R^{ij} \,\bar{d}^{\,i,a} \,\gamma_\mu \,e^j \right] l$$

• Gauge models:

$$G_{\rm NP} \supset G_{\rm SM}$$

• First idea: Pati-Salam-type model

• What we want:

$$\frac{g_U}{\sqrt{2}} \left[\beta_L^{ij} \,\bar{Q}^{\,i,a} \,\gamma_\mu \,L^j + \beta_R^{ij} \,\bar{d}^{\,i,a} \,\gamma_\mu \,e^j \right] l$$

• Gauge models:

$$G_{\rm NP} \supset G_{\rm SM}$$

• First idea: Pati-Salam-type model

 $G_{\rm NP}^{\rm min} = SU(4) \times SU(2)_L \times U(1)_{T_R^3} ,$

Inspired by : <u>ArXiv:1808.00942</u> (L. Di Luzio, J. Fuentes-Martin, A. Greljo, M. Nardecchia, S. Renner), <u>ArXiv:1901.10480</u> (M.J. Baker, J. Fuentes-Martin, G. Isidori, M. König)

• What we want:

$$\frac{g_U}{\sqrt{2}} \left[\beta_L^{ij} \,\bar{Q}^{\,i,a} \,\gamma_\mu \,L^j + \beta_R^{ij} \,\bar{d}^{\,i,a} \,\gamma_\mu \,e^j \right] l$$

• Gauge models:

$$G_{\rm NP} \supset G_{\rm SM}$$

• First idea: Pati-Salam-type model

 $G_{\rm NP}^{\rm min} = SU(4) \times SU(2)_L \times U(1)_{T_R^3} ,$

Inspired by : <u>ArXiv:1808.00942</u> (L. Di Luzio, J. Fuentes-Martin, A. Greljo, M. Nardecchia, S. Renner), <u>ArXiv:1901.10480</u> (M.J. Baker, J. Fuentes-Martin, G. Isidori, M. König)

• What we want:

$$\frac{g_U}{\sqrt{2}} \left[\beta_L^{ij} \,\bar{Q}^{\,i,a} \,\gamma_\mu \,L^j + \beta_R^{ij} \,\bar{d}^{\,i,a} \,\gamma_\mu \,e^j \right] b$$

• Gauge models:

$$G_{\rm NP} \supset G_{\rm SM}$$

• First idea: Pati-Salam-type model

 $G_{\rm NP}^{\rm min} = SU(4) \times SU(2)_L \times U(1)_{T_R^3} ,$

$$\psi_L^{\rm SM} = \left($$

• Improved: 4321 model

 $(G_{\rm NP}^{\rm min})' = SU(4) \times SU(3)' \times SU(2)_L \times U(1)_{T_R^3},$

• What we want:

$$\frac{g_U}{\sqrt{2}} \left[\beta_L^{ij} \,\bar{Q}^{\,i,a} \,\gamma_\mu \,L^j + \beta_R^{ij} \,\bar{d}^{\,i,a} \,\gamma_\mu \,e^j \right] b$$

• Gauge models:

$$G_{\rm NP} \supset G_{\rm SM}$$

• First idea: Pati-Salam-type model

 $G_{\rm NP}^{\rm min} = SU(4) \times SU(2)_L \times U(1)_{T_B^3} ,$

$$\psi_L^{\rm SM} = \left($$

• Improved: 4321 model

 $(G_{\rm NP}^{\rm min})' = SU(4) \times SU(3)' \times SU(2)_L \times U(1)_{T_R^3},$

• What we want:

$$\frac{g_U}{\sqrt{2}} \left[\beta_L^{ij} \,\bar{Q}^{\,i,a} \,\gamma_\mu \,L^j + \beta_R^{ij} \,\bar{d}^{\,i,a} \,\gamma_\mu \,e^j \right] b$$

• Gauge models:

$$G_{\rm NP} \supset G_{\rm SM}$$

• First idea: Pati-Salam-type model

 $G_{\rm NP}^{\rm min} = SU(4) \times SU(2)_L \times U(1)_{T_R^3} ,$

$$\psi_L^{\rm SM} = \left($$

• Improved: 4321 model

 $(G_{\rm NP}^{\rm min})' = SU(4) \times SU(3)' \times SU(2)_L \times U(1)_{T_R^3},$

• What we want:

$$\frac{g_U}{\sqrt{2}} \left[\beta_L^{ij} \,\bar{Q}^{\,i,a} \,\gamma_\mu \,L^j + \beta_R^{ij} \,\bar{d}^{\,i,a} \,\gamma_\mu \,e^j \right] b$$

• Gauge models:

$$G_{\rm NP} \supset G_{\rm SM}$$

• First idea: Pati-Salam-type model

 $G_{\rm NP}^{\rm min} = SU(4) \times SU(2)_L \times U(1)_{T_R^3} ,$

$$\psi_L^{\rm SM} = \left($$

• Improved: 4321 model

 $(G_{\rm NP}^{\rm min})' = SU(4) \times SU(3)' \times SU(2)_L \times U(1)_{T_R^3},$

• What we want:

$$\frac{g_U}{\sqrt{2}} \left[\beta_L^{ij} \,\bar{Q}^{\,i,a} \,\gamma_\mu \,L^j + \beta_R^{ij} \,\bar{d}^{\,i,a} \,\gamma_\mu \,e^j \right] b$$

• Gauge models:

$$G_{\rm NP} \supset G_{\rm SM}$$

• First idea: Pati-Salam-type model

 $G_{\rm NP}^{\rm min} = SU(4) \times SU(2)_L \times U(1)_{T_R^3} ,$

$$\psi_L^{\rm SM} = \left($$

• Improved: 4321 model

 $(G_{\rm NP}^{\rm min})' = SU(4) \times SU(3)' \times SU(2)_L \times U(1)_{T_R^3},$

• What we want:

$$\frac{g_U}{\sqrt{2}} \left[\beta_L^{ij} \,\bar{Q}^{\,i,a} \,\gamma_\mu \,L^j + \beta_R^{ij} \,\bar{d}^{\,i,a} \,\gamma_\mu \,e^j \right] b$$

• Gauge models:

$$G_{\rm NP} \supset G_{\rm SM}$$

• First idea: Pati-Salam-type model

 $G_{\rm NP}^{\rm min} = SU(4) \times SU(2)_L \times U(1)_{T_R^3} ,$

$$\psi_L^{\rm SM} = \left($$

• Improved: 4321 model

 $(G_{\rm NP}^{\rm min})' = SU(4) \times SU(3)' \times SU(2)_L \times U(1)_{T_R^3},$

2. Precision observables

2.1 Search channels 2.2 β -decays / Cabibbo angle anomaly 2.3 Parity violation experiments

2. Precision observables **2.1 Search channels**

 $\mathcal{H}_{\text{eff}}^{\ell\nu} = \frac{4G_F}{\sqrt{2}} V_{jk} \hat{C}_{jk}^{e\nu} \left[\bar{u}_j \gamma^{\mu} P_L d_k \right] \left[\bar{e} \gamma_{\mu} P_L \nu_e \right],$

 $\mathcal{H}_{\text{eff}}^{\ell\nu} = \frac{4G_F}{\sqrt{2}} V_{jk} \hat{C}_{jk}^{e\nu} \left[\bar{u}_j \gamma^{\mu} P_L d_k \right] \left[\bar{e} \gamma_{\mu} P_L \nu_e \right],$

bles
maly
$$\begin{bmatrix} \frac{4G_F}{\sqrt{2}} V_{jk} \hat{C}_{jk}^{e\nu} [\bar{u}_j \gamma^{\mu} P_L d_k] [\bar{e} \gamma_{\mu} P_L \nu_e], \\ = \delta_{jk}. \end{bmatrix} \begin{bmatrix} C_{11}^{e\nu} = \frac{-1}{\sqrt{2}G_F} \frac{c_{\beta}c_{\beta-\theta}}{V_{ud}} C_{\ell q}^{(3)} \end{bmatrix}$$

$$V_{us}^{\beta} = 0.2281(7), \ V_{us}^{\beta}|_{\text{NNC}} = 0.2280(14),$$

Source: ArXiv:2101.07811 (A. Crivellin, D. Müller, LS)

CAA
Soles
Maly

$$I = \frac{4G_F}{\sqrt{2}} V_{jk} \hat{C}_{jk}^{e\nu} [\bar{u}_j \gamma^{\mu} P_L d_k] [\bar{e} \gamma_{\mu} P_L \nu_e],$$

$$S_3 \text{ LO contribution}$$

$$I = \frac{4G_F}{\sqrt{2}} V_{jk} \hat{C}_{jk}^{e\nu} [\bar{u}_j \gamma^{\mu} P_L d_k] [\bar{e} \gamma_{\mu} P_L \nu_e],$$

$$I = \delta_{jk}.$$

$$C_{11}^{\mu} = \frac{-1}{\sqrt{2}G_F} \frac{c_\beta c_{\beta-\theta}}{V_{ud}} C_{\ell q}^{(3)}$$

$$V_{us}^{\beta} = V_{ud}^L (1 + C_{11}^{e\nu_e}).$$

$$V_{us}^{K_{\mu3}} = 0.22345(67), \quad V_{us}^{K_{e3}} = 0.22320(61),$$

$$V_{us}^{K_{\mu2}} = 0.22534(42), \quad V_{us}^{\tau} = 0.2195(19),$$

Source: <u>ArXiv:2208.11707</u> (V. Cirigliano, A. Crivellin, M. Hoferichter, M. Moulson)

Source: <u>ArXiv:2208.11707</u> (V. Cirigliano, A. Crivellin, M. Hoferichter, M. Moulson)

Source: ArXiv:2208.11707 (V. Cirigliano, A. Crivellin, M. Hoferichter, M. Moulson)

Source: ArXiv:2208.11707 (V. Cirigliano, A. Crivellin, M. Hoferichter, M. Moulson)

Parity-violating electron scattering (PVES)

Parity-violating electron scattering (PVES)

- Longitudinally-polarized electron beam incident on an unpolarized proton target.
- PV asymmetry:

$$A_e^N = \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-}:$$

Parity-violating electron scattering (PVES)

- Longitudinally-polarized electron beam incident on an unpolarized proton target.
- PV asymmetry:

$$A_e^N = \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-} :$$

• Q_{weak} experiment:

$$Q_{\rm w}^p = 0.0704(47),$$

 \rightarrow P2 experiment at MESA in Mainz

Parity-violating electron scattering (PVES)

experiments

- Longitudinally-polarized electron ulletbeam incident on an unpolarized proton target.
- PV asymmetry: \bullet

$$A_e^N = \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-}:$$

 Q_{weak} experiment:

$$Q_{\rm w}^p = 0.0704(47),$$

 \rightarrow P2 experiment at MESA in Mainz

11

Atomic parity violation

Parity-violating electron scattering (PVES)

- Longitudinally-polarized electron beam incident on an unpolarized proton target.
- PV asymmetry:

$$A_e^N = \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-}:$$

 Q_{weak} experiment:

$$Q_{\rm w}^p = 0.0704(47),$$

 \rightarrow P2 experiment at MESA in Mainz

experiments

ullet

11

Atomic parity violation

Stimulated emission in a highly forbidden atomic transition.

Parity-violating electron scattering (PVES)

- Longitudinally-polarized electron beam incident on an unpolarized proton target.
- PV asymmetry:

$$A_e^N = \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-}:$$

 Q_{weak} experiment: $Q_{w}^{p} = 0.0704(47),$

$$\rightarrow$$
 P2 experiment at MESA in Mainz

experiments

 $\rightarrow \mathbf{Ra^{+}}$ experiments

11

Atomic parity violation

• Stimulated emission in a highly forbidden atomic transition.

• APV experiment with ^{133}Cs :

 $6S \rightarrow 7S$

 $Q_{\rm w}(^{133}{\rm Cs}) = -72.94(43),$

Parity-violating electron scattering (PVES)

- Longitudinally-polarized electron beam incident on an unpolarized proton target.
- PV asymmetry:

$$A_e^N = \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-}:$$

 Q_{weak} experiment: $Q_{w}^{p} = 0.0704(47),$

$$\rightarrow$$
 P2 experiment at MESA in Mainz

Atomic parity violation experiments

 $\rightarrow \mathbf{Ra}^+$ experiments

11

• Stimulated emission in a highly forbidden atomic transition.

• APV experiment with ^{133}Cs :

 $6S \rightarrow 7S$

 $Q_{\rm w}(^{133}{\rm Cs}) = -72.94(43),$

Coherent Elastic Neutrino-Nucleus Scattering ($CE\nu NS$)

Parity-violating electron scattering (PVES)

- Longitudinally-polarized electron beam incident on an unpolarized proton target.
- PV asymmetry:

$$A_e^N = \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-}:$$

 Q_{weak} experiment: $| Q_w^p = 0.0704(47),$

$$\rightarrow$$
 P2 experiment at MESA in Mainz

Atomic parity violation experiments

- Stimulated emission in a highly forbidden atomic transition.

6S

 $Q_{\rm w}(^{133}{\rm Cs}) =$

 \rightarrow **R** a^+ experiments

11

• APV experiment with ^{133}Cs :

$$\rightarrow 7S$$

$$= -72.94(43),$$

Coherent Elastic Neutrino-Nucleus Scattering ($CE\nu NS$)

• Neutrino interacts with nucleus via a neutral current, elastic recoil of the nucleus is measured.

Parity-violating electron scattering (PVES)

- Longitudinally-polarized electron beam incident on an unpolarized proton target.
- PV asymmetry:

$$A_e^N = \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-}:$$

 $Q_{\rm w}^p = 0.0704(47),$

 Q_{weak} experiment:

$$\rightarrow$$
 P2 experiment at MESA in Mainz

Atomic parity violation experiments

- Stimulated emission in a highly forbidden atomic transition.

 $\rightarrow \mathbf{Ra^+}$ experiments

11

• APV experiment with ^{133}Cs :

 $6S \rightarrow 7S$

 $Q_{\rm w}(^{133}{\rm Cs}) = -72.94(43),$

Coherent Elastic Neutrino-Nucleus Scattering (CE ν NS)

- Neutrino interacts with nucleus via a neutral current, elastic recoil of the nucleus is measured.
- NP constraints from COHERENT (Csl and Ar targets) not yet competitive.

•
$$\pi^+ \to \mu^+ + \nu_\mu \to e^+ + \nu_e + \bar{\nu}_\mu + \nu_\mu$$

$$\mathcal{L}_{\text{eff}}^{ee} = \frac{G_F}{\sqrt{2}} \sum_{q=u,d,s} \left(C_{1q}^e \left[\bar{q} \gamma^{\mu} q \right] \left[\bar{e} \gamma_{\mu} \gamma_5 e \right] + C_{2q}^e \left[\bar{q} \gamma^{\mu} \gamma_5 q \right] \left[\bar{e} \gamma_{\mu} e \right] \right),$$

$$C_{1u}^{e,\mathrm{NP}} = \frac{\sqrt{2}}{4G_F} \Big(C_{\ell q}^{(3)} - C_{\ell q}^{(1)} + C_{eu} + C_{qe} - C_{\ell u} - |V_{ud}|^2 \Big(C_{\phi q}^{(3)} - C_{\phi q}^{(1)} \Big) + C_{\phi u} \Big),$$

$$\mathcal{L}_{\text{eff}}^{ee} = \frac{G_F}{\sqrt{2}} \sum_{q=u,d,s} \left(C_{1q}^e \left[\bar{q} \gamma^{\mu} q \right] \left[\bar{e} \gamma_{\mu} \gamma_5 e \right] + C_{2q}^e \left[\bar{q} \gamma^{\mu} \gamma_5 q \right] \left[\bar{e} \gamma_{\mu} e \right] \right),$$

$$C_{1u}^{e,\mathrm{NP}} = \frac{\sqrt{2}}{4G_F} \Big(C_{\ell q}^{(3)} - C_{\ell q}^{(1)} + C_{eu} + C_{qe} - C_{\ell u} - |V_{ud}|^2 \Big(C_{\phi q}^{(3)} - C_{\phi q}^{(1)} \Big) + C_{\phi u} \Big),$$

$$Q_{\rm w}^p = -2(2C_{1u}^e + C_{1d}^e + 0.00005)\left(1 - \frac{\alpha}{2\pi}\right) = 0.0710(4).$$

$$Q_{\rm w}(^{133}{\rm Cs}) = -2\left[Z\left(2C_{1u}^e + C_{1d}^e + 0.00005\right) + N\left(C_{1u}^e + 2C_{1d}^e + 0.00006\right)\right]\left(1 - \frac{C_{1u}^e}{2}\right)$$

$$\mathcal{L}_{\text{eff}}^{ee} = \frac{G_F}{\sqrt{2}} \sum_{q=u,d,s} \left(C_{1q}^e \left[\bar{q} \gamma^{\mu} q \right] \left[\bar{e} \gamma_{\mu} \gamma_5 e \right] + C_{2q}^e \left[\bar{q} \gamma^{\mu} \gamma_5 q \right] \left[\bar{e} \gamma_{\mu} e \right] \right),$$

$$C_{1u}^{e,\mathrm{NP}} = \frac{\sqrt{2}}{4G_F} \Big(C_{\ell q}^{(3)} - C_{\ell q}^{(1)} + C_{eu} + C_{qe} - C_{\ell u} - |V_{ud}|^2 \Big(C_{\phi q}^{(3)} - C_{\phi q}^{(1)} \Big) + C_{\phi u} \Big),$$

Source: <u>ArXiv:2107.13569</u> (A. Crivellin, M. Hoferichter, M. Kirk, C.A. Manzari, LS)

Scalar Leptoquarks

$$APV + Q_{wat} (2\pi)$$

$$P \geq 2(2\pi)$$

$$Ra^{*} (2\pi)$$

$$P \geq Ra^{*} (2\pi)$$

$$P \geq Ra^{*} (2\pi)$$

$$P \geq Ra^{*} (2\pi)$$

$$Q_{W} = -2(2C_{1u}^{e} + C_{1d}^{e} + 0.00005) \left(1 - \frac{\alpha}{2\pi}\right) = 0.0710(4).$$

$$Q_{W} (^{133}Cs) = -2\left[Z(2C_{1u}^{e} + C_{1d}^{e} + 0.00005) + N(C_{1u}^{e} + 2C_{1d}^{e} + 0.00006)\right] \left(1 - \frac{\alpha}{2\pi}\right)$$

$$Q_{W} (^{133}Cs) = -2\left[Z(2C_{1u}^{e} + C_{1d}^{e} + 0.00005) + N(C_{1u}^{e} + 2C_{1d}^{e} + 0.00006)\right] \left(1 - \frac{\alpha}{2\pi}\right)$$

$$Q_{W} (^{133}Cs) = -2\left[Z(2C_{1u}^{e} + C_{1d}^{e} + 0.00005) + N(C_{1u}^{e} + 2C_{1d}^{e} + 0.00006)\right] \left(1 - \frac{\alpha}{2\pi}\right)$$

$$Q_{W} (^{133}Cs) = -2\left[Z(2C_{1u}^{e} + C_{1d}^{e} + 0.00005) + N(C_{1u}^{e} + 2C_{1d}^{e} + 0.00006)\right] \left(1 - \frac{\alpha}{2\pi}\right)$$

$$Q_{W} (^{133}Cs) = -2\left[Z(2C_{1u}^{e} + C_{1d}^{e} + 0.00005) + N(C_{1u}^{e} + 2C_{1d}^{e} + 0.00006)\right] \left(1 - \frac{\alpha}{2\pi}\right)$$

$$Q_{W} (^{133}Cs) = -2\left[Z(2C_{1u}^{e} + C_{1d}^{e} + 0.00005) + N(C_{1u}^{e} + 2C_{1d}^{e} + 0.00006)\right] \left(1 - \frac{\alpha}{2\pi}\right)$$

$$Q_{W} (^{133}Cs) = -2\left[Z(2C_{1u}^{e} + C_{1d}^{e} + 0.00005) + N(C_{1u}^{e} + 2C_{1d}^{e} + 0.00006)\right] \left(1 - \frac{\alpha}{2\pi}\right)$$

$$Q_{W} (^{133}Cs) = -2\left[Z(2C_{1u}^{e} + C_{1d}^{e} + 0.00005) + N(C_{1u}^{e} + 2C_{1d}^{e} + 0.00006)\right] \left(1 - \frac{\alpha}{2\pi}\right)$$

$$Q_{W} (^{133}Cs) = -2\left[Z(2C_{1u}^{e} + C_{1d}^{e} + 0.00005) + N(C_{1u}^{e} + 2C_{1d}^{e} + 0.00006)\right] \left(1 - \frac{\alpha}{2\pi}\right)$$

$$Q_{W} (^{133}Cs) = -2\left[Z(2C_{1u}^{e} + C_{1d}^{e} + 0.00005) + N(C_{1u}^{e} + 2C_{1d}^{e} + 0.00006)\right] \left(1 - \frac{\alpha}{2\pi}\right)$$

$$Q_{W} (^{133}Cs) = -2\left[Z(2C_{1u}^{e} + C_{1d}^{e} + 0.00005) + N(C_{1u}^{e} + 2C_{1d}^{e} + 0.00006)\right] \left(1 - \frac{\alpha}{2\pi}\right)$$

$$Q_{W} (^{133}Cs) = -2\left[Z(2C_{1u}^{e} + C_{1d}^{e} + 0.00005) + N(C_{1u}^{e} + 2C_{1d}^{e} + 0.00006)\right] \left(1 - \frac{\alpha}{2\pi}\right)$$

$$Q_{W} (^{13}Cs) = -2\left[Z(2C_{1u}^{e} + C_{1d}^{e} + 0.00005) + N(C_{1u}^{e} + 2C_{1d}^{e} + 0.00006)\right] \left(1 - \frac{\alpha}{2\pi}\right)$$

$$Q_{W} (^{13}Cs) = -2\left[Z(2C_{1u}^{e} + C_{1d}^{e} + 0.00005) + N(C_{1u}^{e} + 0.00006)\right] \left(1 - \frac{\alpha}{2\pi}\right)$$

$$Q_{W} (^{13}Cs) = -2\left[Z(2C_{1u}^{e} + C_{1d}^{e} + 0.00006\right] \left(1 - \frac{\alpha}{2\pi}\right)$$

$$Q_{W} (^{13}Cs) = -2\left[Z(2C_{1u}^{e} + 0.00006\right] \left(1 - \frac{\alpha}{2\pi}\right)$$

$$Q_{W}$$

3. High-energy searches at the LHC

- 3.1 Search channels
- 3.2 Drell-Yan production
- **3.3 Single-resonant production**

3.2 Drell-Yan production (DY): Overview

3. High-energy searches at the LHC 3.2 Drell-Yan production (DY): Overview

• CMS and ATLAS are searching for U_1 signatures in the **Drell-Yan spectrum**.

y searches at the LHC

g for U_1 signatures in the **Drell-Yan spectrum**.

Source: <u>ArXiv:2209.12780</u> (U. Haisch, LS, S. Schulte)

00

Source: <u>ArXiv:2209.12780</u> (U. Haisch, LS, S. Schulte)

3. High-energy searches at the LHC 3.2 Drell-Yan production (DY): Going beyond the LQ LO

3.2 Drell-Yan production (DY): POWHEG-BOX implementation

3.2 Drell-Yan production (DY): POWHEG-BOX implementation

Input parameters

powheg.input PhysPars.h init_couplings.f Flavour structure and phase space Born_phsp.f init_processes.f

Matrix elements

Born.f real.f virtual.f

3.2 Drell-Yan production (DY): POWHEG-BOX implementation

Input parameters

powheg.input PhysPars.h init_couplings.f Flavour structure and phase space Born_phsp.f init_processes.f

Matrix elements

Born.f real.f virtual.f

Input parameters

powheg.input PhysPars.h init_couplings.f Flavour structure and phase space Born_phsp.f init_processes.f

Input parameters:

g4	0	(Real) Overall coupling-strength of the $SU(4)$ gauge group. This sets the overall coupling strength of U to fermions.
betaL3x3	1	(Real) Relative strength of U to left-handed fermions of the third generation ($t_L u_ au$ and $b_L au_L$).
betaR3x3	1	(Real) Relative strength of U to right-handed fermions of the third generation ($b_R au_R$).
MU1	10000	(Real) Mass (in GeV) of U .
MGp	10000	(Real) Mass (in GeV) of the coloron $G^\prime.$

Matrix elements

Born.f real.f virtual.f

Input parameters

powheg.input PhysPars.h init_couplings.f

Flavo and p Born_phsp.f init_processes.f

Input parameters:

g4	0	(Real) Overall coupling-strength of the $SU(4)$ gauge group. This sets the overall coupling strength of U to fermions.
betaL3x3	1	(Real) Relative strength of U to left-handed fermions of the third generation ($t_L u_ au$ and $b_L au_L$).
betaR3x3	1	(Real) Relative strength of U to right-handed fermions of the third generation ($b_R au_R$).
MU1	10000	(Real) Mass (in GeV) of U .
MGp	10000	(Real) Mass (in GeV) of the coloron $G^\prime.$

ur str	ucture
hase	space

Matrix elements

Born.f real.f virtual.f

Source: ArXiv:2209.12780 (U. Haisch, LS, S. Schulte)

Input parameters

powheg.input PhysPars.h init_couplings.f Flavour structure and phase space Born_phsp.f init_processes.f

Matrix elements

Born.f real.f virtual.f

Input parameters

powheg.input PhysPars.h init_couplings.f

Kinematics the same as in the SM:

- We focussed on $pp \to \tau^+ \tau^- + X$.
- There are ideas to extend this to $pp \to \tau \nu_\tau + X.$

Flavour structure and phase space

Born_phsp.f init_processes.f

Matrix elements

Born.f real.f virtual.f

Input parameters

powheg.input PhysPars.h init_couplings.f Flavour structure and phase space Born_phsp.f init_processes.f

Matrix elements

Born.f real.f virtual.f

Input parameters

powheg.input PhysPars.h init_couplings.f

- Calculation with **PackageX**, cross-checked with **FormCalc**, numerical evaluation with **LoopTools**. lacksquare
- \bullet regularisation.

- **Flavour structure** and phase space
- init_processes.f

Matrix elements

Born.f real.f virtual.f

UV divergences cancel between the G and G' contributions, IR divergences handled with **dimensional**

<pre>c LS: We express the virtual corrections belo S = 2d0 * dotp(p(0:3,1),p(0:3,2)) T = -2d0 * dotp(p(0:3,3),p(0:3,1)) U = -2d0 * dotp(p(0:3,2),p(0:3,3))</pre>
c LS: Ratio between the coloron and U1 mass s x = ph_MGp**2/ph_MU1**2
c ====================================
c Factorizeable virtual corrections
С
С
c LS: These include the one-particle reducible
c diagrams. The other contributions
c (box diagrams) are implemented below.
C ====================================
с
c LS: b-quark field strength renormalization
c IS. This agrees with the result in ArXiv:20
c UH 15/9/22: Checked!
deltaZb = 4/3*(Log(dcmplx(st_muren2 #- Log(dcmplx(x)) - 0.5d0)

<pre>c LS: We express the virtual corrections below S = 2d0 * dotp(p(0:3,1),p(0:3,2)) T = -2d0 * dotp(p(0:3,3),p(0:3,1)) U = -2d0 * dotp(p(0:3,2),p(0:3,3))</pre>
c LS: Ratio between the coloron and U1 mass so x = ph_MGp**2/ph_MU1**2
C ====================================
c
c LS: These include the one-particle reducible
c diagrams. The other contributions
c (box diagrams) are implemented below.
د
ະ c LS: b-quark field strength renormalization c
c LS: This agrees with the result in ArXiv:200
c UH 15/9/22: Checked!
deltaZb = 4/3*(Log(dcmplx(st_muren2, #- Log(dcmplx(x)) - 0.5d0)

- Our U_1 code is available on GitLab (https://gitlab.com/lucschnell/Drell-Yan-LQ-NLO) and soon on the **POWHEG-BOX website**.

- Our U_1 code is available on GitLab (https://gitlab.com/lucschnell/Drell-Yan-LQ-NLO) and soon on the **POWHEG-BOX website**.
- It can be used to generate events (.lhe and .hepmc) for dedicated MC studies. \bullet

- Our U_1 code is available on GitLab (https://gitlab.com/lucschnell/Drell-Yan-LQ-NLO) and soon on the **POWHEG-BOX website**.
- It can be used to generate events (.lhe and .hepmc) for dedicated MC studies. \bullet
- **BOX** website, too.

• We have also implemented the contributions from SLQs, this is available on GitLab and the POWHEG-

Source: ArXiv:2209.12780 (U. Haisch, LS, S. Schulte)

b-tag/b-veto:

 Full NLO+PS analysis, LHC cuts modelled in MadAnalysis5 (normal + expert mode).

b-tag/b-veto:

• Full NLO+PS analysis, LHC cuts modelled in MadAnalysis5 (normal + expert mode).

Source: ArXiv:2209.12780 (U. Haisch, LS, S. Schulte)

b-tag/b-veto:

• Full NLO+PS analysis, LHC cuts modelled in MadAnalysis5 (normal + expert mode).

Source: ArXiv:2209.12780 (U. Haisch, LS, S. Schulte)

3.3 Drell-Yan production (DY

Exclusion limits:

ATLAS 2020

Λ₃₀₀₀₀ 3. High-energy se **3.3 Drell-Yan production (DY**

ATLAS 2020

Source: ArXiv:2209.12780 (U. Haisch, LS, S. Schulte)

10

10⁻¹

 10^{-3}

Obs./Exp

 \sim

V

10²

10-

10

10

CMs O Prelin O

🔶 Ob 🛰

τ_hτ_h, Ν

CMS

Events

Obs.

Obs.

3.3 Drell-Yan production (DY): Ph

Exclusion limits:

ATLAS 2020

Source: ArXiv:2209.12780 (U. Haisch, LS, S. Schulte)

Events / GeV

Source: EXO-19-016-PAS (CMS)

3.3 Drell-Yan production (DY): Ph

Exclusion limits:

Source: ArXiv:2209.12780 (U. Haisch, LS, S. Schulte)

3.3 Drell-Yan production (DY): Ph

Source: ArXiv:2209.12780 (U. Haisch, LS, S. Schulte)

Source: ArXiv:2209.12780 (U. Haisch, LS, S. Schulte)

CMS 2022

Source: ArXiv:2209.12780 (U. Haisch, LS, S. Schulte)

Source: ArXiv:2209.12780 (U. Haisch, LS, S. Schulte)

3.3 Single-resonant production

3.3 Single-resonant production

3.3 Single-resonant production

3. High-energy searches at the LHC **3.3 Single-resonant production**

Provides complementary constraints if the LQ mass is not too high. ullet

Source: ArXiv:2005.06475 (L. Buonocore, U. Haisch, P. Nason, F. Tramontano, G. Zanderighi)

3. High-energy searches at the LHC **3.3 Single-resonant production**

- Provides complementary constraints if the LQ mass is not too high.
- Has very recently also been implemented at NLO+PS in POWHEG-BOX.

F. Tramontano, G. Zanderighi)

Source: ArXiv:2005.06475 (L. Buonocore, U. Haisch, P. Nason, F. Tramontano, G. Zanderighi)

Source: ArXiv:2209.02599 (L. Buonocore, A. Greljo, P. Krack, P. Nason, N. Selimovic,

- Leptoquarks (LQs) yield interesting effects in low-energy precision observables.
 - A possible solution of the CAA via first-generation SLQ contributions is excluded.
 - used to disentangle NP effects, if present.

- Parity violation experiments (PVES, APV, CE ν NS) give strong constraints, could be

Leptoquarks (LQs) yield interesting effects in low-energy precision observables. - A possible solution of the CAA via first-generation SLQ contributions is excluded.

- Parity violation experiments (PVES, APV, CE ν NS) give strong constraints, could be used to disentangle NP effects, if present.
- - **SLQ** effects in Drell-Yan spectrum.
 - U_1 from 4321 effects in Drell-Yan spectrum.

-Interesting interplay between non-resonant/resonant contributions, b-veto/b-tag

- Single-resonant **SLQ** effects in lepton + jet.

LQ effects in high-energy searches are implemented in POWHEG-BOX at full NLO+PS.

Thank you for your attention!