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Field Φ1 Φ̃1 Φ2 Φ̃2 Φ3 V1 Ṽ1 V2 Ṽ2 V3

SU(3)c 3 3 3 3 3 3 3 3 3 3
SU(2)L 1 1 2 2 3 1 1 2 2 3
U(1)Y − 2

3 − 8
3

7
3

1
3 − 2

3
4
3

10
3 − 5

3
1
3

4
3

TABLE I: The ten possible representations of scalar and vec-
tor LQs under the SM gauge group.

II. SETUP AND MATCHING

LQs have first been classified systematically in
Ref. [167] into 10 possible representations under the SM
gauge group: five scalar and five vector ones, as listed in
Table I. The conventions are chosen such that the electric
charge Q is given by Q = 1

2Y +T3, where Y is the hyper-
charge and T3 the third component of the weak isospin.
These representations allow for couplings to SM quarks
and leptons as given in Table II. Here we did not consider
couplings to two quarks, which, together with the cou-
plings in Table II, would lead to proton decay. Note that
such couplings can be avoided (to all orders in perturba-
tion theory) by assigning baryon and/or lepton number
to the LQs. In the following, we denote the LQ masses
according to their representation and use small m for the

scalar LQs and capital M for the vector LQs.

A. Matching

We now perform the tree-level matching of our ten LQ
representations on SU(2)L gauge invariant dimension-six
four-fermion operators using the basis of Ref. [168]

L=
∑

CiOi ,

O(1)
!q = [Q̄γµQ][L̄γµL] ,

O(3)
!q = [Q̄τ IγµQ][L̄τ IγµL] ,

Oqe= [Q̄γµQ][ēγµe] ,

O!u= [ūγµu][L̄γµL] ,

O!d= [d̄γµd][L̄γµL] ,

Oeu= [ūγµu][ēγµe] ,

Oed = [d̄γµd][ēγµe] ,

(1)

and find

C(1)
!q C(3)

!q Cqe C!u C!d Ceu Ced

Φ1
|λL

1 |2

4m2
1

− |λL
1 |2

4m2
1

∗ ∗ ∗ |λR
1 |2

2m2
1

∗

Φ̃1 ∗ ∗ ∗ ∗ ∗ ∗ |λ̃1|2

2m̃2
1

Φ2 ∗ ∗ − |λLR
2 |2

2m2
2

− |λRL
2 |2

2m2
2

∗ ∗ ∗

Φ̃2 ∗ ∗ ∗ ∗ − |λ̃2|2

2m̃2
2

∗ ∗

Φ3
3|λ2

3|
4m2

3

|λ2
3|

4m2
3

∗ ∗ ∗ ∗ ∗

V1 − |κL
1 |2

2M2
1

− |κL
1 |2

2M2
1

∗ ∗ ∗ ∗ − |κR
1 |2

M2
1

Ṽ1 ∗ ∗ ∗ ∗ ∗ − |κ̃1|2

M̃2
1

∗

V2 ∗ ∗ |κLR
2 |2

M2
2

∗ |κRL
2 |2

M2
2

∗ ∗

Ṽ2 ∗ ∗ ∗ |κ̃2|2

M̃2
2

∗ ∗ ∗

V3 −
3
∣∣κ2

3

∣∣
2M2

3

|κ2
3|

2M2
3

∗ ∗ ∗ ∗ ∗

(2)

in agreement with Ref. [47, 145, 148, 169]
For simplicity, we do not include flavor indices, since we

will only consider couplings to first generation fermions
(in the weak basis). Furthermore, we assume that Φ1, Φ2,

• Ten such representations are possible under , of which five are scalar 
particles and five are vector particles. 

SU(3)c × SU(2)L × U(1)Y
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Result

0.2 0.3 0.4 0.5
R(D)

0.2

0.25

0.3

0.35

0.4

R
(D

*)

HFLAV SM Prediction
 0.004±R(D) = 0.298 
 0.005±R(D*) = 0.254 

 = 1.0 contours2χΔ

Average
 0.012± 0.025 ±R(D) = 0.358 

 0.008± 0.010 ±R(D*) = 0.285 
 = -0.29ρ

) = 32%2χP(

HFLAV

Prelim. 2022

σ3

LHCb22

LHCb18

Belle17

Belle19

Belle15
BaBar12

Average

PRD 94 (2016) 094008
PRD 95 (2017) 115008
JHEP 1712 (2017) 060
PLB 795 (2019) 386
PRL 123 (2019) 091801
EPJC 80 (2020) 2, 74
PRD 105 (2022) 034503

HFLAV

2021

HFLAV
Prelim. 2022

• New preliminary average: slightly lower R(D⇤), slightly higher
R(D), reduced correlation

• 3.3� ! 3.2� agreement with SM
• Excellent overall agreement between measurements
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• LQs have first been considered in the context of GUT theories. 
• They also appear e.g. in the R-parity violating MSSM. 
• LQs attracted particular attention in recent years, because of the flavour anomalies. 
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3 Observables

In the following, we discuss the most relevant observables allowing to test and con-
strain our model. For the low-energy precision and flavour observables we match the
full LQ theory onto the weak effective theory (WET) whose Lagrangian is generically
written as

Leff =
X

i

CiOi . (3.1)

We refer to the manual of flavio [179], a package that we employ in our phenomeno-
logical analysis, for a precise definition of the operators.

3.1 R
D(⇤) anomalies

We consider the ratios

R
D(⇤) =

Br(B ! D
(⇤)

⌧ ⌫̄)

Br(B ! D(⇤)`⌫̄)

����
`2{e,µ}

, (3.2)

whose current experimental averages read

R
exp

D
= 0.346(31) [18, 22, 180] and R

exp

D⇤ = 0.296(16) [18, 22, 180, 181] .
(3.3)

These values are compared to our theoretical predictions whose SM component is
provided by flavio [173, 182–185],

R
SM

D
= 0.297(8) and R

SM

D⇤ = 0.245(8) , (3.4)

although more accurate predictions have been calculated in the meantime [33, 186–
188]. At low energy, the new physics contributions are described by the WET oper-
ators

(OSL)
bc⌧⌫⌧

= �
4GF
p

2
V

CKM
23 (c̄PLb) (⌧̄PL⌫⌧ ) ,

(OT )
bc⌧⌫⌧

= �
4GF
p

2
V

CKM
23 (c̄�µ⌫

PLb) (⌧̄�µ⌫PL⌫⌧ ) ,

(3.5)

where PL and PR (for further reference) are the usual chirality projectors and GF

is the Fermi constant. The corresponding Wilson coefficients are evaluated at the
matching scale,

(CSL)LQ

bc⌧⌫⌧
= 4 (CT )LQ

bc⌧⌫⌧
= �

p
2

4GF V
CKM
23

✓
Y

RL

2⌧ Y
LR⇤
3⌧

2M2
⌧

◆
. (3.6)

While WET renormalisation group (RG) running is accounted for by flavio, we
additionally multiply the predictions by appropriate correction factors to account for
RG running from M⌧ to the electroweak scale MW in the SM Effective Field Theory

– 5 –
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• LQs have first been considered in the context of GUT theories. 
• They also appear e.g. in the R-parity violating MSSM. 
• LQs attracted particular attention in recent years, because of the flavour anomalies. 

3 Observables

In the following, we discuss the most relevant observables allowing to test and con-
strain our model. For the low-energy precision and flavour observables we match the
full LQ theory onto the weak effective theory (WET) whose Lagrangian is generically
written as

Leff =
X

i

CiOi . (3.1)

We refer to the manual of flavio [179], a package that we employ in our phenomeno-
logical analysis, for a precise definition of the operators.

3.1 R
D(⇤) anomalies

We consider the ratios

R
D(⇤) =

Br(B ! D
(⇤)

⌧ ⌫̄)

Br(B ! D(⇤)`⌫̄)

����
`2{e,µ}

, (3.2)

whose current experimental averages read

R
exp

D
= 0.346(31) [18, 22, 180] and R

exp

D⇤ = 0.296(16) [18, 22, 180, 181] .
(3.3)

These values are compared to our theoretical predictions whose SM component is
provided by flavio [173, 182–185],

R
SM

D
= 0.297(8) and R

SM

D⇤ = 0.245(8) , (3.4)

although more accurate predictions have been calculated in the meantime [33, 186–
188]. At low energy, the new physics contributions are described by the WET oper-
ators

(OSL)
bc⌧⌫⌧

= �
4GF
p

2
V

CKM
23 (c̄PLb) (⌧̄PL⌫⌧ ) ,

(OT )
bc⌧⌫⌧

= �
4GF
p

2
V

CKM
23 (c̄�µ⌫

PLb) (⌧̄�µ⌫PL⌫⌧ ) ,

(3.5)

where PL and PR (for further reference) are the usual chirality projectors and GF

is the Fermi constant. The corresponding Wilson coefficients are evaluated at the
matching scale,

(CSL)LQ

bc⌧⌫⌧
= 4 (CT )LQ

bc⌧⌫⌧
= �

p
2

4GF V
CKM
23

✓
Y

RL

2⌧ Y
LR⇤
3⌧

2M2
⌧

◆
. (3.6)

While WET renormalisation group (RG) running is accounted for by flavio, we
additionally multiply the predictions by appropriate correction factors to account for
RG running from M⌧ to the electroweak scale MW in the SM Effective Field Theory
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FIG. 2. Predictions for RD⇤/RSM
D⇤ and R⇤c/R

SM
⇤c

versus

RD/RSM
D in several EFT scenarios, see text for details. Cur-

rent 1� (2�) experimental constraints are depicted by the

darker (lighter) green region. Dashed lines correspond to ef-

fective couplings that are in tension with the B(Bc ! ⌧⌫) <
0.3 constraint.

(lepton) indices i(j). LQ couplings to diquarks are
neglected in order to guarantee the proton stabil-
ity [22]. After integrating out the LQ, we find that
the b ! s`�l `

+
k e↵ective coe�cients read

�Ckl
9 = ��Ckl

10 =
⇡v2

VtbV ⇤
ts↵em

ybkL
�
yslL

�⇤

m2
S3

, (14)

which is indeed a pattern that can accommodate
b ! sµµ data, cf. Fig. 1. As for the charged current
transitions, b ! c`⌫̄`0 , the S3 scenario generates at
tree level

gVL = �
v2

4Vcb

yb`
0

L (V yL)c`
m2

S3

, (15)

which is strictly negative if we account for the con-
straints coming from B ! K(⇤)⌫⌫̄ and �mBs [1].
Therefore, this scenario is in conflict with results
presented in Table I and it cannot accommodate
Rexp

D(⇤) > RSM
D(⇤) as a small and positive gVL value is

needed.

• S1 = (3̄,1, 1/3) : The weak singlet scalar LQ has
the peculiarity of contributing to the b ! c⌧ ⌫̄
transition at tree level, but only at loop level to
b ! s`` [23]. The S1 Yukawa Lagrangian reads

LS1 = yijL QC
i i⌧2Lj S1 + yijR uC

Ri`Rj S1 + h.c. , (16)

where yL and yR are the LQ Yukawa matrices, and
we neglect the diquark couplings for the same rea-
son as in the S3 case. The coe�cients Ckl

9 + Ckl
10

and Ckl
9 �Ckl

10 are generated at one-loop by yL and
yR, respectively, with the relevant expressions pro-
vided in Ref. [23]. This scenario contributes to the
b ! c`⌫̄`0 transitions via,

gVL =
v2

4Vcb

yb`
0

L

�
V y⇤L

�
c`

m2
S1

, (17)

gSL = �4gT = �
v2

4Vcb

yb`
0

L

�
yc`R

�⇤

m2
S1

, (18)

at the matching scale µ = mS1 . Note, in particu-
lar, that both gVL and gSL = �4gT can accommo-
date the observed excesses in RD and RD⇤ , see also
Fig. 2.

• R2 = (3,2, 7/6) : The weak doublet was pro-
posed to separately explain the LFUV e↵ects in
the charged [24, 25] and in the neutral current
B-decays [26]. This is the only scalar LQ that
automatically conserves baryon number [27]. Its
Yukawa Lagrangian writes

LR2 = �yijL uRiR2i⌧2Lj + yijR QiR2`Rj + h.c. , (19)

with yL and yR being the LQ couplings to fermions.
At tree level one gets,

�Ckl
9 = �Ckl

10
tree
= �

⇡v2

2VtbV ⇤
ts↵em

yskR
�
yblR

�⇤

m2
R2

, (20)

a pattern excluded by the observed values of RK

and RK⇤ , viz. Fig. 1. If, however, one sets yR = 0,
the leading contribution to b ! sµµ arises at one-
loop level and the Wilson coe�cients verify �Cµµ

9 =

Source: ArXiv:2103.12504 (A. Angelescu, D. Becirevic,  
D.A. Faroughy, F. Jaffredo, O. Sumensari)

https://indico.cern.ch/event/1187939/
https://arxiv.org/pdf/2103.12504.pdf
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3.3. Interactions with SM Fermions (Lf)

The interactions between the five scalar LQs and the SM fermions are
listed below. Y AB

a
with a 2 {1, 1̃, 2, 2̃, 3} and A,B 2 {L,R} are arbitrary

complex 3 ⇥ 3 matrices coupling LQs to a quark and a lepton. Y Q,AA

a
with

a 2
�
1, 1̃, 2, 2̃, 3

 
and A 2 {L,R} couple LQs to two quarks. Y Q,LL

1 is

symmetric in flavour space (i.e. Y Q,LL

1,ij = Y Q,LL

1,ji ), Y Q,RR

1̃
and Y Q,LL

3 are anti-

symmetric and Y Q,RR

1 is again an arbitrary complex matrix. We omit the
color indices whenever they just involve trivial contractions.

Lf

�1

Y RR

1,ij ū0c
i
`0
j
�†

1 + Y LL

1,ij

�
Q̄0c|

i
i�2L0

j

�
�†

1 + h.c.

Y Q,LL

1,ij

�
Q̄0c|

i,c1
i�2Q0

j,c2

�
�1,c3✏

c1c2c3 + h.c.

Y Q,RR

1,ij ū0c
i,c1d

0
j,c2
�1,c3✏

c1c2c3 + h.c.

�1̃

Y RR

1̃,ij
d̄0c
i
`0
j
�†

1̃
+ h.c.

Y Q,RR

1̃,ij
ū0c
i,c1

u0
j,c2
�1̃,c3✏

c1c2c3 + h.c.

�2 Y RL

2,ij

�
�|

2ū
0
i
i�2L0

j

�
+ Y LR

2,ij

�
Q̄0|

i
`0
j
�2

�
+ h.c.

�2̃ Y RL

2̃,ij

�
�|

2̃
d̄0
i
i�2L0

j

�
+ h.c.

�3

Y LL

3,ij

⇣
Q̄0c|

i
i�2 (� · �3)

† L0
j

⌘
+ h.c.

Y Q,LL

3,ij

�
Q̄0c|

i,c1
i�2 (� · �3,c3)Q

0
j,c2

�
✏c1c2c3 + h.c.

(43)

Again, we use brackets to indicate the SU(2)L contractions. Note that we
stated the Lagrangian above before EW symmetry breaking using the weak
eigenstates of the fermions (indicated by the prime). When going to the
mass eigenbasis (after EW symmetry breaking), CKM matrix elements enter
interactions involving left-handed down-type quarks according to Eq. (20).
The charge-conjugate of a fermion field  is denoted as  c, where

 c = C ̄| ,

 ̄c = � |C�1 ,
(44)

with C the charge conjugation matrix. A detailed description of our treat-
ment of charge-conjugate SM fermions is given in Appendix A.
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SLQs

3.1. LQ Masses and Higgs Interactions (L2�)

The LQ masses and the LQ-LQ-Higgs(-Higgs) interactions are imple-
mented by the Lagrangian [142, 171]

L2� =�

3X

a=1

�
m2

a
+ Ya

�
H†H

� ��
�†

a
�a

�
�

2X

a=1

�
m2

ã
+ Yã

�
H†H

� ��
�†

ã
�ã

�

� Y22

�
H|i�2�2

�†�
H|i�2�2

�
� Y2̃2̃

�
H|i�2�2̃

�†�
H|i�2�2̃

�

� iY33✏
IJK

�
H†�IH

�
�J†

3 �K

3h
� A12̃

�
�†

2̃
H
�
�1 + A2̃3

�
�†

2̃
(� · �3)H

�
+ Y22̃

�
�†

2H
��
H|i�2�2̃

�

+ Y1̃3

�
H|i�2 (� · �3)

† H
�
�1̃ + Y13

�
H† (� · �3)H

�
�†

1 + h.c.
i
.

(25)
The color indices are omitted since they just involve trivial contractions.
For example, the term with Y22 in Eq. (25) would be �Y22 (H|i�2�2,c1)

†

(H|i�2�2,c1) in full notation. We use the convention that couplings with
mass dimension one (zero) are denoted by A (Y ).

The terms in Eq. (25) lead to mixing among the LQ eigenstates of the
same electric charge after EW symmetry breaking. It is therefore convenient
to collect them in the electric charge eigenstate vectors

��1/3
⌘

0

BBB@

��1/3
1

��1/3

2̃

��1/3
3

1

CCCA
, �+2/3

⌘

0

BBB@

�+2/3
2

�+2/3

2̃

�+2/3
3

1

CCCA
,

��4/3
⌘

0

@��4/3

1̃

��4/3
3

1

A , �+5/3
⌘

⇣
�+5/3

2

⌘
.

(26)

After spontaneous symmetry breaking, non-diagonal mass matrices q in

L2� � �

X

q2Q

�q† q�q (27)

12

• Simplified  couplings.  S1

• One can just introduce a mass term.  
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eigenstates of the fermions (indicated by the prime). When going to the
mass eigenbasis (after EW symmetry breaking), CKM matrix elements enter
interactions involving left-handed down-type quarks according to Eq. (20).
The charge-conjugate of a fermion field  is denoted as  c, where

 c = C ̄| ,

 ̄c = � |C�1 ,
(44)

with C the charge conjugation matrix. A detailed description of our treat-
ment of charge-conjugate SM fermions is given in Appendix A.
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3.1. LQ Masses and Higgs Interactions (L2�)

The LQ masses and the LQ-LQ-Higgs(-Higgs) interactions are imple-
mented by the Lagrangian [142, 171]
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�
H†H

� ��
�†

ã
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The color indices are omitted since they just involve trivial contractions.
For example, the term with Y22 in Eq. (25) would be �Y22 (H|i�2�2,c1)

†

(H|i�2�2,c1) in full notation. We use the convention that couplings with
mass dimension one (zero) are denoted by A (Y ).

The terms in Eq. (25) lead to mixing among the LQ eigenstates of the
same electric charge after EW symmetry breaking. It is therefore convenient
to collect them in the electric charge eigenstate vectors
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After spontaneous symmetry breaking, non-diagonal mass matrices q in

L2� � �

X

q2Q

�q† q�q (27)
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• Simplified  couplings.  S1

• One can just introduce a mass term.  
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3.3. Interactions with SM Fermions (Lf)

The interactions between the five scalar LQs and the SM fermions are
listed below. Y AB

a
with a 2 {1, 1̃, 2, 2̃, 3} and A,B 2 {L,R} are arbitrary

complex 3 ⇥ 3 matrices coupling LQs to a quark and a lepton. Y Q,AA
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and A 2 {L,R} couple LQs to two quarks. Y Q,LL
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1 is again an arbitrary complex matrix. We omit the
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Again, we use brackets to indicate the SU(2)L contractions. Note that we
stated the Lagrangian above before EW symmetry breaking using the weak
eigenstates of the fermions (indicated by the prime). When going to the
mass eigenbasis (after EW symmetry breaking), CKM matrix elements enter
interactions involving left-handed down-type quarks according to Eq. (20).
The charge-conjugate of a fermion field  is denoted as  c, where

 c = C ̄| ,

 ̄c = � |C�1 ,
(44)

with C the charge conjugation matrix. A detailed description of our treat-
ment of charge-conjugate SM fermions is given in Appendix A.
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The color indices are omitted since they just involve trivial contractions.
For example, the term with Y22 in Eq. (25) would be �Y22 (H|i�2�2,c1)

†

(H|i�2�2,c1) in full notation. We use the convention that couplings with
mass dimension one (zero) are denoted by A (Y ).

The terms in Eq. (25) lead to mixing among the LQ eigenstates of the
same electric charge after EW symmetry breaking. It is therefore convenient
to collect them in the electric charge eigenstate vectors

��1/3
⌘

0

BBB@

��1/3
1

��1/3

2̃

��1/3
3

1

CCCA
, �+2/3

⌘

0

BBB@

�+2/3
2

�+2/3

2̃

�+2/3
3

1

CCCA
,

��4/3
⌘

0

@��4/3

1̃

��4/3
3

1

A , �+5/3
⌘

⇣
�+5/3

2

⌘
.

(26)

After spontaneous symmetry breaking, non-diagonal mass matrices q in
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q2Q

�q† q�q (27)
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�
H†H

� ��
�†

ã
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The color indices are omitted since they just involve trivial contractions.
For example, the term with Y22 in Eq. (25) would be �Y22 (H|i�2�2,c1)

†

(H|i�2�2,c1) in full notation. We use the convention that couplings with
mass dimension one (zero) are denoted by A (Y ).
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same electric charge after EW symmetry breaking. It is therefore convenient
to collect them in the electric charge eigenstate vectors
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After spontaneous symmetry breaking, non-diagonal mass matrices q in

L2� � �

X

q2Q

�q† q�q (27)
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• Simplified  couplings.  S1

• One can just introduce a mass term.  needs to be anti-symmetric for identical bosons as well. This is not satisfied
by Y112, Y112̃, Y2̃2̃2̃, A2̃2̃3 in Table 1. Hence, the Lagrangian is composed of the
terms [175–178]
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The Levi-Civita tensors ✏c1c2c3 are omitted, such that i.e. the first term would

read A12̃2̃✏
c1c2c3 �1,c1

⇣
�|

2̃,c2
i�2�2̃,c3

⌘
in the full notation.

3.5. Quartic LQ Interactions (L4�)

To get four-LQ interaction terms in the Lagrangian, one needs to combine
two LQs and two anti-LQs, since

3⌦ 3⌦ 3⌦ 3 = 1� 1� 8� 8� 8� 8� 10� 10� 27 (47)

is the only tensor product of four SU(3)c fundamental representations
�
3, 3

�

that contains a singlet. Trivial combinations of LQ fields that contribute to
the four-LQ Lagrangian are of the type
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where a 6= b 2
�
1, 1̃, 2, 2̃, 3

 
. All additional combinations that result in a

vanishing total weak hypercharge Y are given in Tab. 2. Taking into ac-
count SU(2)L invariance, the terms corresponding to Y1113 and Y11̃1̃3 cannot

be implemented, but besides Y (1)
2 , Y (1)

2̃
, Y (1)

3 , Y (1)

22̃
, Y (1)

23 and Y (1)

2̃3
, further in-

dependent terms with the same fields exist, originating from the di↵erent
SU(2)L singlets that can be constructed. Regarding SU(3)c, except for the
case when two fields are identical, there are two possibilities to contract the

21
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(49)

with a, b 2
�
1, 1̃, 2, 2̃, 3

 
unless stated otherwise. Note that we set Y (1)

ab
= Y (1)

ba

and Y (1)0
ab

= Y (1)0
ba

for a 6= b, since they correspond to the same terms. The

Feynman rules are expressed using only one of them, i.e. Y (1)

1̃3
, but not Y (1)

31̃
.
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 Complete SLQ Lagrangian in FeynRules→
Source: ArXiv:2105.04844 (A. Crivellin, LS)

https://arxiv.org/abs/2105.04844
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1.3 Lagrangian

3.3. Interactions with SM Fermions (Lf)

The interactions between the five scalar LQs and the SM fermions are
listed below. Y AB

a
with a 2 {1, 1̃, 2, 2̃, 3} and A,B 2 {L,R} are arbitrary

complex 3 ⇥ 3 matrices coupling LQs to a quark and a lepton. Y Q,AA

a
with

a 2
�
1, 1̃, 2, 2̃, 3

 
and A 2 {L,R} couple LQs to two quarks. Y Q,LL

1 is

symmetric in flavour space (i.e. Y Q,LL

1,ij = Y Q,LL

1,ji ), Y Q,RR

1̃
and Y Q,LL

3 are anti-

symmetric and Y Q,RR

1 is again an arbitrary complex matrix. We omit the
color indices whenever they just involve trivial contractions.
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(43)

Again, we use brackets to indicate the SU(2)L contractions. Note that we
stated the Lagrangian above before EW symmetry breaking using the weak
eigenstates of the fermions (indicated by the prime). When going to the
mass eigenbasis (after EW symmetry breaking), CKM matrix elements enter
interactions involving left-handed down-type quarks according to Eq. (20).
The charge-conjugate of a fermion field  is denoted as  c, where

 c = C ̄| ,

 ̄c = � |C�1 ,
(44)

with C the charge conjugation matrix. A detailed description of our treat-
ment of charge-conjugate SM fermions is given in Appendix A.
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3.1. LQ Masses and Higgs Interactions (L2�)

The LQ masses and the LQ-LQ-Higgs(-Higgs) interactions are imple-
mented by the Lagrangian [142, 171]
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(25)
The color indices are omitted since they just involve trivial contractions.
For example, the term with Y22 in Eq. (25) would be �Y22 (H|i�2�2,c1)

†

(H|i�2�2,c1) in full notation. We use the convention that couplings with
mass dimension one (zero) are denoted by A (Y ).

The terms in Eq. (25) lead to mixing among the LQ eigenstates of the
same electric charge after EW symmetry breaking. It is therefore convenient
to collect them in the electric charge eigenstate vectors
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After spontaneous symmetry breaking, non-diagonal mass matrices q in

L2� � �

X

q2Q

�q† q�q (27)
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�ã

�

� Y22

�
H|i�2�2

�†�
H|i�2�2

�
� Y2̃2̃

�
H|i�2�2̃

�†�
H|i�2�2̃

�

� iY33✏
IJK

�
H†�IH

�
�J†

3 �K

3h
� A12̃

�
�†

2̃
H
�
�1 + A2̃3

�
�†

2̃
(� · �3)H

�
+ Y22̃

�
�†

2H
��
H|i�2�2̃

�

+ Y1̃3

�
H|i�2 (� · �3)

† H
�
�1̃ + Y13

�
H† (� · �3)H

�
�†

1 + h.c.
i
.

(25)
The color indices are omitted since they just involve trivial contractions.
For example, the term with Y22 in Eq. (25) would be �Y22 (H|i�2�2,c1)

†

(H|i�2�2,c1) in full notation. We use the convention that couplings with
mass dimension one (zero) are denoted by A (Y ).

The terms in Eq. (25) lead to mixing among the LQ eigenstates of the
same electric charge after EW symmetry breaking. It is therefore convenient
to collect them in the electric charge eigenstate vectors
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After spontaneous symmetry breaking, non-diagonal mass matrices q in

L2� � �

X

q2Q

�q† q�q (27)
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• Simplified  couplings.  S1

• One can just introduce a mass term.  needs to be anti-symmetric for identical bosons as well. This is not satisfied
by Y112, Y112̃, Y2̃2̃2̃, A2̃2̃3 in Table 1. Hence, the Lagrangian is composed of the
terms [175–178]

L3� = A12̃2̃ �1,c1

⇣
�|

2̃,c2
i�2�2̃,c3

⌘
+ A1̃22̃ �1̃,c1

�
�|

2,c2i�2�2̃,c3

�

+ Y11̃2 �1,c1�1̃,c2

�
�|

2,c3i�2H
�
+ Y123 �1,c1

�
H† (� · �3,c3)�2,c2

�

+ Y12̃3 �1,c1

⇣
�|
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i�2 (� · �3,c3)H

⌘
+ Y1̃23 �1̃,c1

�
�|

2,c2i�2 (� · �3,c3)H
�

+ Y233

�
H†�I�2,c1

� �
�J

3,c2i✏
IJK�K

3,c3

�

+ Y2̃33

⇣
�|

2̃,c1
i�2�

IH
⌘ �

�J

3,c2i✏
IJK�K

3,c3

�

+ h.c. .
(46)

The Levi-Civita tensors ✏c1c2c3 are omitted, such that i.e. the first term would

read A12̃2̃✏
c1c2c3 �1,c1

⇣
�|

2̃,c2
i�2�2̃,c3

⌘
in the full notation.

3.5. Quartic LQ Interactions (L4�)

To get four-LQ interaction terms in the Lagrangian, one needs to combine
two LQs and two anti-LQs, since

3⌦ 3⌦ 3⌦ 3 = 1� 1� 8� 8� 8� 8� 10� 10� 27 (47)

is the only tensor product of four SU(3)c fundamental representations
�
3, 3

�

that contains a singlet. Trivial combinations of LQ fields that contribute to
the four-LQ Lagrangian are of the type

Y (1)
a

�
�†

a,c1
�a,c1

� �
�†

a,c2
�a,c2

�
,

Y (1)
ab

�
�†

a,c1
�a,c1

� ⇣
�†

b,c2
�b,c2

⌘
,

(48)

where a 6= b 2
�
1, 1̃, 2, 2̃, 3

 
. All additional combinations that result in a

vanishing total weak hypercharge Y are given in Tab. 2. Taking into ac-
count SU(2)L invariance, the terms corresponding to Y1113 and Y11̃1̃3 cannot

be implemented, but besides Y (1)
2 , Y (1)

2̃
, Y (1)

3 , Y (1)

22̃
, Y (1)

23 and Y (1)

2̃3
, further in-

dependent terms with the same fields exist, originating from the di↵erent
SU(2)L singlets that can be constructed. Regarding SU(3)c, except for the
case when two fields are identical, there are two possibilities to contract the
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⇣
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(49)

with a, b 2
�
1, 1̃, 2, 2̃, 3

 
unless stated otherwise. Note that we set Y (1)

ab
= Y (1)

ba

and Y (1)0
ab

= Y (1)0
ba

for a 6= b, since they correspond to the same terms. The

Feynman rules are expressed using only one of them, i.e. Y (1)

1̃3
, but not Y (1)

31̃
.
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calculation of the third-generation gauge vector LQ corrections considered in this work.
The constraints on the parameter space of third-generation singlet vector LQs that follow
from recasts of the recent ditau searches [51, 55] are instead presented in Appendix B.
So without further ado, let’s crack straight into it.

2 Theoretical framework

A singlet vector LQ can be added to the SM Lagrangian in a simple bottom-up approach
by employing the following effective interactions

LU �
gU
p
2

h
�
ij
L Q̄

i,a
�µL

j + �
ij
R d̄

i,a
�µ e

j
i
U

µ,a + h.c. (2.1)

Here Q and L are the left-handed SM quark and lepton SU(2)L doublets, while d and e are
the corresponding right-handed fields, i, j 2 {1, 2, 3} are flavour indices and a 2 {1, 2, 3} is a
colour index. The vector LQ transforms as U ⇠ (3, 1, 2/3) under the SM gauge group GSM =

SU(3)C⇥SU(2)L⇥U(1)Y , making it an SU(2)L singlet. The coupling gU characterises the
overall strength of the LQ interactions with the SM matter fields, whereas �ij

L and �
ij
R are (a

priori) arbitrary complex 3⇥ 3 matrices in flavour space.2 In order to explain the observed
anomalies in the charged-current b ! c and neutral-current b ! s transitions the following
LQ-quark-lepton couplings have to be non-zero and follow the pattern

���33
L

�� '
���33

R

�� &���23
L

�� �
���32

L

�� '
���22

L

��, while the remaining couplings can in principle vanish.
The simplified interactions described by the Lagrangian LU however do not provide a

consistent UV completion for the singlet vector LQ field which renders higher-order pertur-
bative calculations based on (2.1) in general ambiguous. A well-motivated and thoroughly
studied class of UV-complete theories that incorporates a singlet vector LQ are gauge mod-
els. There, the massive U field arises from a gauge symmetry G � GSM that is broken
spontaneously to yield the SM Lagrangian at low energies, together with the singlet vec-
tor LQ as well as additional degrees of freedom. The minimal gauge group that leads to the
effective interactions of the form (2.1) and that can account for the hints of LFU violation
in semi-leptonic B decays is [21, 23, 26, 27, 30, 35, 41, 42, 95, 96]

G4321 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)X . (2.2)

This gauge group is commonly referred to as 4321. In our article, we restrict ourselves to
the SU(4) ⇥ SU(3)0 sector of (2.2) which includes the LQ interactions and O(↵s) correc-
tions thereof, while neglecting contributions that involve the SU(2)L ⇥ U(1)X subgroup.
This means in particular that we do not consider contributions to DY dilepton production
that arise from the colour singlet state Z

0
⇠ (1, 1, 0) that also appears in the spectrum of

the 4321 model after spontaneous symmetry breaking [21, 23, 26, 27, 30, 35]. This omission
is firstly motivated because the Z

0 does not contribute to the O(↵s) corrections we are
interested in. Secondly, while the colour singlet does contribute to DY dilepton produc-
tion, the tree-level s-channel exchange of a Z

0 leads to a narrow resonance in the dilepton
2
In our POWHEG-BOX implementation of the simplified Lagrangian (2.1) the relevant third-generation

LQ-quark-lepton couplings are treated as real.
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3.3. Interactions with SM Fermions (Lf)

The interactions between the five scalar LQs and the SM fermions are
listed below. Y AB

a
with a 2 {1, 1̃, 2, 2̃, 3} and A,B 2 {L,R} are arbitrary

complex 3 ⇥ 3 matrices coupling LQs to a quark and a lepton. Y Q,AA

a
with

a 2
�
1, 1̃, 2, 2̃, 3

 
and A 2 {L,R} couple LQs to two quarks. Y Q,LL

1 is

symmetric in flavour space (i.e. Y Q,LL

1,ij = Y Q,LL

1,ji ), Y Q,RR

1̃
and Y Q,LL

3 are anti-

symmetric and Y Q,RR

1 is again an arbitrary complex matrix. We omit the
color indices whenever they just involve trivial contractions.

Lf

�1
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1,ij ū0c
i
`0
j
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�
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�
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�
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0
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+ h.c.
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ū0c
i,c1

u0
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�1̃,c3✏

c1c2c3 + h.c.

�2 Y RL
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�
�|

2ū
0
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i�2L0
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�
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�
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i
`0
j
�2

�
+ h.c.

�2̃ Y RL
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�
�|
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d̄0
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i�2L0

j

�
+ h.c.

�3

Y LL

3,ij

⇣
Q̄0c|

i
i�2 (� · �3)

† L0
j

⌘
+ h.c.

Y Q,LL

3,ij

�
Q̄0c|

i,c1
i�2 (� · �3,c3)Q

0
j,c2

�
✏c1c2c3 + h.c.

(43)

Again, we use brackets to indicate the SU(2)L contractions. Note that we
stated the Lagrangian above before EW symmetry breaking using the weak
eigenstates of the fermions (indicated by the prime). When going to the
mass eigenbasis (after EW symmetry breaking), CKM matrix elements enter
interactions involving left-handed down-type quarks according to Eq. (20).
The charge-conjugate of a fermion field  is denoted as  c, where

 c = C ̄| ,

 ̄c = � |C�1 ,
(44)

with C the charge conjugation matrix. A detailed description of our treat-
ment of charge-conjugate SM fermions is given in Appendix A.
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SLQs

3.1. LQ Masses and Higgs Interactions (L2�)

The LQ masses and the LQ-LQ-Higgs(-Higgs) interactions are imple-
mented by the Lagrangian [142, 171]

L2� =�

3X

a=1

�
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a
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�
H†H

� ��
�†

a
�a

�
�
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ã
+ Yã

�
H†H
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i
.

(25)
The color indices are omitted since they just involve trivial contractions.
For example, the term with Y22 in Eq. (25) would be �Y22 (H|i�2�2,c1)

†

(H|i�2�2,c1) in full notation. We use the convention that couplings with
mass dimension one (zero) are denoted by A (Y ).

The terms in Eq. (25) lead to mixing among the LQ eigenstates of the
same electric charge after EW symmetry breaking. It is therefore convenient
to collect them in the electric charge eigenstate vectors
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(26)

After spontaneous symmetry breaking, non-diagonal mass matrices q in

L2� � �

X

q2Q

�q† q�q (27)
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�ã

�

� Y22

�
H|i�2�2

�†�
H|i�2�2

�
� Y2̃2̃

�
H|i�2�2̃

�†�
H|i�2�2̃

�

� iY33✏
IJK

�
H†�IH

�
�J†

3 �K

3h
� A12̃

�
�†

2̃
H
�
�1 + A2̃3

�
�†

2̃
(� · �3)H

�
+ Y22̃

�
�†

2H
��
H|i�2�2̃

�

+ Y1̃3

�
H|i�2 (� · �3)

† H
�
�1̃ + Y13

�
H† (� · �3)H

�
�†

1 + h.c.
i
.

(25)
The color indices are omitted since they just involve trivial contractions.
For example, the term with Y22 in Eq. (25) would be �Y22 (H|i�2�2,c1)

†

(H|i�2�2,c1) in full notation. We use the convention that couplings with
mass dimension one (zero) are denoted by A (Y ).

The terms in Eq. (25) lead to mixing among the LQ eigenstates of the
same electric charge after EW symmetry breaking. It is therefore convenient
to collect them in the electric charge eigenstate vectors

��1/3
⌘

0

BBB@

��1/3
1

��1/3

2̃

��1/3
3

1

CCCA
, �+2/3

⌘

0

BBB@

�+2/3
2

�+2/3

2̃

�+2/3
3

1

CCCA
,

��4/3
⌘

0

@��4/3

1̃

��4/3
3

1

A , �+5/3
⌘

⇣
�+5/3

2

⌘
.

(26)

After spontaneous symmetry breaking, non-diagonal mass matrices q in

L2� � �

X

q2Q

�q† q�q (27)

12

• Simplified  couplings.  S1

• One can just introduce a mass term.  needs to be anti-symmetric for identical bosons as well. This is not satisfied
by Y112, Y112̃, Y2̃2̃2̃, A2̃2̃3 in Table 1. Hence, the Lagrangian is composed of the
terms [175–178]

L3� = A12̃2̃ �1,c1
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⌘
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The Levi-Civita tensors ✏c1c2c3 are omitted, such that i.e. the first term would

read A12̃2̃✏
c1c2c3 �1,c1

⇣
�|

2̃,c2
i�2�2̃,c3

⌘
in the full notation.

3.5. Quartic LQ Interactions (L4�)

To get four-LQ interaction terms in the Lagrangian, one needs to combine
two LQs and two anti-LQs, since

3⌦ 3⌦ 3⌦ 3 = 1� 1� 8� 8� 8� 8� 10� 10� 27 (47)

is the only tensor product of four SU(3)c fundamental representations
�
3, 3

�

that contains a singlet. Trivial combinations of LQ fields that contribute to
the four-LQ Lagrangian are of the type
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where a 6= b 2
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1, 1̃, 2, 2̃, 3

 
. All additional combinations that result in a

vanishing total weak hypercharge Y are given in Tab. 2. Taking into ac-
count SU(2)L invariance, the terms corresponding to Y1113 and Y11̃1̃3 cannot
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calculation of the third-generation gauge vector LQ corrections considered in this work.
The constraints on the parameter space of third-generation singlet vector LQs that follow
from recasts of the recent ditau searches [51, 55] are instead presented in Appendix B.
So without further ado, let’s crack straight into it.

2 Theoretical framework

A singlet vector LQ can be added to the SM Lagrangian in a simple bottom-up approach
by employing the following effective interactions

LU �
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L Q̄
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�µL
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�µ e
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Here Q and L are the left-handed SM quark and lepton SU(2)L doublets, while d and e are
the corresponding right-handed fields, i, j 2 {1, 2, 3} are flavour indices and a 2 {1, 2, 3} is a
colour index. The vector LQ transforms as U ⇠ (3, 1, 2/3) under the SM gauge group GSM =

SU(3)C⇥SU(2)L⇥U(1)Y , making it an SU(2)L singlet. The coupling gU characterises the
overall strength of the LQ interactions with the SM matter fields, whereas �ij

L and �
ij
R are (a

priori) arbitrary complex 3⇥ 3 matrices in flavour space.2 In order to explain the observed
anomalies in the charged-current b ! c and neutral-current b ! s transitions the following
LQ-quark-lepton couplings have to be non-zero and follow the pattern
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The simplified interactions described by the Lagrangian LU however do not provide a

consistent UV completion for the singlet vector LQ field which renders higher-order pertur-
bative calculations based on (2.1) in general ambiguous. A well-motivated and thoroughly
studied class of UV-complete theories that incorporates a singlet vector LQ are gauge mod-
els. There, the massive U field arises from a gauge symmetry G � GSM that is broken
spontaneously to yield the SM Lagrangian at low energies, together with the singlet vec-
tor LQ as well as additional degrees of freedom. The minimal gauge group that leads to the
effective interactions of the form (2.1) and that can account for the hints of LFU violation
in semi-leptonic B decays is [21, 23, 26, 27, 30, 35, 41, 42, 95, 96]

G4321 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)X . (2.2)

This gauge group is commonly referred to as 4321. In our article, we restrict ourselves to
the SU(4) ⇥ SU(3)0 sector of (2.2) which includes the LQ interactions and O(↵s) correc-
tions thereof, while neglecting contributions that involve the SU(2)L ⇥ U(1)X subgroup.
This means in particular that we do not consider contributions to DY dilepton production
that arise from the colour singlet state Z

0
⇠ (1, 1, 0) that also appears in the spectrum of

the 4321 model after spontaneous symmetry breaking [21, 23, 26, 27, 30, 35]. This omission
is firstly motivated because the Z

0 does not contribute to the O(↵s) corrections we are
interested in. Secondly, while the colour singlet does contribute to DY dilepton produc-
tion, the tree-level s-channel exchange of a Z

0 leads to a narrow resonance in the dilepton
2
In our POWHEG-BOX implementation of the simplified Lagrangian (2.1) the relevant third-generation

LQ-quark-lepton couplings are treated as real.
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3.3. Interactions with SM Fermions (Lf)

The interactions between the five scalar LQs and the SM fermions are
listed below. Y AB

a
with a 2 {1, 1̃, 2, 2̃, 3} and A,B 2 {L,R} are arbitrary

complex 3 ⇥ 3 matrices coupling LQs to a quark and a lepton. Y Q,AA

a
with

a 2
�
1, 1̃, 2, 2̃, 3

 
and A 2 {L,R} couple LQs to two quarks. Y Q,LL
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symmetric in flavour space (i.e. Y Q,LL

1,ij = Y Q,LL

1,ji ), Y Q,RR

1̃
and Y Q,LL
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symmetric and Y Q,RR

1 is again an arbitrary complex matrix. We omit the
color indices whenever they just involve trivial contractions.
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j
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i
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�
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�
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i
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j
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�
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�
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2̃
d̄0
i
i�2L0

j

�
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�3

Y LL

3,ij

⇣
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i
i�2 (� · �3)
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j

⌘
+ h.c.

Y Q,LL

3,ij

�
Q̄0c|

i,c1
i�2 (� · �3,c3)Q

0
j,c2

�
✏c1c2c3 + h.c.

(43)

Again, we use brackets to indicate the SU(2)L contractions. Note that we
stated the Lagrangian above before EW symmetry breaking using the weak
eigenstates of the fermions (indicated by the prime). When going to the
mass eigenbasis (after EW symmetry breaking), CKM matrix elements enter
interactions involving left-handed down-type quarks according to Eq. (20).
The charge-conjugate of a fermion field  is denoted as  c, where

 c = C ̄| ,

 ̄c = � |C�1 ,
(44)

with C the charge conjugation matrix. A detailed description of our treat-
ment of charge-conjugate SM fermions is given in Appendix A.
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3.1. LQ Masses and Higgs Interactions (L2�)

The LQ masses and the LQ-LQ-Higgs(-Higgs) interactions are imple-
mented by the Lagrangian [142, 171]

L2� =�

3X

a=1

�
m2

a
+ Ya

�
H†H

� ��
�†

a
�a

�
�

2X

a=1

�
m2

ã
+ Yã

�
H†H

� ��
�†

ã
�ã

�

� Y22

�
H|i�2�2

�†�
H|i�2�2

�
� Y2̃2̃

�
H|i�2�2̃

�†�
H|i�2�2̃

�

� iY33✏
IJK

�
H†�IH

�
�J†

3 �K

3h
� A12̃

�
�†

2̃
H
�
�1 + A2̃3

�
�†

2̃
(� · �3)H

�
+ Y22̃

�
�†

2H
��
H|i�2�2̃

�

+ Y1̃3

�
H|i�2 (� · �3)

† H
�
�1̃ + Y13

�
H† (� · �3)H

�
�†

1 + h.c.
i
.

(25)
The color indices are omitted since they just involve trivial contractions.
For example, the term with Y22 in Eq. (25) would be �Y22 (H|i�2�2,c1)

†

(H|i�2�2,c1) in full notation. We use the convention that couplings with
mass dimension one (zero) are denoted by A (Y ).

The terms in Eq. (25) lead to mixing among the LQ eigenstates of the
same electric charge after EW symmetry breaking. It is therefore convenient
to collect them in the electric charge eigenstate vectors
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⌘
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3

1

A , �+5/3
⌘

⇣
�+5/3

2

⌘
.

(26)

After spontaneous symmetry breaking, non-diagonal mass matrices q in

L2� � �

X

q2Q

�q† q�q (27)
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• One can just introduce a mass term.  needs to be anti-symmetric for identical bosons as well. This is not satisfied
by Y112, Y112̃, Y2̃2̃2̃, A2̃2̃3 in Table 1. Hence, the Lagrangian is composed of the
terms [175–178]

L3� = A12̃2̃ �1,c1

⇣
�|

2̃,c2
i�2�2̃,c3

⌘
+ A1̃22̃ �1̃,c1

�
�|

2,c2i�2�2̃,c3

�

+ Y11̃2 �1,c1�1̃,c2

�
�|

2,c3i�2H
�
+ Y123 �1,c1

�
H† (� · �3,c3)�2,c2

�

+ Y12̃3 �1,c1

⇣
�|

2̃,c2
i�2 (� · �3,c3)H

⌘
+ Y1̃23 �1̃,c1

�
�|

2,c2i�2 (� · �3,c3)H
�

+ Y233

�
H†�I�2,c1

� �
�J

3,c2i✏
IJK�K

3,c3

�

+ Y2̃33

⇣
�|

2̃,c1
i�2�

IH
⌘ �

�J

3,c2i✏
IJK�K

3,c3

�

+ h.c. .
(46)

The Levi-Civita tensors ✏c1c2c3 are omitted, such that i.e. the first term would

read A12̃2̃✏
c1c2c3 �1,c1

⇣
�|

2̃,c2
i�2�2̃,c3

⌘
in the full notation.

3.5. Quartic LQ Interactions (L4�)

To get four-LQ interaction terms in the Lagrangian, one needs to combine
two LQs and two anti-LQs, since

3⌦ 3⌦ 3⌦ 3 = 1� 1� 8� 8� 8� 8� 10� 10� 27 (47)

is the only tensor product of four SU(3)c fundamental representations
�
3, 3

�

that contains a singlet. Trivial combinations of LQ fields that contribute to
the four-LQ Lagrangian are of the type

Y (1)
a

�
�†

a,c1
�a,c1

� �
�†

a,c2
�a,c2

�
,

Y (1)
ab

�
�†

a,c1
�a,c1

� ⇣
�†

b,c2
�b,c2

⌘
,

(48)

where a 6= b 2
�
1, 1̃, 2, 2̃, 3

 
. All additional combinations that result in a

vanishing total weak hypercharge Y are given in Tab. 2. Taking into ac-
count SU(2)L invariance, the terms corresponding to Y1113 and Y11̃1̃3 cannot

be implemented, but besides Y (1)
2 , Y (1)

2̃
, Y (1)

3 , Y (1)

22̃
, Y (1)

23 and Y (1)

2̃3
, further in-

dependent terms with the same fields exist, originating from the di↵erent
SU(2)L singlets that can be constructed. Regarding SU(3)c, except for the
case when two fields are identical, there are two possibilities to contract the
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+
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⇣
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(49)

with a, b 2
�
1, 1̃, 2, 2̃, 3

 
unless stated otherwise. Note that we set Y (1)

ab
= Y (1)

ba

and Y (1)0
ab

= Y (1)0
ba

for a 6= b, since they correspond to the same terms. The

Feynman rules are expressed using only one of them, i.e. Y (1)

1̃3
, but not Y (1)

31̃
.
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calculation of the third-generation gauge vector LQ corrections considered in this work.
The constraints on the parameter space of third-generation singlet vector LQs that follow
from recasts of the recent ditau searches [51, 55] are instead presented in Appendix B.
So without further ado, let’s crack straight into it.

2 Theoretical framework

A singlet vector LQ can be added to the SM Lagrangian in a simple bottom-up approach
by employing the following effective interactions

LU �
gU
p
2

h
�
ij
L Q̄

i,a
�µL

j + �
ij
R d̄

i,a
�µ e

j
i
U

µ,a + h.c. (2.1)

Here Q and L are the left-handed SM quark and lepton SU(2)L doublets, while d and e are
the corresponding right-handed fields, i, j 2 {1, 2, 3} are flavour indices and a 2 {1, 2, 3} is a
colour index. The vector LQ transforms as U ⇠ (3, 1, 2/3) under the SM gauge group GSM =

SU(3)C⇥SU(2)L⇥U(1)Y , making it an SU(2)L singlet. The coupling gU characterises the
overall strength of the LQ interactions with the SM matter fields, whereas �ij

L and �
ij
R are (a

priori) arbitrary complex 3⇥ 3 matrices in flavour space.2 In order to explain the observed
anomalies in the charged-current b ! c and neutral-current b ! s transitions the following
LQ-quark-lepton couplings have to be non-zero and follow the pattern

���33
L

�� '
���33

R

�� &���23
L

�� �
���32

L

�� '
���22

L

��, while the remaining couplings can in principle vanish.
The simplified interactions described by the Lagrangian LU however do not provide a

consistent UV completion for the singlet vector LQ field which renders higher-order pertur-
bative calculations based on (2.1) in general ambiguous. A well-motivated and thoroughly
studied class of UV-complete theories that incorporates a singlet vector LQ are gauge mod-
els. There, the massive U field arises from a gauge symmetry G � GSM that is broken
spontaneously to yield the SM Lagrangian at low energies, together with the singlet vec-
tor LQ as well as additional degrees of freedom. The minimal gauge group that leads to the
effective interactions of the form (2.1) and that can account for the hints of LFU violation
in semi-leptonic B decays is [21, 23, 26, 27, 30, 35, 41, 42, 95, 96]

G4321 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)X . (2.2)

This gauge group is commonly referred to as 4321. In our article, we restrict ourselves to
the SU(4) ⇥ SU(3)0 sector of (2.2) which includes the LQ interactions and O(↵s) correc-
tions thereof, while neglecting contributions that involve the SU(2)L ⇥ U(1)X subgroup.
This means in particular that we do not consider contributions to DY dilepton production
that arise from the colour singlet state Z

0
⇠ (1, 1, 0) that also appears in the spectrum of

the 4321 model after spontaneous symmetry breaking [21, 23, 26, 27, 30, 35]. This omission
is firstly motivated because the Z

0 does not contribute to the O(↵s) corrections we are
interested in. Secondly, while the colour singlet does contribute to DY dilepton produc-
tion, the tree-level s-channel exchange of a Z

0 leads to a narrow resonance in the dilepton
2
In our POWHEG-BOX implementation of the simplified Lagrangian (2.1) the relevant third-generation

LQ-quark-lepton couplings are treated as real.
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• What we want:   

calculation of the third-generation gauge vector LQ corrections considered in this work.
The constraints on the parameter space of third-generation singlet vector LQs that follow
from recasts of the recent ditau searches [51, 55] are instead presented in Appendix B.
So without further ado, let’s crack straight into it.

2 Theoretical framework

A singlet vector LQ can be added to the SM Lagrangian in a simple bottom-up approach
by employing the following effective interactions
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Here Q and L are the left-handed SM quark and lepton SU(2)L doublets, while d and e are
the corresponding right-handed fields, i, j 2 {1, 2, 3} are flavour indices and a 2 {1, 2, 3} is a
colour index. The vector LQ transforms as U ⇠ (3, 1, 2/3) under the SM gauge group GSM =

SU(3)C⇥SU(2)L⇥U(1)Y , making it an SU(2)L singlet. The coupling gU characterises the
overall strength of the LQ interactions with the SM matter fields, whereas �ij

L and �
ij
R are (a

priori) arbitrary complex 3⇥ 3 matrices in flavour space.2 In order to explain the observed
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The simplified interactions described by the Lagrangian LU however do not provide a

consistent UV completion for the singlet vector LQ field which renders higher-order pertur-
bative calculations based on (2.1) in general ambiguous. A well-motivated and thoroughly
studied class of UV-complete theories that incorporates a singlet vector LQ are gauge mod-
els. There, the massive U field arises from a gauge symmetry G � GSM that is broken
spontaneously to yield the SM Lagrangian at low energies, together with the singlet vec-
tor LQ as well as additional degrees of freedom. The minimal gauge group that leads to the
effective interactions of the form (2.1) and that can account for the hints of LFU violation
in semi-leptonic B decays is [21, 23, 26, 27, 30, 35, 41, 42, 95, 96]

G4321 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)X . (2.2)

This gauge group is commonly referred to as 4321. In our article, we restrict ourselves to
the SU(4) ⇥ SU(3)0 sector of (2.2) which includes the LQ interactions and O(↵s) correc-
tions thereof, while neglecting contributions that involve the SU(2)L ⇥ U(1)X subgroup.
This means in particular that we do not consider contributions to DY dilepton production
that arise from the colour singlet state Z

0
⇠ (1, 1, 0) that also appears in the spectrum of

the 4321 model after spontaneous symmetry breaking [21, 23, 26, 27, 30, 35]. This omission
is firstly motivated because the Z

0 does not contribute to the O(↵s) corrections we are
interested in. Secondly, while the colour singlet does contribute to DY dilepton produc-
tion, the tree-level s-channel exchange of a Z

0 leads to a narrow resonance in the dilepton
2
In our POWHEG-BOX implementation of the simplified Lagrangian (2.1) the relevant third-generation

LQ-quark-lepton couplings are treated as real.
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proposed in [15–18], or a vector resonance of some new strongly interacting dynamics, as e.g. in [19, 21].
As we show, in both cases the consistency of the theory requires additional vector states with similar
masses. The purpose of this paper is to provide a comprehensive analysis of the high-pT constraints
on the vector leptoquark U1 and what can be considered its minimal set of vector companions, namely
a colour octet G0

⇠ (8,1, 0), which we will refer to as the coloron, and a colour singlet Z 0
⇠ (1,1, 0).

In our analysis we consider the most general chiral structure for the U1 couplings to SM fermions.
This is in contrast with many recent studies which considered only left-handed (LH) couplings. While
this hypothesis is motivated by the absence of clear indications of right-handed (RH) currents in the
present data and by the sake of minimality, it does not have a strong theoretical justification. Indeed,
the quantum numbers of the U1 allow for RH couplings, and in motivated UV completions such
couplings naturally appear [18, 26]. We also analyse the impact of a non-vanishing mixing between
the second and third family in high-pT searches, including in particular constraints from pp ! ⌧µ and
pp ! ⌧⌫. As we show, the inclusion of right-handed couplings and/or a sizeable 2-3 family mixing
yields significant modifications to the results found in the existing literature.

The structure of this paper is as follows: In section 2 we motivate our choice of TeV-scale vectors
and in section 3 we introduce the phenomenological Lagrangian adopted to describe their high-pT
signatures. We then present the results of the searches in section 4 and conclude with section 5.

2 The spectrum of vector states at the TeV scale

The bottom-up requirement for the class of models we are interested in is the following e↵ective
interaction of the U1 field with SM fermions:

LNP �
gU
p
2
U

µ,↵
1

⇥
(JL

U )
↵
µ + (JR

U )↵µ
⇤
+ h.c. ,

(JL
U )

↵
µ = �

ij
L q̄

i,↵
L �µ`

j
L , (JR

U )↵µ = �
ij
R d̄

i,↵
R �µe

j
R . (1)

Here qL (`L) denotes the left-handed quark (lepton) doublets, dR (eR) denotes the right-handed down-
type quark (charge-lepton) singlets, i 2 {1, 2, 3} and j 2 {1, 2, 3} are flavour indices, ↵ 2 {1, 2, 3} is a
SU(3)c index, and �

ij
L,R are complex matrices in family-space.

The e↵ective interaction in eq. (1) unambiguously identifies the representation of U1 under GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to be (3,1, 2/3). There are two basic classes of well-defined UV theories
where such interactions can occur:

i. Gauge models. Here U1 is the massive gauge boson of a spontaneously broken gauge symmetry
GNP � GSM. The need for extra massive vectors follows from the size of the coset-space of
GNP/GSM, that necessarily requires additional generators besides the six associated to U1.

ii. Strongly interacting models. Here U1 appears as a massive resonance for a new strongly interact-
ing sector. In this case the need of additional massive vectors is a consequence of the additional
resonances formed by the same set of constituents leading to U1.

Gauge models: the need for a Z0

Within gauge models, let us start analysing the case of a single generation of SM fermions (i = j = 3),
and further assume that SM fermions belong to well-defined representations of GNP (i.e. no mixing
between SM-like and exotic fermions). Under these assumptions, �L is non-zero only if qL and `L

belong to the same GNP representation. We denote this representation  L and, without loss of
generality, we decompose it as

 L =  
SM
L +  

exotic
L ,  

SM
L =

 
q
�
L

`L

!
. (2)
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• Gauge models: 

calculation of the third-generation gauge vector LQ corrections considered in this work.
The constraints on the parameter space of third-generation singlet vector LQs that follow
from recasts of the recent ditau searches [51, 55] are instead presented in Appendix B.
So without further ado, let’s crack straight into it.

2 Theoretical framework

A singlet vector LQ can be added to the SM Lagrangian in a simple bottom-up approach
by employing the following effective interactions
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U

µ,a + h.c. (2.1)

Here Q and L are the left-handed SM quark and lepton SU(2)L doublets, while d and e are
the corresponding right-handed fields, i, j 2 {1, 2, 3} are flavour indices and a 2 {1, 2, 3} is a
colour index. The vector LQ transforms as U ⇠ (3, 1, 2/3) under the SM gauge group GSM =

SU(3)C⇥SU(2)L⇥U(1)Y , making it an SU(2)L singlet. The coupling gU characterises the
overall strength of the LQ interactions with the SM matter fields, whereas �ij

L and �
ij
R are (a

priori) arbitrary complex 3⇥ 3 matrices in flavour space.2 In order to explain the observed
anomalies in the charged-current b ! c and neutral-current b ! s transitions the following
LQ-quark-lepton couplings have to be non-zero and follow the pattern
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��, while the remaining couplings can in principle vanish.
The simplified interactions described by the Lagrangian LU however do not provide a

consistent UV completion for the singlet vector LQ field which renders higher-order pertur-
bative calculations based on (2.1) in general ambiguous. A well-motivated and thoroughly
studied class of UV-complete theories that incorporates a singlet vector LQ are gauge mod-
els. There, the massive U field arises from a gauge symmetry G � GSM that is broken
spontaneously to yield the SM Lagrangian at low energies, together with the singlet vec-
tor LQ as well as additional degrees of freedom. The minimal gauge group that leads to the
effective interactions of the form (2.1) and that can account for the hints of LFU violation
in semi-leptonic B decays is [21, 23, 26, 27, 30, 35, 41, 42, 95, 96]

G4321 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)X . (2.2)

This gauge group is commonly referred to as 4321. In our article, we restrict ourselves to
the SU(4) ⇥ SU(3)0 sector of (2.2) which includes the LQ interactions and O(↵s) correc-
tions thereof, while neglecting contributions that involve the SU(2)L ⇥ U(1)X subgroup.
This means in particular that we do not consider contributions to DY dilepton production
that arise from the colour singlet state Z

0
⇠ (1, 1, 0) that also appears in the spectrum of

the 4321 model after spontaneous symmetry breaking [21, 23, 26, 27, 30, 35]. This omission
is firstly motivated because the Z

0 does not contribute to the O(↵s) corrections we are
interested in. Secondly, while the colour singlet does contribute to DY dilepton produc-
tion, the tree-level s-channel exchange of a Z

0 leads to a narrow resonance in the dilepton
2
In our POWHEG-BOX implementation of the simplified Lagrangian (2.1) the relevant third-generation

LQ-quark-lepton couplings are treated as real.
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proposed in [15–18], or a vector resonance of some new strongly interacting dynamics, as e.g. in [19, 21].
As we show, in both cases the consistency of the theory requires additional vector states with similar
masses. The purpose of this paper is to provide a comprehensive analysis of the high-pT constraints
on the vector leptoquark U1 and what can be considered its minimal set of vector companions, namely
a colour octet G0

⇠ (8,1, 0), which we will refer to as the coloron, and a colour singlet Z 0
⇠ (1,1, 0).

In our analysis we consider the most general chiral structure for the U1 couplings to SM fermions.
This is in contrast with many recent studies which considered only left-handed (LH) couplings. While
this hypothesis is motivated by the absence of clear indications of right-handed (RH) currents in the
present data and by the sake of minimality, it does not have a strong theoretical justification. Indeed,
the quantum numbers of the U1 allow for RH couplings, and in motivated UV completions such
couplings naturally appear [18, 26]. We also analyse the impact of a non-vanishing mixing between
the second and third family in high-pT searches, including in particular constraints from pp ! ⌧µ and
pp ! ⌧⌫. As we show, the inclusion of right-handed couplings and/or a sizeable 2-3 family mixing
yields significant modifications to the results found in the existing literature.

The structure of this paper is as follows: In section 2 we motivate our choice of TeV-scale vectors
and in section 3 we introduce the phenomenological Lagrangian adopted to describe their high-pT
signatures. We then present the results of the searches in section 4 and conclude with section 5.

2 The spectrum of vector states at the TeV scale

The bottom-up requirement for the class of models we are interested in is the following e↵ective
interaction of the U1 field with SM fermions:

LNP �
gU
p
2
U

µ,↵
1

⇥
(JL

U )
↵
µ + (JR

U )↵µ
⇤
+ h.c. ,

(JL
U )

↵
µ = �

ij
L q̄

i,↵
L �µ`

j
L , (JR

U )↵µ = �
ij
R d̄

i,↵
R �µe

j
R . (1)

Here qL (`L) denotes the left-handed quark (lepton) doublets, dR (eR) denotes the right-handed down-
type quark (charge-lepton) singlets, i 2 {1, 2, 3} and j 2 {1, 2, 3} are flavour indices, ↵ 2 {1, 2, 3} is a
SU(3)c index, and �

ij
L,R are complex matrices in family-space.

The e↵ective interaction in eq. (1) unambiguously identifies the representation of U1 under GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to be (3,1, 2/3). There are two basic classes of well-defined UV theories
where such interactions can occur:

i. Gauge models. Here U1 is the massive gauge boson of a spontaneously broken gauge symmetry
GNP � GSM. The need for extra massive vectors follows from the size of the coset-space of
GNP/GSM, that necessarily requires additional generators besides the six associated to U1.

ii. Strongly interacting models. Here U1 appears as a massive resonance for a new strongly interact-
ing sector. In this case the need of additional massive vectors is a consequence of the additional
resonances formed by the same set of constituents leading to U1.

Gauge models: the need for a Z0

Within gauge models, let us start analysing the case of a single generation of SM fermions (i = j = 3),
and further assume that SM fermions belong to well-defined representations of GNP (i.e. no mixing
between SM-like and exotic fermions). Under these assumptions, �L is non-zero only if qL and `L

belong to the same GNP representation. We denote this representation  L and, without loss of
generality, we decompose it as

 L =  
SM
L +  

exotic
L ,  

SM
L =

 
q
�
L

`L

!
. (2)

2

In this notation the left-handed current in eq. (1) can be written as (JL
U )

↵
µ =  ̄

SM
L (T↵

+)�µ 
SM
L with

the following explicit expression for the action of the GNP generators on the SM projection of  L:

T
↵
+ =

 
0 �↵�

0 0

!
. (3)

The closure of the algebra of the six generators T↵
± associated with the six components of U1 implies

the need of the following additional (colour-neutral) generator

TB�L =

 
1
3��� 0

0 �1

!
,

1

3

3X

↵,�=1

[T↵
+, T

�
�] = TB�L . (4)

The same conclusion is reached by looking at the right-handed coupling in eq. (1). Moreover, since a
possible mixing between SM and exotic fermions must occur in a SU(3)c invariant way, the decom-
position in eq. (2) also holds for possible exotic fermions mixing with the SM ones. Hence the need
of TB�L for the closure of the algebra is a general conclusion that holds independently of the possible
mixing among fermion representations.

An equivalent way to deduce the need for an extra generator is the observation that the minimal
group G

min
NP � GSM containing generators associated to the representation (3,1, 2/3) is

G
min
NP = SU(4)⇥ SU(2)L ⇥ U(1)T 3

R
, (5)

i.e. the subgroup of the Pati-Salam group GPS = SU(4)⇥SU(2)L⇥SU(2)R [29]. Gmin
NP is obtained by

considering the U(1) subgroup of SU(2)R defined by its diagonal (electric-charge neutral) generator
T
3
R. The coset G

min
NP /GSM contains seven generators: the six T

↵
± describing the coset SU(4)/SU(3)c⇥

U(1)B�L, and TB�L.
In gauge models, the presence of an extra massive vector Z 0

⇠ (1,1, 0) associated with the breaking
U(1)B�L ⇥ U(1)T 3

R
! U(1)Y is thus unavoidable. Since the breaking of U(1)B�L necessarily implies

a breaking of SU(4), the breaking terms which lead to a non-vanishing Z
0 mass necessarily induce a

mass term for the U1 as well. Hence, the Z
0 state cannot be decoupled. The opposite is not true:

since the U1 generators are associated to the SU(4)/SU(3)c ⇥ U(1)B�L coset, mass terms for the U1

do not necessarily contribute to the Z
0 mass.

Gauge models: the need for a G0

While the minimal group in eq. (5) allows us to build a consistent model for a massive U1 ⇠ (3,1, 2/3),
it does not leave us enough freedom to adjust U1 and Z

0 couplings in order to comply with low- and
high-energy data.

Under G
min
NP the interaction strengths of both U1 and Z

0 are unambiguously related to the QCD
coupling (gs) and to hypercharge, given that they all originate from the same SU(4) group. In
particular gU = gs(MU1), in a normalisation where |�

ij
L,R|  1. Moreover, the couplings of the Z

0 to

SM fermions are necessarily flavour universal.1 A flavour-universal Z 0 is constrained by LHC dilepton
searches to have MZ0 >⇠ 5 TeV [30, 31]. Within G

min
NP , the U1 should be necessarily close in mass [22]

which, together with the low value of gU , results in a negligible impact on b ! c`⌫ decays.
To avoid these constraints, T↵

±, TB�L, and the QCD generators T
a, should not be unified in a

single SU(4) group. Given the commutation rules between T
↵
± and T

a, the next-to-minimal option is
obtained with [15]

(Gmin
NP )0 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)T 3

R
, (6)

1This statement follows from the fact that the mixing of SM fermions among themselves (in flavour space) and with
possible exotic representations necessarily involve states with the same B �L charges. As a result, the mixing acts as a
unitary rotation on the Z0 couplings that remains proportional to the identity matrix in flavour space.
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calculation of the third-generation gauge vector LQ corrections considered in this work.
The constraints on the parameter space of third-generation singlet vector LQs that follow
from recasts of the recent ditau searches [51, 55] are instead presented in Appendix B.
So without further ado, let’s crack straight into it.

2 Theoretical framework

A singlet vector LQ can be added to the SM Lagrangian in a simple bottom-up approach
by employing the following effective interactions

LU �
gU
p
2

h
�
ij
L Q̄

i,a
�µL

j + �
ij
R d̄

i,a
�µ e

j
i
U

µ,a + h.c. (2.1)

Here Q and L are the left-handed SM quark and lepton SU(2)L doublets, while d and e are
the corresponding right-handed fields, i, j 2 {1, 2, 3} are flavour indices and a 2 {1, 2, 3} is a
colour index. The vector LQ transforms as U ⇠ (3, 1, 2/3) under the SM gauge group GSM =

SU(3)C⇥SU(2)L⇥U(1)Y , making it an SU(2)L singlet. The coupling gU characterises the
overall strength of the LQ interactions with the SM matter fields, whereas �ij

L and �
ij
R are (a

priori) arbitrary complex 3⇥ 3 matrices in flavour space.2 In order to explain the observed
anomalies in the charged-current b ! c and neutral-current b ! s transitions the following
LQ-quark-lepton couplings have to be non-zero and follow the pattern

���33
L

�� '
���33

R

�� &���23
L

�� �
���32

L

�� '
���22

L

��, while the remaining couplings can in principle vanish.
The simplified interactions described by the Lagrangian LU however do not provide a

consistent UV completion for the singlet vector LQ field which renders higher-order pertur-
bative calculations based on (2.1) in general ambiguous. A well-motivated and thoroughly
studied class of UV-complete theories that incorporates a singlet vector LQ are gauge mod-
els. There, the massive U field arises from a gauge symmetry G � GSM that is broken
spontaneously to yield the SM Lagrangian at low energies, together with the singlet vec-
tor LQ as well as additional degrees of freedom. The minimal gauge group that leads to the
effective interactions of the form (2.1) and that can account for the hints of LFU violation
in semi-leptonic B decays is [21, 23, 26, 27, 30, 35, 41, 42, 95, 96]

G4321 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)X . (2.2)

This gauge group is commonly referred to as 4321. In our article, we restrict ourselves to
the SU(4) ⇥ SU(3)0 sector of (2.2) which includes the LQ interactions and O(↵s) correc-
tions thereof, while neglecting contributions that involve the SU(2)L ⇥ U(1)X subgroup.
This means in particular that we do not consider contributions to DY dilepton production
that arise from the colour singlet state Z

0
⇠ (1, 1, 0) that also appears in the spectrum of

the 4321 model after spontaneous symmetry breaking [21, 23, 26, 27, 30, 35]. This omission
is firstly motivated because the Z

0 does not contribute to the O(↵s) corrections we are
interested in. Secondly, while the colour singlet does contribute to DY dilepton produc-
tion, the tree-level s-channel exchange of a Z

0 leads to a narrow resonance in the dilepton
2
In our POWHEG-BOX implementation of the simplified Lagrangian (2.1) the relevant third-generation

LQ-quark-lepton couplings are treated as real.
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proposed in [15–18], or a vector resonance of some new strongly interacting dynamics, as e.g. in [19, 21].
As we show, in both cases the consistency of the theory requires additional vector states with similar
masses. The purpose of this paper is to provide a comprehensive analysis of the high-pT constraints
on the vector leptoquark U1 and what can be considered its minimal set of vector companions, namely
a colour octet G0

⇠ (8,1, 0), which we will refer to as the coloron, and a colour singlet Z 0
⇠ (1,1, 0).

In our analysis we consider the most general chiral structure for the U1 couplings to SM fermions.
This is in contrast with many recent studies which considered only left-handed (LH) couplings. While
this hypothesis is motivated by the absence of clear indications of right-handed (RH) currents in the
present data and by the sake of minimality, it does not have a strong theoretical justification. Indeed,
the quantum numbers of the U1 allow for RH couplings, and in motivated UV completions such
couplings naturally appear [18, 26]. We also analyse the impact of a non-vanishing mixing between
the second and third family in high-pT searches, including in particular constraints from pp ! ⌧µ and
pp ! ⌧⌫. As we show, the inclusion of right-handed couplings and/or a sizeable 2-3 family mixing
yields significant modifications to the results found in the existing literature.

The structure of this paper is as follows: In section 2 we motivate our choice of TeV-scale vectors
and in section 3 we introduce the phenomenological Lagrangian adopted to describe their high-pT
signatures. We then present the results of the searches in section 4 and conclude with section 5.

2 The spectrum of vector states at the TeV scale

The bottom-up requirement for the class of models we are interested in is the following e↵ective
interaction of the U1 field with SM fermions:

LNP �
gU
p
2
U

µ,↵
1

⇥
(JL

U )
↵
µ + (JR

U )↵µ
⇤
+ h.c. ,

(JL
U )

↵
µ = �

ij
L q̄

i,↵
L �µ`

j
L , (JR

U )↵µ = �
ij
R d̄

i,↵
R �µe

j
R . (1)

Here qL (`L) denotes the left-handed quark (lepton) doublets, dR (eR) denotes the right-handed down-
type quark (charge-lepton) singlets, i 2 {1, 2, 3} and j 2 {1, 2, 3} are flavour indices, ↵ 2 {1, 2, 3} is a
SU(3)c index, and �

ij
L,R are complex matrices in family-space.

The e↵ective interaction in eq. (1) unambiguously identifies the representation of U1 under GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to be (3,1, 2/3). There are two basic classes of well-defined UV theories
where such interactions can occur:

i. Gauge models. Here U1 is the massive gauge boson of a spontaneously broken gauge symmetry
GNP � GSM. The need for extra massive vectors follows from the size of the coset-space of
GNP/GSM, that necessarily requires additional generators besides the six associated to U1.

ii. Strongly interacting models. Here U1 appears as a massive resonance for a new strongly interact-
ing sector. In this case the need of additional massive vectors is a consequence of the additional
resonances formed by the same set of constituents leading to U1.

Gauge models: the need for a Z0

Within gauge models, let us start analysing the case of a single generation of SM fermions (i = j = 3),
and further assume that SM fermions belong to well-defined representations of GNP (i.e. no mixing
between SM-like and exotic fermions). Under these assumptions, �L is non-zero only if qL and `L

belong to the same GNP representation. We denote this representation  L and, without loss of
generality, we decompose it as

 L =  
SM
L +  

exotic
L ,  

SM
L =

 
q
�
L

`L

!
. (2)

2

In this notation the left-handed current in eq. (1) can be written as (JL
U )

↵
µ =  ̄

SM
L (T↵

+)�µ 
SM
L with

the following explicit expression for the action of the GNP generators on the SM projection of  L:

T
↵
+ =

 
0 �↵�

0 0

!
. (3)

The closure of the algebra of the six generators T↵
± associated with the six components of U1 implies

the need of the following additional (colour-neutral) generator

TB�L =

 
1
3��� 0

0 �1

!
,

1

3

3X

↵,�=1

[T↵
+, T

�
�] = TB�L . (4)

The same conclusion is reached by looking at the right-handed coupling in eq. (1). Moreover, since a
possible mixing between SM and exotic fermions must occur in a SU(3)c invariant way, the decom-
position in eq. (2) also holds for possible exotic fermions mixing with the SM ones. Hence the need
of TB�L for the closure of the algebra is a general conclusion that holds independently of the possible
mixing among fermion representations.

An equivalent way to deduce the need for an extra generator is the observation that the minimal
group G

min
NP � GSM containing generators associated to the representation (3,1, 2/3) is

G
min
NP = SU(4)⇥ SU(2)L ⇥ U(1)T 3

R
, (5)

i.e. the subgroup of the Pati-Salam group GPS = SU(4)⇥SU(2)L⇥SU(2)R [29]. Gmin
NP is obtained by

considering the U(1) subgroup of SU(2)R defined by its diagonal (electric-charge neutral) generator
T
3
R. The coset G

min
NP /GSM contains seven generators: the six T

↵
± describing the coset SU(4)/SU(3)c⇥

U(1)B�L, and TB�L.
In gauge models, the presence of an extra massive vector Z 0

⇠ (1,1, 0) associated with the breaking
U(1)B�L ⇥ U(1)T 3

R
! U(1)Y is thus unavoidable. Since the breaking of U(1)B�L necessarily implies

a breaking of SU(4), the breaking terms which lead to a non-vanishing Z
0 mass necessarily induce a

mass term for the U1 as well. Hence, the Z
0 state cannot be decoupled. The opposite is not true:

since the U1 generators are associated to the SU(4)/SU(3)c ⇥ U(1)B�L coset, mass terms for the U1

do not necessarily contribute to the Z
0 mass.

Gauge models: the need for a G0

While the minimal group in eq. (5) allows us to build a consistent model for a massive U1 ⇠ (3,1, 2/3),
it does not leave us enough freedom to adjust U1 and Z

0 couplings in order to comply with low- and
high-energy data.

Under G
min
NP the interaction strengths of both U1 and Z

0 are unambiguously related to the QCD
coupling (gs) and to hypercharge, given that they all originate from the same SU(4) group. In
particular gU = gs(MU1), in a normalisation where |�

ij
L,R|  1. Moreover, the couplings of the Z

0 to

SM fermions are necessarily flavour universal.1 A flavour-universal Z 0 is constrained by LHC dilepton
searches to have MZ0 >⇠ 5 TeV [30, 31]. Within G

min
NP , the U1 should be necessarily close in mass [22]

which, together with the low value of gU , results in a negligible impact on b ! c`⌫ decays.
To avoid these constraints, T↵

±, TB�L, and the QCD generators T
a, should not be unified in a

single SU(4) group. Given the commutation rules between T
↵
± and T

a, the next-to-minimal option is
obtained with [15]

(Gmin
NP )0 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)T 3

R
, (6)

1This statement follows from the fact that the mixing of SM fermions among themselves (in flavour space) and with
possible exotic representations necessarily involve states with the same B �L charges. As a result, the mixing acts as a
unitary rotation on the Z0 couplings that remains proportional to the identity matrix in flavour space.
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proposed in [15–18], or a vector resonance of some new strongly interacting dynamics, as e.g. in [19, 21].
As we show, in both cases the consistency of the theory requires additional vector states with similar
masses. The purpose of this paper is to provide a comprehensive analysis of the high-pT constraints
on the vector leptoquark U1 and what can be considered its minimal set of vector companions, namely
a colour octet G0

⇠ (8,1, 0), which we will refer to as the coloron, and a colour singlet Z 0
⇠ (1,1, 0).

In our analysis we consider the most general chiral structure for the U1 couplings to SM fermions.
This is in contrast with many recent studies which considered only left-handed (LH) couplings. While
this hypothesis is motivated by the absence of clear indications of right-handed (RH) currents in the
present data and by the sake of minimality, it does not have a strong theoretical justification. Indeed,
the quantum numbers of the U1 allow for RH couplings, and in motivated UV completions such
couplings naturally appear [18, 26]. We also analyse the impact of a non-vanishing mixing between
the second and third family in high-pT searches, including in particular constraints from pp ! ⌧µ and
pp ! ⌧⌫. As we show, the inclusion of right-handed couplings and/or a sizeable 2-3 family mixing
yields significant modifications to the results found in the existing literature.

The structure of this paper is as follows: In section 2 we motivate our choice of TeV-scale vectors
and in section 3 we introduce the phenomenological Lagrangian adopted to describe their high-pT
signatures. We then present the results of the searches in section 4 and conclude with section 5.

2 The spectrum of vector states at the TeV scale

The bottom-up requirement for the class of models we are interested in is the following e↵ective
interaction of the U1 field with SM fermions:

LNP �
gU
p
2
U

µ,↵
1

⇥
(JL

U )
↵
µ + (JR

U )↵µ
⇤
+ h.c. ,

(JL
U )

↵
µ = �
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L q̄

i,↵
L �µ`

j
L , (JR

U )↵µ = �
ij
R d̄

i,↵
R �µe

j
R . (1)

Here qL (`L) denotes the left-handed quark (lepton) doublets, dR (eR) denotes the right-handed down-
type quark (charge-lepton) singlets, i 2 {1, 2, 3} and j 2 {1, 2, 3} are flavour indices, ↵ 2 {1, 2, 3} is a
SU(3)c index, and �

ij
L,R are complex matrices in family-space.

The e↵ective interaction in eq. (1) unambiguously identifies the representation of U1 under GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to be (3,1, 2/3). There are two basic classes of well-defined UV theories
where such interactions can occur:

i. Gauge models. Here U1 is the massive gauge boson of a spontaneously broken gauge symmetry
GNP � GSM. The need for extra massive vectors follows from the size of the coset-space of
GNP/GSM, that necessarily requires additional generators besides the six associated to U1.

ii. Strongly interacting models. Here U1 appears as a massive resonance for a new strongly interact-
ing sector. In this case the need of additional massive vectors is a consequence of the additional
resonances formed by the same set of constituents leading to U1.

Gauge models: the need for a Z0

Within gauge models, let us start analysing the case of a single generation of SM fermions (i = j = 3),
and further assume that SM fermions belong to well-defined representations of GNP (i.e. no mixing
between SM-like and exotic fermions). Under these assumptions, �L is non-zero only if qL and `L

belong to the same GNP representation. We denote this representation  L and, without loss of
generality, we decompose it as

 L =  
SM
L +  

exotic
L ,  

SM
L =

 
q
�
L

`L

!
. (2)
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calculation of the third-generation gauge vector LQ corrections considered in this work.
The constraints on the parameter space of third-generation singlet vector LQs that follow
from recasts of the recent ditau searches [51, 55] are instead presented in Appendix B.
So without further ado, let’s crack straight into it.

2 Theoretical framework

A singlet vector LQ can be added to the SM Lagrangian in a simple bottom-up approach
by employing the following effective interactions

LU �
gU
p
2

h
�
ij
L Q̄

i,a
�µL

j + �
ij
R d̄

i,a
�µ e

j
i
U

µ,a + h.c. (2.1)

Here Q and L are the left-handed SM quark and lepton SU(2)L doublets, while d and e are
the corresponding right-handed fields, i, j 2 {1, 2, 3} are flavour indices and a 2 {1, 2, 3} is a
colour index. The vector LQ transforms as U ⇠ (3, 1, 2/3) under the SM gauge group GSM =

SU(3)C⇥SU(2)L⇥U(1)Y , making it an SU(2)L singlet. The coupling gU characterises the
overall strength of the LQ interactions with the SM matter fields, whereas �ij

L and �
ij
R are (a

priori) arbitrary complex 3⇥ 3 matrices in flavour space.2 In order to explain the observed
anomalies in the charged-current b ! c and neutral-current b ! s transitions the following
LQ-quark-lepton couplings have to be non-zero and follow the pattern
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L

��, while the remaining couplings can in principle vanish.
The simplified interactions described by the Lagrangian LU however do not provide a

consistent UV completion for the singlet vector LQ field which renders higher-order pertur-
bative calculations based on (2.1) in general ambiguous. A well-motivated and thoroughly
studied class of UV-complete theories that incorporates a singlet vector LQ are gauge mod-
els. There, the massive U field arises from a gauge symmetry G � GSM that is broken
spontaneously to yield the SM Lagrangian at low energies, together with the singlet vec-
tor LQ as well as additional degrees of freedom. The minimal gauge group that leads to the
effective interactions of the form (2.1) and that can account for the hints of LFU violation
in semi-leptonic B decays is [21, 23, 26, 27, 30, 35, 41, 42, 95, 96]

G4321 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)X . (2.2)

This gauge group is commonly referred to as 4321. In our article, we restrict ourselves to
the SU(4) ⇥ SU(3)0 sector of (2.2) which includes the LQ interactions and O(↵s) correc-
tions thereof, while neglecting contributions that involve the SU(2)L ⇥ U(1)X subgroup.
This means in particular that we do not consider contributions to DY dilepton production
that arise from the colour singlet state Z

0
⇠ (1, 1, 0) that also appears in the spectrum of

the 4321 model after spontaneous symmetry breaking [21, 23, 26, 27, 30, 35]. This omission
is firstly motivated because the Z

0 does not contribute to the O(↵s) corrections we are
interested in. Secondly, while the colour singlet does contribute to DY dilepton produc-
tion, the tree-level s-channel exchange of a Z

0 leads to a narrow resonance in the dilepton
2
In our POWHEG-BOX implementation of the simplified Lagrangian (2.1) the relevant third-generation

LQ-quark-lepton couplings are treated as real.
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1.4 UV-complete gauge models

proposed in [15–18], or a vector resonance of some new strongly interacting dynamics, as e.g. in [19, 21].
As we show, in both cases the consistency of the theory requires additional vector states with similar
masses. The purpose of this paper is to provide a comprehensive analysis of the high-pT constraints
on the vector leptoquark U1 and what can be considered its minimal set of vector companions, namely
a colour octet G0

⇠ (8,1, 0), which we will refer to as the coloron, and a colour singlet Z 0
⇠ (1,1, 0).

In our analysis we consider the most general chiral structure for the U1 couplings to SM fermions.
This is in contrast with many recent studies which considered only left-handed (LH) couplings. While
this hypothesis is motivated by the absence of clear indications of right-handed (RH) currents in the
present data and by the sake of minimality, it does not have a strong theoretical justification. Indeed,
the quantum numbers of the U1 allow for RH couplings, and in motivated UV completions such
couplings naturally appear [18, 26]. We also analyse the impact of a non-vanishing mixing between
the second and third family in high-pT searches, including in particular constraints from pp ! ⌧µ and
pp ! ⌧⌫. As we show, the inclusion of right-handed couplings and/or a sizeable 2-3 family mixing
yields significant modifications to the results found in the existing literature.

The structure of this paper is as follows: In section 2 we motivate our choice of TeV-scale vectors
and in section 3 we introduce the phenomenological Lagrangian adopted to describe their high-pT
signatures. We then present the results of the searches in section 4 and conclude with section 5.

2 The spectrum of vector states at the TeV scale

The bottom-up requirement for the class of models we are interested in is the following e↵ective
interaction of the U1 field with SM fermions:

LNP �
gU
p
2
U

µ,↵
1

⇥
(JL

U )
↵
µ + (JR

U )↵µ
⇤
+ h.c. ,

(JL
U )

↵
µ = �

ij
L q̄

i,↵
L �µ`

j
L , (JR

U )↵µ = �
ij
R d̄

i,↵
R �µe

j
R . (1)

Here qL (`L) denotes the left-handed quark (lepton) doublets, dR (eR) denotes the right-handed down-
type quark (charge-lepton) singlets, i 2 {1, 2, 3} and j 2 {1, 2, 3} are flavour indices, ↵ 2 {1, 2, 3} is a
SU(3)c index, and �

ij
L,R are complex matrices in family-space.

The e↵ective interaction in eq. (1) unambiguously identifies the representation of U1 under GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to be (3,1, 2/3). There are two basic classes of well-defined UV theories
where such interactions can occur:

i. Gauge models. Here U1 is the massive gauge boson of a spontaneously broken gauge symmetry
GNP � GSM. The need for extra massive vectors follows from the size of the coset-space of
GNP/GSM, that necessarily requires additional generators besides the six associated to U1.

ii. Strongly interacting models. Here U1 appears as a massive resonance for a new strongly interact-
ing sector. In this case the need of additional massive vectors is a consequence of the additional
resonances formed by the same set of constituents leading to U1.

Gauge models: the need for a Z0

Within gauge models, let us start analysing the case of a single generation of SM fermions (i = j = 3),
and further assume that SM fermions belong to well-defined representations of GNP (i.e. no mixing
between SM-like and exotic fermions). Under these assumptions, �L is non-zero only if qL and `L

belong to the same GNP representation. We denote this representation  L and, without loss of
generality, we decompose it as

 L =  
SM
L +  

exotic
L ,  

SM
L =

 
q
�
L

`L

!
. (2)

2

In this notation the left-handed current in eq. (1) can be written as (JL
U )

↵
µ =  ̄

SM
L (T↵

+)�µ 
SM
L with

the following explicit expression for the action of the GNP generators on the SM projection of  L:

T
↵
+ =

 
0 �↵�

0 0

!
. (3)

The closure of the algebra of the six generators T↵
± associated with the six components of U1 implies

the need of the following additional (colour-neutral) generator

TB�L =

 
1
3��� 0

0 �1

!
,

1

3

3X

↵,�=1

[T↵
+, T

�
�] = TB�L . (4)

The same conclusion is reached by looking at the right-handed coupling in eq. (1). Moreover, since a
possible mixing between SM and exotic fermions must occur in a SU(3)c invariant way, the decom-
position in eq. (2) also holds for possible exotic fermions mixing with the SM ones. Hence the need
of TB�L for the closure of the algebra is a general conclusion that holds independently of the possible
mixing among fermion representations.

An equivalent way to deduce the need for an extra generator is the observation that the minimal
group G

min
NP � GSM containing generators associated to the representation (3,1, 2/3) is

G
min
NP = SU(4)⇥ SU(2)L ⇥ U(1)T 3

R
, (5)

i.e. the subgroup of the Pati-Salam group GPS = SU(4)⇥SU(2)L⇥SU(2)R [29]. Gmin
NP is obtained by

considering the U(1) subgroup of SU(2)R defined by its diagonal (electric-charge neutral) generator
T
3
R. The coset G

min
NP /GSM contains seven generators: the six T

↵
± describing the coset SU(4)/SU(3)c⇥

U(1)B�L, and TB�L.
In gauge models, the presence of an extra massive vector Z 0

⇠ (1,1, 0) associated with the breaking
U(1)B�L ⇥ U(1)T 3

R
! U(1)Y is thus unavoidable. Since the breaking of U(1)B�L necessarily implies

a breaking of SU(4), the breaking terms which lead to a non-vanishing Z
0 mass necessarily induce a

mass term for the U1 as well. Hence, the Z
0 state cannot be decoupled. The opposite is not true:

since the U1 generators are associated to the SU(4)/SU(3)c ⇥ U(1)B�L coset, mass terms for the U1

do not necessarily contribute to the Z
0 mass.

Gauge models: the need for a G0

While the minimal group in eq. (5) allows us to build a consistent model for a massive U1 ⇠ (3,1, 2/3),
it does not leave us enough freedom to adjust U1 and Z

0 couplings in order to comply with low- and
high-energy data.

Under G
min
NP the interaction strengths of both U1 and Z

0 are unambiguously related to the QCD
coupling (gs) and to hypercharge, given that they all originate from the same SU(4) group. In
particular gU = gs(MU1), in a normalisation where |�

ij
L,R|  1. Moreover, the couplings of the Z

0 to

SM fermions are necessarily flavour universal.1 A flavour-universal Z 0 is constrained by LHC dilepton
searches to have MZ0 >⇠ 5 TeV [30, 31]. Within G

min
NP , the U1 should be necessarily close in mass [22]

which, together with the low value of gU , results in a negligible impact on b ! c`⌫ decays.
To avoid these constraints, T↵

±, TB�L, and the QCD generators T
a, should not be unified in a

single SU(4) group. Given the commutation rules between T
↵
± and T

a, the next-to-minimal option is
obtained with [15]

(Gmin
NP )0 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)T 3

R
, (6)

1This statement follows from the fact that the mixing of SM fermions among themselves (in flavour space) and with
possible exotic representations necessarily involve states with the same B �L charges. As a result, the mixing acts as a
unitary rotation on the Z0 couplings that remains proportional to the identity matrix in flavour space.
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proposed in [15–18], or a vector resonance of some new strongly interacting dynamics, as e.g. in [19, 21].
As we show, in both cases the consistency of the theory requires additional vector states with similar
masses. The purpose of this paper is to provide a comprehensive analysis of the high-pT constraints
on the vector leptoquark U1 and what can be considered its minimal set of vector companions, namely
a colour octet G0

⇠ (8,1, 0), which we will refer to as the coloron, and a colour singlet Z 0
⇠ (1,1, 0).

In our analysis we consider the most general chiral structure for the U1 couplings to SM fermions.
This is in contrast with many recent studies which considered only left-handed (LH) couplings. While
this hypothesis is motivated by the absence of clear indications of right-handed (RH) currents in the
present data and by the sake of minimality, it does not have a strong theoretical justification. Indeed,
the quantum numbers of the U1 allow for RH couplings, and in motivated UV completions such
couplings naturally appear [18, 26]. We also analyse the impact of a non-vanishing mixing between
the second and third family in high-pT searches, including in particular constraints from pp ! ⌧µ and
pp ! ⌧⌫. As we show, the inclusion of right-handed couplings and/or a sizeable 2-3 family mixing
yields significant modifications to the results found in the existing literature.

The structure of this paper is as follows: In section 2 we motivate our choice of TeV-scale vectors
and in section 3 we introduce the phenomenological Lagrangian adopted to describe their high-pT
signatures. We then present the results of the searches in section 4 and conclude with section 5.

2 The spectrum of vector states at the TeV scale

The bottom-up requirement for the class of models we are interested in is the following e↵ective
interaction of the U1 field with SM fermions:

LNP �
gU
p
2
U

µ,↵
1

⇥
(JL

U )
↵
µ + (JR

U )↵µ
⇤
+ h.c. ,
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↵
µ = �
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L q̄

i,↵
L �µ`
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L , (JR

U )↵µ = �
ij
R d̄
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j
R . (1)

Here qL (`L) denotes the left-handed quark (lepton) doublets, dR (eR) denotes the right-handed down-
type quark (charge-lepton) singlets, i 2 {1, 2, 3} and j 2 {1, 2, 3} are flavour indices, ↵ 2 {1, 2, 3} is a
SU(3)c index, and �

ij
L,R are complex matrices in family-space.

The e↵ective interaction in eq. (1) unambiguously identifies the representation of U1 under GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to be (3,1, 2/3). There are two basic classes of well-defined UV theories
where such interactions can occur:

i. Gauge models. Here U1 is the massive gauge boson of a spontaneously broken gauge symmetry
GNP � GSM. The need for extra massive vectors follows from the size of the coset-space of
GNP/GSM, that necessarily requires additional generators besides the six associated to U1.

ii. Strongly interacting models. Here U1 appears as a massive resonance for a new strongly interact-
ing sector. In this case the need of additional massive vectors is a consequence of the additional
resonances formed by the same set of constituents leading to U1.

Gauge models: the need for a Z0

Within gauge models, let us start analysing the case of a single generation of SM fermions (i = j = 3),
and further assume that SM fermions belong to well-defined representations of GNP (i.e. no mixing
between SM-like and exotic fermions). Under these assumptions, �L is non-zero only if qL and `L

belong to the same GNP representation. We denote this representation  L and, without loss of
generality, we decompose it as

 L =  
SM
L +  

exotic
L ,  

SM
L =

 
q
�
L

`L

!
. (2)

2

calculation of the third-generation gauge vector LQ corrections considered in this work.
The constraints on the parameter space of third-generation singlet vector LQs that follow
from recasts of the recent ditau searches [51, 55] are instead presented in Appendix B.
So without further ado, let’s crack straight into it.

2 Theoretical framework

A singlet vector LQ can be added to the SM Lagrangian in a simple bottom-up approach
by employing the following effective interactions

LU �
gU
p
2

h
�
ij
L Q̄

i,a
�µL

j + �
ij
R d̄

i,a
�µ e

j
i
U

µ,a + h.c. (2.1)

Here Q and L are the left-handed SM quark and lepton SU(2)L doublets, while d and e are
the corresponding right-handed fields, i, j 2 {1, 2, 3} are flavour indices and a 2 {1, 2, 3} is a
colour index. The vector LQ transforms as U ⇠ (3, 1, 2/3) under the SM gauge group GSM =

SU(3)C⇥SU(2)L⇥U(1)Y , making it an SU(2)L singlet. The coupling gU characterises the
overall strength of the LQ interactions with the SM matter fields, whereas �ij

L and �
ij
R are (a

priori) arbitrary complex 3⇥ 3 matrices in flavour space.2 In order to explain the observed
anomalies in the charged-current b ! c and neutral-current b ! s transitions the following
LQ-quark-lepton couplings have to be non-zero and follow the pattern

���33
L

�� '
���33

R

�� &���23
L

�� �
���32

L

�� '
���22

L

��, while the remaining couplings can in principle vanish.
The simplified interactions described by the Lagrangian LU however do not provide a

consistent UV completion for the singlet vector LQ field which renders higher-order pertur-
bative calculations based on (2.1) in general ambiguous. A well-motivated and thoroughly
studied class of UV-complete theories that incorporates a singlet vector LQ are gauge mod-
els. There, the massive U field arises from a gauge symmetry G � GSM that is broken
spontaneously to yield the SM Lagrangian at low energies, together with the singlet vec-
tor LQ as well as additional degrees of freedom. The minimal gauge group that leads to the
effective interactions of the form (2.1) and that can account for the hints of LFU violation
in semi-leptonic B decays is [21, 23, 26, 27, 30, 35, 41, 42, 95, 96]

G4321 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)X . (2.2)

This gauge group is commonly referred to as 4321. In our article, we restrict ourselves to
the SU(4) ⇥ SU(3)0 sector of (2.2) which includes the LQ interactions and O(↵s) correc-
tions thereof, while neglecting contributions that involve the SU(2)L ⇥ U(1)X subgroup.
This means in particular that we do not consider contributions to DY dilepton production
that arise from the colour singlet state Z

0
⇠ (1, 1, 0) that also appears in the spectrum of

the 4321 model after spontaneous symmetry breaking [21, 23, 26, 27, 30, 35]. This omission
is firstly motivated because the Z

0 does not contribute to the O(↵s) corrections we are
interested in. Secondly, while the colour singlet does contribute to DY dilepton produc-
tion, the tree-level s-channel exchange of a Z

0 leads to a narrow resonance in the dilepton
2
In our POWHEG-BOX implementation of the simplified Lagrangian (2.1) the relevant third-generation

LQ-quark-lepton couplings are treated as real.
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proposed in [15–18], or a vector resonance of some new strongly interacting dynamics, as e.g. in [19, 21].
As we show, in both cases the consistency of the theory requires additional vector states with similar
masses. The purpose of this paper is to provide a comprehensive analysis of the high-pT constraints
on the vector leptoquark U1 and what can be considered its minimal set of vector companions, namely
a colour octet G0

⇠ (8,1, 0), which we will refer to as the coloron, and a colour singlet Z 0
⇠ (1,1, 0).

In our analysis we consider the most general chiral structure for the U1 couplings to SM fermions.
This is in contrast with many recent studies which considered only left-handed (LH) couplings. While
this hypothesis is motivated by the absence of clear indications of right-handed (RH) currents in the
present data and by the sake of minimality, it does not have a strong theoretical justification. Indeed,
the quantum numbers of the U1 allow for RH couplings, and in motivated UV completions such
couplings naturally appear [18, 26]. We also analyse the impact of a non-vanishing mixing between
the second and third family in high-pT searches, including in particular constraints from pp ! ⌧µ and
pp ! ⌧⌫. As we show, the inclusion of right-handed couplings and/or a sizeable 2-3 family mixing
yields significant modifications to the results found in the existing literature.

The structure of this paper is as follows: In section 2 we motivate our choice of TeV-scale vectors
and in section 3 we introduce the phenomenological Lagrangian adopted to describe their high-pT
signatures. We then present the results of the searches in section 4 and conclude with section 5.

2 The spectrum of vector states at the TeV scale

The bottom-up requirement for the class of models we are interested in is the following e↵ective
interaction of the U1 field with SM fermions:
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Here qL (`L) denotes the left-handed quark (lepton) doublets, dR (eR) denotes the right-handed down-
type quark (charge-lepton) singlets, i 2 {1, 2, 3} and j 2 {1, 2, 3} are flavour indices, ↵ 2 {1, 2, 3} is a
SU(3)c index, and �

ij
L,R are complex matrices in family-space.

The e↵ective interaction in eq. (1) unambiguously identifies the representation of U1 under GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to be (3,1, 2/3). There are two basic classes of well-defined UV theories
where such interactions can occur:

i. Gauge models. Here U1 is the massive gauge boson of a spontaneously broken gauge symmetry
GNP � GSM. The need for extra massive vectors follows from the size of the coset-space of
GNP/GSM, that necessarily requires additional generators besides the six associated to U1.

ii. Strongly interacting models. Here U1 appears as a massive resonance for a new strongly interact-
ing sector. In this case the need of additional massive vectors is a consequence of the additional
resonances formed by the same set of constituents leading to U1.

Gauge models: the need for a Z0

Within gauge models, let us start analysing the case of a single generation of SM fermions (i = j = 3),
and further assume that SM fermions belong to well-defined representations of GNP (i.e. no mixing
between SM-like and exotic fermions). Under these assumptions, �L is non-zero only if qL and `L

belong to the same GNP representation. We denote this representation  L and, without loss of
generality, we decompose it as

 L =  
SM
L +  

exotic
L ,  

SM
L =

 
q
�
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In this notation the left-handed current in eq. (1) can be written as (JL
U )

↵
µ =  ̄

SM
L (T↵

+)�µ 
SM
L with

the following explicit expression for the action of the GNP generators on the SM projection of  L:
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0 0

!
. (3)

The closure of the algebra of the six generators T↵
± associated with the six components of U1 implies

the need of the following additional (colour-neutral) generator

TB�L =

 
1
3��� 0
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�] = TB�L . (4)

The same conclusion is reached by looking at the right-handed coupling in eq. (1). Moreover, since a
possible mixing between SM and exotic fermions must occur in a SU(3)c invariant way, the decom-
position in eq. (2) also holds for possible exotic fermions mixing with the SM ones. Hence the need
of TB�L for the closure of the algebra is a general conclusion that holds independently of the possible
mixing among fermion representations.

An equivalent way to deduce the need for an extra generator is the observation that the minimal
group G

min
NP � GSM containing generators associated to the representation (3,1, 2/3) is

G
min
NP = SU(4)⇥ SU(2)L ⇥ U(1)T 3

R
, (5)

i.e. the subgroup of the Pati-Salam group GPS = SU(4)⇥SU(2)L⇥SU(2)R [29]. Gmin
NP is obtained by

considering the U(1) subgroup of SU(2)R defined by its diagonal (electric-charge neutral) generator
T
3
R. The coset G

min
NP /GSM contains seven generators: the six T

↵
± describing the coset SU(4)/SU(3)c⇥

U(1)B�L, and TB�L.
In gauge models, the presence of an extra massive vector Z 0

⇠ (1,1, 0) associated with the breaking
U(1)B�L ⇥ U(1)T 3

R
! U(1)Y is thus unavoidable. Since the breaking of U(1)B�L necessarily implies

a breaking of SU(4), the breaking terms which lead to a non-vanishing Z
0 mass necessarily induce a

mass term for the U1 as well. Hence, the Z
0 state cannot be decoupled. The opposite is not true:

since the U1 generators are associated to the SU(4)/SU(3)c ⇥ U(1)B�L coset, mass terms for the U1

do not necessarily contribute to the Z
0 mass.

Gauge models: the need for a G0

While the minimal group in eq. (5) allows us to build a consistent model for a massive U1 ⇠ (3,1, 2/3),
it does not leave us enough freedom to adjust U1 and Z

0 couplings in order to comply with low- and
high-energy data.

Under G
min
NP the interaction strengths of both U1 and Z

0 are unambiguously related to the QCD
coupling (gs) and to hypercharge, given that they all originate from the same SU(4) group. In
particular gU = gs(MU1), in a normalisation where |�

ij
L,R|  1. Moreover, the couplings of the Z

0 to

SM fermions are necessarily flavour universal.1 A flavour-universal Z 0 is constrained by LHC dilepton
searches to have MZ0 >⇠ 5 TeV [30, 31]. Within G

min
NP , the U1 should be necessarily close in mass [22]

which, together with the low value of gU , results in a negligible impact on b ! c`⌫ decays.
To avoid these constraints, T↵

±, TB�L, and the QCD generators T
a, should not be unified in a

single SU(4) group. Given the commutation rules between T
↵
± and T

a, the next-to-minimal option is
obtained with [15]

(Gmin
NP )0 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)T 3

R
, (6)

1This statement follows from the fact that the mixing of SM fermions among themselves (in flavour space) and with
possible exotic representations necessarily involve states with the same B �L charges. As a result, the mixing acts as a
unitary rotation on the Z0 couplings that remains proportional to the identity matrix in flavour space.

3

• What we want:   

• Gauge models: 

• First idea: Pati-Salam-type model

proposed in [15–18], or a vector resonance of some new strongly interacting dynamics, as e.g. in [19, 21].
As we show, in both cases the consistency of the theory requires additional vector states with similar
masses. The purpose of this paper is to provide a comprehensive analysis of the high-pT constraints
on the vector leptoquark U1 and what can be considered its minimal set of vector companions, namely
a colour octet G0

⇠ (8,1, 0), which we will refer to as the coloron, and a colour singlet Z 0
⇠ (1,1, 0).

In our analysis we consider the most general chiral structure for the U1 couplings to SM fermions.
This is in contrast with many recent studies which considered only left-handed (LH) couplings. While
this hypothesis is motivated by the absence of clear indications of right-handed (RH) currents in the
present data and by the sake of minimality, it does not have a strong theoretical justification. Indeed,
the quantum numbers of the U1 allow for RH couplings, and in motivated UV completions such
couplings naturally appear [18, 26]. We also analyse the impact of a non-vanishing mixing between
the second and third family in high-pT searches, including in particular constraints from pp ! ⌧µ and
pp ! ⌧⌫. As we show, the inclusion of right-handed couplings and/or a sizeable 2-3 family mixing
yields significant modifications to the results found in the existing literature.

The structure of this paper is as follows: In section 2 we motivate our choice of TeV-scale vectors
and in section 3 we introduce the phenomenological Lagrangian adopted to describe their high-pT
signatures. We then present the results of the searches in section 4 and conclude with section 5.

2 The spectrum of vector states at the TeV scale

The bottom-up requirement for the class of models we are interested in is the following e↵ective
interaction of the U1 field with SM fermions:
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Here qL (`L) denotes the left-handed quark (lepton) doublets, dR (eR) denotes the right-handed down-
type quark (charge-lepton) singlets, i 2 {1, 2, 3} and j 2 {1, 2, 3} are flavour indices, ↵ 2 {1, 2, 3} is a
SU(3)c index, and �

ij
L,R are complex matrices in family-space.

The e↵ective interaction in eq. (1) unambiguously identifies the representation of U1 under GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to be (3,1, 2/3). There are two basic classes of well-defined UV theories
where such interactions can occur:

i. Gauge models. Here U1 is the massive gauge boson of a spontaneously broken gauge symmetry
GNP � GSM. The need for extra massive vectors follows from the size of the coset-space of
GNP/GSM, that necessarily requires additional generators besides the six associated to U1.

ii. Strongly interacting models. Here U1 appears as a massive resonance for a new strongly interact-
ing sector. In this case the need of additional massive vectors is a consequence of the additional
resonances formed by the same set of constituents leading to U1.

Gauge models: the need for a Z0

Within gauge models, let us start analysing the case of a single generation of SM fermions (i = j = 3),
and further assume that SM fermions belong to well-defined representations of GNP (i.e. no mixing
between SM-like and exotic fermions). Under these assumptions, �L is non-zero only if qL and `L

belong to the same GNP representation. We denote this representation  L and, without loss of
generality, we decompose it as
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calculation of the third-generation gauge vector LQ corrections considered in this work.
The constraints on the parameter space of third-generation singlet vector LQs that follow
from recasts of the recent ditau searches [51, 55] are instead presented in Appendix B.
So without further ado, let’s crack straight into it.

2 Theoretical framework

A singlet vector LQ can be added to the SM Lagrangian in a simple bottom-up approach
by employing the following effective interactions
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Here Q and L are the left-handed SM quark and lepton SU(2)L doublets, while d and e are
the corresponding right-handed fields, i, j 2 {1, 2, 3} are flavour indices and a 2 {1, 2, 3} is a
colour index. The vector LQ transforms as U ⇠ (3, 1, 2/3) under the SM gauge group GSM =

SU(3)C⇥SU(2)L⇥U(1)Y , making it an SU(2)L singlet. The coupling gU characterises the
overall strength of the LQ interactions with the SM matter fields, whereas �ij

L and �
ij
R are (a

priori) arbitrary complex 3⇥ 3 matrices in flavour space.2 In order to explain the observed
anomalies in the charged-current b ! c and neutral-current b ! s transitions the following
LQ-quark-lepton couplings have to be non-zero and follow the pattern
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��, while the remaining couplings can in principle vanish.
The simplified interactions described by the Lagrangian LU however do not provide a

consistent UV completion for the singlet vector LQ field which renders higher-order pertur-
bative calculations based on (2.1) in general ambiguous. A well-motivated and thoroughly
studied class of UV-complete theories that incorporates a singlet vector LQ are gauge mod-
els. There, the massive U field arises from a gauge symmetry G � GSM that is broken
spontaneously to yield the SM Lagrangian at low energies, together with the singlet vec-
tor LQ as well as additional degrees of freedom. The minimal gauge group that leads to the
effective interactions of the form (2.1) and that can account for the hints of LFU violation
in semi-leptonic B decays is [21, 23, 26, 27, 30, 35, 41, 42, 95, 96]

G4321 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)X . (2.2)

This gauge group is commonly referred to as 4321. In our article, we restrict ourselves to
the SU(4) ⇥ SU(3)0 sector of (2.2) which includes the LQ interactions and O(↵s) correc-
tions thereof, while neglecting contributions that involve the SU(2)L ⇥ U(1)X subgroup.
This means in particular that we do not consider contributions to DY dilepton production
that arise from the colour singlet state Z

0
⇠ (1, 1, 0) that also appears in the spectrum of

the 4321 model after spontaneous symmetry breaking [21, 23, 26, 27, 30, 35]. This omission
is firstly motivated because the Z

0 does not contribute to the O(↵s) corrections we are
interested in. Secondly, while the colour singlet does contribute to DY dilepton produc-
tion, the tree-level s-channel exchange of a Z

0 leads to a narrow resonance in the dilepton
2
In our POWHEG-BOX implementation of the simplified Lagrangian (2.1) the relevant third-generation

LQ-quark-lepton couplings are treated as real.
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One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
textures in Eq. (3.4) could arise from (unspecified) UV dynamics at ⇤ ⇡ 10 TeV without signifi-
cantly impacting �F = 2 observables.

A.10 SU(4) generators

Here we report some useful facts about the SU(4) algebra. The generators in the fundamental
representation can be written as
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1. Introduction
1.4 UV-complete gauge models

proposed in [15–18], or a vector resonance of some new strongly interacting dynamics, as e.g. in [19, 21].
As we show, in both cases the consistency of the theory requires additional vector states with similar
masses. The purpose of this paper is to provide a comprehensive analysis of the high-pT constraints
on the vector leptoquark U1 and what can be considered its minimal set of vector companions, namely
a colour octet G0

⇠ (8,1, 0), which we will refer to as the coloron, and a colour singlet Z 0
⇠ (1,1, 0).

In our analysis we consider the most general chiral structure for the U1 couplings to SM fermions.
This is in contrast with many recent studies which considered only left-handed (LH) couplings. While
this hypothesis is motivated by the absence of clear indications of right-handed (RH) currents in the
present data and by the sake of minimality, it does not have a strong theoretical justification. Indeed,
the quantum numbers of the U1 allow for RH couplings, and in motivated UV completions such
couplings naturally appear [18, 26]. We also analyse the impact of a non-vanishing mixing between
the second and third family in high-pT searches, including in particular constraints from pp ! ⌧µ and
pp ! ⌧⌫. As we show, the inclusion of right-handed couplings and/or a sizeable 2-3 family mixing
yields significant modifications to the results found in the existing literature.

The structure of this paper is as follows: In section 2 we motivate our choice of TeV-scale vectors
and in section 3 we introduce the phenomenological Lagrangian adopted to describe their high-pT
signatures. We then present the results of the searches in section 4 and conclude with section 5.

2 The spectrum of vector states at the TeV scale

The bottom-up requirement for the class of models we are interested in is the following e↵ective
interaction of the U1 field with SM fermions:
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p
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Here qL (`L) denotes the left-handed quark (lepton) doublets, dR (eR) denotes the right-handed down-
type quark (charge-lepton) singlets, i 2 {1, 2, 3} and j 2 {1, 2, 3} are flavour indices, ↵ 2 {1, 2, 3} is a
SU(3)c index, and �

ij
L,R are complex matrices in family-space.

The e↵ective interaction in eq. (1) unambiguously identifies the representation of U1 under GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to be (3,1, 2/3). There are two basic classes of well-defined UV theories
where such interactions can occur:

i. Gauge models. Here U1 is the massive gauge boson of a spontaneously broken gauge symmetry
GNP � GSM. The need for extra massive vectors follows from the size of the coset-space of
GNP/GSM, that necessarily requires additional generators besides the six associated to U1.

ii. Strongly interacting models. Here U1 appears as a massive resonance for a new strongly interact-
ing sector. In this case the need of additional massive vectors is a consequence of the additional
resonances formed by the same set of constituents leading to U1.

Gauge models: the need for a Z0

Within gauge models, let us start analysing the case of a single generation of SM fermions (i = j = 3),
and further assume that SM fermions belong to well-defined representations of GNP (i.e. no mixing
between SM-like and exotic fermions). Under these assumptions, �L is non-zero only if qL and `L

belong to the same GNP representation. We denote this representation  L and, without loss of
generality, we decompose it as
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SM
L +  
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L ,  
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In this notation the left-handed current in eq. (1) can be written as (JL
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the following explicit expression for the action of the GNP generators on the SM projection of  L:
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The closure of the algebra of the six generators T↵
± associated with the six components of U1 implies

the need of the following additional (colour-neutral) generator
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The same conclusion is reached by looking at the right-handed coupling in eq. (1). Moreover, since a
possible mixing between SM and exotic fermions must occur in a SU(3)c invariant way, the decom-
position in eq. (2) also holds for possible exotic fermions mixing with the SM ones. Hence the need
of TB�L for the closure of the algebra is a general conclusion that holds independently of the possible
mixing among fermion representations.

An equivalent way to deduce the need for an extra generator is the observation that the minimal
group G

min
NP � GSM containing generators associated to the representation (3,1, 2/3) is

G
min
NP = SU(4)⇥ SU(2)L ⇥ U(1)T 3

R
, (5)

i.e. the subgroup of the Pati-Salam group GPS = SU(4)⇥SU(2)L⇥SU(2)R [29]. Gmin
NP is obtained by

considering the U(1) subgroup of SU(2)R defined by its diagonal (electric-charge neutral) generator
T
3
R. The coset G

min
NP /GSM contains seven generators: the six T

↵
± describing the coset SU(4)/SU(3)c⇥

U(1)B�L, and TB�L.
In gauge models, the presence of an extra massive vector Z 0

⇠ (1,1, 0) associated with the breaking
U(1)B�L ⇥ U(1)T 3

R
! U(1)Y is thus unavoidable. Since the breaking of U(1)B�L necessarily implies

a breaking of SU(4), the breaking terms which lead to a non-vanishing Z
0 mass necessarily induce a

mass term for the U1 as well. Hence, the Z
0 state cannot be decoupled. The opposite is not true:

since the U1 generators are associated to the SU(4)/SU(3)c ⇥ U(1)B�L coset, mass terms for the U1

do not necessarily contribute to the Z
0 mass.

Gauge models: the need for a G0

While the minimal group in eq. (5) allows us to build a consistent model for a massive U1 ⇠ (3,1, 2/3),
it does not leave us enough freedom to adjust U1 and Z

0 couplings in order to comply with low- and
high-energy data.

Under G
min
NP the interaction strengths of both U1 and Z

0 are unambiguously related to the QCD
coupling (gs) and to hypercharge, given that they all originate from the same SU(4) group. In
particular gU = gs(MU1), in a normalisation where |�

ij
L,R|  1. Moreover, the couplings of the Z

0 to

SM fermions are necessarily flavour universal.1 A flavour-universal Z 0 is constrained by LHC dilepton
searches to have MZ0 >⇠ 5 TeV [30, 31]. Within G

min
NP , the U1 should be necessarily close in mass [22]

which, together with the low value of gU , results in a negligible impact on b ! c`⌫ decays.
To avoid these constraints, T↵

±, TB�L, and the QCD generators T
a, should not be unified in a

single SU(4) group. Given the commutation rules between T
↵
± and T

a, the next-to-minimal option is
obtained with [15]

(Gmin
NP )0 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)T 3

R
, (6)

1This statement follows from the fact that the mixing of SM fermions among themselves (in flavour space) and with
possible exotic representations necessarily involve states with the same B �L charges. As a result, the mixing acts as a
unitary rotation on the Z0 couplings that remains proportional to the identity matrix in flavour space.
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proposed in [15–18], or a vector resonance of some new strongly interacting dynamics, as e.g. in [19, 21].
As we show, in both cases the consistency of the theory requires additional vector states with similar
masses. The purpose of this paper is to provide a comprehensive analysis of the high-pT constraints
on the vector leptoquark U1 and what can be considered its minimal set of vector companions, namely
a colour octet G0

⇠ (8,1, 0), which we will refer to as the coloron, and a colour singlet Z 0
⇠ (1,1, 0).

In our analysis we consider the most general chiral structure for the U1 couplings to SM fermions.
This is in contrast with many recent studies which considered only left-handed (LH) couplings. While
this hypothesis is motivated by the absence of clear indications of right-handed (RH) currents in the
present data and by the sake of minimality, it does not have a strong theoretical justification. Indeed,
the quantum numbers of the U1 allow for RH couplings, and in motivated UV completions such
couplings naturally appear [18, 26]. We also analyse the impact of a non-vanishing mixing between
the second and third family in high-pT searches, including in particular constraints from pp ! ⌧µ and
pp ! ⌧⌫. As we show, the inclusion of right-handed couplings and/or a sizeable 2-3 family mixing
yields significant modifications to the results found in the existing literature.

The structure of this paper is as follows: In section 2 we motivate our choice of TeV-scale vectors
and in section 3 we introduce the phenomenological Lagrangian adopted to describe their high-pT
signatures. We then present the results of the searches in section 4 and conclude with section 5.

2 The spectrum of vector states at the TeV scale

The bottom-up requirement for the class of models we are interested in is the following e↵ective
interaction of the U1 field with SM fermions:
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Here qL (`L) denotes the left-handed quark (lepton) doublets, dR (eR) denotes the right-handed down-
type quark (charge-lepton) singlets, i 2 {1, 2, 3} and j 2 {1, 2, 3} are flavour indices, ↵ 2 {1, 2, 3} is a
SU(3)c index, and �

ij
L,R are complex matrices in family-space.

The e↵ective interaction in eq. (1) unambiguously identifies the representation of U1 under GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to be (3,1, 2/3). There are two basic classes of well-defined UV theories
where such interactions can occur:

i. Gauge models. Here U1 is the massive gauge boson of a spontaneously broken gauge symmetry
GNP � GSM. The need for extra massive vectors follows from the size of the coset-space of
GNP/GSM, that necessarily requires additional generators besides the six associated to U1.

ii. Strongly interacting models. Here U1 appears as a massive resonance for a new strongly interact-
ing sector. In this case the need of additional massive vectors is a consequence of the additional
resonances formed by the same set of constituents leading to U1.

Gauge models: the need for a Z0

Within gauge models, let us start analysing the case of a single generation of SM fermions (i = j = 3),
and further assume that SM fermions belong to well-defined representations of GNP (i.e. no mixing
between SM-like and exotic fermions). Under these assumptions, �L is non-zero only if qL and `L

belong to the same GNP representation. We denote this representation  L and, without loss of
generality, we decompose it as
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calculation of the third-generation gauge vector LQ corrections considered in this work.
The constraints on the parameter space of third-generation singlet vector LQs that follow
from recasts of the recent ditau searches [51, 55] are instead presented in Appendix B.
So without further ado, let’s crack straight into it.

2 Theoretical framework

A singlet vector LQ can be added to the SM Lagrangian in a simple bottom-up approach
by employing the following effective interactions
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Here Q and L are the left-handed SM quark and lepton SU(2)L doublets, while d and e are
the corresponding right-handed fields, i, j 2 {1, 2, 3} are flavour indices and a 2 {1, 2, 3} is a
colour index. The vector LQ transforms as U ⇠ (3, 1, 2/3) under the SM gauge group GSM =

SU(3)C⇥SU(2)L⇥U(1)Y , making it an SU(2)L singlet. The coupling gU characterises the
overall strength of the LQ interactions with the SM matter fields, whereas �ij

L and �
ij
R are (a

priori) arbitrary complex 3⇥ 3 matrices in flavour space.2 In order to explain the observed
anomalies in the charged-current b ! c and neutral-current b ! s transitions the following
LQ-quark-lepton couplings have to be non-zero and follow the pattern
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The simplified interactions described by the Lagrangian LU however do not provide a

consistent UV completion for the singlet vector LQ field which renders higher-order pertur-
bative calculations based on (2.1) in general ambiguous. A well-motivated and thoroughly
studied class of UV-complete theories that incorporates a singlet vector LQ are gauge mod-
els. There, the massive U field arises from a gauge symmetry G � GSM that is broken
spontaneously to yield the SM Lagrangian at low energies, together with the singlet vec-
tor LQ as well as additional degrees of freedom. The minimal gauge group that leads to the
effective interactions of the form (2.1) and that can account for the hints of LFU violation
in semi-leptonic B decays is [21, 23, 26, 27, 30, 35, 41, 42, 95, 96]

G4321 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)X . (2.2)

This gauge group is commonly referred to as 4321. In our article, we restrict ourselves to
the SU(4) ⇥ SU(3)0 sector of (2.2) which includes the LQ interactions and O(↵s) correc-
tions thereof, while neglecting contributions that involve the SU(2)L ⇥ U(1)X subgroup.
This means in particular that we do not consider contributions to DY dilepton production
that arise from the colour singlet state Z

0
⇠ (1, 1, 0) that also appears in the spectrum of

the 4321 model after spontaneous symmetry breaking [21, 23, 26, 27, 30, 35]. This omission
is firstly motivated because the Z

0 does not contribute to the O(↵s) corrections we are
interested in. Secondly, while the colour singlet does contribute to DY dilepton produc-
tion, the tree-level s-channel exchange of a Z

0 leads to a narrow resonance in the dilepton
2
In our POWHEG-BOX implementation of the simplified Lagrangian (2.1) the relevant third-generation

LQ-quark-lepton couplings are treated as real.
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One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
textures in Eq. (3.4) could arise from (unspecified) UV dynamics at ⇤ ⇡ 10 TeV without signifi-
cantly impacting �F = 2 observables.

A.10 SU(4) generators

Here we report some useful facts about the SU(4) algebra. The generators in the fundamental
representation can be written as
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One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
textures in Eq. (3.4) could arise from (unspecified) UV dynamics at ⇤ ⇡ 10 TeV without signifi-
cantly impacting �F = 2 observables.

A.10 SU(4) generators

Here we report some useful facts about the SU(4) algebra. The generators in the fundamental
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1. Introduction
1.4 UV-complete gauge models

proposed in [15–18], or a vector resonance of some new strongly interacting dynamics, as e.g. in [19, 21].
As we show, in both cases the consistency of the theory requires additional vector states with similar
masses. The purpose of this paper is to provide a comprehensive analysis of the high-pT constraints
on the vector leptoquark U1 and what can be considered its minimal set of vector companions, namely
a colour octet G0

⇠ (8,1, 0), which we will refer to as the coloron, and a colour singlet Z 0
⇠ (1,1, 0).

In our analysis we consider the most general chiral structure for the U1 couplings to SM fermions.
This is in contrast with many recent studies which considered only left-handed (LH) couplings. While
this hypothesis is motivated by the absence of clear indications of right-handed (RH) currents in the
present data and by the sake of minimality, it does not have a strong theoretical justification. Indeed,
the quantum numbers of the U1 allow for RH couplings, and in motivated UV completions such
couplings naturally appear [18, 26]. We also analyse the impact of a non-vanishing mixing between
the second and third family in high-pT searches, including in particular constraints from pp ! ⌧µ and
pp ! ⌧⌫. As we show, the inclusion of right-handed couplings and/or a sizeable 2-3 family mixing
yields significant modifications to the results found in the existing literature.

The structure of this paper is as follows: In section 2 we motivate our choice of TeV-scale vectors
and in section 3 we introduce the phenomenological Lagrangian adopted to describe their high-pT
signatures. We then present the results of the searches in section 4 and conclude with section 5.

2 The spectrum of vector states at the TeV scale

The bottom-up requirement for the class of models we are interested in is the following e↵ective
interaction of the U1 field with SM fermions:

LNP �
gU
p
2
U

µ,↵
1

⇥
(JL

U )
↵
µ + (JR

U )↵µ
⇤
+ h.c. ,

(JL
U )

↵
µ = �

ij
L q̄

i,↵
L �µ`

j
L , (JR

U )↵µ = �
ij
R d̄

i,↵
R �µe

j
R . (1)

Here qL (`L) denotes the left-handed quark (lepton) doublets, dR (eR) denotes the right-handed down-
type quark (charge-lepton) singlets, i 2 {1, 2, 3} and j 2 {1, 2, 3} are flavour indices, ↵ 2 {1, 2, 3} is a
SU(3)c index, and �

ij
L,R are complex matrices in family-space.

The e↵ective interaction in eq. (1) unambiguously identifies the representation of U1 under GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to be (3,1, 2/3). There are two basic classes of well-defined UV theories
where such interactions can occur:

i. Gauge models. Here U1 is the massive gauge boson of a spontaneously broken gauge symmetry
GNP � GSM. The need for extra massive vectors follows from the size of the coset-space of
GNP/GSM, that necessarily requires additional generators besides the six associated to U1.

ii. Strongly interacting models. Here U1 appears as a massive resonance for a new strongly interact-
ing sector. In this case the need of additional massive vectors is a consequence of the additional
resonances formed by the same set of constituents leading to U1.

Gauge models: the need for a Z0

Within gauge models, let us start analysing the case of a single generation of SM fermions (i = j = 3),
and further assume that SM fermions belong to well-defined representations of GNP (i.e. no mixing
between SM-like and exotic fermions). Under these assumptions, �L is non-zero only if qL and `L

belong to the same GNP representation. We denote this representation  L and, without loss of
generality, we decompose it as

 L =  
SM
L +  

exotic
L ,  

SM
L =

 
q
�
L

`L

!
. (2)

2

In this notation the left-handed current in eq. (1) can be written as (JL
U )

↵
µ =  ̄

SM
L (T↵

+)�µ 
SM
L with

the following explicit expression for the action of the GNP generators on the SM projection of  L:

T
↵
+ =

 
0 �↵�

0 0

!
. (3)

The closure of the algebra of the six generators T↵
± associated with the six components of U1 implies

the need of the following additional (colour-neutral) generator

TB�L =

 
1
3��� 0

0 �1

!
,

1

3

3X

↵,�=1

[T↵
+, T

�
�] = TB�L . (4)

The same conclusion is reached by looking at the right-handed coupling in eq. (1). Moreover, since a
possible mixing between SM and exotic fermions must occur in a SU(3)c invariant way, the decom-
position in eq. (2) also holds for possible exotic fermions mixing with the SM ones. Hence the need
of TB�L for the closure of the algebra is a general conclusion that holds independently of the possible
mixing among fermion representations.

An equivalent way to deduce the need for an extra generator is the observation that the minimal
group G

min
NP � GSM containing generators associated to the representation (3,1, 2/3) is

G
min
NP = SU(4)⇥ SU(2)L ⇥ U(1)T 3

R
, (5)

i.e. the subgroup of the Pati-Salam group GPS = SU(4)⇥SU(2)L⇥SU(2)R [29]. Gmin
NP is obtained by

considering the U(1) subgroup of SU(2)R defined by its diagonal (electric-charge neutral) generator
T
3
R. The coset G

min
NP /GSM contains seven generators: the six T

↵
± describing the coset SU(4)/SU(3)c⇥

U(1)B�L, and TB�L.
In gauge models, the presence of an extra massive vector Z 0

⇠ (1,1, 0) associated with the breaking
U(1)B�L ⇥ U(1)T 3

R
! U(1)Y is thus unavoidable. Since the breaking of U(1)B�L necessarily implies

a breaking of SU(4), the breaking terms which lead to a non-vanishing Z
0 mass necessarily induce a

mass term for the U1 as well. Hence, the Z
0 state cannot be decoupled. The opposite is not true:

since the U1 generators are associated to the SU(4)/SU(3)c ⇥ U(1)B�L coset, mass terms for the U1

do not necessarily contribute to the Z
0 mass.

Gauge models: the need for a G0

While the minimal group in eq. (5) allows us to build a consistent model for a massive U1 ⇠ (3,1, 2/3),
it does not leave us enough freedom to adjust U1 and Z

0 couplings in order to comply with low- and
high-energy data.

Under G
min
NP the interaction strengths of both U1 and Z

0 are unambiguously related to the QCD
coupling (gs) and to hypercharge, given that they all originate from the same SU(4) group. In
particular gU = gs(MU1), in a normalisation where |�

ij
L,R|  1. Moreover, the couplings of the Z

0 to

SM fermions are necessarily flavour universal.1 A flavour-universal Z 0 is constrained by LHC dilepton
searches to have MZ0 >⇠ 5 TeV [30, 31]. Within G

min
NP , the U1 should be necessarily close in mass [22]

which, together with the low value of gU , results in a negligible impact on b ! c`⌫ decays.
To avoid these constraints, T↵

±, TB�L, and the QCD generators T
a, should not be unified in a

single SU(4) group. Given the commutation rules between T
↵
± and T

a, the next-to-minimal option is
obtained with [15]

(Gmin
NP )0 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)T 3

R
, (6)

1This statement follows from the fact that the mixing of SM fermions among themselves (in flavour space) and with
possible exotic representations necessarily involve states with the same B �L charges. As a result, the mixing acts as a
unitary rotation on the Z0 couplings that remains proportional to the identity matrix in flavour space.
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proposed in [15–18], or a vector resonance of some new strongly interacting dynamics, as e.g. in [19, 21].
As we show, in both cases the consistency of the theory requires additional vector states with similar
masses. The purpose of this paper is to provide a comprehensive analysis of the high-pT constraints
on the vector leptoquark U1 and what can be considered its minimal set of vector companions, namely
a colour octet G0

⇠ (8,1, 0), which we will refer to as the coloron, and a colour singlet Z 0
⇠ (1,1, 0).

In our analysis we consider the most general chiral structure for the U1 couplings to SM fermions.
This is in contrast with many recent studies which considered only left-handed (LH) couplings. While
this hypothesis is motivated by the absence of clear indications of right-handed (RH) currents in the
present data and by the sake of minimality, it does not have a strong theoretical justification. Indeed,
the quantum numbers of the U1 allow for RH couplings, and in motivated UV completions such
couplings naturally appear [18, 26]. We also analyse the impact of a non-vanishing mixing between
the second and third family in high-pT searches, including in particular constraints from pp ! ⌧µ and
pp ! ⌧⌫. As we show, the inclusion of right-handed couplings and/or a sizeable 2-3 family mixing
yields significant modifications to the results found in the existing literature.

The structure of this paper is as follows: In section 2 we motivate our choice of TeV-scale vectors
and in section 3 we introduce the phenomenological Lagrangian adopted to describe their high-pT
signatures. We then present the results of the searches in section 4 and conclude with section 5.

2 The spectrum of vector states at the TeV scale

The bottom-up requirement for the class of models we are interested in is the following e↵ective
interaction of the U1 field with SM fermions:
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Here qL (`L) denotes the left-handed quark (lepton) doublets, dR (eR) denotes the right-handed down-
type quark (charge-lepton) singlets, i 2 {1, 2, 3} and j 2 {1, 2, 3} are flavour indices, ↵ 2 {1, 2, 3} is a
SU(3)c index, and �

ij
L,R are complex matrices in family-space.

The e↵ective interaction in eq. (1) unambiguously identifies the representation of U1 under GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to be (3,1, 2/3). There are two basic classes of well-defined UV theories
where such interactions can occur:

i. Gauge models. Here U1 is the massive gauge boson of a spontaneously broken gauge symmetry
GNP � GSM. The need for extra massive vectors follows from the size of the coset-space of
GNP/GSM, that necessarily requires additional generators besides the six associated to U1.

ii. Strongly interacting models. Here U1 appears as a massive resonance for a new strongly interact-
ing sector. In this case the need of additional massive vectors is a consequence of the additional
resonances formed by the same set of constituents leading to U1.

Gauge models: the need for a Z0

Within gauge models, let us start analysing the case of a single generation of SM fermions (i = j = 3),
and further assume that SM fermions belong to well-defined representations of GNP (i.e. no mixing
between SM-like and exotic fermions). Under these assumptions, �L is non-zero only if qL and `L

belong to the same GNP representation. We denote this representation  L and, without loss of
generality, we decompose it as

 L =  
SM
L +  

exotic
L ,  

SM
L =

 
q
�
L

`L
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. (2)
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calculation of the third-generation gauge vector LQ corrections considered in this work.
The constraints on the parameter space of third-generation singlet vector LQs that follow
from recasts of the recent ditau searches [51, 55] are instead presented in Appendix B.
So without further ado, let’s crack straight into it.

2 Theoretical framework

A singlet vector LQ can be added to the SM Lagrangian in a simple bottom-up approach
by employing the following effective interactions

LU �
gU
p
2

h
�
ij
L Q̄

i,a
�µL

j + �
ij
R d̄

i,a
�µ e

j
i
U

µ,a + h.c. (2.1)

Here Q and L are the left-handed SM quark and lepton SU(2)L doublets, while d and e are
the corresponding right-handed fields, i, j 2 {1, 2, 3} are flavour indices and a 2 {1, 2, 3} is a
colour index. The vector LQ transforms as U ⇠ (3, 1, 2/3) under the SM gauge group GSM =

SU(3)C⇥SU(2)L⇥U(1)Y , making it an SU(2)L singlet. The coupling gU characterises the
overall strength of the LQ interactions with the SM matter fields, whereas �ij

L and �
ij
R are (a

priori) arbitrary complex 3⇥ 3 matrices in flavour space.2 In order to explain the observed
anomalies in the charged-current b ! c and neutral-current b ! s transitions the following
LQ-quark-lepton couplings have to be non-zero and follow the pattern

���33
L

�� '
���33

R

�� &���23
L

�� �
���32

L

�� '
���22

L

��, while the remaining couplings can in principle vanish.
The simplified interactions described by the Lagrangian LU however do not provide a

consistent UV completion for the singlet vector LQ field which renders higher-order pertur-
bative calculations based on (2.1) in general ambiguous. A well-motivated and thoroughly
studied class of UV-complete theories that incorporates a singlet vector LQ are gauge mod-
els. There, the massive U field arises from a gauge symmetry G � GSM that is broken
spontaneously to yield the SM Lagrangian at low energies, together with the singlet vec-
tor LQ as well as additional degrees of freedom. The minimal gauge group that leads to the
effective interactions of the form (2.1) and that can account for the hints of LFU violation
in semi-leptonic B decays is [21, 23, 26, 27, 30, 35, 41, 42, 95, 96]

G4321 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)X . (2.2)

This gauge group is commonly referred to as 4321. In our article, we restrict ourselves to
the SU(4) ⇥ SU(3)0 sector of (2.2) which includes the LQ interactions and O(↵s) correc-
tions thereof, while neglecting contributions that involve the SU(2)L ⇥ U(1)X subgroup.
This means in particular that we do not consider contributions to DY dilepton production
that arise from the colour singlet state Z

0
⇠ (1, 1, 0) that also appears in the spectrum of

the 4321 model after spontaneous symmetry breaking [21, 23, 26, 27, 30, 35]. This omission
is firstly motivated because the Z

0 does not contribute to the O(↵s) corrections we are
interested in. Secondly, while the colour singlet does contribute to DY dilepton produc-
tion, the tree-level s-channel exchange of a Z

0 leads to a narrow resonance in the dilepton
2
In our POWHEG-BOX implementation of the simplified Lagrangian (2.1) the relevant third-generation

LQ-quark-lepton couplings are treated as real.
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One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
textures in Eq. (3.4) could arise from (unspecified) UV dynamics at ⇤ ⇡ 10 TeV without signifi-
cantly impacting �F = 2 observables.

A.10 SU(4) generators

Here we report some useful facts about the SU(4) algebra. The generators in the fundamental
representation can be written as
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One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
textures in Eq. (3.4) could arise from (unspecified) UV dynamics at ⇤ ⇡ 10 TeV without signifi-
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One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
textures in Eq. (3.4) could arise from (unspecified) UV dynamics at ⇤ ⇡ 10 TeV without signifi-
cantly impacting �F = 2 observables.
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1. Introduction
1.4 UV-complete gauge models

proposed in [15–18], or a vector resonance of some new strongly interacting dynamics, as e.g. in [19, 21].
As we show, in both cases the consistency of the theory requires additional vector states with similar
masses. The purpose of this paper is to provide a comprehensive analysis of the high-pT constraints
on the vector leptoquark U1 and what can be considered its minimal set of vector companions, namely
a colour octet G0

⇠ (8,1, 0), which we will refer to as the coloron, and a colour singlet Z 0
⇠ (1,1, 0).

In our analysis we consider the most general chiral structure for the U1 couplings to SM fermions.
This is in contrast with many recent studies which considered only left-handed (LH) couplings. While
this hypothesis is motivated by the absence of clear indications of right-handed (RH) currents in the
present data and by the sake of minimality, it does not have a strong theoretical justification. Indeed,
the quantum numbers of the U1 allow for RH couplings, and in motivated UV completions such
couplings naturally appear [18, 26]. We also analyse the impact of a non-vanishing mixing between
the second and third family in high-pT searches, including in particular constraints from pp ! ⌧µ and
pp ! ⌧⌫. As we show, the inclusion of right-handed couplings and/or a sizeable 2-3 family mixing
yields significant modifications to the results found in the existing literature.

The structure of this paper is as follows: In section 2 we motivate our choice of TeV-scale vectors
and in section 3 we introduce the phenomenological Lagrangian adopted to describe their high-pT
signatures. We then present the results of the searches in section 4 and conclude with section 5.

2 The spectrum of vector states at the TeV scale

The bottom-up requirement for the class of models we are interested in is the following e↵ective
interaction of the U1 field with SM fermions:

LNP �
gU
p
2
U

µ,↵
1

⇥
(JL

U )
↵
µ + (JR

U )↵µ
⇤
+ h.c. ,

(JL
U )

↵
µ = �

ij
L q̄

i,↵
L �µ`

j
L , (JR

U )↵µ = �
ij
R d̄

i,↵
R �µe

j
R . (1)

Here qL (`L) denotes the left-handed quark (lepton) doublets, dR (eR) denotes the right-handed down-
type quark (charge-lepton) singlets, i 2 {1, 2, 3} and j 2 {1, 2, 3} are flavour indices, ↵ 2 {1, 2, 3} is a
SU(3)c index, and �

ij
L,R are complex matrices in family-space.

The e↵ective interaction in eq. (1) unambiguously identifies the representation of U1 under GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to be (3,1, 2/3). There are two basic classes of well-defined UV theories
where such interactions can occur:

i. Gauge models. Here U1 is the massive gauge boson of a spontaneously broken gauge symmetry
GNP � GSM. The need for extra massive vectors follows from the size of the coset-space of
GNP/GSM, that necessarily requires additional generators besides the six associated to U1.

ii. Strongly interacting models. Here U1 appears as a massive resonance for a new strongly interact-
ing sector. In this case the need of additional massive vectors is a consequence of the additional
resonances formed by the same set of constituents leading to U1.

Gauge models: the need for a Z0

Within gauge models, let us start analysing the case of a single generation of SM fermions (i = j = 3),
and further assume that SM fermions belong to well-defined representations of GNP (i.e. no mixing
between SM-like and exotic fermions). Under these assumptions, �L is non-zero only if qL and `L

belong to the same GNP representation. We denote this representation  L and, without loss of
generality, we decompose it as

 L =  
SM
L +  

exotic
L ,  

SM
L =

 
q
�
L

`L

!
. (2)

2

In this notation the left-handed current in eq. (1) can be written as (JL
U )

↵
µ =  ̄

SM
L (T↵

+)�µ 
SM
L with

the following explicit expression for the action of the GNP generators on the SM projection of  L:

T
↵
+ =

 
0 �↵�

0 0

!
. (3)

The closure of the algebra of the six generators T↵
± associated with the six components of U1 implies

the need of the following additional (colour-neutral) generator

TB�L =

 
1
3��� 0

0 �1

!
,

1

3

3X

↵,�=1

[T↵
+, T

�
�] = TB�L . (4)

The same conclusion is reached by looking at the right-handed coupling in eq. (1). Moreover, since a
possible mixing between SM and exotic fermions must occur in a SU(3)c invariant way, the decom-
position in eq. (2) also holds for possible exotic fermions mixing with the SM ones. Hence the need
of TB�L for the closure of the algebra is a general conclusion that holds independently of the possible
mixing among fermion representations.

An equivalent way to deduce the need for an extra generator is the observation that the minimal
group G

min
NP � GSM containing generators associated to the representation (3,1, 2/3) is

G
min
NP = SU(4)⇥ SU(2)L ⇥ U(1)T 3

R
, (5)

i.e. the subgroup of the Pati-Salam group GPS = SU(4)⇥SU(2)L⇥SU(2)R [29]. Gmin
NP is obtained by

considering the U(1) subgroup of SU(2)R defined by its diagonal (electric-charge neutral) generator
T
3
R. The coset G

min
NP /GSM contains seven generators: the six T

↵
± describing the coset SU(4)/SU(3)c⇥

U(1)B�L, and TB�L.
In gauge models, the presence of an extra massive vector Z 0

⇠ (1,1, 0) associated with the breaking
U(1)B�L ⇥ U(1)T 3

R
! U(1)Y is thus unavoidable. Since the breaking of U(1)B�L necessarily implies

a breaking of SU(4), the breaking terms which lead to a non-vanishing Z
0 mass necessarily induce a

mass term for the U1 as well. Hence, the Z
0 state cannot be decoupled. The opposite is not true:

since the U1 generators are associated to the SU(4)/SU(3)c ⇥ U(1)B�L coset, mass terms for the U1

do not necessarily contribute to the Z
0 mass.

Gauge models: the need for a G0

While the minimal group in eq. (5) allows us to build a consistent model for a massive U1 ⇠ (3,1, 2/3),
it does not leave us enough freedom to adjust U1 and Z

0 couplings in order to comply with low- and
high-energy data.

Under G
min
NP the interaction strengths of both U1 and Z

0 are unambiguously related to the QCD
coupling (gs) and to hypercharge, given that they all originate from the same SU(4) group. In
particular gU = gs(MU1), in a normalisation where |�

ij
L,R|  1. Moreover, the couplings of the Z

0 to

SM fermions are necessarily flavour universal.1 A flavour-universal Z 0 is constrained by LHC dilepton
searches to have MZ0 >⇠ 5 TeV [30, 31]. Within G

min
NP , the U1 should be necessarily close in mass [22]

which, together with the low value of gU , results in a negligible impact on b ! c`⌫ decays.
To avoid these constraints, T↵

±, TB�L, and the QCD generators T
a, should not be unified in a

single SU(4) group. Given the commutation rules between T
↵
± and T

a, the next-to-minimal option is
obtained with [15]

(Gmin
NP )0 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)T 3

R
, (6)

1This statement follows from the fact that the mixing of SM fermions among themselves (in flavour space) and with
possible exotic representations necessarily involve states with the same B �L charges. As a result, the mixing acts as a
unitary rotation on the Z0 couplings that remains proportional to the identity matrix in flavour space.
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proposed in [15–18], or a vector resonance of some new strongly interacting dynamics, as e.g. in [19, 21].
As we show, in both cases the consistency of the theory requires additional vector states with similar
masses. The purpose of this paper is to provide a comprehensive analysis of the high-pT constraints
on the vector leptoquark U1 and what can be considered its minimal set of vector companions, namely
a colour octet G0

⇠ (8,1, 0), which we will refer to as the coloron, and a colour singlet Z 0
⇠ (1,1, 0).

In our analysis we consider the most general chiral structure for the U1 couplings to SM fermions.
This is in contrast with many recent studies which considered only left-handed (LH) couplings. While
this hypothesis is motivated by the absence of clear indications of right-handed (RH) currents in the
present data and by the sake of minimality, it does not have a strong theoretical justification. Indeed,
the quantum numbers of the U1 allow for RH couplings, and in motivated UV completions such
couplings naturally appear [18, 26]. We also analyse the impact of a non-vanishing mixing between
the second and third family in high-pT searches, including in particular constraints from pp ! ⌧µ and
pp ! ⌧⌫. As we show, the inclusion of right-handed couplings and/or a sizeable 2-3 family mixing
yields significant modifications to the results found in the existing literature.

The structure of this paper is as follows: In section 2 we motivate our choice of TeV-scale vectors
and in section 3 we introduce the phenomenological Lagrangian adopted to describe their high-pT
signatures. We then present the results of the searches in section 4 and conclude with section 5.

2 The spectrum of vector states at the TeV scale

The bottom-up requirement for the class of models we are interested in is the following e↵ective
interaction of the U1 field with SM fermions:
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Here qL (`L) denotes the left-handed quark (lepton) doublets, dR (eR) denotes the right-handed down-
type quark (charge-lepton) singlets, i 2 {1, 2, 3} and j 2 {1, 2, 3} are flavour indices, ↵ 2 {1, 2, 3} is a
SU(3)c index, and �

ij
L,R are complex matrices in family-space.

The e↵ective interaction in eq. (1) unambiguously identifies the representation of U1 under GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to be (3,1, 2/3). There are two basic classes of well-defined UV theories
where such interactions can occur:

i. Gauge models. Here U1 is the massive gauge boson of a spontaneously broken gauge symmetry
GNP � GSM. The need for extra massive vectors follows from the size of the coset-space of
GNP/GSM, that necessarily requires additional generators besides the six associated to U1.

ii. Strongly interacting models. Here U1 appears as a massive resonance for a new strongly interact-
ing sector. In this case the need of additional massive vectors is a consequence of the additional
resonances formed by the same set of constituents leading to U1.

Gauge models: the need for a Z0

Within gauge models, let us start analysing the case of a single generation of SM fermions (i = j = 3),
and further assume that SM fermions belong to well-defined representations of GNP (i.e. no mixing
between SM-like and exotic fermions). Under these assumptions, �L is non-zero only if qL and `L

belong to the same GNP representation. We denote this representation  L and, without loss of
generality, we decompose it as

 L =  
SM
L +  

exotic
L ,  

SM
L =

 
q
�
L

`L

!
. (2)
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calculation of the third-generation gauge vector LQ corrections considered in this work.
The constraints on the parameter space of third-generation singlet vector LQs that follow
from recasts of the recent ditau searches [51, 55] are instead presented in Appendix B.
So without further ado, let’s crack straight into it.

2 Theoretical framework

A singlet vector LQ can be added to the SM Lagrangian in a simple bottom-up approach
by employing the following effective interactions

LU �
gU
p
2

h
�
ij
L Q̄

i,a
�µL

j + �
ij
R d̄

i,a
�µ e

j
i
U

µ,a + h.c. (2.1)

Here Q and L are the left-handed SM quark and lepton SU(2)L doublets, while d and e are
the corresponding right-handed fields, i, j 2 {1, 2, 3} are flavour indices and a 2 {1, 2, 3} is a
colour index. The vector LQ transforms as U ⇠ (3, 1, 2/3) under the SM gauge group GSM =

SU(3)C⇥SU(2)L⇥U(1)Y , making it an SU(2)L singlet. The coupling gU characterises the
overall strength of the LQ interactions with the SM matter fields, whereas �ij

L and �
ij
R are (a

priori) arbitrary complex 3⇥ 3 matrices in flavour space.2 In order to explain the observed
anomalies in the charged-current b ! c and neutral-current b ! s transitions the following
LQ-quark-lepton couplings have to be non-zero and follow the pattern

���33
L

�� '
���33

R

�� &���23
L

�� �
���32

L

�� '
���22

L

��, while the remaining couplings can in principle vanish.
The simplified interactions described by the Lagrangian LU however do not provide a

consistent UV completion for the singlet vector LQ field which renders higher-order pertur-
bative calculations based on (2.1) in general ambiguous. A well-motivated and thoroughly
studied class of UV-complete theories that incorporates a singlet vector LQ are gauge mod-
els. There, the massive U field arises from a gauge symmetry G � GSM that is broken
spontaneously to yield the SM Lagrangian at low energies, together with the singlet vec-
tor LQ as well as additional degrees of freedom. The minimal gauge group that leads to the
effective interactions of the form (2.1) and that can account for the hints of LFU violation
in semi-leptonic B decays is [21, 23, 26, 27, 30, 35, 41, 42, 95, 96]

G4321 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)X . (2.2)

This gauge group is commonly referred to as 4321. In our article, we restrict ourselves to
the SU(4) ⇥ SU(3)0 sector of (2.2) which includes the LQ interactions and O(↵s) correc-
tions thereof, while neglecting contributions that involve the SU(2)L ⇥ U(1)X subgroup.
This means in particular that we do not consider contributions to DY dilepton production
that arise from the colour singlet state Z

0
⇠ (1, 1, 0) that also appears in the spectrum of

the 4321 model after spontaneous symmetry breaking [21, 23, 26, 27, 30, 35]. This omission
is firstly motivated because the Z

0 does not contribute to the O(↵s) corrections we are
interested in. Secondly, while the colour singlet does contribute to DY dilepton produc-
tion, the tree-level s-channel exchange of a Z

0 leads to a narrow resonance in the dilepton
2
In our POWHEG-BOX implementation of the simplified Lagrangian (2.1) the relevant third-generation

LQ-quark-lepton couplings are treated as real.
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One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
textures in Eq. (3.4) could arise from (unspecified) UV dynamics at ⇤ ⇡ 10 TeV without signifi-
cantly impacting �F = 2 observables.

A.10 SU(4) generators

Here we report some useful facts about the SU(4) algebra. The generators in the fundamental
representation can be written as
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One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
textures in Eq. (3.4) could arise from (unspecified) UV dynamics at ⇤ ⇡ 10 TeV without signifi-
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One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
textures in Eq. (3.4) could arise from (unspecified) UV dynamics at ⇤ ⇡ 10 TeV without signifi-
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1. Introduction
1.4 UV-complete gauge models

proposed in [15–18], or a vector resonance of some new strongly interacting dynamics, as e.g. in [19, 21].
As we show, in both cases the consistency of the theory requires additional vector states with similar
masses. The purpose of this paper is to provide a comprehensive analysis of the high-pT constraints
on the vector leptoquark U1 and what can be considered its minimal set of vector companions, namely
a colour octet G0

⇠ (8,1, 0), which we will refer to as the coloron, and a colour singlet Z 0
⇠ (1,1, 0).

In our analysis we consider the most general chiral structure for the U1 couplings to SM fermions.
This is in contrast with many recent studies which considered only left-handed (LH) couplings. While
this hypothesis is motivated by the absence of clear indications of right-handed (RH) currents in the
present data and by the sake of minimality, it does not have a strong theoretical justification. Indeed,
the quantum numbers of the U1 allow for RH couplings, and in motivated UV completions such
couplings naturally appear [18, 26]. We also analyse the impact of a non-vanishing mixing between
the second and third family in high-pT searches, including in particular constraints from pp ! ⌧µ and
pp ! ⌧⌫. As we show, the inclusion of right-handed couplings and/or a sizeable 2-3 family mixing
yields significant modifications to the results found in the existing literature.

The structure of this paper is as follows: In section 2 we motivate our choice of TeV-scale vectors
and in section 3 we introduce the phenomenological Lagrangian adopted to describe their high-pT
signatures. We then present the results of the searches in section 4 and conclude with section 5.

2 The spectrum of vector states at the TeV scale

The bottom-up requirement for the class of models we are interested in is the following e↵ective
interaction of the U1 field with SM fermions:

LNP �
gU
p
2
U

µ,↵
1

⇥
(JL

U )
↵
µ + (JR

U )↵µ
⇤
+ h.c. ,

(JL
U )

↵
µ = �

ij
L q̄

i,↵
L �µ`

j
L , (JR

U )↵µ = �
ij
R d̄

i,↵
R �µe

j
R . (1)

Here qL (`L) denotes the left-handed quark (lepton) doublets, dR (eR) denotes the right-handed down-
type quark (charge-lepton) singlets, i 2 {1, 2, 3} and j 2 {1, 2, 3} are flavour indices, ↵ 2 {1, 2, 3} is a
SU(3)c index, and �

ij
L,R are complex matrices in family-space.

The e↵ective interaction in eq. (1) unambiguously identifies the representation of U1 under GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to be (3,1, 2/3). There are two basic classes of well-defined UV theories
where such interactions can occur:

i. Gauge models. Here U1 is the massive gauge boson of a spontaneously broken gauge symmetry
GNP � GSM. The need for extra massive vectors follows from the size of the coset-space of
GNP/GSM, that necessarily requires additional generators besides the six associated to U1.

ii. Strongly interacting models. Here U1 appears as a massive resonance for a new strongly interact-
ing sector. In this case the need of additional massive vectors is a consequence of the additional
resonances formed by the same set of constituents leading to U1.

Gauge models: the need for a Z0

Within gauge models, let us start analysing the case of a single generation of SM fermions (i = j = 3),
and further assume that SM fermions belong to well-defined representations of GNP (i.e. no mixing
between SM-like and exotic fermions). Under these assumptions, �L is non-zero only if qL and `L

belong to the same GNP representation. We denote this representation  L and, without loss of
generality, we decompose it as

 L =  
SM
L +  

exotic
L ,  

SM
L =

 
q
�
L

`L

!
. (2)

2

In this notation the left-handed current in eq. (1) can be written as (JL
U )

↵
µ =  ̄

SM
L (T↵

+)�µ 
SM
L with

the following explicit expression for the action of the GNP generators on the SM projection of  L:

T
↵
+ =

 
0 �↵�

0 0

!
. (3)

The closure of the algebra of the six generators T↵
± associated with the six components of U1 implies

the need of the following additional (colour-neutral) generator

TB�L =

 
1
3��� 0

0 �1

!
,

1

3

3X

↵,�=1

[T↵
+, T

�
�] = TB�L . (4)

The same conclusion is reached by looking at the right-handed coupling in eq. (1). Moreover, since a
possible mixing between SM and exotic fermions must occur in a SU(3)c invariant way, the decom-
position in eq. (2) also holds for possible exotic fermions mixing with the SM ones. Hence the need
of TB�L for the closure of the algebra is a general conclusion that holds independently of the possible
mixing among fermion representations.

An equivalent way to deduce the need for an extra generator is the observation that the minimal
group G

min
NP � GSM containing generators associated to the representation (3,1, 2/3) is

G
min
NP = SU(4)⇥ SU(2)L ⇥ U(1)T 3

R
, (5)

i.e. the subgroup of the Pati-Salam group GPS = SU(4)⇥SU(2)L⇥SU(2)R [29]. Gmin
NP is obtained by

considering the U(1) subgroup of SU(2)R defined by its diagonal (electric-charge neutral) generator
T
3
R. The coset G

min
NP /GSM contains seven generators: the six T

↵
± describing the coset SU(4)/SU(3)c⇥

U(1)B�L, and TB�L.
In gauge models, the presence of an extra massive vector Z 0

⇠ (1,1, 0) associated with the breaking
U(1)B�L ⇥ U(1)T 3

R
! U(1)Y is thus unavoidable. Since the breaking of U(1)B�L necessarily implies

a breaking of SU(4), the breaking terms which lead to a non-vanishing Z
0 mass necessarily induce a

mass term for the U1 as well. Hence, the Z
0 state cannot be decoupled. The opposite is not true:

since the U1 generators are associated to the SU(4)/SU(3)c ⇥ U(1)B�L coset, mass terms for the U1

do not necessarily contribute to the Z
0 mass.

Gauge models: the need for a G0

While the minimal group in eq. (5) allows us to build a consistent model for a massive U1 ⇠ (3,1, 2/3),
it does not leave us enough freedom to adjust U1 and Z

0 couplings in order to comply with low- and
high-energy data.

Under G
min
NP the interaction strengths of both U1 and Z

0 are unambiguously related to the QCD
coupling (gs) and to hypercharge, given that they all originate from the same SU(4) group. In
particular gU = gs(MU1), in a normalisation where |�

ij
L,R|  1. Moreover, the couplings of the Z

0 to

SM fermions are necessarily flavour universal.1 A flavour-universal Z 0 is constrained by LHC dilepton
searches to have MZ0 >⇠ 5 TeV [30, 31]. Within G

min
NP , the U1 should be necessarily close in mass [22]

which, together with the low value of gU , results in a negligible impact on b ! c`⌫ decays.
To avoid these constraints, T↵

±, TB�L, and the QCD generators T
a, should not be unified in a

single SU(4) group. Given the commutation rules between T
↵
± and T

a, the next-to-minimal option is
obtained with [15]

(Gmin
NP )0 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)T 3

R
, (6)

1This statement follows from the fact that the mixing of SM fermions among themselves (in flavour space) and with
possible exotic representations necessarily involve states with the same B �L charges. As a result, the mixing acts as a
unitary rotation on the Z0 couplings that remains proportional to the identity matrix in flavour space.
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proposed in [15–18], or a vector resonance of some new strongly interacting dynamics, as e.g. in [19, 21].
As we show, in both cases the consistency of the theory requires additional vector states with similar
masses. The purpose of this paper is to provide a comprehensive analysis of the high-pT constraints
on the vector leptoquark U1 and what can be considered its minimal set of vector companions, namely
a colour octet G0

⇠ (8,1, 0), which we will refer to as the coloron, and a colour singlet Z 0
⇠ (1,1, 0).

In our analysis we consider the most general chiral structure for the U1 couplings to SM fermions.
This is in contrast with many recent studies which considered only left-handed (LH) couplings. While
this hypothesis is motivated by the absence of clear indications of right-handed (RH) currents in the
present data and by the sake of minimality, it does not have a strong theoretical justification. Indeed,
the quantum numbers of the U1 allow for RH couplings, and in motivated UV completions such
couplings naturally appear [18, 26]. We also analyse the impact of a non-vanishing mixing between
the second and third family in high-pT searches, including in particular constraints from pp ! ⌧µ and
pp ! ⌧⌫. As we show, the inclusion of right-handed couplings and/or a sizeable 2-3 family mixing
yields significant modifications to the results found in the existing literature.

The structure of this paper is as follows: In section 2 we motivate our choice of TeV-scale vectors
and in section 3 we introduce the phenomenological Lagrangian adopted to describe their high-pT
signatures. We then present the results of the searches in section 4 and conclude with section 5.

2 The spectrum of vector states at the TeV scale

The bottom-up requirement for the class of models we are interested in is the following e↵ective
interaction of the U1 field with SM fermions:

LNP �
gU
p
2
U

µ,↵
1

⇥
(JL

U )
↵
µ + (JR

U )↵µ
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+ h.c. ,
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R d̄

i,↵
R �µe

j
R . (1)

Here qL (`L) denotes the left-handed quark (lepton) doublets, dR (eR) denotes the right-handed down-
type quark (charge-lepton) singlets, i 2 {1, 2, 3} and j 2 {1, 2, 3} are flavour indices, ↵ 2 {1, 2, 3} is a
SU(3)c index, and �

ij
L,R are complex matrices in family-space.

The e↵ective interaction in eq. (1) unambiguously identifies the representation of U1 under GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to be (3,1, 2/3). There are two basic classes of well-defined UV theories
where such interactions can occur:

i. Gauge models. Here U1 is the massive gauge boson of a spontaneously broken gauge symmetry
GNP � GSM. The need for extra massive vectors follows from the size of the coset-space of
GNP/GSM, that necessarily requires additional generators besides the six associated to U1.

ii. Strongly interacting models. Here U1 appears as a massive resonance for a new strongly interact-
ing sector. In this case the need of additional massive vectors is a consequence of the additional
resonances formed by the same set of constituents leading to U1.

Gauge models: the need for a Z0

Within gauge models, let us start analysing the case of a single generation of SM fermions (i = j = 3),
and further assume that SM fermions belong to well-defined representations of GNP (i.e. no mixing
between SM-like and exotic fermions). Under these assumptions, �L is non-zero only if qL and `L

belong to the same GNP representation. We denote this representation  L and, without loss of
generality, we decompose it as

 L =  
SM
L +  

exotic
L ,  

SM
L =

 
q
�
L

`L

!
. (2)
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calculation of the third-generation gauge vector LQ corrections considered in this work.
The constraints on the parameter space of third-generation singlet vector LQs that follow
from recasts of the recent ditau searches [51, 55] are instead presented in Appendix B.
So without further ado, let’s crack straight into it.

2 Theoretical framework

A singlet vector LQ can be added to the SM Lagrangian in a simple bottom-up approach
by employing the following effective interactions

LU �
gU
p
2

h
�
ij
L Q̄

i,a
�µL

j + �
ij
R d̄

i,a
�µ e

j
i
U

µ,a + h.c. (2.1)

Here Q and L are the left-handed SM quark and lepton SU(2)L doublets, while d and e are
the corresponding right-handed fields, i, j 2 {1, 2, 3} are flavour indices and a 2 {1, 2, 3} is a
colour index. The vector LQ transforms as U ⇠ (3, 1, 2/3) under the SM gauge group GSM =

SU(3)C⇥SU(2)L⇥U(1)Y , making it an SU(2)L singlet. The coupling gU characterises the
overall strength of the LQ interactions with the SM matter fields, whereas �ij

L and �
ij
R are (a

priori) arbitrary complex 3⇥ 3 matrices in flavour space.2 In order to explain the observed
anomalies in the charged-current b ! c and neutral-current b ! s transitions the following
LQ-quark-lepton couplings have to be non-zero and follow the pattern

���33
L

�� '
���33

R

�� &���23
L

�� �
���32

L

�� '
���22

L

��, while the remaining couplings can in principle vanish.
The simplified interactions described by the Lagrangian LU however do not provide a

consistent UV completion for the singlet vector LQ field which renders higher-order pertur-
bative calculations based on (2.1) in general ambiguous. A well-motivated and thoroughly
studied class of UV-complete theories that incorporates a singlet vector LQ are gauge mod-
els. There, the massive U field arises from a gauge symmetry G � GSM that is broken
spontaneously to yield the SM Lagrangian at low energies, together with the singlet vec-
tor LQ as well as additional degrees of freedom. The minimal gauge group that leads to the
effective interactions of the form (2.1) and that can account for the hints of LFU violation
in semi-leptonic B decays is [21, 23, 26, 27, 30, 35, 41, 42, 95, 96]

G4321 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)X . (2.2)

This gauge group is commonly referred to as 4321. In our article, we restrict ourselves to
the SU(4) ⇥ SU(3)0 sector of (2.2) which includes the LQ interactions and O(↵s) correc-
tions thereof, while neglecting contributions that involve the SU(2)L ⇥ U(1)X subgroup.
This means in particular that we do not consider contributions to DY dilepton production
that arise from the colour singlet state Z

0
⇠ (1, 1, 0) that also appears in the spectrum of

the 4321 model after spontaneous symmetry breaking [21, 23, 26, 27, 30, 35]. This omission
is firstly motivated because the Z

0 does not contribute to the O(↵s) corrections we are
interested in. Secondly, while the colour singlet does contribute to DY dilepton produc-
tion, the tree-level s-channel exchange of a Z

0 leads to a narrow resonance in the dilepton
2
In our POWHEG-BOX implementation of the simplified Lagrangian (2.1) the relevant third-generation

LQ-quark-lepton couplings are treated as real.

– 3 –

One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
textures in Eq. (3.4) could arise from (unspecified) UV dynamics at ⇤ ⇡ 10 TeV without signifi-
cantly impacting �F = 2 observables.

A.10 SU(4) generators

Here we report some useful facts about the SU(4) algebra. The generators in the fundamental
representation can be written as
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One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
textures in Eq. (3.4) could arise from (unspecified) UV dynamics at ⇤ ⇡ 10 TeV without signifi-
cantly impacting �F = 2 observables.

A.10 SU(4) generators
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 generators: SU(4)

G

One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
textures in Eq. (3.4) could arise from (unspecified) UV dynamics at ⇤ ⇡ 10 TeV without signifi-
cantly impacting �F = 2 observables.
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1. Introduction
1.4 UV-complete gauge models

proposed in [15–18], or a vector resonance of some new strongly interacting dynamics, as e.g. in [19, 21].
As we show, in both cases the consistency of the theory requires additional vector states with similar
masses. The purpose of this paper is to provide a comprehensive analysis of the high-pT constraints
on the vector leptoquark U1 and what can be considered its minimal set of vector companions, namely
a colour octet G0

⇠ (8,1, 0), which we will refer to as the coloron, and a colour singlet Z 0
⇠ (1,1, 0).

In our analysis we consider the most general chiral structure for the U1 couplings to SM fermions.
This is in contrast with many recent studies which considered only left-handed (LH) couplings. While
this hypothesis is motivated by the absence of clear indications of right-handed (RH) currents in the
present data and by the sake of minimality, it does not have a strong theoretical justification. Indeed,
the quantum numbers of the U1 allow for RH couplings, and in motivated UV completions such
couplings naturally appear [18, 26]. We also analyse the impact of a non-vanishing mixing between
the second and third family in high-pT searches, including in particular constraints from pp ! ⌧µ and
pp ! ⌧⌫. As we show, the inclusion of right-handed couplings and/or a sizeable 2-3 family mixing
yields significant modifications to the results found in the existing literature.

The structure of this paper is as follows: In section 2 we motivate our choice of TeV-scale vectors
and in section 3 we introduce the phenomenological Lagrangian adopted to describe their high-pT
signatures. We then present the results of the searches in section 4 and conclude with section 5.

2 The spectrum of vector states at the TeV scale

The bottom-up requirement for the class of models we are interested in is the following e↵ective
interaction of the U1 field with SM fermions:

LNP �
gU
p
2
U

µ,↵
1

⇥
(JL

U )
↵
µ + (JR

U )↵µ
⇤
+ h.c. ,

(JL
U )

↵
µ = �

ij
L q̄

i,↵
L �µ`

j
L , (JR

U )↵µ = �
ij
R d̄

i,↵
R �µe

j
R . (1)

Here qL (`L) denotes the left-handed quark (lepton) doublets, dR (eR) denotes the right-handed down-
type quark (charge-lepton) singlets, i 2 {1, 2, 3} and j 2 {1, 2, 3} are flavour indices, ↵ 2 {1, 2, 3} is a
SU(3)c index, and �

ij
L,R are complex matrices in family-space.

The e↵ective interaction in eq. (1) unambiguously identifies the representation of U1 under GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to be (3,1, 2/3). There are two basic classes of well-defined UV theories
where such interactions can occur:

i. Gauge models. Here U1 is the massive gauge boson of a spontaneously broken gauge symmetry
GNP � GSM. The need for extra massive vectors follows from the size of the coset-space of
GNP/GSM, that necessarily requires additional generators besides the six associated to U1.

ii. Strongly interacting models. Here U1 appears as a massive resonance for a new strongly interact-
ing sector. In this case the need of additional massive vectors is a consequence of the additional
resonances formed by the same set of constituents leading to U1.

Gauge models: the need for a Z0

Within gauge models, let us start analysing the case of a single generation of SM fermions (i = j = 3),
and further assume that SM fermions belong to well-defined representations of GNP (i.e. no mixing
between SM-like and exotic fermions). Under these assumptions, �L is non-zero only if qL and `L

belong to the same GNP representation. We denote this representation  L and, without loss of
generality, we decompose it as

 L =  
SM
L +  

exotic
L ,  

SM
L =

 
q
�
L

`L

!
. (2)

2

In this notation the left-handed current in eq. (1) can be written as (JL
U )

↵
µ =  ̄

SM
L (T↵

+)�µ 
SM
L with

the following explicit expression for the action of the GNP generators on the SM projection of  L:

T
↵
+ =

 
0 �↵�

0 0

!
. (3)

The closure of the algebra of the six generators T↵
± associated with the six components of U1 implies

the need of the following additional (colour-neutral) generator

TB�L =

 
1
3��� 0

0 �1

!
,

1

3

3X

↵,�=1

[T↵
+, T

�
�] = TB�L . (4)

The same conclusion is reached by looking at the right-handed coupling in eq. (1). Moreover, since a
possible mixing between SM and exotic fermions must occur in a SU(3)c invariant way, the decom-
position in eq. (2) also holds for possible exotic fermions mixing with the SM ones. Hence the need
of TB�L for the closure of the algebra is a general conclusion that holds independently of the possible
mixing among fermion representations.

An equivalent way to deduce the need for an extra generator is the observation that the minimal
group G

min
NP � GSM containing generators associated to the representation (3,1, 2/3) is

G
min
NP = SU(4)⇥ SU(2)L ⇥ U(1)T 3

R
, (5)

i.e. the subgroup of the Pati-Salam group GPS = SU(4)⇥SU(2)L⇥SU(2)R [29]. Gmin
NP is obtained by

considering the U(1) subgroup of SU(2)R defined by its diagonal (electric-charge neutral) generator
T
3
R. The coset G

min
NP /GSM contains seven generators: the six T

↵
± describing the coset SU(4)/SU(3)c⇥

U(1)B�L, and TB�L.
In gauge models, the presence of an extra massive vector Z 0

⇠ (1,1, 0) associated with the breaking
U(1)B�L ⇥ U(1)T 3

R
! U(1)Y is thus unavoidable. Since the breaking of U(1)B�L necessarily implies

a breaking of SU(4), the breaking terms which lead to a non-vanishing Z
0 mass necessarily induce a

mass term for the U1 as well. Hence, the Z
0 state cannot be decoupled. The opposite is not true:

since the U1 generators are associated to the SU(4)/SU(3)c ⇥ U(1)B�L coset, mass terms for the U1

do not necessarily contribute to the Z
0 mass.

Gauge models: the need for a G0

While the minimal group in eq. (5) allows us to build a consistent model for a massive U1 ⇠ (3,1, 2/3),
it does not leave us enough freedom to adjust U1 and Z

0 couplings in order to comply with low- and
high-energy data.

Under G
min
NP the interaction strengths of both U1 and Z

0 are unambiguously related to the QCD
coupling (gs) and to hypercharge, given that they all originate from the same SU(4) group. In
particular gU = gs(MU1), in a normalisation where |�

ij
L,R|  1. Moreover, the couplings of the Z

0 to

SM fermions are necessarily flavour universal.1 A flavour-universal Z 0 is constrained by LHC dilepton
searches to have MZ0 >⇠ 5 TeV [30, 31]. Within G

min
NP , the U1 should be necessarily close in mass [22]

which, together with the low value of gU , results in a negligible impact on b ! c`⌫ decays.
To avoid these constraints, T↵

±, TB�L, and the QCD generators T
a, should not be unified in a

single SU(4) group. Given the commutation rules between T
↵
± and T

a, the next-to-minimal option is
obtained with [15]

(Gmin
NP )0 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)T 3

R
, (6)

1This statement follows from the fact that the mixing of SM fermions among themselves (in flavour space) and with
possible exotic representations necessarily involve states with the same B �L charges. As a result, the mixing acts as a
unitary rotation on the Z0 couplings that remains proportional to the identity matrix in flavour space.
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proposed in [15–18], or a vector resonance of some new strongly interacting dynamics, as e.g. in [19, 21].
As we show, in both cases the consistency of the theory requires additional vector states with similar
masses. The purpose of this paper is to provide a comprehensive analysis of the high-pT constraints
on the vector leptoquark U1 and what can be considered its minimal set of vector companions, namely
a colour octet G0

⇠ (8,1, 0), which we will refer to as the coloron, and a colour singlet Z 0
⇠ (1,1, 0).

In our analysis we consider the most general chiral structure for the U1 couplings to SM fermions.
This is in contrast with many recent studies which considered only left-handed (LH) couplings. While
this hypothesis is motivated by the absence of clear indications of right-handed (RH) currents in the
present data and by the sake of minimality, it does not have a strong theoretical justification. Indeed,
the quantum numbers of the U1 allow for RH couplings, and in motivated UV completions such
couplings naturally appear [18, 26]. We also analyse the impact of a non-vanishing mixing between
the second and third family in high-pT searches, including in particular constraints from pp ! ⌧µ and
pp ! ⌧⌫. As we show, the inclusion of right-handed couplings and/or a sizeable 2-3 family mixing
yields significant modifications to the results found in the existing literature.

The structure of this paper is as follows: In section 2 we motivate our choice of TeV-scale vectors
and in section 3 we introduce the phenomenological Lagrangian adopted to describe their high-pT
signatures. We then present the results of the searches in section 4 and conclude with section 5.

2 The spectrum of vector states at the TeV scale

The bottom-up requirement for the class of models we are interested in is the following e↵ective
interaction of the U1 field with SM fermions:

LNP �
gU
p
2
U

µ,↵
1

⇥
(JL

U )
↵
µ + (JR

U )↵µ
⇤
+ h.c. ,

(JL
U )

↵
µ = �

ij
L q̄

i,↵
L �µ`

j
L , (JR

U )↵µ = �
ij
R d̄

i,↵
R �µe

j
R . (1)

Here qL (`L) denotes the left-handed quark (lepton) doublets, dR (eR) denotes the right-handed down-
type quark (charge-lepton) singlets, i 2 {1, 2, 3} and j 2 {1, 2, 3} are flavour indices, ↵ 2 {1, 2, 3} is a
SU(3)c index, and �

ij
L,R are complex matrices in family-space.

The e↵ective interaction in eq. (1) unambiguously identifies the representation of U1 under GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to be (3,1, 2/3). There are two basic classes of well-defined UV theories
where such interactions can occur:

i. Gauge models. Here U1 is the massive gauge boson of a spontaneously broken gauge symmetry
GNP � GSM. The need for extra massive vectors follows from the size of the coset-space of
GNP/GSM, that necessarily requires additional generators besides the six associated to U1.

ii. Strongly interacting models. Here U1 appears as a massive resonance for a new strongly interact-
ing sector. In this case the need of additional massive vectors is a consequence of the additional
resonances formed by the same set of constituents leading to U1.

Gauge models: the need for a Z0

Within gauge models, let us start analysing the case of a single generation of SM fermions (i = j = 3),
and further assume that SM fermions belong to well-defined representations of GNP (i.e. no mixing
between SM-like and exotic fermions). Under these assumptions, �L is non-zero only if qL and `L

belong to the same GNP representation. We denote this representation  L and, without loss of
generality, we decompose it as

 L =  
SM
L +  

exotic
L ,  

SM
L =

 
q
�
L

`L

!
. (2)

2

calculation of the third-generation gauge vector LQ corrections considered in this work.
The constraints on the parameter space of third-generation singlet vector LQs that follow
from recasts of the recent ditau searches [51, 55] are instead presented in Appendix B.
So without further ado, let’s crack straight into it.

2 Theoretical framework

A singlet vector LQ can be added to the SM Lagrangian in a simple bottom-up approach
by employing the following effective interactions

LU �
gU
p
2

h
�
ij
L Q̄

i,a
�µL

j + �
ij
R d̄

i,a
�µ e

j
i
U

µ,a + h.c. (2.1)

Here Q and L are the left-handed SM quark and lepton SU(2)L doublets, while d and e are
the corresponding right-handed fields, i, j 2 {1, 2, 3} are flavour indices and a 2 {1, 2, 3} is a
colour index. The vector LQ transforms as U ⇠ (3, 1, 2/3) under the SM gauge group GSM =

SU(3)C⇥SU(2)L⇥U(1)Y , making it an SU(2)L singlet. The coupling gU characterises the
overall strength of the LQ interactions with the SM matter fields, whereas �ij

L and �
ij
R are (a

priori) arbitrary complex 3⇥ 3 matrices in flavour space.2 In order to explain the observed
anomalies in the charged-current b ! c and neutral-current b ! s transitions the following
LQ-quark-lepton couplings have to be non-zero and follow the pattern

���33
L

�� '
���33

R

�� &���23
L

�� �
���32

L

�� '
���22

L

��, while the remaining couplings can in principle vanish.
The simplified interactions described by the Lagrangian LU however do not provide a

consistent UV completion for the singlet vector LQ field which renders higher-order pertur-
bative calculations based on (2.1) in general ambiguous. A well-motivated and thoroughly
studied class of UV-complete theories that incorporates a singlet vector LQ are gauge mod-
els. There, the massive U field arises from a gauge symmetry G � GSM that is broken
spontaneously to yield the SM Lagrangian at low energies, together with the singlet vec-
tor LQ as well as additional degrees of freedom. The minimal gauge group that leads to the
effective interactions of the form (2.1) and that can account for the hints of LFU violation
in semi-leptonic B decays is [21, 23, 26, 27, 30, 35, 41, 42, 95, 96]

G4321 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)X . (2.2)

This gauge group is commonly referred to as 4321. In our article, we restrict ourselves to
the SU(4) ⇥ SU(3)0 sector of (2.2) which includes the LQ interactions and O(↵s) correc-
tions thereof, while neglecting contributions that involve the SU(2)L ⇥ U(1)X subgroup.
This means in particular that we do not consider contributions to DY dilepton production
that arise from the colour singlet state Z

0
⇠ (1, 1, 0) that also appears in the spectrum of

the 4321 model after spontaneous symmetry breaking [21, 23, 26, 27, 30, 35]. This omission
is firstly motivated because the Z

0 does not contribute to the O(↵s) corrections we are
interested in. Secondly, while the colour singlet does contribute to DY dilepton produc-
tion, the tree-level s-channel exchange of a Z

0 leads to a narrow resonance in the dilepton
2
In our POWHEG-BOX implementation of the simplified Lagrangian (2.1) the relevant third-generation

LQ-quark-lepton couplings are treated as real.
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One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
textures in Eq. (3.4) could arise from (unspecified) UV dynamics at ⇤ ⇡ 10 TeV without signifi-
cantly impacting �F = 2 observables.

A.10 SU(4) generators

Here we report some useful facts about the SU(4) algebra. The generators in the fundamental
representation can be written as
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One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
textures in Eq. (3.4) could arise from (unspecified) UV dynamics at ⇤ ⇡ 10 TeV without signifi-
cantly impacting �F = 2 observables.

A.10 SU(4) generators

Here we report some useful facts about the SU(4) algebra. The generators in the fundamental
representation can be written as
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 generators: SU(4)

G

One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
textures in Eq. (3.4) could arise from (unspecified) UV dynamics at ⇤ ⇡ 10 TeV without signifi-
cantly impacting �F = 2 observables.

A.10 SU(4) generators

Here we report some useful facts about the SU(4) algebra. The generators in the fundamental
representation can be written as
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Z′ 

• Improved: 4321 model

U1

In this notation the left-handed current in eq. (1) can be written as (JL
U )

↵
µ =  ̄
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L with

the following explicit expression for the action of the GNP generators on the SM projection of  L:
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The closure of the algebra of the six generators T↵
± associated with the six components of U1 implies

the need of the following additional (colour-neutral) generator
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The same conclusion is reached by looking at the right-handed coupling in eq. (1). Moreover, since a
possible mixing between SM and exotic fermions must occur in a SU(3)c invariant way, the decom-
position in eq. (2) also holds for possible exotic fermions mixing with the SM ones. Hence the need
of TB�L for the closure of the algebra is a general conclusion that holds independently of the possible
mixing among fermion representations.

An equivalent way to deduce the need for an extra generator is the observation that the minimal
group G

min
NP � GSM containing generators associated to the representation (3,1, 2/3) is

G
min
NP = SU(4)⇥ SU(2)L ⇥ U(1)T 3

R
, (5)

i.e. the subgroup of the Pati-Salam group GPS = SU(4)⇥SU(2)L⇥SU(2)R [29]. Gmin
NP is obtained by

considering the U(1) subgroup of SU(2)R defined by its diagonal (electric-charge neutral) generator
T
3
R. The coset G

min
NP /GSM contains seven generators: the six T

↵
± describing the coset SU(4)/SU(3)c⇥

U(1)B�L, and TB�L.
In gauge models, the presence of an extra massive vector Z 0

⇠ (1,1, 0) associated with the breaking
U(1)B�L ⇥ U(1)T 3

R
! U(1)Y is thus unavoidable. Since the breaking of U(1)B�L necessarily implies

a breaking of SU(4), the breaking terms which lead to a non-vanishing Z
0 mass necessarily induce a

mass term for the U1 as well. Hence, the Z
0 state cannot be decoupled. The opposite is not true:

since the U1 generators are associated to the SU(4)/SU(3)c ⇥ U(1)B�L coset, mass terms for the U1

do not necessarily contribute to the Z
0 mass.

Gauge models: the need for a G0

While the minimal group in eq. (5) allows us to build a consistent model for a massive U1 ⇠ (3,1, 2/3),
it does not leave us enough freedom to adjust U1 and Z

0 couplings in order to comply with low- and
high-energy data.

Under G
min
NP the interaction strengths of both U1 and Z

0 are unambiguously related to the QCD
coupling (gs) and to hypercharge, given that they all originate from the same SU(4) group. In
particular gU = gs(MU1), in a normalisation where |�

ij
L,R|  1. Moreover, the couplings of the Z

0 to

SM fermions are necessarily flavour universal.1 A flavour-universal Z 0 is constrained by LHC dilepton
searches to have MZ0 >⇠ 5 TeV [30, 31]. Within G

min
NP , the U1 should be necessarily close in mass [22]

which, together with the low value of gU , results in a negligible impact on b ! c`⌫ decays.
To avoid these constraints, T↵

±, TB�L, and the QCD generators T
a, should not be unified in a

single SU(4) group. Given the commutation rules between T
↵
± and T

a, the next-to-minimal option is
obtained with [15]

(Gmin
NP )0 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)T 3

R
, (6)

1This statement follows from the fact that the mixing of SM fermions among themselves (in flavour space) and with
possible exotic representations necessarily involve states with the same B �L charges. As a result, the mixing acts as a
unitary rotation on the Z0 couplings that remains proportional to the identity matrix in flavour space.
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1. Introduction
1.4 UV-complete gauge models

proposed in [15–18], or a vector resonance of some new strongly interacting dynamics, as e.g. in [19, 21].
As we show, in both cases the consistency of the theory requires additional vector states with similar
masses. The purpose of this paper is to provide a comprehensive analysis of the high-pT constraints
on the vector leptoquark U1 and what can be considered its minimal set of vector companions, namely
a colour octet G0

⇠ (8,1, 0), which we will refer to as the coloron, and a colour singlet Z 0
⇠ (1,1, 0).

In our analysis we consider the most general chiral structure for the U1 couplings to SM fermions.
This is in contrast with many recent studies which considered only left-handed (LH) couplings. While
this hypothesis is motivated by the absence of clear indications of right-handed (RH) currents in the
present data and by the sake of minimality, it does not have a strong theoretical justification. Indeed,
the quantum numbers of the U1 allow for RH couplings, and in motivated UV completions such
couplings naturally appear [18, 26]. We also analyse the impact of a non-vanishing mixing between
the second and third family in high-pT searches, including in particular constraints from pp ! ⌧µ and
pp ! ⌧⌫. As we show, the inclusion of right-handed couplings and/or a sizeable 2-3 family mixing
yields significant modifications to the results found in the existing literature.

The structure of this paper is as follows: In section 2 we motivate our choice of TeV-scale vectors
and in section 3 we introduce the phenomenological Lagrangian adopted to describe their high-pT
signatures. We then present the results of the searches in section 4 and conclude with section 5.

2 The spectrum of vector states at the TeV scale

The bottom-up requirement for the class of models we are interested in is the following e↵ective
interaction of the U1 field with SM fermions:
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p
2
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⇥
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j
L , (JR
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i,↵
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j
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Here qL (`L) denotes the left-handed quark (lepton) doublets, dR (eR) denotes the right-handed down-
type quark (charge-lepton) singlets, i 2 {1, 2, 3} and j 2 {1, 2, 3} are flavour indices, ↵ 2 {1, 2, 3} is a
SU(3)c index, and �

ij
L,R are complex matrices in family-space.

The e↵ective interaction in eq. (1) unambiguously identifies the representation of U1 under GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to be (3,1, 2/3). There are two basic classes of well-defined UV theories
where such interactions can occur:

i. Gauge models. Here U1 is the massive gauge boson of a spontaneously broken gauge symmetry
GNP � GSM. The need for extra massive vectors follows from the size of the coset-space of
GNP/GSM, that necessarily requires additional generators besides the six associated to U1.

ii. Strongly interacting models. Here U1 appears as a massive resonance for a new strongly interact-
ing sector. In this case the need of additional massive vectors is a consequence of the additional
resonances formed by the same set of constituents leading to U1.

Gauge models: the need for a Z0

Within gauge models, let us start analysing the case of a single generation of SM fermions (i = j = 3),
and further assume that SM fermions belong to well-defined representations of GNP (i.e. no mixing
between SM-like and exotic fermions). Under these assumptions, �L is non-zero only if qL and `L

belong to the same GNP representation. We denote this representation  L and, without loss of
generality, we decompose it as

 L =  
SM
L +  

exotic
L ,  

SM
L =

 
q
�
L

`L

!
. (2)

2

In this notation the left-handed current in eq. (1) can be written as (JL
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The same conclusion is reached by looking at the right-handed coupling in eq. (1). Moreover, since a
possible mixing between SM and exotic fermions must occur in a SU(3)c invariant way, the decom-
position in eq. (2) also holds for possible exotic fermions mixing with the SM ones. Hence the need
of TB�L for the closure of the algebra is a general conclusion that holds independently of the possible
mixing among fermion representations.

An equivalent way to deduce the need for an extra generator is the observation that the minimal
group G

min
NP � GSM containing generators associated to the representation (3,1, 2/3) is

G
min
NP = SU(4)⇥ SU(2)L ⇥ U(1)T 3
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, (5)

i.e. the subgroup of the Pati-Salam group GPS = SU(4)⇥SU(2)L⇥SU(2)R [29]. Gmin
NP is obtained by

considering the U(1) subgroup of SU(2)R defined by its diagonal (electric-charge neutral) generator
T
3
R. The coset G

min
NP /GSM contains seven generators: the six T

↵
± describing the coset SU(4)/SU(3)c⇥

U(1)B�L, and TB�L.
In gauge models, the presence of an extra massive vector Z 0

⇠ (1,1, 0) associated with the breaking
U(1)B�L ⇥ U(1)T 3

R
! U(1)Y is thus unavoidable. Since the breaking of U(1)B�L necessarily implies

a breaking of SU(4), the breaking terms which lead to a non-vanishing Z
0 mass necessarily induce a

mass term for the U1 as well. Hence, the Z
0 state cannot be decoupled. The opposite is not true:

since the U1 generators are associated to the SU(4)/SU(3)c ⇥ U(1)B�L coset, mass terms for the U1

do not necessarily contribute to the Z
0 mass.

Gauge models: the need for a G0

While the minimal group in eq. (5) allows us to build a consistent model for a massive U1 ⇠ (3,1, 2/3),
it does not leave us enough freedom to adjust U1 and Z

0 couplings in order to comply with low- and
high-energy data.

Under G
min
NP the interaction strengths of both U1 and Z

0 are unambiguously related to the QCD
coupling (gs) and to hypercharge, given that they all originate from the same SU(4) group. In
particular gU = gs(MU1), in a normalisation where |�

ij
L,R|  1. Moreover, the couplings of the Z

0 to

SM fermions are necessarily flavour universal.1 A flavour-universal Z 0 is constrained by LHC dilepton
searches to have MZ0 >⇠ 5 TeV [30, 31]. Within G

min
NP , the U1 should be necessarily close in mass [22]

which, together with the low value of gU , results in a negligible impact on b ! c`⌫ decays.
To avoid these constraints, T↵

±, TB�L, and the QCD generators T
a, should not be unified in a

single SU(4) group. Given the commutation rules between T
↵
± and T

a, the next-to-minimal option is
obtained with [15]

(Gmin
NP )0 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)T 3

R
, (6)

1This statement follows from the fact that the mixing of SM fermions among themselves (in flavour space) and with
possible exotic representations necessarily involve states with the same B �L charges. As a result, the mixing acts as a
unitary rotation on the Z0 couplings that remains proportional to the identity matrix in flavour space.
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proposed in [15–18], or a vector resonance of some new strongly interacting dynamics, as e.g. in [19, 21].
As we show, in both cases the consistency of the theory requires additional vector states with similar
masses. The purpose of this paper is to provide a comprehensive analysis of the high-pT constraints
on the vector leptoquark U1 and what can be considered its minimal set of vector companions, namely
a colour octet G0

⇠ (8,1, 0), which we will refer to as the coloron, and a colour singlet Z 0
⇠ (1,1, 0).

In our analysis we consider the most general chiral structure for the U1 couplings to SM fermions.
This is in contrast with many recent studies which considered only left-handed (LH) couplings. While
this hypothesis is motivated by the absence of clear indications of right-handed (RH) currents in the
present data and by the sake of minimality, it does not have a strong theoretical justification. Indeed,
the quantum numbers of the U1 allow for RH couplings, and in motivated UV completions such
couplings naturally appear [18, 26]. We also analyse the impact of a non-vanishing mixing between
the second and third family in high-pT searches, including in particular constraints from pp ! ⌧µ and
pp ! ⌧⌫. As we show, the inclusion of right-handed couplings and/or a sizeable 2-3 family mixing
yields significant modifications to the results found in the existing literature.

The structure of this paper is as follows: In section 2 we motivate our choice of TeV-scale vectors
and in section 3 we introduce the phenomenological Lagrangian adopted to describe their high-pT
signatures. We then present the results of the searches in section 4 and conclude with section 5.

2 The spectrum of vector states at the TeV scale

The bottom-up requirement for the class of models we are interested in is the following e↵ective
interaction of the U1 field with SM fermions:
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Here qL (`L) denotes the left-handed quark (lepton) doublets, dR (eR) denotes the right-handed down-
type quark (charge-lepton) singlets, i 2 {1, 2, 3} and j 2 {1, 2, 3} are flavour indices, ↵ 2 {1, 2, 3} is a
SU(3)c index, and �

ij
L,R are complex matrices in family-space.

The e↵ective interaction in eq. (1) unambiguously identifies the representation of U1 under GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to be (3,1, 2/3). There are two basic classes of well-defined UV theories
where such interactions can occur:

i. Gauge models. Here U1 is the massive gauge boson of a spontaneously broken gauge symmetry
GNP � GSM. The need for extra massive vectors follows from the size of the coset-space of
GNP/GSM, that necessarily requires additional generators besides the six associated to U1.

ii. Strongly interacting models. Here U1 appears as a massive resonance for a new strongly interact-
ing sector. In this case the need of additional massive vectors is a consequence of the additional
resonances formed by the same set of constituents leading to U1.

Gauge models: the need for a Z0

Within gauge models, let us start analysing the case of a single generation of SM fermions (i = j = 3),
and further assume that SM fermions belong to well-defined representations of GNP (i.e. no mixing
between SM-like and exotic fermions). Under these assumptions, �L is non-zero only if qL and `L

belong to the same GNP representation. We denote this representation  L and, without loss of
generality, we decompose it as
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calculation of the third-generation gauge vector LQ corrections considered in this work.
The constraints on the parameter space of third-generation singlet vector LQs that follow
from recasts of the recent ditau searches [51, 55] are instead presented in Appendix B.
So without further ado, let’s crack straight into it.

2 Theoretical framework

A singlet vector LQ can be added to the SM Lagrangian in a simple bottom-up approach
by employing the following effective interactions

LU �
gU
p
2

h
�
ij
L Q̄

i,a
�µL

j + �
ij
R d̄

i,a
�µ e

j
i
U

µ,a + h.c. (2.1)

Here Q and L are the left-handed SM quark and lepton SU(2)L doublets, while d and e are
the corresponding right-handed fields, i, j 2 {1, 2, 3} are flavour indices and a 2 {1, 2, 3} is a
colour index. The vector LQ transforms as U ⇠ (3, 1, 2/3) under the SM gauge group GSM =

SU(3)C⇥SU(2)L⇥U(1)Y , making it an SU(2)L singlet. The coupling gU characterises the
overall strength of the LQ interactions with the SM matter fields, whereas �ij

L and �
ij
R are (a

priori) arbitrary complex 3⇥ 3 matrices in flavour space.2 In order to explain the observed
anomalies in the charged-current b ! c and neutral-current b ! s transitions the following
LQ-quark-lepton couplings have to be non-zero and follow the pattern

���33
L

�� '
���33

R

�� &���23
L

�� �
���32

L

�� '
���22

L

��, while the remaining couplings can in principle vanish.
The simplified interactions described by the Lagrangian LU however do not provide a

consistent UV completion for the singlet vector LQ field which renders higher-order pertur-
bative calculations based on (2.1) in general ambiguous. A well-motivated and thoroughly
studied class of UV-complete theories that incorporates a singlet vector LQ are gauge mod-
els. There, the massive U field arises from a gauge symmetry G � GSM that is broken
spontaneously to yield the SM Lagrangian at low energies, together with the singlet vec-
tor LQ as well as additional degrees of freedom. The minimal gauge group that leads to the
effective interactions of the form (2.1) and that can account for the hints of LFU violation
in semi-leptonic B decays is [21, 23, 26, 27, 30, 35, 41, 42, 95, 96]

G4321 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)X . (2.2)

This gauge group is commonly referred to as 4321. In our article, we restrict ourselves to
the SU(4) ⇥ SU(3)0 sector of (2.2) which includes the LQ interactions and O(↵s) correc-
tions thereof, while neglecting contributions that involve the SU(2)L ⇥ U(1)X subgroup.
This means in particular that we do not consider contributions to DY dilepton production
that arise from the colour singlet state Z

0
⇠ (1, 1, 0) that also appears in the spectrum of

the 4321 model after spontaneous symmetry breaking [21, 23, 26, 27, 30, 35]. This omission
is firstly motivated because the Z

0 does not contribute to the O(↵s) corrections we are
interested in. Secondly, while the colour singlet does contribute to DY dilepton produc-
tion, the tree-level s-channel exchange of a Z

0 leads to a narrow resonance in the dilepton
2
In our POWHEG-BOX implementation of the simplified Lagrangian (2.1) the relevant third-generation

LQ-quark-lepton couplings are treated as real.
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One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
textures in Eq. (3.4) could arise from (unspecified) UV dynamics at ⇤ ⇡ 10 TeV without signifi-
cantly impacting �F = 2 observables.

A.10 SU(4) generators

Here we report some useful facts about the SU(4) algebra. The generators in the fundamental
representation can be written as
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One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
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 generators: SU(4)

G

One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
textures in Eq. (3.4) could arise from (unspecified) UV dynamics at ⇤ ⇡ 10 TeV without signifi-
cantly impacting �F = 2 observables.

A.10 SU(4) generators

Here we report some useful facts about the SU(4) algebra. The generators in the fundamental
representation can be written as
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U1

In this notation the left-handed current in eq. (1) can be written as (JL
U )

↵
µ =  ̄

SM
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+)�µ 
SM
L with

the following explicit expression for the action of the GNP generators on the SM projection of  L:
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. (3)

The closure of the algebra of the six generators T↵
± associated with the six components of U1 implies

the need of the following additional (colour-neutral) generator
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The same conclusion is reached by looking at the right-handed coupling in eq. (1). Moreover, since a
possible mixing between SM and exotic fermions must occur in a SU(3)c invariant way, the decom-
position in eq. (2) also holds for possible exotic fermions mixing with the SM ones. Hence the need
of TB�L for the closure of the algebra is a general conclusion that holds independently of the possible
mixing among fermion representations.

An equivalent way to deduce the need for an extra generator is the observation that the minimal
group G

min
NP � GSM containing generators associated to the representation (3,1, 2/3) is

G
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NP = SU(4)⇥ SU(2)L ⇥ U(1)T 3

R
, (5)

i.e. the subgroup of the Pati-Salam group GPS = SU(4)⇥SU(2)L⇥SU(2)R [29]. Gmin
NP is obtained by

considering the U(1) subgroup of SU(2)R defined by its diagonal (electric-charge neutral) generator
T
3
R. The coset G

min
NP /GSM contains seven generators: the six T

↵
± describing the coset SU(4)/SU(3)c⇥

U(1)B�L, and TB�L.
In gauge models, the presence of an extra massive vector Z 0

⇠ (1,1, 0) associated with the breaking
U(1)B�L ⇥ U(1)T 3

R
! U(1)Y is thus unavoidable. Since the breaking of U(1)B�L necessarily implies

a breaking of SU(4), the breaking terms which lead to a non-vanishing Z
0 mass necessarily induce a

mass term for the U1 as well. Hence, the Z
0 state cannot be decoupled. The opposite is not true:

since the U1 generators are associated to the SU(4)/SU(3)c ⇥ U(1)B�L coset, mass terms for the U1

do not necessarily contribute to the Z
0 mass.

Gauge models: the need for a G0

While the minimal group in eq. (5) allows us to build a consistent model for a massive U1 ⇠ (3,1, 2/3),
it does not leave us enough freedom to adjust U1 and Z

0 couplings in order to comply with low- and
high-energy data.

Under G
min
NP the interaction strengths of both U1 and Z

0 are unambiguously related to the QCD
coupling (gs) and to hypercharge, given that they all originate from the same SU(4) group. In
particular gU = gs(MU1), in a normalisation where |�

ij
L,R|  1. Moreover, the couplings of the Z

0 to

SM fermions are necessarily flavour universal.1 A flavour-universal Z 0 is constrained by LHC dilepton
searches to have MZ0 >⇠ 5 TeV [30, 31]. Within G

min
NP , the U1 should be necessarily close in mass [22]

which, together with the low value of gU , results in a negligible impact on b ! c`⌫ decays.
To avoid these constraints, T↵

±, TB�L, and the QCD generators T
a, should not be unified in a

single SU(4) group. Given the commutation rules between T
↵
± and T

a, the next-to-minimal option is
obtained with [15]

(Gmin
NP )0 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)T 3

R
, (6)

1This statement follows from the fact that the mixing of SM fermions among themselves (in flavour space) and with
possible exotic representations necessarily involve states with the same B �L charges. As a result, the mixing acts as a
unitary rotation on the Z0 couplings that remains proportional to the identity matrix in flavour space.
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One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
textures in Eq. (3.4) could arise from (unspecified) UV dynamics at ⇤ ⇡ 10 TeV without signifi-
cantly impacting �F = 2 observables.
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1. Introduction
1.4 UV-complete gauge models

proposed in [15–18], or a vector resonance of some new strongly interacting dynamics, as e.g. in [19, 21].
As we show, in both cases the consistency of the theory requires additional vector states with similar
masses. The purpose of this paper is to provide a comprehensive analysis of the high-pT constraints
on the vector leptoquark U1 and what can be considered its minimal set of vector companions, namely
a colour octet G0

⇠ (8,1, 0), which we will refer to as the coloron, and a colour singlet Z 0
⇠ (1,1, 0).

In our analysis we consider the most general chiral structure for the U1 couplings to SM fermions.
This is in contrast with many recent studies which considered only left-handed (LH) couplings. While
this hypothesis is motivated by the absence of clear indications of right-handed (RH) currents in the
present data and by the sake of minimality, it does not have a strong theoretical justification. Indeed,
the quantum numbers of the U1 allow for RH couplings, and in motivated UV completions such
couplings naturally appear [18, 26]. We also analyse the impact of a non-vanishing mixing between
the second and third family in high-pT searches, including in particular constraints from pp ! ⌧µ and
pp ! ⌧⌫. As we show, the inclusion of right-handed couplings and/or a sizeable 2-3 family mixing
yields significant modifications to the results found in the existing literature.

The structure of this paper is as follows: In section 2 we motivate our choice of TeV-scale vectors
and in section 3 we introduce the phenomenological Lagrangian adopted to describe their high-pT
signatures. We then present the results of the searches in section 4 and conclude with section 5.

2 The spectrum of vector states at the TeV scale

The bottom-up requirement for the class of models we are interested in is the following e↵ective
interaction of the U1 field with SM fermions:

LNP �
gU
p
2
U

µ,↵
1

⇥
(JL

U )
↵
µ + (JR

U )↵µ
⇤
+ h.c. ,

(JL
U )

↵
µ = �

ij
L q̄

i,↵
L �µ`

j
L , (JR

U )↵µ = �
ij
R d̄

i,↵
R �µe

j
R . (1)

Here qL (`L) denotes the left-handed quark (lepton) doublets, dR (eR) denotes the right-handed down-
type quark (charge-lepton) singlets, i 2 {1, 2, 3} and j 2 {1, 2, 3} are flavour indices, ↵ 2 {1, 2, 3} is a
SU(3)c index, and �

ij
L,R are complex matrices in family-space.

The e↵ective interaction in eq. (1) unambiguously identifies the representation of U1 under GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to be (3,1, 2/3). There are two basic classes of well-defined UV theories
where such interactions can occur:

i. Gauge models. Here U1 is the massive gauge boson of a spontaneously broken gauge symmetry
GNP � GSM. The need for extra massive vectors follows from the size of the coset-space of
GNP/GSM, that necessarily requires additional generators besides the six associated to U1.

ii. Strongly interacting models. Here U1 appears as a massive resonance for a new strongly interact-
ing sector. In this case the need of additional massive vectors is a consequence of the additional
resonances formed by the same set of constituents leading to U1.

Gauge models: the need for a Z0

Within gauge models, let us start analysing the case of a single generation of SM fermions (i = j = 3),
and further assume that SM fermions belong to well-defined representations of GNP (i.e. no mixing
between SM-like and exotic fermions). Under these assumptions, �L is non-zero only if qL and `L

belong to the same GNP representation. We denote this representation  L and, without loss of
generality, we decompose it as

 L =  
SM
L +  

exotic
L ,  

SM
L =

 
q
�
L

`L

!
. (2)

2

In this notation the left-handed current in eq. (1) can be written as (JL
U )

↵
µ =  ̄

SM
L (T↵

+)�µ 
SM
L with

the following explicit expression for the action of the GNP generators on the SM projection of  L:

T
↵
+ =

 
0 �↵�

0 0

!
. (3)

The closure of the algebra of the six generators T↵
± associated with the six components of U1 implies

the need of the following additional (colour-neutral) generator

TB�L =

 
1
3��� 0
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!
,

1

3

3X

↵,�=1

[T↵
+, T

�
�] = TB�L . (4)

The same conclusion is reached by looking at the right-handed coupling in eq. (1). Moreover, since a
possible mixing between SM and exotic fermions must occur in a SU(3)c invariant way, the decom-
position in eq. (2) also holds for possible exotic fermions mixing with the SM ones. Hence the need
of TB�L for the closure of the algebra is a general conclusion that holds independently of the possible
mixing among fermion representations.

An equivalent way to deduce the need for an extra generator is the observation that the minimal
group G

min
NP � GSM containing generators associated to the representation (3,1, 2/3) is

G
min
NP = SU(4)⇥ SU(2)L ⇥ U(1)T 3

R
, (5)

i.e. the subgroup of the Pati-Salam group GPS = SU(4)⇥SU(2)L⇥SU(2)R [29]. Gmin
NP is obtained by

considering the U(1) subgroup of SU(2)R defined by its diagonal (electric-charge neutral) generator
T
3
R. The coset G

min
NP /GSM contains seven generators: the six T

↵
± describing the coset SU(4)/SU(3)c⇥

U(1)B�L, and TB�L.
In gauge models, the presence of an extra massive vector Z 0

⇠ (1,1, 0) associated with the breaking
U(1)B�L ⇥ U(1)T 3

R
! U(1)Y is thus unavoidable. Since the breaking of U(1)B�L necessarily implies

a breaking of SU(4), the breaking terms which lead to a non-vanishing Z
0 mass necessarily induce a

mass term for the U1 as well. Hence, the Z
0 state cannot be decoupled. The opposite is not true:

since the U1 generators are associated to the SU(4)/SU(3)c ⇥ U(1)B�L coset, mass terms for the U1

do not necessarily contribute to the Z
0 mass.

Gauge models: the need for a G0

While the minimal group in eq. (5) allows us to build a consistent model for a massive U1 ⇠ (3,1, 2/3),
it does not leave us enough freedom to adjust U1 and Z

0 couplings in order to comply with low- and
high-energy data.

Under G
min
NP the interaction strengths of both U1 and Z

0 are unambiguously related to the QCD
coupling (gs) and to hypercharge, given that they all originate from the same SU(4) group. In
particular gU = gs(MU1), in a normalisation where |�

ij
L,R|  1. Moreover, the couplings of the Z

0 to

SM fermions are necessarily flavour universal.1 A flavour-universal Z 0 is constrained by LHC dilepton
searches to have MZ0 >⇠ 5 TeV [30, 31]. Within G

min
NP , the U1 should be necessarily close in mass [22]

which, together with the low value of gU , results in a negligible impact on b ! c`⌫ decays.
To avoid these constraints, T↵

±, TB�L, and the QCD generators T
a, should not be unified in a

single SU(4) group. Given the commutation rules between T
↵
± and T

a, the next-to-minimal option is
obtained with [15]

(Gmin
NP )0 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)T 3

R
, (6)

1This statement follows from the fact that the mixing of SM fermions among themselves (in flavour space) and with
possible exotic representations necessarily involve states with the same B �L charges. As a result, the mixing acts as a
unitary rotation on the Z0 couplings that remains proportional to the identity matrix in flavour space.
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proposed in [15–18], or a vector resonance of some new strongly interacting dynamics, as e.g. in [19, 21].
As we show, in both cases the consistency of the theory requires additional vector states with similar
masses. The purpose of this paper is to provide a comprehensive analysis of the high-pT constraints
on the vector leptoquark U1 and what can be considered its minimal set of vector companions, namely
a colour octet G0

⇠ (8,1, 0), which we will refer to as the coloron, and a colour singlet Z 0
⇠ (1,1, 0).

In our analysis we consider the most general chiral structure for the U1 couplings to SM fermions.
This is in contrast with many recent studies which considered only left-handed (LH) couplings. While
this hypothesis is motivated by the absence of clear indications of right-handed (RH) currents in the
present data and by the sake of minimality, it does not have a strong theoretical justification. Indeed,
the quantum numbers of the U1 allow for RH couplings, and in motivated UV completions such
couplings naturally appear [18, 26]. We also analyse the impact of a non-vanishing mixing between
the second and third family in high-pT searches, including in particular constraints from pp ! ⌧µ and
pp ! ⌧⌫. As we show, the inclusion of right-handed couplings and/or a sizeable 2-3 family mixing
yields significant modifications to the results found in the existing literature.

The structure of this paper is as follows: In section 2 we motivate our choice of TeV-scale vectors
and in section 3 we introduce the phenomenological Lagrangian adopted to describe their high-pT
signatures. We then present the results of the searches in section 4 and conclude with section 5.

2 The spectrum of vector states at the TeV scale

The bottom-up requirement for the class of models we are interested in is the following e↵ective
interaction of the U1 field with SM fermions:
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Here qL (`L) denotes the left-handed quark (lepton) doublets, dR (eR) denotes the right-handed down-
type quark (charge-lepton) singlets, i 2 {1, 2, 3} and j 2 {1, 2, 3} are flavour indices, ↵ 2 {1, 2, 3} is a
SU(3)c index, and �

ij
L,R are complex matrices in family-space.

The e↵ective interaction in eq. (1) unambiguously identifies the representation of U1 under GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to be (3,1, 2/3). There are two basic classes of well-defined UV theories
where such interactions can occur:

i. Gauge models. Here U1 is the massive gauge boson of a spontaneously broken gauge symmetry
GNP � GSM. The need for extra massive vectors follows from the size of the coset-space of
GNP/GSM, that necessarily requires additional generators besides the six associated to U1.

ii. Strongly interacting models. Here U1 appears as a massive resonance for a new strongly interact-
ing sector. In this case the need of additional massive vectors is a consequence of the additional
resonances formed by the same set of constituents leading to U1.

Gauge models: the need for a Z0

Within gauge models, let us start analysing the case of a single generation of SM fermions (i = j = 3),
and further assume that SM fermions belong to well-defined representations of GNP (i.e. no mixing
between SM-like and exotic fermions). Under these assumptions, �L is non-zero only if qL and `L

belong to the same GNP representation. We denote this representation  L and, without loss of
generality, we decompose it as

 L =  
SM
L +  

exotic
L ,  

SM
L =
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L
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calculation of the third-generation gauge vector LQ corrections considered in this work.
The constraints on the parameter space of third-generation singlet vector LQs that follow
from recasts of the recent ditau searches [51, 55] are instead presented in Appendix B.
So without further ado, let’s crack straight into it.

2 Theoretical framework

A singlet vector LQ can be added to the SM Lagrangian in a simple bottom-up approach
by employing the following effective interactions

LU �
gU
p
2

h
�
ij
L Q̄

i,a
�µL

j + �
ij
R d̄

i,a
�µ e

j
i
U

µ,a + h.c. (2.1)

Here Q and L are the left-handed SM quark and lepton SU(2)L doublets, while d and e are
the corresponding right-handed fields, i, j 2 {1, 2, 3} are flavour indices and a 2 {1, 2, 3} is a
colour index. The vector LQ transforms as U ⇠ (3, 1, 2/3) under the SM gauge group GSM =

SU(3)C⇥SU(2)L⇥U(1)Y , making it an SU(2)L singlet. The coupling gU characterises the
overall strength of the LQ interactions with the SM matter fields, whereas �ij

L and �
ij
R are (a

priori) arbitrary complex 3⇥ 3 matrices in flavour space.2 In order to explain the observed
anomalies in the charged-current b ! c and neutral-current b ! s transitions the following
LQ-quark-lepton couplings have to be non-zero and follow the pattern

���33
L

�� '
���33

R

�� &���23
L

�� �
���32

L

�� '
���22

L

��, while the remaining couplings can in principle vanish.
The simplified interactions described by the Lagrangian LU however do not provide a

consistent UV completion for the singlet vector LQ field which renders higher-order pertur-
bative calculations based on (2.1) in general ambiguous. A well-motivated and thoroughly
studied class of UV-complete theories that incorporates a singlet vector LQ are gauge mod-
els. There, the massive U field arises from a gauge symmetry G � GSM that is broken
spontaneously to yield the SM Lagrangian at low energies, together with the singlet vec-
tor LQ as well as additional degrees of freedom. The minimal gauge group that leads to the
effective interactions of the form (2.1) and that can account for the hints of LFU violation
in semi-leptonic B decays is [21, 23, 26, 27, 30, 35, 41, 42, 95, 96]

G4321 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)X . (2.2)

This gauge group is commonly referred to as 4321. In our article, we restrict ourselves to
the SU(4) ⇥ SU(3)0 sector of (2.2) which includes the LQ interactions and O(↵s) correc-
tions thereof, while neglecting contributions that involve the SU(2)L ⇥ U(1)X subgroup.
This means in particular that we do not consider contributions to DY dilepton production
that arise from the colour singlet state Z

0
⇠ (1, 1, 0) that also appears in the spectrum of

the 4321 model after spontaneous symmetry breaking [21, 23, 26, 27, 30, 35]. This omission
is firstly motivated because the Z

0 does not contribute to the O(↵s) corrections we are
interested in. Secondly, while the colour singlet does contribute to DY dilepton produc-
tion, the tree-level s-channel exchange of a Z

0 leads to a narrow resonance in the dilepton
2
In our POWHEG-BOX implementation of the simplified Lagrangian (2.1) the relevant third-generation

LQ-quark-lepton couplings are treated as real.
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One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
textures in Eq. (3.4) could arise from (unspecified) UV dynamics at ⇤ ⇡ 10 TeV without signifi-
cantly impacting �F = 2 observables.

A.10 SU(4) generators

Here we report some useful facts about the SU(4) algebra. The generators in the fundamental
representation can be written as
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One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
textures in Eq. (3.4) could arise from (unspecified) UV dynamics at ⇤ ⇡ 10 TeV without signifi-
cantly impacting �F = 2 observables.

A.10 SU(4) generators

Here we report some useful facts about the SU(4) algebra. The generators in the fundamental
representation can be written as
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 generators: SU(4)

One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
textures in Eq. (3.4) could arise from (unspecified) UV dynamics at ⇤ ⇡ 10 TeV without signifi-
cantly impacting �F = 2 observables.

A.10 SU(4) generators

Here we report some useful facts about the SU(4) algebra. The generators in the fundamental
representation can be written as
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• Improved: 4321 model

U1

In this notation the left-handed current in eq. (1) can be written as (JL
U )

↵
µ =  ̄

SM
L (T↵

+)�µ 
SM
L with

the following explicit expression for the action of the GNP generators on the SM projection of  L:

T
↵
+ =

 
0 �↵�

0 0

!
. (3)

The closure of the algebra of the six generators T↵
± associated with the six components of U1 implies

the need of the following additional (colour-neutral) generator

TB�L =

 
1
3��� 0

0 �1

!
,

1

3

3X

↵,�=1

[T↵
+, T

�
�] = TB�L . (4)

The same conclusion is reached by looking at the right-handed coupling in eq. (1). Moreover, since a
possible mixing between SM and exotic fermions must occur in a SU(3)c invariant way, the decom-
position in eq. (2) also holds for possible exotic fermions mixing with the SM ones. Hence the need
of TB�L for the closure of the algebra is a general conclusion that holds independently of the possible
mixing among fermion representations.

An equivalent way to deduce the need for an extra generator is the observation that the minimal
group G

min
NP � GSM containing generators associated to the representation (3,1, 2/3) is

G
min
NP = SU(4)⇥ SU(2)L ⇥ U(1)T 3

R
, (5)

i.e. the subgroup of the Pati-Salam group GPS = SU(4)⇥SU(2)L⇥SU(2)R [29]. Gmin
NP is obtained by

considering the U(1) subgroup of SU(2)R defined by its diagonal (electric-charge neutral) generator
T
3
R. The coset G

min
NP /GSM contains seven generators: the six T

↵
± describing the coset SU(4)/SU(3)c⇥

U(1)B�L, and TB�L.
In gauge models, the presence of an extra massive vector Z 0

⇠ (1,1, 0) associated with the breaking
U(1)B�L ⇥ U(1)T 3

R
! U(1)Y is thus unavoidable. Since the breaking of U(1)B�L necessarily implies

a breaking of SU(4), the breaking terms which lead to a non-vanishing Z
0 mass necessarily induce a

mass term for the U1 as well. Hence, the Z
0 state cannot be decoupled. The opposite is not true:

since the U1 generators are associated to the SU(4)/SU(3)c ⇥ U(1)B�L coset, mass terms for the U1

do not necessarily contribute to the Z
0 mass.

Gauge models: the need for a G0

While the minimal group in eq. (5) allows us to build a consistent model for a massive U1 ⇠ (3,1, 2/3),
it does not leave us enough freedom to adjust U1 and Z

0 couplings in order to comply with low- and
high-energy data.

Under G
min
NP the interaction strengths of both U1 and Z

0 are unambiguously related to the QCD
coupling (gs) and to hypercharge, given that they all originate from the same SU(4) group. In
particular gU = gs(MU1), in a normalisation where |�

ij
L,R|  1. Moreover, the couplings of the Z

0 to

SM fermions are necessarily flavour universal.1 A flavour-universal Z 0 is constrained by LHC dilepton
searches to have MZ0 >⇠ 5 TeV [30, 31]. Within G

min
NP , the U1 should be necessarily close in mass [22]

which, together with the low value of gU , results in a negligible impact on b ! c`⌫ decays.
To avoid these constraints, T↵

±, TB�L, and the QCD generators T
a, should not be unified in a

single SU(4) group. Given the commutation rules between T
↵
± and T

a, the next-to-minimal option is
obtained with [15]

(Gmin
NP )0 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)T 3

R
, (6)

1This statement follows from the fact that the mixing of SM fermions among themselves (in flavour space) and with
possible exotic representations necessarily involve states with the same B �L charges. As a result, the mixing acts as a
unitary rotation on the Z0 couplings that remains proportional to the identity matrix in flavour space.
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U1

One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
textures in Eq. (3.4) could arise from (unspecified) UV dynamics at ⇤ ⇡ 10 TeV without signifi-
cantly impacting �F = 2 observables.

A.10 SU(4) generators

Here we report some useful facts about the SU(4) algebra. The generators in the fundamental
representation can be written as
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1. Introduction
1.4 UV-complete gauge models

proposed in [15–18], or a vector resonance of some new strongly interacting dynamics, as e.g. in [19, 21].
As we show, in both cases the consistency of the theory requires additional vector states with similar
masses. The purpose of this paper is to provide a comprehensive analysis of the high-pT constraints
on the vector leptoquark U1 and what can be considered its minimal set of vector companions, namely
a colour octet G0

⇠ (8,1, 0), which we will refer to as the coloron, and a colour singlet Z 0
⇠ (1,1, 0).

In our analysis we consider the most general chiral structure for the U1 couplings to SM fermions.
This is in contrast with many recent studies which considered only left-handed (LH) couplings. While
this hypothesis is motivated by the absence of clear indications of right-handed (RH) currents in the
present data and by the sake of minimality, it does not have a strong theoretical justification. Indeed,
the quantum numbers of the U1 allow for RH couplings, and in motivated UV completions such
couplings naturally appear [18, 26]. We also analyse the impact of a non-vanishing mixing between
the second and third family in high-pT searches, including in particular constraints from pp ! ⌧µ and
pp ! ⌧⌫. As we show, the inclusion of right-handed couplings and/or a sizeable 2-3 family mixing
yields significant modifications to the results found in the existing literature.

The structure of this paper is as follows: In section 2 we motivate our choice of TeV-scale vectors
and in section 3 we introduce the phenomenological Lagrangian adopted to describe their high-pT
signatures. We then present the results of the searches in section 4 and conclude with section 5.

2 The spectrum of vector states at the TeV scale

The bottom-up requirement for the class of models we are interested in is the following e↵ective
interaction of the U1 field with SM fermions:

LNP �
gU
p
2
U

µ,↵
1

⇥
(JL

U )
↵
µ + (JR

U )↵µ
⇤
+ h.c. ,

(JL
U )

↵
µ = �

ij
L q̄

i,↵
L �µ`

j
L , (JR

U )↵µ = �
ij
R d̄

i,↵
R �µe

j
R . (1)

Here qL (`L) denotes the left-handed quark (lepton) doublets, dR (eR) denotes the right-handed down-
type quark (charge-lepton) singlets, i 2 {1, 2, 3} and j 2 {1, 2, 3} are flavour indices, ↵ 2 {1, 2, 3} is a
SU(3)c index, and �

ij
L,R are complex matrices in family-space.

The e↵ective interaction in eq. (1) unambiguously identifies the representation of U1 under GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to be (3,1, 2/3). There are two basic classes of well-defined UV theories
where such interactions can occur:

i. Gauge models. Here U1 is the massive gauge boson of a spontaneously broken gauge symmetry
GNP � GSM. The need for extra massive vectors follows from the size of the coset-space of
GNP/GSM, that necessarily requires additional generators besides the six associated to U1.

ii. Strongly interacting models. Here U1 appears as a massive resonance for a new strongly interact-
ing sector. In this case the need of additional massive vectors is a consequence of the additional
resonances formed by the same set of constituents leading to U1.

Gauge models: the need for a Z0

Within gauge models, let us start analysing the case of a single generation of SM fermions (i = j = 3),
and further assume that SM fermions belong to well-defined representations of GNP (i.e. no mixing
between SM-like and exotic fermions). Under these assumptions, �L is non-zero only if qL and `L

belong to the same GNP representation. We denote this representation  L and, without loss of
generality, we decompose it as

 L =  
SM
L +  

exotic
L ,  

SM
L =

 
q
�
L

`L

!
. (2)

2

In this notation the left-handed current in eq. (1) can be written as (JL
U )

↵
µ =  ̄

SM
L (T↵

+)�µ 
SM
L with

the following explicit expression for the action of the GNP generators on the SM projection of  L:

T
↵
+ =

 
0 �↵�

0 0

!
. (3)

The closure of the algebra of the six generators T↵
± associated with the six components of U1 implies

the need of the following additional (colour-neutral) generator

TB�L =

 
1
3��� 0

0 �1

!
,

1

3

3X

↵,�=1

[T↵
+, T

�
�] = TB�L . (4)

The same conclusion is reached by looking at the right-handed coupling in eq. (1). Moreover, since a
possible mixing between SM and exotic fermions must occur in a SU(3)c invariant way, the decom-
position in eq. (2) also holds for possible exotic fermions mixing with the SM ones. Hence the need
of TB�L for the closure of the algebra is a general conclusion that holds independently of the possible
mixing among fermion representations.

An equivalent way to deduce the need for an extra generator is the observation that the minimal
group G

min
NP � GSM containing generators associated to the representation (3,1, 2/3) is

G
min
NP = SU(4)⇥ SU(2)L ⇥ U(1)T 3

R
, (5)

i.e. the subgroup of the Pati-Salam group GPS = SU(4)⇥SU(2)L⇥SU(2)R [29]. Gmin
NP is obtained by

considering the U(1) subgroup of SU(2)R defined by its diagonal (electric-charge neutral) generator
T
3
R. The coset G

min
NP /GSM contains seven generators: the six T

↵
± describing the coset SU(4)/SU(3)c⇥

U(1)B�L, and TB�L.
In gauge models, the presence of an extra massive vector Z 0

⇠ (1,1, 0) associated with the breaking
U(1)B�L ⇥ U(1)T 3

R
! U(1)Y is thus unavoidable. Since the breaking of U(1)B�L necessarily implies

a breaking of SU(4), the breaking terms which lead to a non-vanishing Z
0 mass necessarily induce a

mass term for the U1 as well. Hence, the Z
0 state cannot be decoupled. The opposite is not true:

since the U1 generators are associated to the SU(4)/SU(3)c ⇥ U(1)B�L coset, mass terms for the U1

do not necessarily contribute to the Z
0 mass.

Gauge models: the need for a G0

While the minimal group in eq. (5) allows us to build a consistent model for a massive U1 ⇠ (3,1, 2/3),
it does not leave us enough freedom to adjust U1 and Z

0 couplings in order to comply with low- and
high-energy data.

Under G
min
NP the interaction strengths of both U1 and Z

0 are unambiguously related to the QCD
coupling (gs) and to hypercharge, given that they all originate from the same SU(4) group. In
particular gU = gs(MU1), in a normalisation where |�

ij
L,R|  1. Moreover, the couplings of the Z

0 to

SM fermions are necessarily flavour universal.1 A flavour-universal Z 0 is constrained by LHC dilepton
searches to have MZ0 >⇠ 5 TeV [30, 31]. Within G

min
NP , the U1 should be necessarily close in mass [22]

which, together with the low value of gU , results in a negligible impact on b ! c`⌫ decays.
To avoid these constraints, T↵

±, TB�L, and the QCD generators T
a, should not be unified in a

single SU(4) group. Given the commutation rules between T
↵
± and T

a, the next-to-minimal option is
obtained with [15]

(Gmin
NP )0 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)T 3

R
, (6)

1This statement follows from the fact that the mixing of SM fermions among themselves (in flavour space) and with
possible exotic representations necessarily involve states with the same B �L charges. As a result, the mixing acts as a
unitary rotation on the Z0 couplings that remains proportional to the identity matrix in flavour space.
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• What we want:   

• Gauge models: 

• First idea: Pati-Salam-type model

proposed in [15–18], or a vector resonance of some new strongly interacting dynamics, as e.g. in [19, 21].
As we show, in both cases the consistency of the theory requires additional vector states with similar
masses. The purpose of this paper is to provide a comprehensive analysis of the high-pT constraints
on the vector leptoquark U1 and what can be considered its minimal set of vector companions, namely
a colour octet G0

⇠ (8,1, 0), which we will refer to as the coloron, and a colour singlet Z 0
⇠ (1,1, 0).

In our analysis we consider the most general chiral structure for the U1 couplings to SM fermions.
This is in contrast with many recent studies which considered only left-handed (LH) couplings. While
this hypothesis is motivated by the absence of clear indications of right-handed (RH) currents in the
present data and by the sake of minimality, it does not have a strong theoretical justification. Indeed,
the quantum numbers of the U1 allow for RH couplings, and in motivated UV completions such
couplings naturally appear [18, 26]. We also analyse the impact of a non-vanishing mixing between
the second and third family in high-pT searches, including in particular constraints from pp ! ⌧µ and
pp ! ⌧⌫. As we show, the inclusion of right-handed couplings and/or a sizeable 2-3 family mixing
yields significant modifications to the results found in the existing literature.

The structure of this paper is as follows: In section 2 we motivate our choice of TeV-scale vectors
and in section 3 we introduce the phenomenological Lagrangian adopted to describe their high-pT
signatures. We then present the results of the searches in section 4 and conclude with section 5.

2 The spectrum of vector states at the TeV scale

The bottom-up requirement for the class of models we are interested in is the following e↵ective
interaction of the U1 field with SM fermions:

LNP �
gU
p
2
U

µ,↵
1

⇥
(JL

U )
↵
µ + (JR

U )↵µ
⇤
+ h.c. ,

(JL
U )

↵
µ = �

ij
L q̄

i,↵
L �µ`

j
L , (JR

U )↵µ = �
ij
R d̄

i,↵
R �µe

j
R . (1)

Here qL (`L) denotes the left-handed quark (lepton) doublets, dR (eR) denotes the right-handed down-
type quark (charge-lepton) singlets, i 2 {1, 2, 3} and j 2 {1, 2, 3} are flavour indices, ↵ 2 {1, 2, 3} is a
SU(3)c index, and �

ij
L,R are complex matrices in family-space.

The e↵ective interaction in eq. (1) unambiguously identifies the representation of U1 under GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to be (3,1, 2/3). There are two basic classes of well-defined UV theories
where such interactions can occur:

i. Gauge models. Here U1 is the massive gauge boson of a spontaneously broken gauge symmetry
GNP � GSM. The need for extra massive vectors follows from the size of the coset-space of
GNP/GSM, that necessarily requires additional generators besides the six associated to U1.

ii. Strongly interacting models. Here U1 appears as a massive resonance for a new strongly interact-
ing sector. In this case the need of additional massive vectors is a consequence of the additional
resonances formed by the same set of constituents leading to U1.

Gauge models: the need for a Z0

Within gauge models, let us start analysing the case of a single generation of SM fermions (i = j = 3),
and further assume that SM fermions belong to well-defined representations of GNP (i.e. no mixing
between SM-like and exotic fermions). Under these assumptions, �L is non-zero only if qL and `L

belong to the same GNP representation. We denote this representation  L and, without loss of
generality, we decompose it as

 L =  
SM
L +  

exotic
L ,  

SM
L =

 
q
�
L

`L

!
. (2)

2

calculation of the third-generation gauge vector LQ corrections considered in this work.
The constraints on the parameter space of third-generation singlet vector LQs that follow
from recasts of the recent ditau searches [51, 55] are instead presented in Appendix B.
So without further ado, let’s crack straight into it.

2 Theoretical framework

A singlet vector LQ can be added to the SM Lagrangian in a simple bottom-up approach
by employing the following effective interactions

LU �
gU
p
2

h
�
ij
L Q̄

i,a
�µL

j + �
ij
R d̄

i,a
�µ e

j
i
U

µ,a + h.c. (2.1)

Here Q and L are the left-handed SM quark and lepton SU(2)L doublets, while d and e are
the corresponding right-handed fields, i, j 2 {1, 2, 3} are flavour indices and a 2 {1, 2, 3} is a
colour index. The vector LQ transforms as U ⇠ (3, 1, 2/3) under the SM gauge group GSM =

SU(3)C⇥SU(2)L⇥U(1)Y , making it an SU(2)L singlet. The coupling gU characterises the
overall strength of the LQ interactions with the SM matter fields, whereas �ij

L and �
ij
R are (a

priori) arbitrary complex 3⇥ 3 matrices in flavour space.2 In order to explain the observed
anomalies in the charged-current b ! c and neutral-current b ! s transitions the following
LQ-quark-lepton couplings have to be non-zero and follow the pattern

���33
L

�� '
���33

R

�� &���23
L

�� �
���32

L

�� '
���22

L

��, while the remaining couplings can in principle vanish.
The simplified interactions described by the Lagrangian LU however do not provide a

consistent UV completion for the singlet vector LQ field which renders higher-order pertur-
bative calculations based on (2.1) in general ambiguous. A well-motivated and thoroughly
studied class of UV-complete theories that incorporates a singlet vector LQ are gauge mod-
els. There, the massive U field arises from a gauge symmetry G � GSM that is broken
spontaneously to yield the SM Lagrangian at low energies, together with the singlet vec-
tor LQ as well as additional degrees of freedom. The minimal gauge group that leads to the
effective interactions of the form (2.1) and that can account for the hints of LFU violation
in semi-leptonic B decays is [21, 23, 26, 27, 30, 35, 41, 42, 95, 96]

G4321 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)X . (2.2)

This gauge group is commonly referred to as 4321. In our article, we restrict ourselves to
the SU(4) ⇥ SU(3)0 sector of (2.2) which includes the LQ interactions and O(↵s) correc-
tions thereof, while neglecting contributions that involve the SU(2)L ⇥ U(1)X subgroup.
This means in particular that we do not consider contributions to DY dilepton production
that arise from the colour singlet state Z

0
⇠ (1, 1, 0) that also appears in the spectrum of

the 4321 model after spontaneous symmetry breaking [21, 23, 26, 27, 30, 35]. This omission
is firstly motivated because the Z

0 does not contribute to the O(↵s) corrections we are
interested in. Secondly, while the colour singlet does contribute to DY dilepton produc-
tion, the tree-level s-channel exchange of a Z

0 leads to a narrow resonance in the dilepton
2
In our POWHEG-BOX implementation of the simplified Lagrangian (2.1) the relevant third-generation

LQ-quark-lepton couplings are treated as real.
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One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
textures in Eq. (3.4) could arise from (unspecified) UV dynamics at ⇤ ⇡ 10 TeV without signifi-
cantly impacting �F = 2 observables.

A.10 SU(4) generators

Here we report some useful facts about the SU(4) algebra. The generators in the fundamental
representation can be written as
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One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
textures in Eq. (3.4) could arise from (unspecified) UV dynamics at ⇤ ⇡ 10 TeV without signifi-
cantly impacting �F = 2 observables.

A.10 SU(4) generators
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 generators: SU(4)

One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
textures in Eq. (3.4) could arise from (unspecified) UV dynamics at ⇤ ⇡ 10 TeV without signifi-
cantly impacting �F = 2 observables.

A.10 SU(4) generators
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• Improved: 4321 model

U1

In this notation the left-handed current in eq. (1) can be written as (JL
U )

↵
µ =  ̄

SM
L (T↵

+)�µ 
SM
L with

the following explicit expression for the action of the GNP generators on the SM projection of  L:

T
↵
+ =

 
0 �↵�

0 0

!
. (3)

The closure of the algebra of the six generators T↵
± associated with the six components of U1 implies

the need of the following additional (colour-neutral) generator

TB�L =

 
1
3��� 0

0 �1

!
,

1

3

3X

↵,�=1

[T↵
+, T

�
�] = TB�L . (4)

The same conclusion is reached by looking at the right-handed coupling in eq. (1). Moreover, since a
possible mixing between SM and exotic fermions must occur in a SU(3)c invariant way, the decom-
position in eq. (2) also holds for possible exotic fermions mixing with the SM ones. Hence the need
of TB�L for the closure of the algebra is a general conclusion that holds independently of the possible
mixing among fermion representations.

An equivalent way to deduce the need for an extra generator is the observation that the minimal
group G

min
NP � GSM containing generators associated to the representation (3,1, 2/3) is

G
min
NP = SU(4)⇥ SU(2)L ⇥ U(1)T 3

R
, (5)

i.e. the subgroup of the Pati-Salam group GPS = SU(4)⇥SU(2)L⇥SU(2)R [29]. Gmin
NP is obtained by

considering the U(1) subgroup of SU(2)R defined by its diagonal (electric-charge neutral) generator
T
3
R. The coset G

min
NP /GSM contains seven generators: the six T

↵
± describing the coset SU(4)/SU(3)c⇥

U(1)B�L, and TB�L.
In gauge models, the presence of an extra massive vector Z 0

⇠ (1,1, 0) associated with the breaking
U(1)B�L ⇥ U(1)T 3

R
! U(1)Y is thus unavoidable. Since the breaking of U(1)B�L necessarily implies

a breaking of SU(4), the breaking terms which lead to a non-vanishing Z
0 mass necessarily induce a

mass term for the U1 as well. Hence, the Z
0 state cannot be decoupled. The opposite is not true:

since the U1 generators are associated to the SU(4)/SU(3)c ⇥ U(1)B�L coset, mass terms for the U1

do not necessarily contribute to the Z
0 mass.

Gauge models: the need for a G0

While the minimal group in eq. (5) allows us to build a consistent model for a massive U1 ⇠ (3,1, 2/3),
it does not leave us enough freedom to adjust U1 and Z

0 couplings in order to comply with low- and
high-energy data.

Under G
min
NP the interaction strengths of both U1 and Z

0 are unambiguously related to the QCD
coupling (gs) and to hypercharge, given that they all originate from the same SU(4) group. In
particular gU = gs(MU1), in a normalisation where |�

ij
L,R|  1. Moreover, the couplings of the Z

0 to

SM fermions are necessarily flavour universal.1 A flavour-universal Z 0 is constrained by LHC dilepton
searches to have MZ0 >⇠ 5 TeV [30, 31]. Within G

min
NP , the U1 should be necessarily close in mass [22]

which, together with the low value of gU , results in a negligible impact on b ! c`⌫ decays.
To avoid these constraints, T↵

±, TB�L, and the QCD generators T
a, should not be unified in a

single SU(4) group. Given the commutation rules between T
↵
± and T

a, the next-to-minimal option is
obtained with [15]

(Gmin
NP )0 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)T 3

R
, (6)

1This statement follows from the fact that the mixing of SM fermions among themselves (in flavour space) and with
possible exotic representations necessarily involve states with the same B �L charges. As a result, the mixing acts as a
unitary rotation on the Z0 couplings that remains proportional to the identity matrix in flavour space.
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U1

One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
textures in Eq. (3.4) could arise from (unspecified) UV dynamics at ⇤ ⇡ 10 TeV without signifi-
cantly impacting �F = 2 observables.
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1. Introduction
1.4 UV-complete gauge models

proposed in [15–18], or a vector resonance of some new strongly interacting dynamics, as e.g. in [19, 21].
As we show, in both cases the consistency of the theory requires additional vector states with similar
masses. The purpose of this paper is to provide a comprehensive analysis of the high-pT constraints
on the vector leptoquark U1 and what can be considered its minimal set of vector companions, namely
a colour octet G0

⇠ (8,1, 0), which we will refer to as the coloron, and a colour singlet Z 0
⇠ (1,1, 0).

In our analysis we consider the most general chiral structure for the U1 couplings to SM fermions.
This is in contrast with many recent studies which considered only left-handed (LH) couplings. While
this hypothesis is motivated by the absence of clear indications of right-handed (RH) currents in the
present data and by the sake of minimality, it does not have a strong theoretical justification. Indeed,
the quantum numbers of the U1 allow for RH couplings, and in motivated UV completions such
couplings naturally appear [18, 26]. We also analyse the impact of a non-vanishing mixing between
the second and third family in high-pT searches, including in particular constraints from pp ! ⌧µ and
pp ! ⌧⌫. As we show, the inclusion of right-handed couplings and/or a sizeable 2-3 family mixing
yields significant modifications to the results found in the existing literature.

The structure of this paper is as follows: In section 2 we motivate our choice of TeV-scale vectors
and in section 3 we introduce the phenomenological Lagrangian adopted to describe their high-pT
signatures. We then present the results of the searches in section 4 and conclude with section 5.

2 The spectrum of vector states at the TeV scale

The bottom-up requirement for the class of models we are interested in is the following e↵ective
interaction of the U1 field with SM fermions:

LNP �
gU
p
2
U

µ,↵
1

⇥
(JL

U )
↵
µ + (JR

U )↵µ
⇤
+ h.c. ,

(JL
U )

↵
µ = �

ij
L q̄

i,↵
L �µ`

j
L , (JR

U )↵µ = �
ij
R d̄

i,↵
R �µe

j
R . (1)

Here qL (`L) denotes the left-handed quark (lepton) doublets, dR (eR) denotes the right-handed down-
type quark (charge-lepton) singlets, i 2 {1, 2, 3} and j 2 {1, 2, 3} are flavour indices, ↵ 2 {1, 2, 3} is a
SU(3)c index, and �

ij
L,R are complex matrices in family-space.

The e↵ective interaction in eq. (1) unambiguously identifies the representation of U1 under GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to be (3,1, 2/3). There are two basic classes of well-defined UV theories
where such interactions can occur:

i. Gauge models. Here U1 is the massive gauge boson of a spontaneously broken gauge symmetry
GNP � GSM. The need for extra massive vectors follows from the size of the coset-space of
GNP/GSM, that necessarily requires additional generators besides the six associated to U1.

ii. Strongly interacting models. Here U1 appears as a massive resonance for a new strongly interact-
ing sector. In this case the need of additional massive vectors is a consequence of the additional
resonances formed by the same set of constituents leading to U1.

Gauge models: the need for a Z0

Within gauge models, let us start analysing the case of a single generation of SM fermions (i = j = 3),
and further assume that SM fermions belong to well-defined representations of GNP (i.e. no mixing
between SM-like and exotic fermions). Under these assumptions, �L is non-zero only if qL and `L

belong to the same GNP representation. We denote this representation  L and, without loss of
generality, we decompose it as

 L =  
SM
L +  

exotic
L ,  
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In this notation the left-handed current in eq. (1) can be written as (JL
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the following explicit expression for the action of the GNP generators on the SM projection of  L:
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The closure of the algebra of the six generators T↵
± associated with the six components of U1 implies

the need of the following additional (colour-neutral) generator
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The same conclusion is reached by looking at the right-handed coupling in eq. (1). Moreover, since a
possible mixing between SM and exotic fermions must occur in a SU(3)c invariant way, the decom-
position in eq. (2) also holds for possible exotic fermions mixing with the SM ones. Hence the need
of TB�L for the closure of the algebra is a general conclusion that holds independently of the possible
mixing among fermion representations.

An equivalent way to deduce the need for an extra generator is the observation that the minimal
group G

min
NP � GSM containing generators associated to the representation (3,1, 2/3) is

G
min
NP = SU(4)⇥ SU(2)L ⇥ U(1)T 3

R
, (5)

i.e. the subgroup of the Pati-Salam group GPS = SU(4)⇥SU(2)L⇥SU(2)R [29]. Gmin
NP is obtained by

considering the U(1) subgroup of SU(2)R defined by its diagonal (electric-charge neutral) generator
T
3
R. The coset G

min
NP /GSM contains seven generators: the six T

↵
± describing the coset SU(4)/SU(3)c⇥

U(1)B�L, and TB�L.
In gauge models, the presence of an extra massive vector Z 0

⇠ (1,1, 0) associated with the breaking
U(1)B�L ⇥ U(1)T 3

R
! U(1)Y is thus unavoidable. Since the breaking of U(1)B�L necessarily implies

a breaking of SU(4), the breaking terms which lead to a non-vanishing Z
0 mass necessarily induce a

mass term for the U1 as well. Hence, the Z
0 state cannot be decoupled. The opposite is not true:

since the U1 generators are associated to the SU(4)/SU(3)c ⇥ U(1)B�L coset, mass terms for the U1

do not necessarily contribute to the Z
0 mass.

Gauge models: the need for a G0

While the minimal group in eq. (5) allows us to build a consistent model for a massive U1 ⇠ (3,1, 2/3),
it does not leave us enough freedom to adjust U1 and Z

0 couplings in order to comply with low- and
high-energy data.

Under G
min
NP the interaction strengths of both U1 and Z

0 are unambiguously related to the QCD
coupling (gs) and to hypercharge, given that they all originate from the same SU(4) group. In
particular gU = gs(MU1), in a normalisation where |�

ij
L,R|  1. Moreover, the couplings of the Z

0 to

SM fermions are necessarily flavour universal.1 A flavour-universal Z 0 is constrained by LHC dilepton
searches to have MZ0 >⇠ 5 TeV [30, 31]. Within G

min
NP , the U1 should be necessarily close in mass [22]

which, together with the low value of gU , results in a negligible impact on b ! c`⌫ decays.
To avoid these constraints, T↵

±, TB�L, and the QCD generators T
a, should not be unified in a

single SU(4) group. Given the commutation rules between T
↵
± and T

a, the next-to-minimal option is
obtained with [15]

(Gmin
NP )0 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)T 3

R
, (6)

1This statement follows from the fact that the mixing of SM fermions among themselves (in flavour space) and with
possible exotic representations necessarily involve states with the same B �L charges. As a result, the mixing acts as a
unitary rotation on the Z0 couplings that remains proportional to the identity matrix in flavour space.
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• First idea: Pati-Salam-type model

proposed in [15–18], or a vector resonance of some new strongly interacting dynamics, as e.g. in [19, 21].
As we show, in both cases the consistency of the theory requires additional vector states with similar
masses. The purpose of this paper is to provide a comprehensive analysis of the high-pT constraints
on the vector leptoquark U1 and what can be considered its minimal set of vector companions, namely
a colour octet G0

⇠ (8,1, 0), which we will refer to as the coloron, and a colour singlet Z 0
⇠ (1,1, 0).

In our analysis we consider the most general chiral structure for the U1 couplings to SM fermions.
This is in contrast with many recent studies which considered only left-handed (LH) couplings. While
this hypothesis is motivated by the absence of clear indications of right-handed (RH) currents in the
present data and by the sake of minimality, it does not have a strong theoretical justification. Indeed,
the quantum numbers of the U1 allow for RH couplings, and in motivated UV completions such
couplings naturally appear [18, 26]. We also analyse the impact of a non-vanishing mixing between
the second and third family in high-pT searches, including in particular constraints from pp ! ⌧µ and
pp ! ⌧⌫. As we show, the inclusion of right-handed couplings and/or a sizeable 2-3 family mixing
yields significant modifications to the results found in the existing literature.

The structure of this paper is as follows: In section 2 we motivate our choice of TeV-scale vectors
and in section 3 we introduce the phenomenological Lagrangian adopted to describe their high-pT
signatures. We then present the results of the searches in section 4 and conclude with section 5.

2 The spectrum of vector states at the TeV scale

The bottom-up requirement for the class of models we are interested in is the following e↵ective
interaction of the U1 field with SM fermions:
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Here qL (`L) denotes the left-handed quark (lepton) doublets, dR (eR) denotes the right-handed down-
type quark (charge-lepton) singlets, i 2 {1, 2, 3} and j 2 {1, 2, 3} are flavour indices, ↵ 2 {1, 2, 3} is a
SU(3)c index, and �

ij
L,R are complex matrices in family-space.

The e↵ective interaction in eq. (1) unambiguously identifies the representation of U1 under GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to be (3,1, 2/3). There are two basic classes of well-defined UV theories
where such interactions can occur:

i. Gauge models. Here U1 is the massive gauge boson of a spontaneously broken gauge symmetry
GNP � GSM. The need for extra massive vectors follows from the size of the coset-space of
GNP/GSM, that necessarily requires additional generators besides the six associated to U1.

ii. Strongly interacting models. Here U1 appears as a massive resonance for a new strongly interact-
ing sector. In this case the need of additional massive vectors is a consequence of the additional
resonances formed by the same set of constituents leading to U1.

Gauge models: the need for a Z0

Within gauge models, let us start analysing the case of a single generation of SM fermions (i = j = 3),
and further assume that SM fermions belong to well-defined representations of GNP (i.e. no mixing
between SM-like and exotic fermions). Under these assumptions, �L is non-zero only if qL and `L

belong to the same GNP representation. We denote this representation  L and, without loss of
generality, we decompose it as

 L =  
SM
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L =
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calculation of the third-generation gauge vector LQ corrections considered in this work.
The constraints on the parameter space of third-generation singlet vector LQs that follow
from recasts of the recent ditau searches [51, 55] are instead presented in Appendix B.
So without further ado, let’s crack straight into it.

2 Theoretical framework

A singlet vector LQ can be added to the SM Lagrangian in a simple bottom-up approach
by employing the following effective interactions

LU �
gU
p
2

h
�
ij
L Q̄

i,a
�µL

j + �
ij
R d̄

i,a
�µ e

j
i
U

µ,a + h.c. (2.1)

Here Q and L are the left-handed SM quark and lepton SU(2)L doublets, while d and e are
the corresponding right-handed fields, i, j 2 {1, 2, 3} are flavour indices and a 2 {1, 2, 3} is a
colour index. The vector LQ transforms as U ⇠ (3, 1, 2/3) under the SM gauge group GSM =

SU(3)C⇥SU(2)L⇥U(1)Y , making it an SU(2)L singlet. The coupling gU characterises the
overall strength of the LQ interactions with the SM matter fields, whereas �ij

L and �
ij
R are (a

priori) arbitrary complex 3⇥ 3 matrices in flavour space.2 In order to explain the observed
anomalies in the charged-current b ! c and neutral-current b ! s transitions the following
LQ-quark-lepton couplings have to be non-zero and follow the pattern

���33
L

�� '
���33

R

�� &���23
L

�� �
���32

L

�� '
���22

L

��, while the remaining couplings can in principle vanish.
The simplified interactions described by the Lagrangian LU however do not provide a

consistent UV completion for the singlet vector LQ field which renders higher-order pertur-
bative calculations based on (2.1) in general ambiguous. A well-motivated and thoroughly
studied class of UV-complete theories that incorporates a singlet vector LQ are gauge mod-
els. There, the massive U field arises from a gauge symmetry G � GSM that is broken
spontaneously to yield the SM Lagrangian at low energies, together with the singlet vec-
tor LQ as well as additional degrees of freedom. The minimal gauge group that leads to the
effective interactions of the form (2.1) and that can account for the hints of LFU violation
in semi-leptonic B decays is [21, 23, 26, 27, 30, 35, 41, 42, 95, 96]

G4321 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)X . (2.2)

This gauge group is commonly referred to as 4321. In our article, we restrict ourselves to
the SU(4) ⇥ SU(3)0 sector of (2.2) which includes the LQ interactions and O(↵s) correc-
tions thereof, while neglecting contributions that involve the SU(2)L ⇥ U(1)X subgroup.
This means in particular that we do not consider contributions to DY dilepton production
that arise from the colour singlet state Z

0
⇠ (1, 1, 0) that also appears in the spectrum of

the 4321 model after spontaneous symmetry breaking [21, 23, 26, 27, 30, 35]. This omission
is firstly motivated because the Z

0 does not contribute to the O(↵s) corrections we are
interested in. Secondly, while the colour singlet does contribute to DY dilepton produc-
tion, the tree-level s-channel exchange of a Z

0 leads to a narrow resonance in the dilepton
2
In our POWHEG-BOX implementation of the simplified Lagrangian (2.1) the relevant third-generation

LQ-quark-lepton couplings are treated as real.
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One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
textures in Eq. (3.4) could arise from (unspecified) UV dynamics at ⇤ ⇡ 10 TeV without signifi-
cantly impacting �F = 2 observables.

A.10 SU(4) generators

Here we report some useful facts about the SU(4) algebra. The generators in the fundamental
representation can be written as
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 generators: SU(4)
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In this notation the left-handed current in eq. (1) can be written as (JL
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the following explicit expression for the action of the GNP generators on the SM projection of  L:
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The same conclusion is reached by looking at the right-handed coupling in eq. (1). Moreover, since a
possible mixing between SM and exotic fermions must occur in a SU(3)c invariant way, the decom-
position in eq. (2) also holds for possible exotic fermions mixing with the SM ones. Hence the need
of TB�L for the closure of the algebra is a general conclusion that holds independently of the possible
mixing among fermion representations.

An equivalent way to deduce the need for an extra generator is the observation that the minimal
group G

min
NP � GSM containing generators associated to the representation (3,1, 2/3) is

G
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NP = SU(4)⇥ SU(2)L ⇥ U(1)T 3

R
, (5)

i.e. the subgroup of the Pati-Salam group GPS = SU(4)⇥SU(2)L⇥SU(2)R [29]. Gmin
NP is obtained by

considering the U(1) subgroup of SU(2)R defined by its diagonal (electric-charge neutral) generator
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± describing the coset SU(4)/SU(3)c⇥

U(1)B�L, and TB�L.
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⇠ (1,1, 0) associated with the breaking
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! U(1)Y is thus unavoidable. Since the breaking of U(1)B�L necessarily implies

a breaking of SU(4), the breaking terms which lead to a non-vanishing Z
0 mass necessarily induce a

mass term for the U1 as well. Hence, the Z
0 state cannot be decoupled. The opposite is not true:

since the U1 generators are associated to the SU(4)/SU(3)c ⇥ U(1)B�L coset, mass terms for the U1

do not necessarily contribute to the Z
0 mass.

Gauge models: the need for a G0

While the minimal group in eq. (5) allows us to build a consistent model for a massive U1 ⇠ (3,1, 2/3),
it does not leave us enough freedom to adjust U1 and Z

0 couplings in order to comply with low- and
high-energy data.

Under G
min
NP the interaction strengths of both U1 and Z

0 are unambiguously related to the QCD
coupling (gs) and to hypercharge, given that they all originate from the same SU(4) group. In
particular gU = gs(MU1), in a normalisation where |�
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L,R|  1. Moreover, the couplings of the Z

0 to

SM fermions are necessarily flavour universal.1 A flavour-universal Z 0 is constrained by LHC dilepton
searches to have MZ0 >⇠ 5 TeV [30, 31]. Within G
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NP , the U1 should be necessarily close in mass [22]

which, together with the low value of gU , results in a negligible impact on b ! c`⌫ decays.
To avoid these constraints, T↵

±, TB�L, and the QCD generators T
a, should not be unified in a

single SU(4) group. Given the commutation rules between T
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a, the next-to-minimal option is
obtained with [15]
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1This statement follows from the fact that the mixing of SM fermions among themselves (in flavour space) and with
possible exotic representations necessarily involve states with the same B �L charges. As a result, the mixing acts as a
unitary rotation on the Z0 couplings that remains proportional to the identity matrix in flavour space.
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One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
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1. Introduction
1.4 UV-complete gauge models

proposed in [15–18], or a vector resonance of some new strongly interacting dynamics, as e.g. in [19, 21].
As we show, in both cases the consistency of the theory requires additional vector states with similar
masses. The purpose of this paper is to provide a comprehensive analysis of the high-pT constraints
on the vector leptoquark U1 and what can be considered its minimal set of vector companions, namely
a colour octet G0

⇠ (8,1, 0), which we will refer to as the coloron, and a colour singlet Z 0
⇠ (1,1, 0).

In our analysis we consider the most general chiral structure for the U1 couplings to SM fermions.
This is in contrast with many recent studies which considered only left-handed (LH) couplings. While
this hypothesis is motivated by the absence of clear indications of right-handed (RH) currents in the
present data and by the sake of minimality, it does not have a strong theoretical justification. Indeed,
the quantum numbers of the U1 allow for RH couplings, and in motivated UV completions such
couplings naturally appear [18, 26]. We also analyse the impact of a non-vanishing mixing between
the second and third family in high-pT searches, including in particular constraints from pp ! ⌧µ and
pp ! ⌧⌫. As we show, the inclusion of right-handed couplings and/or a sizeable 2-3 family mixing
yields significant modifications to the results found in the existing literature.

The structure of this paper is as follows: In section 2 we motivate our choice of TeV-scale vectors
and in section 3 we introduce the phenomenological Lagrangian adopted to describe their high-pT
signatures. We then present the results of the searches in section 4 and conclude with section 5.

2 The spectrum of vector states at the TeV scale

The bottom-up requirement for the class of models we are interested in is the following e↵ective
interaction of the U1 field with SM fermions:
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Here qL (`L) denotes the left-handed quark (lepton) doublets, dR (eR) denotes the right-handed down-
type quark (charge-lepton) singlets, i 2 {1, 2, 3} and j 2 {1, 2, 3} are flavour indices, ↵ 2 {1, 2, 3} is a
SU(3)c index, and �

ij
L,R are complex matrices in family-space.

The e↵ective interaction in eq. (1) unambiguously identifies the representation of U1 under GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to be (3,1, 2/3). There are two basic classes of well-defined UV theories
where such interactions can occur:

i. Gauge models. Here U1 is the massive gauge boson of a spontaneously broken gauge symmetry
GNP � GSM. The need for extra massive vectors follows from the size of the coset-space of
GNP/GSM, that necessarily requires additional generators besides the six associated to U1.

ii. Strongly interacting models. Here U1 appears as a massive resonance for a new strongly interact-
ing sector. In this case the need of additional massive vectors is a consequence of the additional
resonances formed by the same set of constituents leading to U1.

Gauge models: the need for a Z0

Within gauge models, let us start analysing the case of a single generation of SM fermions (i = j = 3),
and further assume that SM fermions belong to well-defined representations of GNP (i.e. no mixing
between SM-like and exotic fermions). Under these assumptions, �L is non-zero only if qL and `L

belong to the same GNP representation. We denote this representation  L and, without loss of
generality, we decompose it as
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The same conclusion is reached by looking at the right-handed coupling in eq. (1). Moreover, since a
possible mixing between SM and exotic fermions must occur in a SU(3)c invariant way, the decom-
position in eq. (2) also holds for possible exotic fermions mixing with the SM ones. Hence the need
of TB�L for the closure of the algebra is a general conclusion that holds independently of the possible
mixing among fermion representations.

An equivalent way to deduce the need for an extra generator is the observation that the minimal
group G

min
NP � GSM containing generators associated to the representation (3,1, 2/3) is
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i.e. the subgroup of the Pati-Salam group GPS = SU(4)⇥SU(2)L⇥SU(2)R [29]. Gmin
NP is obtained by

considering the U(1) subgroup of SU(2)R defined by its diagonal (electric-charge neutral) generator
T
3
R. The coset G
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NP /GSM contains seven generators: the six T
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U(1)B�L, and TB�L.
In gauge models, the presence of an extra massive vector Z 0

⇠ (1,1, 0) associated with the breaking
U(1)B�L ⇥ U(1)T 3

R
! U(1)Y is thus unavoidable. Since the breaking of U(1)B�L necessarily implies

a breaking of SU(4), the breaking terms which lead to a non-vanishing Z
0 mass necessarily induce a

mass term for the U1 as well. Hence, the Z
0 state cannot be decoupled. The opposite is not true:

since the U1 generators are associated to the SU(4)/SU(3)c ⇥ U(1)B�L coset, mass terms for the U1

do not necessarily contribute to the Z
0 mass.

Gauge models: the need for a G0

While the minimal group in eq. (5) allows us to build a consistent model for a massive U1 ⇠ (3,1, 2/3),
it does not leave us enough freedom to adjust U1 and Z

0 couplings in order to comply with low- and
high-energy data.

Under G
min
NP the interaction strengths of both U1 and Z

0 are unambiguously related to the QCD
coupling (gs) and to hypercharge, given that they all originate from the same SU(4) group. In
particular gU = gs(MU1), in a normalisation where |�

ij
L,R|  1. Moreover, the couplings of the Z

0 to

SM fermions are necessarily flavour universal.1 A flavour-universal Z 0 is constrained by LHC dilepton
searches to have MZ0 >⇠ 5 TeV [30, 31]. Within G

min
NP , the U1 should be necessarily close in mass [22]

which, together with the low value of gU , results in a negligible impact on b ! c`⌫ decays.
To avoid these constraints, T↵

±, TB�L, and the QCD generators T
a, should not be unified in a

single SU(4) group. Given the commutation rules between T
↵
± and T

a, the next-to-minimal option is
obtained with [15]
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NP )0 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)T 3

R
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1This statement follows from the fact that the mixing of SM fermions among themselves (in flavour space) and with
possible exotic representations necessarily involve states with the same B �L charges. As a result, the mixing acts as a
unitary rotation on the Z0 couplings that remains proportional to the identity matrix in flavour space.
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proposed in [15–18], or a vector resonance of some new strongly interacting dynamics, as e.g. in [19, 21].
As we show, in both cases the consistency of the theory requires additional vector states with similar
masses. The purpose of this paper is to provide a comprehensive analysis of the high-pT constraints
on the vector leptoquark U1 and what can be considered its minimal set of vector companions, namely
a colour octet G0

⇠ (8,1, 0), which we will refer to as the coloron, and a colour singlet Z 0
⇠ (1,1, 0).
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calculation of the third-generation gauge vector LQ corrections considered in this work.
The constraints on the parameter space of third-generation singlet vector LQs that follow
from recasts of the recent ditau searches [51, 55] are instead presented in Appendix B.
So without further ado, let’s crack straight into it.

2 Theoretical framework

A singlet vector LQ can be added to the SM Lagrangian in a simple bottom-up approach
by employing the following effective interactions
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p
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Here Q and L are the left-handed SM quark and lepton SU(2)L doublets, while d and e are
the corresponding right-handed fields, i, j 2 {1, 2, 3} are flavour indices and a 2 {1, 2, 3} is a
colour index. The vector LQ transforms as U ⇠ (3, 1, 2/3) under the SM gauge group GSM =

SU(3)C⇥SU(2)L⇥U(1)Y , making it an SU(2)L singlet. The coupling gU characterises the
overall strength of the LQ interactions with the SM matter fields, whereas �ij

L and �
ij
R are (a

priori) arbitrary complex 3⇥ 3 matrices in flavour space.2 In order to explain the observed
anomalies in the charged-current b ! c and neutral-current b ! s transitions the following
LQ-quark-lepton couplings have to be non-zero and follow the pattern
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��, while the remaining couplings can in principle vanish.
The simplified interactions described by the Lagrangian LU however do not provide a

consistent UV completion for the singlet vector LQ field which renders higher-order pertur-
bative calculations based on (2.1) in general ambiguous. A well-motivated and thoroughly
studied class of UV-complete theories that incorporates a singlet vector LQ are gauge mod-
els. There, the massive U field arises from a gauge symmetry G � GSM that is broken
spontaneously to yield the SM Lagrangian at low energies, together with the singlet vec-
tor LQ as well as additional degrees of freedom. The minimal gauge group that leads to the
effective interactions of the form (2.1) and that can account for the hints of LFU violation
in semi-leptonic B decays is [21, 23, 26, 27, 30, 35, 41, 42, 95, 96]

G4321 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)X . (2.2)

This gauge group is commonly referred to as 4321. In our article, we restrict ourselves to
the SU(4) ⇥ SU(3)0 sector of (2.2) which includes the LQ interactions and O(↵s) correc-
tions thereof, while neglecting contributions that involve the SU(2)L ⇥ U(1)X subgroup.
This means in particular that we do not consider contributions to DY dilepton production
that arise from the colour singlet state Z

0
⇠ (1, 1, 0) that also appears in the spectrum of

the 4321 model after spontaneous symmetry breaking [21, 23, 26, 27, 30, 35]. This omission
is firstly motivated because the Z

0 does not contribute to the O(↵s) corrections we are
interested in. Secondly, while the colour singlet does contribute to DY dilepton produc-
tion, the tree-level s-channel exchange of a Z

0 leads to a narrow resonance in the dilepton
2
In our POWHEG-BOX implementation of the simplified Lagrangian (2.1) the relevant third-generation

LQ-quark-lepton couplings are treated as real.
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One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
textures in Eq. (3.4) could arise from (unspecified) UV dynamics at ⇤ ⇡ 10 TeV without signifi-
cantly impacting �F = 2 observables.

A.10 SU(4) generators

Here we report some useful facts about the SU(4) algebra. The generators in the fundamental
representation can be written as
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The same conclusion is reached by looking at the right-handed coupling in eq. (1). Moreover, since a
possible mixing between SM and exotic fermions must occur in a SU(3)c invariant way, the decom-
position in eq. (2) also holds for possible exotic fermions mixing with the SM ones. Hence the need
of TB�L for the closure of the algebra is a general conclusion that holds independently of the possible
mixing among fermion representations.
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0 state cannot be decoupled. The opposite is not true:

since the U1 generators are associated to the SU(4)/SU(3)c ⇥ U(1)B�L coset, mass terms for the U1

do not necessarily contribute to the Z
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Gauge models: the need for a G0

While the minimal group in eq. (5) allows us to build a consistent model for a massive U1 ⇠ (3,1, 2/3),
it does not leave us enough freedom to adjust U1 and Z
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possible exotic representations necessarily involve states with the same B �L charges. As a result, the mixing acts as a
unitary rotation on the Z0 couplings that remains proportional to the identity matrix in flavour space.
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invariant mass spectrum of pp ! `
+
`
�. In contrast, the leading contribution to DY dilep-

ton production due to (2.1) corresponds to a non-resonant signal associated to t-channel
exchange of the singlet vector LQ. Since experimentally resonant DY dilepton signatures
can be disentangled from non-resonant ones, treating the Z

0 and the U contributions also
separately in a theoretical analysis seems fully justified.

In the 4321 model, the symmetry (2.2) is broken spontaneously via two scalars once
these fields acquire non-zero vacuum expectation values. The massive U field results from
the broken SU(4) group alone, while the SU(4) and SU(3)0 groups conspire to yield
the SM gluon G and an additional massive colour-octet vector G

0
⇠ (8, 1, 0), commonly

referred to as a coloron. Explicitly, one has in the case of the singlet vector LQ

U
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⌘
, (2.3)

where H
A
µ with A 2 {1, . . . , 15} are the SU(4) gauge fields. The colour octet states, i.e. the

SM gluon and the coloron, are instead given by the following linear combinations

G
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a
µ , (2.4)

with C
a
µ the SU(3)0 gauge fields and we have introduced the following abbreviations

s3 = sin ✓3 =
g3p

g
2
4 + g

2
3

, c3 = cos ✓3 =
g4p

g
2
4 + g

2
3

, (2.5)

for the sine and cosine of the mixing angle ✓3 in the SU(4) ⇥ SU(3)0 sector. Here g4 (g3)
denotes the coupling constant associated to the SU(4)

�
SU(3)0

�
group. The strong QCD

coupling constant gs can be expressed in terms of g4, g3 and (2.5) as

gs = s3 g4 = c3 g3 . (2.6)

The large couplings of the singlet vector LQ to the third quark family, as required to ex-
plain the B-decay anomalies, is achieved by unifying the third fermion generation (and only
the third) into SU(4) quadruplets. Specifically, the SM fermion fields then take the
form  L =

�
Q

3
, L

3
�T and  �

R =
�
d
3
, e

3
�T , which we will from now on generically denote

by  = ( q, `)
T . This representation transforms as  ⇠ (4, 1) under the SU(4)⇥ SU(3)0

gauge group. After spontaneous symmetry breaking, the interactions between the coloured
gauge bosons and the third-generation fermions in the 4321 model then read

L4321 �
g4
p
2
 ̄
a
q �µ ` U

µ,a + h.c.+ gs  ̄q �µT
a
 qG

µ,a + c3 g4  ̄q �µT
a
 qG

0µ,a
, (2.7)

where the symbol T a denotes the usual SU(3) generators. Notice that the first two terms
in (2.7) resemble the effective singlet vector LQ interactions (2.1) if one identifies gU = g4

and �
33
L = �

33
R = 1, which shows that LU is correctly recovered if the U field is embedded

into the 4321 model. As a result of the enlarged gauge group the 4321 model however
contains besides a massless gluon G also a massive coloron G

0 that couples to the SM
third-generation quarks with strength c3 g4. This implies that one-loop amplitudes in the

– 4 –

full 4321 theory in general receive O(↵s) contributions from both virtual G and G
0 exchange.

In fact, for any given process the gluon-mediated amplitude is proportional to g
2
s , while the

coloron-mediated amplitude is proportional to (c3 g4)
2 = g

2
4 � g

2
s . Notice that the minus

sign in this relation ensures a perfect cancellation of UV divergences proportional to g
2
s .

This shows that in the 4321 model coloron effects necessarily have to be included if one
wants to correctly calculate scattering processes such as bb̄ ! ⌧

+
⌧
� beyond the leading

order (LO) in QCD.

3 Calculation in a nutshell

Representative Feynman diagrams leading to DY ditau production in the presence of (2.7)
are displayed in Figures 1 and 2. The first figure shows the tree-level process involv-
ing t-channel singlet vector LQ exchange (left) and the corresponding real gluon correc-
tions (middle and right). Notice that all depicted contributions are initiated by bottom-
quark (bb̄) fusion.3 We include real contributions with both non-resonant (middle) and
resonant (right) intermediate U states, the latter case corresponding to single-LQ produc-
tion with a subsequent decay of the singlet vector LQ to a pair of a bottom quark and an
anti-tau, i.e. Gb ! U⌧

� followed by U ! b⌧
+. These resonant diagrams also contribute

at O(↵s) and are particularly important for invariant ditau masses (m⌧⌧ ) close to the sin-
glet vector LQ mass MU . At the same time, we neglect O(↵s) corrections associated to
real coloron emissions. This is theoretically justified because these contributions are, unlike
the real gluon emissions, infrared (IR) finite by themselves. Furthermore, the stringent
bounds on the coloron mass from LHC searches for dijet and ditop production [48] that
impose MG0 & 3TeV are expected to render the resonant G0 contribution to the bb̄ ! ⌧

+
⌧
�

process insignificant for all practical purposes.
In Figure 2 we display an assortment of the virtual O(↵s) contributions that are in-

cluded in our calculation. The three factorisable corrections shown on the left exhibit
UV divergences, which only cancel if both the gluon and coloron contributions are included.
This shows that the coloron contributions are intimately tied to the gluon corrections in
the 4321 model. Notice that besides the interaction terms between the SM fermions and the
coloured gauge bosons (2.7) also factorisable diagrams with vertices involving only coloured
gauge bosons and graphs with Goldstone bosons and ghosts need to be considered if the
computation is performed in the Feynman or any other renormalisable or R⇠ gauge (cf. Ap-
pendix A for details). Last but not least, the process bb̄ ! ⌧

+
⌧
� receives finite contributions

from the non-factorisable box diagram shown on the very right in Figure 2.
Besides QCD corrections to the bb̄ ! ⌧

+
⌧
� process we also study in our article the

potential size of interference effects between the SM background and the singlet vector
LQ signal. We treat these effects at the LO in perturbation theory, which means that
our POWHEG-BOX implementation of DY dilepton production contains the squared matrix
elements built from the SM corrections involving Z-boson or photon exchange in the s-

3
Throughout this article we work in the five-flavour scheme, where charm- and bottom-quarks are

considered as partons in the proton and as such have a corresponding parton distribution function (PDF).

– 5 –
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(FCNCs) with down-type quarks. On the other hand, if
we choose � = ✓c, we work in the up basis in which
down-type FCNCs are induced via CKM elements while
up-type FCNCs are absent.

III. OBSERVABLES

A. Charged Semi-Leptonic Current

We use the charged current effective Hamiltonian

H`⌫
eff =

4GFp
2
VjkĈ

e⌫
jk

⇥
ūj�

µ
PLdk

⇤⇥
ē�µPL⌫e

⇤
, (11)

governing semi-leptonic transitions. The coefficients
Ĉ

e⌫
jk = C

SM
jk +C

e⌫
jk are the sum of the SM and LQ contri-

bution. The normalization is chosen such that we have
in the SM

C
SM
jk = �jk . (12)

Integrating out the LQs, we obtain the following tree-
level matching results

C
e⌫
11 =

�1p
2GF

c�c��✓

Vud
C

(3)
`q ,

C
e⌫
12 =

�1p
2GF

s�c��✓

Vus
C

(3)
`q ,

(13)

where we abbreviated c� ⌘ cos(�), s� = sin(�),
c��✓ ⌘ cos(� � ✓c) and s��✓ ⌘ sin(� � ✓c) and ne-
glected effects related to third generation quarks and
charm quarks, which would result in much weaker limits
than the bounds to be discussed now.

The d ! ue⌫̄e transitions contribute to beta decays
where the measured CKM element V

�
ud (extracted from

experiment using the SM hypothesis) is related to the
unitary CKM matrix V

L
ud of the Lagrangian (including

NP effects)

V
�
ud = V

L
ud

�
1 + C

e⌫e
11

�
. (14)

The element V
L
ud can then be converted to V

L
us applying

unitarity

��V L
us

�� =
q

1�
��V L

ud

��2 �
��V L

ub

��2 . (15)

We find

V
L
us ⇡ V

�
us +

|V �
ud|2

|V �
us|2

C
e⌫e
11 . (16)

V
�
ub is most precisely determined from super-allowed beta

decays. Following Ref. [160] we have

V
�
us = 0.2281(7) , V

�
us|NNC = 0.2280(14) , (17)

where the latter value contains the “new nuclear correc-
tions” (NNCs) proposed by Refs. [171, 172]. Since at the

moment the issue of the NNCs is not settled, we will
quote results for both determinations. This value of V �

us
can now be compared to Vus from two and three body
kaon [173] and tau decays [174]

V
Kµ3
us = 0.22345(67) , V

Ke3
us = 0.22320(61) ,

V
Kµ2
us = 0.22534(42) , V

⌧
us = 0.2195(19) ,

(18)

which are significantly lower2. This disagreement consti-
tutes the so-called Cabibbo angle anomaly.

Besides �-decays, tests of LFU in pion and Kaon de-
cays, defined at the amplitude level and normalized to
unity in the SM, result in

⇡ ! µ⌫

⇡ ! e⌫
⇡ 1� C

e⌫e
11

Vud
,

K ! (⇡)µ⌫

K ! (⇡)e⌫
⇡ 1� C12

Vus
.

(19)

This has to be compared to

K ! ⇡µ⌫

K ! ⇡e⌫

����
exp

= 1.0010± 0.0025 ,

K ! µ⌫

K ! e⌫

����
exp

= 0.9978(18) ,

⇡ ! µ⌫

⇡ ! e⌫

����
exp

= 1.0010(9) ,

(20)

from Ref. [176], Refs. [177–179] and Refs. [179–182], re-
spectively. Numerically, C

e⌫e
11 ⇡ �0.001 would signifi-

cantly improve the agreement with data. Note that ef-
fects in charged current D decays are not very constrain-
ing [183].

B. Tree-Level Neutral Current

Chiral quark-electron interactions can be constrained
from atomic parity violation experiments like APV [184,
185] and from the weak charge of the proton as measured
by QWEAK [186, 187]. The relevant effective Lagrangian
reads

Lee
eff =

GFp
2

X

q=u,d

Ĉ1q

⇥
q̄�

µ
q
⇤⇥
ē�µ�5e

⇤
, (21)

where Ĉ1q = C
SM
1q + C1q with C

SM
1u = �0.1887 and

C
SM
1d = 0.3419. Again we can express the Wilson coeffi-

2
During finalization of this article, Ref. [175] obtained a value of

|Vud|2 = 0.94805(26) which even slightly increases the disagree-

ment with Vus.
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ē�µPL⌫e

⇤
, (11)

governing semi-leptonic transitions. The coefficients
Ĉ
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11 ⇡ �0.001 would signifi-

cantly improve the agreement with data. Note that ef-
fects in charged current D decays are not very constrain-
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Chiral quark-electron interactions can be constrained
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Ĉ

e⌫
jk = C

SM
jk +C

e⌫
jk are the sum of the SM and LQ contri-

bution. The normalization is chosen such that we have
in the SM

C
SM
jk = �jk . (12)

Integrating out the LQs, we obtain the following tree-
level matching results

C
e⌫
11 =

�1p
2GF

c�c��✓

Vud
C

(3)
`q ,

C
e⌫
12 =

�1p
2GF

s�c��✓

Vus
C

(3)
`q ,

(13)

where we abbreviated c� ⌘ cos(�), s� = sin(�),
c��✓ ⌘ cos(� � ✓c) and s��✓ ⌘ sin(� � ✓c) and ne-
glected effects related to third generation quarks and
charm quarks, which would result in much weaker limits
than the bounds to be discussed now.

The d ! ue⌫̄e transitions contribute to beta decays
where the measured CKM element V

�
ud (extracted from

experiment using the SM hypothesis) is related to the
unitary CKM matrix V

L
ud of the Lagrangian (including

NP effects)

V
�
ud = V

L
ud

�
1 + C

e⌫e
11

�
. (14)

The element V
L
ud can then be converted to V

L
us applying

unitarity

��V L
us

�� =
q

1�
��V L

ud

��2 �
��V L

ub

��2 . (15)

We find

V
L
us ⇡ V

�
us +

|V �
ud|2

|V �
us|2

C
e⌫e
11 . (16)

V
�
ub is most precisely determined from super-allowed beta

decays. Following Ref. [160] we have

V
�
us = 0.2281(7) , V

�
us|NNC = 0.2280(14) , (17)

where the latter value contains the “new nuclear correc-
tions” (NNCs) proposed by Refs. [171, 172]. Since at the

moment the issue of the NNCs is not settled, we will
quote results for both determinations. This value of V �

us
can now be compared to Vus from two and three body
kaon [173] and tau decays [174]

V
Kµ3
us = 0.22345(67) , V

Ke3
us = 0.22320(61) ,

V
Kµ2
us = 0.22534(42) , V

⌧
us = 0.2195(19) ,

(18)

which are significantly lower2. This disagreement consti-
tutes the so-called Cabibbo angle anomaly.

Besides �-decays, tests of LFU in pion and Kaon de-
cays, defined at the amplitude level and normalized to
unity in the SM, result in

⇡ ! µ⌫

⇡ ! e⌫
⇡ 1� C

e⌫e
11

Vud
,

K ! (⇡)µ⌫

K ! (⇡)e⌫
⇡ 1� C12

Vus
.

(19)

This has to be compared to

K ! ⇡µ⌫

K ! ⇡e⌫

����
exp

= 1.0010± 0.0025 ,

K ! µ⌫

K ! e⌫

����
exp

= 0.9978(18) ,

⇡ ! µ⌫

⇡ ! e⌫

����
exp

= 1.0010(9) ,

(20)

from Ref. [176], Refs. [177–179] and Refs. [179–182], re-
spectively. Numerically, C

e⌫e
11 ⇡ �0.001 would signifi-

cantly improve the agreement with data. Note that ef-
fects in charged current D decays are not very constrain-
ing [183].

B. Tree-Level Neutral Current

Chiral quark-electron interactions can be constrained
from atomic parity violation experiments like APV [184,
185] and from the weak charge of the proton as measured
by QWEAK [186, 187]. The relevant effective Lagrangian
reads

Lee
eff =

GFp
2

X

q=u,d
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e⌫
jk

⇥
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ē�µ�5e

⇤
, (21)

where Ĉ1q = C
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ē�µPL⌫e

⇤
, (11)

governing semi-leptonic transitions. The coefficients
Ĉ
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where the latter value contains the “new nuclear correc-
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moment the issue of the NNCs is not settled, we will
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with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in

0.960 0.965 0.970 0.975
0.220

0.222

0.224

0.226

0.228

Vud

V u
s

Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-

2

Source: ArXiv:2208.11707 (V. Cirigliano, 
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with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in
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Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in
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Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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(FCNCs) with down-type quarks. On the other hand, if
we choose � = ✓c, we work in the up basis in which
down-type FCNCs are induced via CKM elements while
up-type FCNCs are absent.

III. OBSERVABLES

A. Charged Semi-Leptonic Current

We use the charged current effective Hamiltonian

H`⌫
eff =

4GFp
2
VjkĈ

e⌫
jk

⇥
ūj�

µ
PLdk

⇤⇥
ē�µPL⌫e

⇤
, (11)

governing semi-leptonic transitions. The coefficients
Ĉ

e⌫
jk = C

SM
jk +C

e⌫
jk are the sum of the SM and LQ contri-

bution. The normalization is chosen such that we have
in the SM

C
SM
jk = �jk . (12)

Integrating out the LQs, we obtain the following tree-
level matching results

C
e⌫
11 =

�1p
2GF

c�c��✓

Vud
C

(3)
`q ,

C
e⌫
12 =

�1p
2GF

s�c��✓

Vus
C

(3)
`q ,

(13)

where we abbreviated c� ⌘ cos(�), s� = sin(�),
c��✓ ⌘ cos(� � ✓c) and s��✓ ⌘ sin(� � ✓c) and ne-
glected effects related to third generation quarks and
charm quarks, which would result in much weaker limits
than the bounds to be discussed now.

The d ! ue⌫̄e transitions contribute to beta decays
where the measured CKM element V

�
ud (extracted from

experiment using the SM hypothesis) is related to the
unitary CKM matrix V

L
ud of the Lagrangian (including

NP effects)

V
�
ud = V

L
ud

�
1 + C

e⌫e
11

�
. (14)

The element V
L
ud can then be converted to V

L
us applying

unitarity

��V L
us

�� =
q

1�
��V L

ud

��2 �
��V L

ub

��2 . (15)

We find

V
L
us ⇡ V

�
us +

|V �
ud|2

|V �
us|2

C
e⌫e
11 . (16)

V
�
ub is most precisely determined from super-allowed beta

decays. Following Ref. [160] we have

V
�
us = 0.2281(7) , V

�
us|NNC = 0.2280(14) , (17)

where the latter value contains the “new nuclear correc-
tions” (NNCs) proposed by Refs. [171, 172]. Since at the

moment the issue of the NNCs is not settled, we will
quote results for both determinations. This value of V �

us
can now be compared to Vus from two and three body
kaon [173] and tau decays [174]

V
Kµ3
us = 0.22345(67) , V

Ke3
us = 0.22320(61) ,

V
Kµ2
us = 0.22534(42) , V

⌧
us = 0.2195(19) ,

(18)

which are significantly lower2. This disagreement consti-
tutes the so-called Cabibbo angle anomaly.

Besides �-decays, tests of LFU in pion and Kaon de-
cays, defined at the amplitude level and normalized to
unity in the SM, result in

⇡ ! µ⌫

⇡ ! e⌫
⇡ 1� C

e⌫e
11

Vud
,

K ! (⇡)µ⌫

K ! (⇡)e⌫
⇡ 1� C12

Vus
.

(19)

This has to be compared to

K ! ⇡µ⌫

K ! ⇡e⌫

����
exp

= 1.0010± 0.0025 ,

K ! µ⌫

K ! e⌫

����
exp

= 0.9978(18) ,

⇡ ! µ⌫

⇡ ! e⌫

����
exp

= 1.0010(9) ,

(20)

from Ref. [176], Refs. [177–179] and Refs. [179–182], re-
spectively. Numerically, C

e⌫e
11 ⇡ �0.001 would signifi-

cantly improve the agreement with data. Note that ef-
fects in charged current D decays are not very constrain-
ing [183].

B. Tree-Level Neutral Current

Chiral quark-electron interactions can be constrained
from atomic parity violation experiments like APV [184,
185] and from the weak charge of the proton as measured
by QWEAK [186, 187]. The relevant effective Lagrangian
reads

Lee
eff =

GFp
2

X

q=u,d

Ĉ1q

⇥
q̄�

µ
q
⇤⇥
ē�µ�5e

⇤
, (21)

where Ĉ1q = C
SM
1q + C1q with C

SM
1u = �0.1887 and

C
SM
1d = 0.3419. Again we can express the Wilson coeffi-

2
During finalization of this article, Ref. [175] obtained a value of

|Vud|2 = 0.94805(26) which even slightly increases the disagree-

ment with Vus.
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with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in
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Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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(FCNCs) with down-type quarks. On the other hand, if
we choose � = ✓c, we work in the up basis in which
down-type FCNCs are induced via CKM elements while
up-type FCNCs are absent.

III. OBSERVABLES

A. Charged Semi-Leptonic Current

We use the charged current effective Hamiltonian

H`⌫
eff =

4GFp
2
VjkĈ

e⌫
jk

⇥
ūj�

µ
PLdk

⇤⇥
ē�µPL⌫e

⇤
, (11)

governing semi-leptonic transitions. The coefficients
Ĉ

e⌫
jk = C

SM
jk +C

e⌫
jk are the sum of the SM and LQ contri-

bution. The normalization is chosen such that we have
in the SM

C
SM
jk = �jk . (12)

Integrating out the LQs, we obtain the following tree-
level matching results

C
e⌫
11 =

�1p
2GF

c�c��✓

Vud
C

(3)
`q ,

C
e⌫
12 =

�1p
2GF

s�c��✓

Vus
C

(3)
`q ,

(13)

where we abbreviated c� ⌘ cos(�), s� = sin(�),
c��✓ ⌘ cos(� � ✓c) and s��✓ ⌘ sin(� � ✓c) and ne-
glected effects related to third generation quarks and
charm quarks, which would result in much weaker limits
than the bounds to be discussed now.

The d ! ue⌫̄e transitions contribute to beta decays
where the measured CKM element V

�
ud (extracted from

experiment using the SM hypothesis) is related to the
unitary CKM matrix V

L
ud of the Lagrangian (including

NP effects)

V
�
ud = V

L
ud

�
1 + C

e⌫e
11

�
. (14)

The element V
L
ud can then be converted to V

L
us applying

unitarity

��V L
us

�� =
q

1�
��V L

ud

��2 �
��V L

ub

��2 . (15)

We find

V
L
us ⇡ V

�
us +

|V �
ud|2

|V �
us|2

C
e⌫e
11 . (16)

V
�
ub is most precisely determined from super-allowed beta

decays. Following Ref. [160] we have

V
�
us = 0.2281(7) , V

�
us|NNC = 0.2280(14) , (17)

where the latter value contains the “new nuclear correc-
tions” (NNCs) proposed by Refs. [171, 172]. Since at the

moment the issue of the NNCs is not settled, we will
quote results for both determinations. This value of V �

us
can now be compared to Vus from two and three body
kaon [173] and tau decays [174]

V
Kµ3
us = 0.22345(67) , V

Ke3
us = 0.22320(61) ,

V
Kµ2
us = 0.22534(42) , V

⌧
us = 0.2195(19) ,

(18)

which are significantly lower2. This disagreement consti-
tutes the so-called Cabibbo angle anomaly.

Besides �-decays, tests of LFU in pion and Kaon de-
cays, defined at the amplitude level and normalized to
unity in the SM, result in

⇡ ! µ⌫

⇡ ! e⌫
⇡ 1� C

e⌫e
11

Vud
,

K ! (⇡)µ⌫

K ! (⇡)e⌫
⇡ 1� C12

Vus
.

(19)

This has to be compared to

K ! ⇡µ⌫

K ! ⇡e⌫

����
exp

= 1.0010± 0.0025 ,

K ! µ⌫

K ! e⌫

����
exp

= 0.9978(18) ,

⇡ ! µ⌫

⇡ ! e⌫

����
exp

= 1.0010(9) ,

(20)

from Ref. [176], Refs. [177–179] and Refs. [179–182], re-
spectively. Numerically, C

e⌫e
11 ⇡ �0.001 would signifi-

cantly improve the agreement with data. Note that ef-
fects in charged current D decays are not very constrain-
ing [183].

B. Tree-Level Neutral Current

Chiral quark-electron interactions can be constrained
from atomic parity violation experiments like APV [184,
185] and from the weak charge of the proton as measured
by QWEAK [186, 187]. The relevant effective Lagrangian
reads

Lee
eff =

GFp
2

X

q=u,d

Ĉ1q

⇥
q̄�

µ
q
⇤⇥
ē�µ�5e

⇤
, (21)

where Ĉ1q = C
SM
1q + C1q with C

SM
1u = �0.1887 and

C
SM
1d = 0.3419. Again we can express the Wilson coeffi-

2
During finalization of this article, Ref. [175] obtained a value of

|Vud|2 = 0.94805(26) which even slightly increases the disagree-

ment with Vus.

needed

Constraints from 
Drell-Yan spectrum.
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with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in
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s

Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-

2

Source: ArXiv:2208.11707 (V. Cirigliano, 

A. Crivellin, M. Hoferichter, M. Moulson)
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(FCNCs) with down-type quarks. On the other hand, if
we choose � = ✓c, we work in the up basis in which
down-type FCNCs are induced via CKM elements while
up-type FCNCs are absent.

III. OBSERVABLES

A. Charged Semi-Leptonic Current

We use the charged current effective Hamiltonian

H`⌫
eff =

4GFp
2
VjkĈ

e⌫
jk

⇥
ūj�

µ
PLdk

⇤⇥
ē�µPL⌫e

⇤
, (11)

governing semi-leptonic transitions. The coefficients
Ĉ

e⌫
jk = C

SM
jk +C

e⌫
jk are the sum of the SM and LQ contri-

bution. The normalization is chosen such that we have
in the SM

C
SM
jk = �jk . (12)

Integrating out the LQs, we obtain the following tree-
level matching results

C
e⌫
11 =

�1p
2GF

c�c��✓

Vud
C

(3)
`q ,

C
e⌫
12 =

�1p
2GF

s�c��✓

Vus
C

(3)
`q ,

(13)

where we abbreviated c� ⌘ cos(�), s� = sin(�),
c��✓ ⌘ cos(� � ✓c) and s��✓ ⌘ sin(� � ✓c) and ne-
glected effects related to third generation quarks and
charm quarks, which would result in much weaker limits
than the bounds to be discussed now.

The d ! ue⌫̄e transitions contribute to beta decays
where the measured CKM element V

�
ud (extracted from

experiment using the SM hypothesis) is related to the
unitary CKM matrix V

L
ud of the Lagrangian (including

NP effects)

V
�
ud = V

L
ud

�
1 + C

e⌫e
11

�
. (14)

The element V
L
ud can then be converted to V

L
us applying

unitarity

��V L
us

�� =
q

1�
��V L

ud

��2 �
��V L

ub

��2 . (15)

We find

V
L
us ⇡ V

�
us +

|V �
ud|2

|V �
us|2

C
e⌫e
11 . (16)

V
�
ub is most precisely determined from super-allowed beta

decays. Following Ref. [160] we have

V
�
us = 0.2281(7) , V

�
us|NNC = 0.2280(14) , (17)

where the latter value contains the “new nuclear correc-
tions” (NNCs) proposed by Refs. [171, 172]. Since at the

moment the issue of the NNCs is not settled, we will
quote results for both determinations. This value of V �

us
can now be compared to Vus from two and three body
kaon [173] and tau decays [174]

V
Kµ3
us = 0.22345(67) , V

Ke3
us = 0.22320(61) ,

V
Kµ2
us = 0.22534(42) , V

⌧
us = 0.2195(19) ,

(18)

which are significantly lower2. This disagreement consti-
tutes the so-called Cabibbo angle anomaly.

Besides �-decays, tests of LFU in pion and Kaon de-
cays, defined at the amplitude level and normalized to
unity in the SM, result in

⇡ ! µ⌫

⇡ ! e⌫
⇡ 1� C

e⌫e
11

Vud
,

K ! (⇡)µ⌫

K ! (⇡)e⌫
⇡ 1� C12

Vus
.

(19)

This has to be compared to

K ! ⇡µ⌫

K ! ⇡e⌫

����
exp

= 1.0010± 0.0025 ,

K ! µ⌫

K ! e⌫

����
exp

= 0.9978(18) ,

⇡ ! µ⌫

⇡ ! e⌫

����
exp

= 1.0010(9) ,

(20)

from Ref. [176], Refs. [177–179] and Refs. [179–182], re-
spectively. Numerically, C

e⌫e
11 ⇡ �0.001 would signifi-

cantly improve the agreement with data. Note that ef-
fects in charged current D decays are not very constrain-
ing [183].

B. Tree-Level Neutral Current

Chiral quark-electron interactions can be constrained
from atomic parity violation experiments like APV [184,
185] and from the weak charge of the proton as measured
by QWEAK [186, 187]. The relevant effective Lagrangian
reads

Lee
eff =

GFp
2

X

q=u,d

Ĉ1q

⇥
q̄�

µ
q
⇤⇥
ē�µ�5e

⇤
, (21)

where Ĉ1q = C
SM
1q + C1q with C

SM
1u = �0.1887 and

C
SM
1d = 0.3419. Again we can express the Wilson coeffi-

2
During finalization of this article, Ref. [175] obtained a value of

|Vud|2 = 0.94805(26) which even slightly increases the disagree-

ment with Vus.

needed

Constraints from 
Drell-Yan spectrum.

Constraints from 
meson mixing. 
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with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in
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Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-

2
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(FCNCs) with down-type quarks. On the other hand, if
we choose � = ✓c, we work in the up basis in which
down-type FCNCs are induced via CKM elements while
up-type FCNCs are absent.

III. OBSERVABLES

A. Charged Semi-Leptonic Current

We use the charged current effective Hamiltonian

H`⌫
eff =

4GFp
2
VjkĈ

e⌫
jk

⇥
ūj�

µ
PLdk

⇤⇥
ē�µPL⌫e

⇤
, (11)

governing semi-leptonic transitions. The coefficients
Ĉ

e⌫
jk = C

SM
jk +C

e⌫
jk are the sum of the SM and LQ contri-

bution. The normalization is chosen such that we have
in the SM

C
SM
jk = �jk . (12)

Integrating out the LQs, we obtain the following tree-
level matching results

C
e⌫
11 =

�1p
2GF

c�c��✓

Vud
C

(3)
`q ,

C
e⌫
12 =

�1p
2GF

s�c��✓

Vus
C

(3)
`q ,

(13)

where we abbreviated c� ⌘ cos(�), s� = sin(�),
c��✓ ⌘ cos(� � ✓c) and s��✓ ⌘ sin(� � ✓c) and ne-
glected effects related to third generation quarks and
charm quarks, which would result in much weaker limits
than the bounds to be discussed now.

The d ! ue⌫̄e transitions contribute to beta decays
where the measured CKM element V

�
ud (extracted from

experiment using the SM hypothesis) is related to the
unitary CKM matrix V

L
ud of the Lagrangian (including

NP effects)

V
�
ud = V

L
ud

�
1 + C

e⌫e
11

�
. (14)

The element V
L
ud can then be converted to V

L
us applying

unitarity

��V L
us

�� =
q

1�
��V L

ud

��2 �
��V L

ub

��2 . (15)

We find

V
L
us ⇡ V

�
us +

|V �
ud|2

|V �
us|2

C
e⌫e
11 . (16)

V
�
ub is most precisely determined from super-allowed beta

decays. Following Ref. [160] we have

V
�
us = 0.2281(7) , V

�
us|NNC = 0.2280(14) , (17)

where the latter value contains the “new nuclear correc-
tions” (NNCs) proposed by Refs. [171, 172]. Since at the

moment the issue of the NNCs is not settled, we will
quote results for both determinations. This value of V �

us
can now be compared to Vus from two and three body
kaon [173] and tau decays [174]

V
Kµ3
us = 0.22345(67) , V

Ke3
us = 0.22320(61) ,

V
Kµ2
us = 0.22534(42) , V

⌧
us = 0.2195(19) ,

(18)

which are significantly lower2. This disagreement consti-
tutes the so-called Cabibbo angle anomaly.

Besides �-decays, tests of LFU in pion and Kaon de-
cays, defined at the amplitude level and normalized to
unity in the SM, result in

⇡ ! µ⌫

⇡ ! e⌫
⇡ 1� C

e⌫e
11

Vud
,

K ! (⇡)µ⌫

K ! (⇡)e⌫
⇡ 1� C12

Vus
.

(19)

This has to be compared to

K ! ⇡µ⌫

K ! ⇡e⌫

����
exp

= 1.0010± 0.0025 ,

K ! µ⌫

K ! e⌫

����
exp

= 0.9978(18) ,

⇡ ! µ⌫

⇡ ! e⌫

����
exp

= 1.0010(9) ,

(20)

from Ref. [176], Refs. [177–179] and Refs. [179–182], re-
spectively. Numerically, C

e⌫e
11 ⇡ �0.001 would signifi-

cantly improve the agreement with data. Note that ef-
fects in charged current D decays are not very constrain-
ing [183].

B. Tree-Level Neutral Current

Chiral quark-electron interactions can be constrained
from atomic parity violation experiments like APV [184,
185] and from the weak charge of the proton as measured
by QWEAK [186, 187]. The relevant effective Lagrangian
reads

Lee
eff =

GFp
2

X

q=u,d

Ĉ1q

⇥
q̄�

µ
q
⇤⇥
ē�µ�5e

⇤
, (21)

where Ĉ1q = C
SM
1q + C1q with C

SM
1u = �0.1887 and

C
SM
1d = 0.3419. Again we can express the Wilson coeffi-

2
During finalization of this article, Ref. [175] obtained a value of

|Vud|2 = 0.94805(26) which even slightly increases the disagree-

ment with Vus.

needed

 excluded!→ Constraints from 
Drell-Yan spectrum.

Constraints from 
meson mixing. 

https://arxiv.org/pdf/2101.07811.pdf
https://arxiv.org/pdf/2208.11707.pdf
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3 Observables

In this section we summarize the observables relevant for constraining our simplified models.

3.1 Parity-Violating Electron Scattering

Limits on NP couplings to electrons and first-generation quarks can be extracted from data
on PVES off the proton and off nuclei. In this subsection, we review the corresponding
theoretical expressions, the constraints that are currently available, and future prospects.

3.1.1 Low-Energy Scattering

Interference between electromagnetic and weak scattering amplitudes leads to a PV asym-
metry A

N
e that can be measured with a longitudinally polarized electron beam incident on

an unpolarized nucleon target

A
N
e =

�
+ � �

�

�+ + �� =
tGF

4⇡↵
p

2

A
N
V (t) + A

N
A (t)

✏
⇥
G

N
E (t)

⇤2
+ ⌘

⇥
G

N
M (t)

⇤2 , (3.1)

where �
± represents the cross section of the helicity-dependent elastic scattering, t = �Q

2

the four-momentum transfer squared, and the kinematic quantities are defined as

⌘ =
�t

4m
2
N

, ✏
�1 = 1 + 2(1 + ⌘) tan2 ✓

2
, ✏

0 =
p

⌘(1 + ⌘)
p

1 � ✏2, (3.2)
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• PV asymmetry: 

•  experiment:  Qweak

Ref. [98]) for the dipole scale in G
3
A(t), and estimating the axial-vector couplings as g

u,p
A +

g
d,p
A = 0.40(5), g

s,N
A = �0.05(5) [99–101], we extract from Eq. (3.13)

Q
p
w = 0.0704(47), (3.15)

where we have followed the same prescription for the energy-dependent part of the �Z box
correction [92, 102–105] as in Ref. [91]. This value is perfectly in line both with the Qweak-
only result from Ref. [91], Q

p
w = 0.0706(47), and the combination with other PVES data,

Q
p
w = 0.0719(45). In our analysis, we will retain the complete master formula (3.9), as

the subleading terms produce some sensitivity to combinations of Wilson coefficients other
than those contained in Q

p
w.

The uncertainty is currently dominated by experiment, with theory uncertainties esti-
mated in Ref. [91] at the level of 4.5 ⇥ 10�9 when expressed in terms of A

p
e. In the future,

the measurement of Q
p
w will improve considerably by the forthcoming high-precision P2

experiment at the MESA accelerator in Mainz [106]. Conducting the experiment at lower
momentum transfer (hQ2i = 0.006 GeV2, h✓i = 35�) to reduce the size of the �Z box cor-
rections, P2 aims to measure the proton weak charge with a relative precision of 1.83%, a
more than three-fold improvement over Qweak. At this level of precision also theory input
requires further scrutiny, see the discussion in Ref. [106], including the role of G

u,d
E/M (t) and

further long-range corrections [107, 108], such as PV �� boxes involving a nucleon anapole
moment (called “many-quark” contribution in Refs. [95, 96]). With a dedicated backward-
angle measurement planned to constrain the latter, the remaining uncertainty from nucleon
form factors is projected more than a factor of two below the experimental uncertainties.

Finally, PVES scattering can also be measured off nuclei, but so far results are restricted
to 208Pb [109, 110]. Future plans include 48Ca [111] and 12C [106], but in both cases
the major motivation concerns the presently poorly understood neutron distribution in
the nucleus, in such a way that it is unlikely that meaningful constraints on NP can be
extracted from PVES off nuclei alone. However, in a similar way CE⌫NS is also sensitive
to a combination of NP couplings and nuclear structure (see Sec. 3.2), so that improved
NP constraints are expected from a combined analysis of both classes of measurements.

3.1.2 Atomic Parity Violation

Apart from the very challenging measurements of PVES off nuclei at low momentum trans-
fer, nuclear weak charges can also be accessed in APV, exploiting asymmetry amplification
by stimulated emission in a highly forbidden atomic transition. Experimentally, the ratio
of the PV amplitude over the Stark vector transition polarizability � is measured (with
the most precise results currently available for 133Cs [112, 113]), which then needs to be
combined with atomic-theory calculations and independent input for �. The latter can
be determined semi-empirically either via a measurement together with another hyperfine
amplitude [114, 115] or the scalar polarizability [116–118], leading to the recommendation
� = 27.064(25)exp(21)tha3

B [88] in units of the Bohr radius aB, but the uncertainty of this
average does not include an error inflation to account for the 2.7� tension between the
two methods. Similarly, the coefficient of the atomic structure calculation has been under

– 10 –
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Ref. [98]) for the dipole scale in G
3
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A +
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A = 0.40(5), g
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A = �0.05(5) [99–101], we extract from Eq. (3.13)

Q
p
w = 0.0704(47), (3.15)

where we have followed the same prescription for the energy-dependent part of the �Z box
correction [92, 102–105] as in Ref. [91]. This value is perfectly in line both with the Qweak-
only result from Ref. [91], Q
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w = 0.0706(47), and the combination with other PVES data,
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p
w = 0.0719(45). In our analysis, we will retain the complete master formula (3.9), as
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than those contained in Q
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The uncertainty is currently dominated by experiment, with theory uncertainties esti-
mated in Ref. [91] at the level of 4.5 ⇥ 10�9 when expressed in terms of A
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the nucleus, in such a way that it is unlikely that meaningful constraints on NP can be
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to a combination of NP couplings and nuclear structure (see Sec. 3.2), so that improved
NP constraints are expected from a combined analysis of both classes of measurements.
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amplitude [114, 115] or the scalar polarizability [116–118], leading to the recommendation
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where we have followed the same prescription for the energy-dependent part of the �Z box
correction [92, 102–105] as in Ref. [91]. This value is perfectly in line both with the Qweak-
only result from Ref. [91], Q

p
w = 0.0706(47), and the combination with other PVES data,

Q
p
w = 0.0719(45). In our analysis, we will retain the complete master formula (3.9), as

the subleading terms produce some sensitivity to combinations of Wilson coefficients other
than those contained in Q

p
w.

The uncertainty is currently dominated by experiment, with theory uncertainties esti-
mated in Ref. [91] at the level of 4.5 ⇥ 10�9 when expressed in terms of A

p
e. In the future,

the measurement of Q
p
w will improve considerably by the forthcoming high-precision P2

experiment at the MESA accelerator in Mainz [106]. Conducting the experiment at lower
momentum transfer (hQ2i = 0.006 GeV2, h✓i = 35�) to reduce the size of the �Z box cor-
rections, P2 aims to measure the proton weak charge with a relative precision of 1.83%, a
more than three-fold improvement over Qweak. At this level of precision also theory input
requires further scrutiny, see the discussion in Ref. [106], including the role of G

u,d
E/M (t) and

further long-range corrections [107, 108], such as PV �� boxes involving a nucleon anapole
moment (called “many-quark” contribution in Refs. [95, 96]). With a dedicated backward-
angle measurement planned to constrain the latter, the remaining uncertainty from nucleon
form factors is projected more than a factor of two below the experimental uncertainties.

Finally, PVES scattering can also be measured off nuclei, but so far results are restricted
to 208Pb [109, 110]. Future plans include 48Ca [111] and 12C [106], but in both cases
the major motivation concerns the presently poorly understood neutron distribution in
the nucleus, in such a way that it is unlikely that meaningful constraints on NP can be
extracted from PVES off nuclei alone. However, in a similar way CE⌫NS is also sensitive
to a combination of NP couplings and nuclear structure (see Sec. 3.2), so that improved
NP constraints are expected from a combined analysis of both classes of measurements.

3.1.2 Atomic Parity Violation

Apart from the very challenging measurements of PVES off nuclei at low momentum trans-
fer, nuclear weak charges can also be accessed in APV, exploiting asymmetry amplification
by stimulated emission in a highly forbidden atomic transition. Experimentally, the ratio
of the PV amplitude over the Stark vector transition polarizability � is measured (with
the most precise results currently available for 133Cs [112, 113]), which then needs to be
combined with atomic-theory calculations and independent input for �. The latter can
be determined semi-empirically either via a measurement together with another hyperfine
amplitude [114, 115] or the scalar polarizability [116–118], leading to the recommendation
� = 27.064(25)exp(21)tha3

B [88] in units of the Bohr radius aB, but the uncertainty of this
average does not include an error inflation to account for the 2.7� tension between the
two methods. Similarly, the coefficient of the atomic structure calculation has been under
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Measurement of the parity violating 6S-7S transition amplitude in cesium achieved
within 2× 10−13 atomic-unit accuracy by stimulated-emission detection

J. Guéna, M. Lintz and M.A. Bouchiat
Laboratoire Kastler Brossel and Fédération de Recherche
Département de Physique de l’Ecole Normale Supérieure,

24 Rue Lhomond, F-75231 Paris Cedex 05, France
(Dated: December 9, 2004)

We exploit the process of asymmetry amplification by stimulated emission which provides an
original method for parity violation (PV) measurements in a highly forbidden atomic transition.
The method involves measurements of a chiral, transient, optical gain of a cesium vapor on the
7S − 6P3/2 transition, probed after it is excited by an intense, linearly polarized, collinear laser,
tuned to resonance for one hyperfine line of the forbidden 6S-7S transition in a longitudinal electric
field. We report here a 3.5 fold increase, of the one-second-measurement sensitivity, and subsequent
reduction by a factor of 3.5 of the statistical accuracy compared with our previous result [J. Guéna
et al., Phys. Rev. Lett. 90, 143001 (2003)]. Decisive improvements to the set-up include an
increased repetition rate, better extinction of the probe beam at the end of the probe pulse and,
for the first time to our knowledge, the following: a polarization-tilt magnifier, quasi-suppression
of beam reflections at the cell windows, and a Cs cell with electrically conductive windows. We
also present real-time tests of systematic effects, consistency checks on the data, as well as a 1%
accurate measurement of the electric field seen by the atoms, from atomic signals. PV measurements
performed in seven different vapor cells agree within the statistical error. Our present result is
compatible with the more precise Boulder result within our present relative statistical accuracy of
2.6%, corresponding to a 2 × 10−13 atomic-unit uncertainty in Epv

1 . Theoretical motivations for
further measurements are emphasized and we give a brief overview of a recent proposal that would
allow the uncertainty to be reduced to the 0.1% level by creating conditions where asymmetry
amplification is much greater.

PACS numbers: 32.80.Ys, 11.30.Er, 33.55.Be, 42.50.Gy

I. INTRODUCTION: GOAL OF THE
EXPERIMENT

Parity Violation (PV) in stable atoms is a manifesta-
tion of the weak interaction involving the exchange of
a neutral vector boson Z0 between the electron and the
nucleus. It shows up in high precision measurements test-
ing the symmetry properties of the process of optical ab-
sorption, hence in conditions very different from those of
high energy experiments [1, 2]. However, the effects in
stable atoms are so small that their detection requires
the choice of very peculiar conditions: i.e. the use of a
heavy atom because of the Z3 enhancement factor, and
a highly forbidden transition to avoid the electromag-
netic interaction completely overwhelming the weak in-
teraction. This explains why we first selected the highly
forbidden 6S → 7S transition of atomic cesium [3] at
539 nm. In the s-orbitals the valence electron penetrat-
ing close to the nucleus, just where the short-range weak
interaction can be felt, is accelerated in the Coulomb
potential associated with the nuclear charge Ze, with
a strength reinforced by relativistic effects. Therefore,
electron-nucleus momentum transfers of 1 MeV/c can oc-
cur, even though the atoms are irradiated by photons of
only 2.3 eV.
In absence of any applied electric field, the 6S-7S tran-

sition electric-dipole amplitude is strictly forbidden by
the laws of electromagnetism. We measure the contri-
bution which arises from the weak interaction, Epv

1 . Its

order of magnitude is 0.8 × 10−11 in atomic units, ea0,
instead of ∼ 1 for usual allowed transitions in atoms. We
compare it with the 6S-7S transition electric-dipole am-
plitude induced by an applied electric field, βE. These
measurements can be used to extract the weak charge
Qexp

W of the cesium nucleus via an atomic physics calcula-
tion, for comparison with the theoretical prediction Qth

W
of the Standard Model (SM) of electroweak unification
theory. Thanks to the relative simplicity of the atomic
structure of cesium having a single valence electron, this
calculation is reliable and, owing to recent progress, its
accuracy has now reached 0.5% [4, 5, 6, 7]. Moreover, if
the measurements are performed on two different hyper-
fine components, the results can provide a determination
of the nuclear anapole moment [1, 8].

The first measurements of Epv
1 in cesium were per-

formed by our own group [9]. They were followed by
calibrated [10], more precise ones (0.5%), achieved by
the Boulder group [11, 12]. Today, the latter imply
no significant deviation of Qexp

W with respect to the SM
prediction [7]. By contrast, the reported value of the
nuclear anapole moment presents serious discrepancies
compared with other manifestations of parity violating
nuclear forces [7, 13]. Our goal is to achieve an indepen-
dent measurement, as precise as possible, by a different
method in order to cross-check the Boulder result. Our
new approach is based on a pump-probe experiment us-
ing two collinear laser beams which operate in pulsed
mode, for detection of the forbidden transition by stim-

debate in the literature [119–124], with Ref. [88] recommending 0.8977(40) from Ref. [124],
which is in 1.7� tension with the more recent 0.8893(27) from Ref. [125]. Finally, despite the
amplified asymmetry in the atomic system, the result is still sensitive to nuclear structure
input, i.e., the neutron distribution in the nucleus. In Ref. [126] the recent PREX-2 mea-
surement [110] of PVES off 208Pb, in combination with a correlation to 133Cs established
based on density-functional methods, was used to improve this aspect of the extraction of
the weak charge of 133Cs [126]

Qw
�
133Cs

�
= �72.94(43), (3.16)

a slight shift from Qw(133Cs) = �72.82(42) [88]. Both values lie about 1.5� below
Qw(133Cs) = �73.71(35) [125], mainly due to the difference in the atomic-structure cal-
culation. Both values agree with the SM prediction [88]

Qw
�
133Cs

�
= �2

h
Z
�
2C

e
1u + C

e
1d + 0.00005

�
+ N

�
C

e
1u + 2C

e
1d + 0.00006

�i✓
1 � ↵

2⇡

◆

= �73.24(5), (3.17)

but the pull goes into the opposite direction. In our analysis, we will use Eq. (3.16), bearing
in mind that the uncertainties might be slightly underestimated.

The above discussion shows that the current 0.6% precision of the weak charge of 133Cs
is becoming limited by theory, indicating that future improvements are difficult in the Cs
system. However, the PV effect is enhanced by another factor of 50 in Ra+ atoms, with a
Ra-based experiment under development at TRIµP [127] and ISOLDE [128]. The projected
gain in sensitivity on s

2
W by a factor of 5 would correspond to a 0.1% measurement of the

weak charge of Ra.

3.1.3 Parity-Violating Deep Inelastic Scattering

PVES can also be studied in deep inelastic reactions, with the master formula [129]

APVDIS =
3GF Q

2

2⇡↵
p

2

2C1u
⇥
1 + RC(x)

⇤
� C1d

⇥
1 + RS(x)

⇤
+ Y3(2C2u � C2d)RV (x)

5 + RS(x) + 4RC(x)
, (3.18)

which depends on various parton distribution functions contained in RC (charm), RS

(strange), RV (valence), as well as a kinematic factor Y3. In contrast to low-energy scatter-
ing, the PVDIS process is also strongly sensitive to the C

e
2q couplings for sufficiently large

Y3. The most precise measurements come from the Jefferson Lab PVDIS collaboration,
who measured PVDIS off a liquid deuterium target for two kinematic settings [129, 130]

A
(1)
PVDIS = 1.156 ⇥ 10�4[(2C

e
1u � C

e
1d) + 0.348(2C

e
2u � C

e
2d)]

= �91.10(3.11)(2.97) ⇥ 10�6
,

A
(2)
PVDIS = 2.022 ⇥ 10�4[(2C

e
1u � C

e
1d) + 0.594(2C

e
2u � C

e
2d)]

= �160.80(6.39)(3.12) ⇥ 10�6
, (3.19)

with corresponding SM predictions A
(1)
PVDIS = �87.7(7)⇥10�6 and A

(2)
PVDIS = �158.9(1.0)⇥

10�6. The SoLID experiment at Jefferson Lab Hall A aims to improve this measurement
up to a 0.8% relative error on APVDIS [131].
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SLQs

Parity-violating electron 
scattering (PVES)

Atomic parity violation 
experiments

Coherent Elastic Neutrino-
Nucleus Scattering (CE NS)ν

• Longitudinally-polarized electron 
beam incident on an unpolarized 
proton target.

SU(3) SU(2)L U(1)Y

N 1 1 0

E 1 1 �1

�1 1 2 �1/2

�3 1 2 �3/2

⌃0 1 3 0

⌃1 1 3 �1

Table 4. Different representations of the VLLs under the SM gauge group.

and at tree level give rise to the Wilson coefficients [71, 84–86]

C
(1)
�` =

�N�
†
N

4M
2
N

�
�E�

†
E

4M
2
E

+
3

16

�
†
⌃0

�⌃0

M
2
⌃0

� 3

16

�
†
⌃1

�⌃1

M
2
⌃1

,

C
(3)
�` = ��N�

⇤
N

4M
2
N

� �E�
⇤
E

4M
2
E

+
1

16

�
†
⌃0

�⌃0

M
2
⌃0

+
1

16

�
†
⌃1

�⌃1

M
2
⌃1

,

C�e =
�
†
�1

��1

2M
2
�1

�
�
†
�3

��3

2M
2
�3

. (2.10)

3 Observables

In this section we summarize the observables relevant for constraining our simplified models.

3.1 Parity-Violating Electron Scattering

Limits on NP couplings to electrons and first-generation quarks can be extracted from data
on PVES off the proton and off nuclei. In this subsection, we review the corresponding
theoretical expressions, the constraints that are currently available, and future prospects.

3.1.1 Low-Energy Scattering

Interference between electromagnetic and weak scattering amplitudes leads to a PV asym-
metry A

N
e that can be measured with a longitudinally polarized electron beam incident on

an unpolarized nucleon target

A
N
e =

�
+ � �

�

�+ + �� =
tGF

4⇡↵
p

2

A
N
V (t) + A

N
A (t)

✏
⇥
G

N
E (t)

⇤2
+ ⌘

⇥
G

N
M (t)

⇤2 , (3.1)

where �
± represents the cross section of the helicity-dependent elastic scattering, t = �Q

2

the four-momentum transfer squared, and the kinematic quantities are defined as

⌘ =
�t

4m
2
N

, ✏
�1 = 1 + 2(1 + ⌘) tan2 ✓

2
, ✏

0 =
p

⌘(1 + ⌘)
p

1 � ✏2, (3.2)

– 7 –

• PV asymmetry: 

•  experiment:  Qweak

Ref. [98]) for the dipole scale in G
3
A(t), and estimating the axial-vector couplings as g

u,p
A +

g
d,p
A = 0.40(5), g

s,N
A = �0.05(5) [99–101], we extract from Eq. (3.13)

Q
p
w = 0.0704(47), (3.15)

where we have followed the same prescription for the energy-dependent part of the �Z box
correction [92, 102–105] as in Ref. [91]. This value is perfectly in line both with the Qweak-
only result from Ref. [91], Q

p
w = 0.0706(47), and the combination with other PVES data,

Q
p
w = 0.0719(45). In our analysis, we will retain the complete master formula (3.9), as

the subleading terms produce some sensitivity to combinations of Wilson coefficients other
than those contained in Q

p
w.

The uncertainty is currently dominated by experiment, with theory uncertainties esti-
mated in Ref. [91] at the level of 4.5 ⇥ 10�9 when expressed in terms of A

p
e. In the future,

the measurement of Q
p
w will improve considerably by the forthcoming high-precision P2

experiment at the MESA accelerator in Mainz [106]. Conducting the experiment at lower
momentum transfer (hQ2i = 0.006 GeV2, h✓i = 35�) to reduce the size of the �Z box cor-
rections, P2 aims to measure the proton weak charge with a relative precision of 1.83%, a
more than three-fold improvement over Qweak. At this level of precision also theory input
requires further scrutiny, see the discussion in Ref. [106], including the role of G

u,d
E/M (t) and

further long-range corrections [107, 108], such as PV �� boxes involving a nucleon anapole
moment (called “many-quark” contribution in Refs. [95, 96]). With a dedicated backward-
angle measurement planned to constrain the latter, the remaining uncertainty from nucleon
form factors is projected more than a factor of two below the experimental uncertainties.

Finally, PVES scattering can also be measured off nuclei, but so far results are restricted
to 208Pb [109, 110]. Future plans include 48Ca [111] and 12C [106], but in both cases
the major motivation concerns the presently poorly understood neutron distribution in
the nucleus, in such a way that it is unlikely that meaningful constraints on NP can be
extracted from PVES off nuclei alone. However, in a similar way CE⌫NS is also sensitive
to a combination of NP couplings and nuclear structure (see Sec. 3.2), so that improved
NP constraints are expected from a combined analysis of both classes of measurements.

3.1.2 Atomic Parity Violation

Apart from the very challenging measurements of PVES off nuclei at low momentum trans-
fer, nuclear weak charges can also be accessed in APV, exploiting asymmetry amplification
by stimulated emission in a highly forbidden atomic transition. Experimentally, the ratio
of the PV amplitude over the Stark vector transition polarizability � is measured (with
the most precise results currently available for 133Cs [112, 113]), which then needs to be
combined with atomic-theory calculations and independent input for �. The latter can
be determined semi-empirically either via a measurement together with another hyperfine
amplitude [114, 115] or the scalar polarizability [116–118], leading to the recommendation
� = 27.064(25)exp(21)tha3

B [88] in units of the Bohr radius aB, but the uncertainty of this
average does not include an error inflation to account for the 2.7� tension between the
two methods. Similarly, the coefficient of the atomic structure calculation has been under
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Measurement of the parity violating 6S-7S transition amplitude in cesium achieved
within 2× 10−13 atomic-unit accuracy by stimulated-emission detection

J. Guéna, M. Lintz and M.A. Bouchiat
Laboratoire Kastler Brossel and Fédération de Recherche
Département de Physique de l’Ecole Normale Supérieure,

24 Rue Lhomond, F-75231 Paris Cedex 05, France
(Dated: December 9, 2004)

We exploit the process of asymmetry amplification by stimulated emission which provides an
original method for parity violation (PV) measurements in a highly forbidden atomic transition.
The method involves measurements of a chiral, transient, optical gain of a cesium vapor on the
7S − 6P3/2 transition, probed after it is excited by an intense, linearly polarized, collinear laser,
tuned to resonance for one hyperfine line of the forbidden 6S-7S transition in a longitudinal electric
field. We report here a 3.5 fold increase, of the one-second-measurement sensitivity, and subsequent
reduction by a factor of 3.5 of the statistical accuracy compared with our previous result [J. Guéna
et al., Phys. Rev. Lett. 90, 143001 (2003)]. Decisive improvements to the set-up include an
increased repetition rate, better extinction of the probe beam at the end of the probe pulse and,
for the first time to our knowledge, the following: a polarization-tilt magnifier, quasi-suppression
of beam reflections at the cell windows, and a Cs cell with electrically conductive windows. We
also present real-time tests of systematic effects, consistency checks on the data, as well as a 1%
accurate measurement of the electric field seen by the atoms, from atomic signals. PV measurements
performed in seven different vapor cells agree within the statistical error. Our present result is
compatible with the more precise Boulder result within our present relative statistical accuracy of
2.6%, corresponding to a 2 × 10−13 atomic-unit uncertainty in Epv

1 . Theoretical motivations for
further measurements are emphasized and we give a brief overview of a recent proposal that would
allow the uncertainty to be reduced to the 0.1% level by creating conditions where asymmetry
amplification is much greater.

PACS numbers: 32.80.Ys, 11.30.Er, 33.55.Be, 42.50.Gy

I. INTRODUCTION: GOAL OF THE
EXPERIMENT

Parity Violation (PV) in stable atoms is a manifesta-
tion of the weak interaction involving the exchange of
a neutral vector boson Z0 between the electron and the
nucleus. It shows up in high precision measurements test-
ing the symmetry properties of the process of optical ab-
sorption, hence in conditions very different from those of
high energy experiments [1, 2]. However, the effects in
stable atoms are so small that their detection requires
the choice of very peculiar conditions: i.e. the use of a
heavy atom because of the Z3 enhancement factor, and
a highly forbidden transition to avoid the electromag-
netic interaction completely overwhelming the weak in-
teraction. This explains why we first selected the highly
forbidden 6S → 7S transition of atomic cesium [3] at
539 nm. In the s-orbitals the valence electron penetrat-
ing close to the nucleus, just where the short-range weak
interaction can be felt, is accelerated in the Coulomb
potential associated with the nuclear charge Ze, with
a strength reinforced by relativistic effects. Therefore,
electron-nucleus momentum transfers of 1 MeV/c can oc-
cur, even though the atoms are irradiated by photons of
only 2.3 eV.
In absence of any applied electric field, the 6S-7S tran-

sition electric-dipole amplitude is strictly forbidden by
the laws of electromagnetism. We measure the contri-
bution which arises from the weak interaction, Epv

1 . Its

order of magnitude is 0.8 × 10−11 in atomic units, ea0,
instead of ∼ 1 for usual allowed transitions in atoms. We
compare it with the 6S-7S transition electric-dipole am-
plitude induced by an applied electric field, βE. These
measurements can be used to extract the weak charge
Qexp

W of the cesium nucleus via an atomic physics calcula-
tion, for comparison with the theoretical prediction Qth

W
of the Standard Model (SM) of electroweak unification
theory. Thanks to the relative simplicity of the atomic
structure of cesium having a single valence electron, this
calculation is reliable and, owing to recent progress, its
accuracy has now reached 0.5% [4, 5, 6, 7]. Moreover, if
the measurements are performed on two different hyper-
fine components, the results can provide a determination
of the nuclear anapole moment [1, 8].

The first measurements of Epv
1 in cesium were per-

formed by our own group [9]. They were followed by
calibrated [10], more precise ones (0.5%), achieved by
the Boulder group [11, 12]. Today, the latter imply
no significant deviation of Qexp

W with respect to the SM
prediction [7]. By contrast, the reported value of the
nuclear anapole moment presents serious discrepancies
compared with other manifestations of parity violating
nuclear forces [7, 13]. Our goal is to achieve an indepen-
dent measurement, as precise as possible, by a different
method in order to cross-check the Boulder result. Our
new approach is based on a pump-probe experiment us-
ing two collinear laser beams which operate in pulsed
mode, for detection of the forbidden transition by stim-

debate in the literature [119–124], with Ref. [88] recommending 0.8977(40) from Ref. [124],
which is in 1.7� tension with the more recent 0.8893(27) from Ref. [125]. Finally, despite the
amplified asymmetry in the atomic system, the result is still sensitive to nuclear structure
input, i.e., the neutron distribution in the nucleus. In Ref. [126] the recent PREX-2 mea-
surement [110] of PVES off 208Pb, in combination with a correlation to 133Cs established
based on density-functional methods, was used to improve this aspect of the extraction of
the weak charge of 133Cs [126]

Qw
�
133Cs

�
= �72.94(43), (3.16)

a slight shift from Qw(133Cs) = �72.82(42) [88]. Both values lie about 1.5� below
Qw(133Cs) = �73.71(35) [125], mainly due to the difference in the atomic-structure cal-
culation. Both values agree with the SM prediction [88]

Qw
�
133Cs

�
= �2

h
Z
�
2C

e
1u + C

e
1d + 0.00005

�
+ N

�
C

e
1u + 2C

e
1d + 0.00006

�i✓
1 � ↵

2⇡

◆

= �73.24(5), (3.17)

but the pull goes into the opposite direction. In our analysis, we will use Eq. (3.16), bearing
in mind that the uncertainties might be slightly underestimated.

The above discussion shows that the current 0.6% precision of the weak charge of 133Cs
is becoming limited by theory, indicating that future improvements are difficult in the Cs
system. However, the PV effect is enhanced by another factor of 50 in Ra+ atoms, with a
Ra-based experiment under development at TRIµP [127] and ISOLDE [128]. The projected
gain in sensitivity on s

2
W by a factor of 5 would correspond to a 0.1% measurement of the

weak charge of Ra.

3.1.3 Parity-Violating Deep Inelastic Scattering

PVES can also be studied in deep inelastic reactions, with the master formula [129]

APVDIS =
3GF Q

2

2⇡↵
p

2

2C1u
⇥
1 + RC(x)

⇤
� C1d

⇥
1 + RS(x)

⇤
+ Y3(2C2u � C2d)RV (x)

5 + RS(x) + 4RC(x)
, (3.18)

which depends on various parton distribution functions contained in RC (charm), RS

(strange), RV (valence), as well as a kinematic factor Y3. In contrast to low-energy scatter-
ing, the PVDIS process is also strongly sensitive to the C

e
2q couplings for sufficiently large

Y3. The most precise measurements come from the Jefferson Lab PVDIS collaboration,
who measured PVDIS off a liquid deuterium target for two kinematic settings [129, 130]

A
(1)
PVDIS = 1.156 ⇥ 10�4[(2C

e
1u � C

e
1d) + 0.348(2C

e
2u � C

e
2d)]

= �91.10(3.11)(2.97) ⇥ 10�6
,

A
(2)
PVDIS = 2.022 ⇥ 10�4[(2C

e
1u � C

e
1d) + 0.594(2C

e
2u � C

e
2d)]

= �160.80(6.39)(3.12) ⇥ 10�6
, (3.19)

with corresponding SM predictions A
(1)
PVDIS = �87.7(7)⇥10�6 and A

(2)
PVDIS = �158.9(1.0)⇥

10�6. The SoLID experiment at Jefferson Lab Hall A aims to improve this measurement
up to a 0.8% relative error on APVDIS [131].
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2.3 Parity violation experiments

SLQs

Parity-violating electron 
scattering (PVES)

Atomic parity violation 
experiments

Coherent Elastic Neutrino-
Nucleus Scattering (CE NS)ν

• Longitudinally-polarized electron 
beam incident on an unpolarized 
proton target.

SU(3) SU(2)L U(1)Y

N 1 1 0

E 1 1 �1

�1 1 2 �1/2

�3 1 2 �3/2

⌃0 1 3 0

⌃1 1 3 �1

Table 4. Different representations of the VLLs under the SM gauge group.

and at tree level give rise to the Wilson coefficients [71, 84–86]
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3 Observables

In this section we summarize the observables relevant for constraining our simplified models.

3.1 Parity-Violating Electron Scattering

Limits on NP couplings to electrons and first-generation quarks can be extracted from data
on PVES off the proton and off nuclei. In this subsection, we review the corresponding
theoretical expressions, the constraints that are currently available, and future prospects.

3.1.1 Low-Energy Scattering

Interference between electromagnetic and weak scattering amplitudes leads to a PV asym-
metry A

N
e that can be measured with a longitudinally polarized electron beam incident on

an unpolarized nucleon target

A
N
e =

�
+ � �

�

�+ + �� =
tGF

4⇡↵
p

2

A
N
V (t) + A

N
A (t)

✏
⇥
G

N
E (t)

⇤2
+ ⌘

⇥
G

N
M (t)

⇤2 , (3.1)

where �
± represents the cross section of the helicity-dependent elastic scattering, t = �Q

2

the four-momentum transfer squared, and the kinematic quantities are defined as

⌘ =
�t

4m
2
N

, ✏
�1 = 1 + 2(1 + ⌘) tan2 ✓

2
, ✏

0 =
p

⌘(1 + ⌘)
p

1 � ✏2, (3.2)
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• PV asymmetry: 

•  experiment:  Qweak

Ref. [98]) for the dipole scale in G
3
A(t), and estimating the axial-vector couplings as g

u,p
A +

g
d,p
A = 0.40(5), g

s,N
A = �0.05(5) [99–101], we extract from Eq. (3.13)

Q
p
w = 0.0704(47), (3.15)

where we have followed the same prescription for the energy-dependent part of the �Z box
correction [92, 102–105] as in Ref. [91]. This value is perfectly in line both with the Qweak-
only result from Ref. [91], Q

p
w = 0.0706(47), and the combination with other PVES data,

Q
p
w = 0.0719(45). In our analysis, we will retain the complete master formula (3.9), as

the subleading terms produce some sensitivity to combinations of Wilson coefficients other
than those contained in Q

p
w.

The uncertainty is currently dominated by experiment, with theory uncertainties esti-
mated in Ref. [91] at the level of 4.5 ⇥ 10�9 when expressed in terms of A

p
e. In the future,

the measurement of Q
p
w will improve considerably by the forthcoming high-precision P2

experiment at the MESA accelerator in Mainz [106]. Conducting the experiment at lower
momentum transfer (hQ2i = 0.006 GeV2, h✓i = 35�) to reduce the size of the �Z box cor-
rections, P2 aims to measure the proton weak charge with a relative precision of 1.83%, a
more than three-fold improvement over Qweak. At this level of precision also theory input
requires further scrutiny, see the discussion in Ref. [106], including the role of G

u,d
E/M (t) and

further long-range corrections [107, 108], such as PV �� boxes involving a nucleon anapole
moment (called “many-quark” contribution in Refs. [95, 96]). With a dedicated backward-
angle measurement planned to constrain the latter, the remaining uncertainty from nucleon
form factors is projected more than a factor of two below the experimental uncertainties.

Finally, PVES scattering can also be measured off nuclei, but so far results are restricted
to 208Pb [109, 110]. Future plans include 48Ca [111] and 12C [106], but in both cases
the major motivation concerns the presently poorly understood neutron distribution in
the nucleus, in such a way that it is unlikely that meaningful constraints on NP can be
extracted from PVES off nuclei alone. However, in a similar way CE⌫NS is also sensitive
to a combination of NP couplings and nuclear structure (see Sec. 3.2), so that improved
NP constraints are expected from a combined analysis of both classes of measurements.

3.1.2 Atomic Parity Violation

Apart from the very challenging measurements of PVES off nuclei at low momentum trans-
fer, nuclear weak charges can also be accessed in APV, exploiting asymmetry amplification
by stimulated emission in a highly forbidden atomic transition. Experimentally, the ratio
of the PV amplitude over the Stark vector transition polarizability � is measured (with
the most precise results currently available for 133Cs [112, 113]), which then needs to be
combined with atomic-theory calculations and independent input for �. The latter can
be determined semi-empirically either via a measurement together with another hyperfine
amplitude [114, 115] or the scalar polarizability [116–118], leading to the recommendation
� = 27.064(25)exp(21)tha3

B [88] in units of the Bohr radius aB, but the uncertainty of this
average does not include an error inflation to account for the 2.7� tension between the
two methods. Similarly, the coefficient of the atomic structure calculation has been under
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Measurement of the parity violating 6S-7S transition amplitude in cesium achieved
within 2× 10−13 atomic-unit accuracy by stimulated-emission detection

J. Guéna, M. Lintz and M.A. Bouchiat
Laboratoire Kastler Brossel and Fédération de Recherche
Département de Physique de l’Ecole Normale Supérieure,

24 Rue Lhomond, F-75231 Paris Cedex 05, France
(Dated: December 9, 2004)

We exploit the process of asymmetry amplification by stimulated emission which provides an
original method for parity violation (PV) measurements in a highly forbidden atomic transition.
The method involves measurements of a chiral, transient, optical gain of a cesium vapor on the
7S − 6P3/2 transition, probed after it is excited by an intense, linearly polarized, collinear laser,
tuned to resonance for one hyperfine line of the forbidden 6S-7S transition in a longitudinal electric
field. We report here a 3.5 fold increase, of the one-second-measurement sensitivity, and subsequent
reduction by a factor of 3.5 of the statistical accuracy compared with our previous result [J. Guéna
et al., Phys. Rev. Lett. 90, 143001 (2003)]. Decisive improvements to the set-up include an
increased repetition rate, better extinction of the probe beam at the end of the probe pulse and,
for the first time to our knowledge, the following: a polarization-tilt magnifier, quasi-suppression
of beam reflections at the cell windows, and a Cs cell with electrically conductive windows. We
also present real-time tests of systematic effects, consistency checks on the data, as well as a 1%
accurate measurement of the electric field seen by the atoms, from atomic signals. PV measurements
performed in seven different vapor cells agree within the statistical error. Our present result is
compatible with the more precise Boulder result within our present relative statistical accuracy of
2.6%, corresponding to a 2 × 10−13 atomic-unit uncertainty in Epv

1 . Theoretical motivations for
further measurements are emphasized and we give a brief overview of a recent proposal that would
allow the uncertainty to be reduced to the 0.1% level by creating conditions where asymmetry
amplification is much greater.

PACS numbers: 32.80.Ys, 11.30.Er, 33.55.Be, 42.50.Gy

I. INTRODUCTION: GOAL OF THE
EXPERIMENT

Parity Violation (PV) in stable atoms is a manifesta-
tion of the weak interaction involving the exchange of
a neutral vector boson Z0 between the electron and the
nucleus. It shows up in high precision measurements test-
ing the symmetry properties of the process of optical ab-
sorption, hence in conditions very different from those of
high energy experiments [1, 2]. However, the effects in
stable atoms are so small that their detection requires
the choice of very peculiar conditions: i.e. the use of a
heavy atom because of the Z3 enhancement factor, and
a highly forbidden transition to avoid the electromag-
netic interaction completely overwhelming the weak in-
teraction. This explains why we first selected the highly
forbidden 6S → 7S transition of atomic cesium [3] at
539 nm. In the s-orbitals the valence electron penetrat-
ing close to the nucleus, just where the short-range weak
interaction can be felt, is accelerated in the Coulomb
potential associated with the nuclear charge Ze, with
a strength reinforced by relativistic effects. Therefore,
electron-nucleus momentum transfers of 1 MeV/c can oc-
cur, even though the atoms are irradiated by photons of
only 2.3 eV.
In absence of any applied electric field, the 6S-7S tran-

sition electric-dipole amplitude is strictly forbidden by
the laws of electromagnetism. We measure the contri-
bution which arises from the weak interaction, Epv

1 . Its

order of magnitude is 0.8 × 10−11 in atomic units, ea0,
instead of ∼ 1 for usual allowed transitions in atoms. We
compare it with the 6S-7S transition electric-dipole am-
plitude induced by an applied electric field, βE. These
measurements can be used to extract the weak charge
Qexp

W of the cesium nucleus via an atomic physics calcula-
tion, for comparison with the theoretical prediction Qth

W
of the Standard Model (SM) of electroweak unification
theory. Thanks to the relative simplicity of the atomic
structure of cesium having a single valence electron, this
calculation is reliable and, owing to recent progress, its
accuracy has now reached 0.5% [4, 5, 6, 7]. Moreover, if
the measurements are performed on two different hyper-
fine components, the results can provide a determination
of the nuclear anapole moment [1, 8].

The first measurements of Epv
1 in cesium were per-

formed by our own group [9]. They were followed by
calibrated [10], more precise ones (0.5%), achieved by
the Boulder group [11, 12]. Today, the latter imply
no significant deviation of Qexp

W with respect to the SM
prediction [7]. By contrast, the reported value of the
nuclear anapole moment presents serious discrepancies
compared with other manifestations of parity violating
nuclear forces [7, 13]. Our goal is to achieve an indepen-
dent measurement, as precise as possible, by a different
method in order to cross-check the Boulder result. Our
new approach is based on a pump-probe experiment us-
ing two collinear laser beams which operate in pulsed
mode, for detection of the forbidden transition by stim-

debate in the literature [119–124], with Ref. [88] recommending 0.8977(40) from Ref. [124],
which is in 1.7� tension with the more recent 0.8893(27) from Ref. [125]. Finally, despite the
amplified asymmetry in the atomic system, the result is still sensitive to nuclear structure
input, i.e., the neutron distribution in the nucleus. In Ref. [126] the recent PREX-2 mea-
surement [110] of PVES off 208Pb, in combination with a correlation to 133Cs established
based on density-functional methods, was used to improve this aspect of the extraction of
the weak charge of 133Cs [126]

Qw
�
133Cs

�
= �72.94(43), (3.16)

a slight shift from Qw(133Cs) = �72.82(42) [88]. Both values lie about 1.5� below
Qw(133Cs) = �73.71(35) [125], mainly due to the difference in the atomic-structure cal-
culation. Both values agree with the SM prediction [88]

Qw
�
133Cs

�
= �2

h
Z
�
2C

e
1u + C

e
1d + 0.00005

�
+ N

�
C

e
1u + 2C

e
1d + 0.00006

�i✓
1 � ↵

2⇡

◆

= �73.24(5), (3.17)

but the pull goes into the opposite direction. In our analysis, we will use Eq. (3.16), bearing
in mind that the uncertainties might be slightly underestimated.

The above discussion shows that the current 0.6% precision of the weak charge of 133Cs
is becoming limited by theory, indicating that future improvements are difficult in the Cs
system. However, the PV effect is enhanced by another factor of 50 in Ra+ atoms, with a
Ra-based experiment under development at TRIµP [127] and ISOLDE [128]. The projected
gain in sensitivity on s

2
W by a factor of 5 would correspond to a 0.1% measurement of the

weak charge of Ra.

3.1.3 Parity-Violating Deep Inelastic Scattering

PVES can also be studied in deep inelastic reactions, with the master formula [129]

APVDIS =
3GF Q

2

2⇡↵
p

2

2C1u
⇥
1 + RC(x)

⇤
� C1d

⇥
1 + RS(x)

⇤
+ Y3(2C2u � C2d)RV (x)

5 + RS(x) + 4RC(x)
, (3.18)

which depends on various parton distribution functions contained in RC (charm), RS

(strange), RV (valence), as well as a kinematic factor Y3. In contrast to low-energy scatter-
ing, the PVDIS process is also strongly sensitive to the C

e
2q couplings for sufficiently large

Y3. The most precise measurements come from the Jefferson Lab PVDIS collaboration,
who measured PVDIS off a liquid deuterium target for two kinematic settings [129, 130]

A
(1)
PVDIS = 1.156 ⇥ 10�4[(2C

e
1u � C

e
1d) + 0.348(2C

e
2u � C

e
2d)]

= �91.10(3.11)(2.97) ⇥ 10�6
,

A
(2)
PVDIS = 2.022 ⇥ 10�4[(2C

e
1u � C

e
1d) + 0.594(2C

e
2u � C

e
2d)]

= �160.80(6.39)(3.12) ⇥ 10�6
, (3.19)

with corresponding SM predictions A
(1)
PVDIS = �87.7(7)⇥10�6 and A

(2)
PVDIS = �158.9(1.0)⇥

10�6. The SoLID experiment at Jefferson Lab Hall A aims to improve this measurement
up to a 0.8% relative error on APVDIS [131].
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2.3 Parity violation experiments

SLQs

Parity-violating electron 
scattering (PVES)

Atomic parity violation 
experiments

Coherent Elastic Neutrino-
Nucleus Scattering (CE NS)ν

• Longitudinally-polarized electron 
beam incident on an unpolarized 
proton target.

SU(3) SU(2)L U(1)Y

N 1 1 0

E 1 1 �1

�1 1 2 �1/2

�3 1 2 �3/2

⌃0 1 3 0

⌃1 1 3 �1

Table 4. Different representations of the VLLs under the SM gauge group.

and at tree level give rise to the Wilson coefficients [71, 84–86]
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3 Observables

In this section we summarize the observables relevant for constraining our simplified models.

3.1 Parity-Violating Electron Scattering

Limits on NP couplings to electrons and first-generation quarks can be extracted from data
on PVES off the proton and off nuclei. In this subsection, we review the corresponding
theoretical expressions, the constraints that are currently available, and future prospects.

3.1.1 Low-Energy Scattering

Interference between electromagnetic and weak scattering amplitudes leads to a PV asym-
metry A

N
e that can be measured with a longitudinally polarized electron beam incident on

an unpolarized nucleon target

A
N
e =

�
+ � �

�

�+ + �� =
tGF

4⇡↵
p

2

A
N
V (t) + A

N
A (t)

✏
⇥
G

N
E (t)

⇤2
+ ⌘

⇥
G

N
M (t)

⇤2 , (3.1)

where �
± represents the cross section of the helicity-dependent elastic scattering, t = �Q

2

the four-momentum transfer squared, and the kinematic quantities are defined as

⌘ =
�t

4m
2
N

, ✏
�1 = 1 + 2(1 + ⌘) tan2 ✓

2
, ✏

0 =
p

⌘(1 + ⌘)
p

1 � ✏2, (3.2)
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Ref. [98]) for the dipole scale in G
3
A(t), and estimating the axial-vector couplings as g

u,p
A +

g
d,p
A = 0.40(5), g

s,N
A = �0.05(5) [99–101], we extract from Eq. (3.13)

Q
p
w = 0.0704(47), (3.15)

where we have followed the same prescription for the energy-dependent part of the �Z box
correction [92, 102–105] as in Ref. [91]. This value is perfectly in line both with the Qweak-
only result from Ref. [91], Q

p
w = 0.0706(47), and the combination with other PVES data,

Q
p
w = 0.0719(45). In our analysis, we will retain the complete master formula (3.9), as

the subleading terms produce some sensitivity to combinations of Wilson coefficients other
than those contained in Q

p
w.

The uncertainty is currently dominated by experiment, with theory uncertainties esti-
mated in Ref. [91] at the level of 4.5 ⇥ 10�9 when expressed in terms of A

p
e. In the future,

the measurement of Q
p
w will improve considerably by the forthcoming high-precision P2

experiment at the MESA accelerator in Mainz [106]. Conducting the experiment at lower
momentum transfer (hQ2i = 0.006 GeV2, h✓i = 35�) to reduce the size of the �Z box cor-
rections, P2 aims to measure the proton weak charge with a relative precision of 1.83%, a
more than three-fold improvement over Qweak. At this level of precision also theory input
requires further scrutiny, see the discussion in Ref. [106], including the role of G

u,d
E/M (t) and

further long-range corrections [107, 108], such as PV �� boxes involving a nucleon anapole
moment (called “many-quark” contribution in Refs. [95, 96]). With a dedicated backward-
angle measurement planned to constrain the latter, the remaining uncertainty from nucleon
form factors is projected more than a factor of two below the experimental uncertainties.

Finally, PVES scattering can also be measured off nuclei, but so far results are restricted
to 208Pb [109, 110]. Future plans include 48Ca [111] and 12C [106], but in both cases
the major motivation concerns the presently poorly understood neutron distribution in
the nucleus, in such a way that it is unlikely that meaningful constraints on NP can be
extracted from PVES off nuclei alone. However, in a similar way CE⌫NS is also sensitive
to a combination of NP couplings and nuclear structure (see Sec. 3.2), so that improved
NP constraints are expected from a combined analysis of both classes of measurements.

3.1.2 Atomic Parity Violation

Apart from the very challenging measurements of PVES off nuclei at low momentum trans-
fer, nuclear weak charges can also be accessed in APV, exploiting asymmetry amplification
by stimulated emission in a highly forbidden atomic transition. Experimentally, the ratio
of the PV amplitude over the Stark vector transition polarizability � is measured (with
the most precise results currently available for 133Cs [112, 113]), which then needs to be
combined with atomic-theory calculations and independent input for �. The latter can
be determined semi-empirically either via a measurement together with another hyperfine
amplitude [114, 115] or the scalar polarizability [116–118], leading to the recommendation
� = 27.064(25)exp(21)tha3

B [88] in units of the Bohr radius aB, but the uncertainty of this
average does not include an error inflation to account for the 2.7� tension between the
two methods. Similarly, the coefficient of the atomic structure calculation has been under
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Measurement of the parity violating 6S-7S transition amplitude in cesium achieved
within 2× 10−13 atomic-unit accuracy by stimulated-emission detection

J. Guéna, M. Lintz and M.A. Bouchiat
Laboratoire Kastler Brossel and Fédération de Recherche
Département de Physique de l’Ecole Normale Supérieure,

24 Rue Lhomond, F-75231 Paris Cedex 05, France
(Dated: December 9, 2004)

We exploit the process of asymmetry amplification by stimulated emission which provides an
original method for parity violation (PV) measurements in a highly forbidden atomic transition.
The method involves measurements of a chiral, transient, optical gain of a cesium vapor on the
7S − 6P3/2 transition, probed after it is excited by an intense, linearly polarized, collinear laser,
tuned to resonance for one hyperfine line of the forbidden 6S-7S transition in a longitudinal electric
field. We report here a 3.5 fold increase, of the one-second-measurement sensitivity, and subsequent
reduction by a factor of 3.5 of the statistical accuracy compared with our previous result [J. Guéna
et al., Phys. Rev. Lett. 90, 143001 (2003)]. Decisive improvements to the set-up include an
increased repetition rate, better extinction of the probe beam at the end of the probe pulse and,
for the first time to our knowledge, the following: a polarization-tilt magnifier, quasi-suppression
of beam reflections at the cell windows, and a Cs cell with electrically conductive windows. We
also present real-time tests of systematic effects, consistency checks on the data, as well as a 1%
accurate measurement of the electric field seen by the atoms, from atomic signals. PV measurements
performed in seven different vapor cells agree within the statistical error. Our present result is
compatible with the more precise Boulder result within our present relative statistical accuracy of
2.6%, corresponding to a 2 × 10−13 atomic-unit uncertainty in Epv

1 . Theoretical motivations for
further measurements are emphasized and we give a brief overview of a recent proposal that would
allow the uncertainty to be reduced to the 0.1% level by creating conditions where asymmetry
amplification is much greater.

PACS numbers: 32.80.Ys, 11.30.Er, 33.55.Be, 42.50.Gy

I. INTRODUCTION: GOAL OF THE
EXPERIMENT

Parity Violation (PV) in stable atoms is a manifesta-
tion of the weak interaction involving the exchange of
a neutral vector boson Z0 between the electron and the
nucleus. It shows up in high precision measurements test-
ing the symmetry properties of the process of optical ab-
sorption, hence in conditions very different from those of
high energy experiments [1, 2]. However, the effects in
stable atoms are so small that their detection requires
the choice of very peculiar conditions: i.e. the use of a
heavy atom because of the Z3 enhancement factor, and
a highly forbidden transition to avoid the electromag-
netic interaction completely overwhelming the weak in-
teraction. This explains why we first selected the highly
forbidden 6S → 7S transition of atomic cesium [3] at
539 nm. In the s-orbitals the valence electron penetrat-
ing close to the nucleus, just where the short-range weak
interaction can be felt, is accelerated in the Coulomb
potential associated with the nuclear charge Ze, with
a strength reinforced by relativistic effects. Therefore,
electron-nucleus momentum transfers of 1 MeV/c can oc-
cur, even though the atoms are irradiated by photons of
only 2.3 eV.
In absence of any applied electric field, the 6S-7S tran-

sition electric-dipole amplitude is strictly forbidden by
the laws of electromagnetism. We measure the contri-
bution which arises from the weak interaction, Epv

1 . Its

order of magnitude is 0.8 × 10−11 in atomic units, ea0,
instead of ∼ 1 for usual allowed transitions in atoms. We
compare it with the 6S-7S transition electric-dipole am-
plitude induced by an applied electric field, βE. These
measurements can be used to extract the weak charge
Qexp

W of the cesium nucleus via an atomic physics calcula-
tion, for comparison with the theoretical prediction Qth

W
of the Standard Model (SM) of electroweak unification
theory. Thanks to the relative simplicity of the atomic
structure of cesium having a single valence electron, this
calculation is reliable and, owing to recent progress, its
accuracy has now reached 0.5% [4, 5, 6, 7]. Moreover, if
the measurements are performed on two different hyper-
fine components, the results can provide a determination
of the nuclear anapole moment [1, 8].

The first measurements of Epv
1 in cesium were per-

formed by our own group [9]. They were followed by
calibrated [10], more precise ones (0.5%), achieved by
the Boulder group [11, 12]. Today, the latter imply
no significant deviation of Qexp

W with respect to the SM
prediction [7]. By contrast, the reported value of the
nuclear anapole moment presents serious discrepancies
compared with other manifestations of parity violating
nuclear forces [7, 13]. Our goal is to achieve an indepen-
dent measurement, as precise as possible, by a different
method in order to cross-check the Boulder result. Our
new approach is based on a pump-probe experiment us-
ing two collinear laser beams which operate in pulsed
mode, for detection of the forbidden transition by stim-

debate in the literature [119–124], with Ref. [88] recommending 0.8977(40) from Ref. [124],
which is in 1.7� tension with the more recent 0.8893(27) from Ref. [125]. Finally, despite the
amplified asymmetry in the atomic system, the result is still sensitive to nuclear structure
input, i.e., the neutron distribution in the nucleus. In Ref. [126] the recent PREX-2 mea-
surement [110] of PVES off 208Pb, in combination with a correlation to 133Cs established
based on density-functional methods, was used to improve this aspect of the extraction of
the weak charge of 133Cs [126]

Qw
�
133Cs

�
= �72.94(43), (3.16)

a slight shift from Qw(133Cs) = �72.82(42) [88]. Both values lie about 1.5� below
Qw(133Cs) = �73.71(35) [125], mainly due to the difference in the atomic-structure cal-
culation. Both values agree with the SM prediction [88]

Qw
�
133Cs

�
= �2

h
Z
�
2C

e
1u + C

e
1d + 0.00005

�
+ N

�
C

e
1u + 2C

e
1d + 0.00006

�i✓
1 � ↵

2⇡

◆

= �73.24(5), (3.17)

but the pull goes into the opposite direction. In our analysis, we will use Eq. (3.16), bearing
in mind that the uncertainties might be slightly underestimated.

The above discussion shows that the current 0.6% precision of the weak charge of 133Cs
is becoming limited by theory, indicating that future improvements are difficult in the Cs
system. However, the PV effect is enhanced by another factor of 50 in Ra+ atoms, with a
Ra-based experiment under development at TRIµP [127] and ISOLDE [128]. The projected
gain in sensitivity on s

2
W by a factor of 5 would correspond to a 0.1% measurement of the

weak charge of Ra.

3.1.3 Parity-Violating Deep Inelastic Scattering

PVES can also be studied in deep inelastic reactions, with the master formula [129]

APVDIS =
3GF Q

2

2⇡↵
p

2

2C1u
⇥
1 + RC(x)

⇤
� C1d

⇥
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⇤
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, (3.18)

which depends on various parton distribution functions contained in RC (charm), RS

(strange), RV (valence), as well as a kinematic factor Y3. In contrast to low-energy scatter-
ing, the PVDIS process is also strongly sensitive to the C

e
2q couplings for sufficiently large

Y3. The most precise measurements come from the Jefferson Lab PVDIS collaboration,
who measured PVDIS off a liquid deuterium target for two kinematic settings [129, 130]

A
(1)
PVDIS = 1.156 ⇥ 10�4[(2C

e
1u � C

e
1d) + 0.348(2C

e
2u � C

e
2d)]

= �91.10(3.11)(2.97) ⇥ 10�6
,

A
(2)
PVDIS = 2.022 ⇥ 10�4[(2C

e
1u � C

e
1d) + 0.594(2C

e
2u � C

e
2d)]

= �160.80(6.39)(3.12) ⇥ 10�6
, (3.19)

with corresponding SM predictions A
(1)
PVDIS = �87.7(7)⇥10�6 and A

(2)
PVDIS = �158.9(1.0)⇥

10�6. The SoLID experiment at Jefferson Lab Hall A aims to improve this measurement
up to a 0.8% relative error on APVDIS [131].
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with scattering angle ✓. The quantities A
N
V/A(t) represent the asymmetries arising from the

terms in which the vector/axial-vector part of the weak current appears on the quark side,
commonly parameterized in the effective Lagrangian
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where C
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1q, C
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2q contribute to A

N
V,A(t), respectively. Writing

C
e
1q = C

e,SM
1q + C

e,NP
1q , C

e
2q = C

e,SM
2q + C

e,NP
2q , (3.4)

we have the SM values

C
e,SM
1u = �0.1888, C

e,SM
2u = �0.0352,

C
e,SM
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e,SM
1s = 0.3419, C

e,SM
2d = C

e,SM
2s = 0.0249, (3.5)

including radiative corrections as detailed in Refs. [87, 88]. The NP contributions, expressed
in terms of the SMEFT Wilson coefficients defined in Eqs. (2.2) and (2.3), are given by
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where sW = sin ✓W is short for the weak mixing angle. Next, the nucleon matrix elements
are expressed in terms of form factors according to

hN(p0)|q̄�µ
q|N(p)i = ū(p0)

h
�

µ
F

q,N
1 (t) +

i�
µ⌫

q⌫

2mN
F

q,N
2 (t)

i
u(p),

hN(p0)|q̄�µ
�5q|N(p)i = ū(p0)

h
�

µ
�5G

q,N
A (t) + �5

q
µ

2mN
G

q,N
P (t)

i
u(p), (3.7)

where q = p
0 � p, t = q

2. In particular, we will write F
N
i (t) for the electromagnetic form

factors, G
3
A(t) = G

u,p
A (t) � G

d,p
A (t) for the triplet component of the axial-vector form factor

of the proton, G
q,N
A (0) ⌘ g

q,N
A (with g

u,p
A �g

d,p
A = gA = 1.27641(56) the axial-vector coupling

of the nucleon [89]), and define the Sachs form factors

G
N
E (t) = F

N
1 (t) � ⌘F

N
2 (t), G

N
M (t) = F

N
1 (t) + F

N
2 (t). (3.8)
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In these conventions, the asymmetries become

A
p
V (t) = �2(2C

e
1u + C

e
1d)


✏
⇥
G

p
E(t)

⇤2
+ ⌘

⇥
G

p
M (t)

⇤2
�

� 2(Ce
1u + 2C

e
1d)


✏G

p
E(t)Gn

E(t) + ⌘G
p
M (t)Gn

M (t)

�

� 2(Ce
1u + C

e
1d + C

e
1s)


✏G

p
E(t)Gs,N

E (t) + ⌘G
p
M (t)Gs,N

M (t)

�

� 2(Ce
1u + 2C

e
1d)


✏G

p
E(t)Gu,d

E (t) + ⌘G
p
M (t)Gu,d

M (t)

�
,

A
p
A(t) = �✏

0
G

p
M (t)G3

A(t)(Ce
2u � C

e
2d) � ✏

0
G

p
M (t)(gu,p

A + g
d,p
A )(Ce

2u + C
e
2d)

� 2✏
0
G

p
M (t)gs,N

A C
e
2s, (3.9)

where
G

u,d
E/M (t) =

1

3

⇣
G

d,n
E/M (t) � G

u,p
E/M (t)

⌘
� 2

3

⇣
G

u,n
E/M (t) � G

d,p
E/M (t)

⌘
, (3.10)

is an isospin-breaking correction [90] (while isospin breaking in the strangeness contribution
has been ignored). The weak charge of the proton is then identified as

Q
p
w = �2(2C

e
1u + C

e
1d), (3.11)

but its SM prediction includes further radiative corrections not yet included in Eq. (3.5),
leading to

Q
p
w = �2(2C

e
1u + C

e
1d + 0.00005)

✓
1 � ↵

2⇡

◆
= 0.0710(4). (3.12)

This value is slightly smaller than the naive application of Eq. (3.5), Q
p
w = 0.0714, and

slightly larger than the reference value quoted in Ref. [91], Q
p
w = 0.0708(3), with a difference

that traces back to a small change in C
e,SM
1u [88]. The adjustments in Eq. (3.12) include

part of the �Z box correction from Ref. [92].
The present best measurement of Q

p
w comes from the Qweak experiment [91, 93, 94]

at Jefferson Lab, which measured the asymmetry at hQ2i = 0.0248 GeV2 and h✓i = 7.90�,
yielding [91]

A
p
e = �226.5(9.3) ⇥ 10�9

. (3.13)

The data were analyzed setting all Wilson coefficients except for Q
p
w to their SM values,

which, at tree level, implies

�2(Ce
1u + 2C

e
1d) = �2(Ce

1u + C
e
1d + C

e
1s) = �1,

�(Ce
2u � C

e
2d) = 2C

e
2s = 1 � 4s

2
W , C

e
2u + C

e
2d = 0, (3.14)

in agreement with Ref. [91] (note that our G
3
A(0) = gA > 0 has the opposite sign). Our

formulation in terms of Wilson coefficients (3.9) automatically accounts for the relevant
short-range radiative corrections, including what is called the “one-quark” axial-vector con-
tribution in Refs. [95, 96].

Updating the strangeness form factor using µ
s = �0.017(4), hr2

M,si = �0.015(9) fm2,
hr2

E,si = �0.0048(6) fm2 [97], ⇤A = 1.0(2) GeV (corresponding to the axial radius from
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debate in the literature [119–124], with Ref. [88] recommending 0.8977(40) from Ref. [124],
which is in 1.7� tension with the more recent 0.8893(27) from Ref. [125]. Finally, despite the
amplified asymmetry in the atomic system, the result is still sensitive to nuclear structure
input, i.e., the neutron distribution in the nucleus. In Ref. [126] the recent PREX-2 mea-
surement [110] of PVES off 208Pb, in combination with a correlation to 133Cs established
based on density-functional methods, was used to improve this aspect of the extraction of
the weak charge of 133Cs [126]

Qw
�
133Cs

�
= �72.94(43), (3.16)

a slight shift from Qw(133Cs) = �72.82(42) [88]. Both values lie about 1.5� below
Qw(133Cs) = �73.71(35) [125], mainly due to the difference in the atomic-structure cal-
culation. Both values agree with the SM prediction [88]

Qw
�
133Cs

�
= �2

h
Z
�
2C

e
1u + C

e
1d + 0.00005

�
+ N

�
C

e
1u + 2C

e
1d + 0.00006

�i✓
1 � ↵

2⇡

◆

= �73.24(5), (3.17)

but the pull goes into the opposite direction. In our analysis, we will use Eq. (3.16), bearing
in mind that the uncertainties might be slightly underestimated.

The above discussion shows that the current 0.6% precision of the weak charge of 133Cs
is becoming limited by theory, indicating that future improvements are difficult in the Cs
system. However, the PV effect is enhanced by another factor of 50 in Ra+ atoms, with a
Ra-based experiment under development at TRIµP [127] and ISOLDE [128]. The projected
gain in sensitivity on s

2
W by a factor of 5 would correspond to a 0.1% measurement of the

weak charge of Ra.

3.1.3 Parity-Violating Deep Inelastic Scattering

PVES can also be studied in deep inelastic reactions, with the master formula [129]
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, (3.18)

which depends on various parton distribution functions contained in RC (charm), RS

(strange), RV (valence), as well as a kinematic factor Y3. In contrast to low-energy scatter-
ing, the PVDIS process is also strongly sensitive to the C

e
2q couplings for sufficiently large

Y3. The most precise measurements come from the Jefferson Lab PVDIS collaboration,
who measured PVDIS off a liquid deuterium target for two kinematic settings [129, 130]
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with corresponding SM predictions A
(1)
PVDIS = �87.7(7)⇥10�6 and A

(2)
PVDIS = �158.9(1.0)⇥

10�6. The SoLID experiment at Jefferson Lab Hall A aims to improve this measurement
up to a 0.8% relative error on APVDIS [131].
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2.3 Parity violation experiments

SLQs

Figure 1. Parametric plot of LQ effects in the C
e
1u–C

e
1d plane as well as the preferred regions from

PV and the corresponding prospects. The gray parts of the lines are excluded by the di-electron
searches of ATLAS (95% C.L.) and the preferred regions from CMS and the CAA (both 1�) are
indicated by thick and black lines, respectively. The three different values for the LQ masses (6 TeV,
4 TeV, and 2 TeV), setting �,  = 1, are indicated by markers of different shapes, the cross denotes
the best-fit point of APV and Qweak, and the black circle the SM point.
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Source: ArXiv:2107.13569 (A. Crivellin, M. Hoferichter, M. Kirk, C.A. Manzari, LS)

with scattering angle ✓. The quantities A
N
V/A(t) represent the asymmetries arising from the

terms in which the vector/axial-vector part of the weak current appears on the quark side,
commonly parameterized in the effective Lagrangian
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where C
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e
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N
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C
e
1q = C

e,SM
1q + C

e,NP
1q , C

e
2q = C

e,SM
2q + C

e,NP
2q , (3.4)

we have the SM values

C
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e,SM
2u = �0.0352,

C
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1s = 0.3419, C

e,SM
2d = C

e,SM
2s = 0.0249, (3.5)

including radiative corrections as detailed in Refs. [87, 88]. The NP contributions, expressed
in terms of the SMEFT Wilson coefficients defined in Eqs. (2.2) and (2.3), are given by
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where sW = sin ✓W is short for the weak mixing angle. Next, the nucleon matrix elements
are expressed in terms of form factors according to

hN(p0)|q̄�µ
q|N(p)i = ū(p0)
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i (t) for the electromagnetic form

factors, G
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A (t) for the triplet component of the axial-vector form factor

of the proton, G
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of the nucleon [89]), and define the Sachs form factors

G
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E (t) = F
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2 (t), G
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M (t) = F
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1 (t) + F

N
2 (t). (3.8)
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ē�µe

⇤⌘
, (3.3)

where C
e
1q, C

e
2q contribute to A

N
V,A(t), respectively. Writing

C
e
1q = C

e,SM
1q + C

e,NP
1q , C

e
2q = C

e,SM
2q + C

e,NP
2q , (3.4)

we have the SM values

C
e,SM
1u = �0.1888, C

e,SM
2u = �0.0352,

C
e,SM
1d = C

e,SM
1s = 0.3419, C

e,SM
2d = C

e,SM
2s = 0.0249, (3.5)

including radiative corrections as detailed in Refs. [87, 88]. The NP contributions, expressed
in terms of the SMEFT Wilson coefficients defined in Eqs. (2.2) and (2.3), are given by

C
e,NP
1u =

p
2

4GF

⇣
C

(3)
`q � C

(1)
`q + Ceu + Cqe � C`u � |Vud|2

⇣
C

(3)
�q � C

(1)
�q

⌘
+ C�u

⌘
,

C
e,NP
2u =

p
2

4GF

⇣
C

(3)
`q � C

(1)
`q + Ceu � Cqe + C`u � (1 � 4s

2
W )

h
|Vud|2

⇣
C

(3)
�q � C

(1)
�q

⌘
+ C�u

i⌘
,

C
e,NP
1d =

p
2

4GF

⇣
� C

(3)
`q � C

(1)
`q + Ced + Cqe � C`d + C

(3)
�q + C

(1)
�q + C�d

⌘
,

C
e,NP
2d =

p
2

4GF

⇣
� C

(3)
`q � C

(1)
`q + Ced � Cqe + C`d � (1 � 4s

2
W )

h
C

(3)
�q � C

(1)
�q + C�d

i⌘
, (3.6)

where sW = sin ✓W is short for the weak mixing angle. Next, the nucleon matrix elements
are expressed in terms of form factors according to

hN(p0)|q̄�µ
q|N(p)i = ū(p0)
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In these conventions, the asymmetries become

A
p
V (t) = �2(2C

e
1u + C

e
1d)


✏
⇥
G

p
E(t)

⇤2
+ ⌘

⇥
G

p
M (t)

⇤2
�

� 2(Ce
1u + 2C

e
1d)


✏G

p
E(t)Gn

E(t) + ⌘G
p
M (t)Gn

M (t)

�

� 2(Ce
1u + C

e
1d + C

e
1s)


✏G

p
E(t)Gs,N

E (t) + ⌘G
p
M (t)Gs,N

M (t)

�

� 2(Ce
1u + 2C

e
1d)


✏G

p
E(t)Gu,d

E (t) + ⌘G
p
M (t)Gu,d

M (t)

�
,

A
p
A(t) = �✏

0
G

p
M (t)G3

A(t)(Ce
2u � C

e
2d) � ✏

0
G

p
M (t)(gu,p

A + g
d,p
A )(Ce

2u + C
e
2d)

� 2✏
0
G

p
M (t)gs,N

A C
e
2s, (3.9)

where
G

u,d
E/M (t) =

1

3

⇣
G

d,n
E/M (t) � G

u,p
E/M (t)

⌘
� 2

3

⇣
G

u,n
E/M (t) � G

d,p
E/M (t)

⌘
, (3.10)

is an isospin-breaking correction [90] (while isospin breaking in the strangeness contribution
has been ignored). The weak charge of the proton is then identified as

Q
p
w = �2(2C

e
1u + C

e
1d), (3.11)

but its SM prediction includes further radiative corrections not yet included in Eq. (3.5),
leading to

Q
p
w = �2(2C

e
1u + C

e
1d + 0.00005)

✓
1 � ↵

2⇡

◆
= 0.0710(4). (3.12)

This value is slightly smaller than the naive application of Eq. (3.5), Q
p
w = 0.0714, and

slightly larger than the reference value quoted in Ref. [91], Q
p
w = 0.0708(3), with a difference

that traces back to a small change in C
e,SM
1u [88]. The adjustments in Eq. (3.12) include

part of the �Z box correction from Ref. [92].
The present best measurement of Q

p
w comes from the Qweak experiment [91, 93, 94]

at Jefferson Lab, which measured the asymmetry at hQ2i = 0.0248 GeV2 and h✓i = 7.90�,
yielding [91]

A
p
e = �226.5(9.3) ⇥ 10�9

. (3.13)

The data were analyzed setting all Wilson coefficients except for Q
p
w to their SM values,

which, at tree level, implies

�2(Ce
1u + 2C

e
1d) = �2(Ce

1u + C
e
1d + C

e
1s) = �1,

�(Ce
2u � C

e
2d) = 2C

e
2s = 1 � 4s

2
W , C

e
2u + C

e
2d = 0, (3.14)

in agreement with Ref. [91] (note that our G
3
A(0) = gA > 0 has the opposite sign). Our

formulation in terms of Wilson coefficients (3.9) automatically accounts for the relevant
short-range radiative corrections, including what is called the “one-quark” axial-vector con-
tribution in Refs. [95, 96].

Updating the strangeness form factor using µ
s = �0.017(4), hr2

M,si = �0.015(9) fm2,
hr2

E,si = �0.0048(6) fm2 [97], ⇤A = 1.0(2) GeV (corresponding to the axial radius from
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debate in the literature [119–124], with Ref. [88] recommending 0.8977(40) from Ref. [124],
which is in 1.7� tension with the more recent 0.8893(27) from Ref. [125]. Finally, despite the
amplified asymmetry in the atomic system, the result is still sensitive to nuclear structure
input, i.e., the neutron distribution in the nucleus. In Ref. [126] the recent PREX-2 mea-
surement [110] of PVES off 208Pb, in combination with a correlation to 133Cs established
based on density-functional methods, was used to improve this aspect of the extraction of
the weak charge of 133Cs [126]

Qw
�
133Cs

�
= �72.94(43), (3.16)

a slight shift from Qw(133Cs) = �72.82(42) [88]. Both values lie about 1.5� below
Qw(133Cs) = �73.71(35) [125], mainly due to the difference in the atomic-structure cal-
culation. Both values agree with the SM prediction [88]

Qw
�
133Cs

�
= �2

h
Z
�
2C

e
1u + C

e
1d + 0.00005

�
+ N

�
C

e
1u + 2C

e
1d + 0.00006

�i✓
1 � ↵

2⇡

◆

= �73.24(5), (3.17)

but the pull goes into the opposite direction. In our analysis, we will use Eq. (3.16), bearing
in mind that the uncertainties might be slightly underestimated.

The above discussion shows that the current 0.6% precision of the weak charge of 133Cs
is becoming limited by theory, indicating that future improvements are difficult in the Cs
system. However, the PV effect is enhanced by another factor of 50 in Ra+ atoms, with a
Ra-based experiment under development at TRIµP [127] and ISOLDE [128]. The projected
gain in sensitivity on s

2
W by a factor of 5 would correspond to a 0.1% measurement of the

weak charge of Ra.

3.1.3 Parity-Violating Deep Inelastic Scattering

PVES can also be studied in deep inelastic reactions, with the master formula [129]

APVDIS =
3GF Q

2

2⇡↵
p

2

2C1u
⇥
1 + RC(x)

⇤
� C1d

⇥
1 + RS(x)

⇤
+ Y3(2C2u � C2d)RV (x)

5 + RS(x) + 4RC(x)
, (3.18)

which depends on various parton distribution functions contained in RC (charm), RS

(strange), RV (valence), as well as a kinematic factor Y3. In contrast to low-energy scatter-
ing, the PVDIS process is also strongly sensitive to the C

e
2q couplings for sufficiently large

Y3. The most precise measurements come from the Jefferson Lab PVDIS collaboration,
who measured PVDIS off a liquid deuterium target for two kinematic settings [129, 130]

A
(1)
PVDIS = 1.156 ⇥ 10�4[(2C

e
1u � C

e
1d) + 0.348(2C

e
2u � C

e
2d)]

= �91.10(3.11)(2.97) ⇥ 10�6
,

A
(2)
PVDIS = 2.022 ⇥ 10�4[(2C

e
1u � C

e
1d) + 0.594(2C

e
2u � C

e
2d)]

= �160.80(6.39)(3.12) ⇥ 10�6
, (3.19)

with corresponding SM predictions A
(1)
PVDIS = �87.7(7)⇥10�6 and A

(2)
PVDIS = �158.9(1.0)⇥

10�6. The SoLID experiment at Jefferson Lab Hall A aims to improve this measurement
up to a 0.8% relative error on APVDIS [131].
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Figure 1: The mtot
T for the b-veto (left) and b-tag (right) categories of the ⌧lep⌧had channel (top) and ⌧had⌧had channel

(bottom). The binning displayed is that entering into the fit. The predictions and uncertainties for the background
processes are obtained from the fit assuming the background-only hypothesis. Expectations from signal processes
are superimposed. Overflows are included in the last bin of the distributions.

7

Source: ArXiv:2002.12223 (ATLAS)
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Figure 7: Distributions of mtot
T in the global (left) no b-tag and (right) b-tag categories in the

(upper row) eµ, (middle row) eth and µth, and (lower row) thth final states, for the most
signal sensitive categories. For the eµ final state, the Medium-Dz category is displayed, for
the eth and µth final states the Tight-mT categories are shown. The black horizontal line in
the upper panel of each subfigure indicates the change from logarithmic to linear scale on the
vertical axis. The distributions are shown for all data-taking years combined.
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Figure 1: The mtot
T for the b-veto (left) and b-tag (right) categories of the ⌧lep⌧had channel (top) and ⌧had⌧had channel

(bottom). The binning displayed is that entering into the fit. The predictions and uncertainties for the background
processes are obtained from the fit assuming the background-only hypothesis. Expectations from signal processes
are superimposed. Overflows are included in the last bin of the distributions.
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Figure 7: Distributions of mtot
T in the global (left) no b-tag and (right) b-tag categories in the

(upper row) eµ, (middle row) eth and µth, and (lower row) thth final states, for the most
signal sensitive categories. For the eµ final state, the Medium-Dz category is displayed, for
the eth and µth final states the Tight-mT categories are shown. The black horizontal line in
the upper panel of each subfigure indicates the change from logarithmic to linear scale on the
vertical axis. The distributions are shown for all data-taking years combined.
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Figure 1: The mtot
T for the b-veto (left) and b-tag (right) categories of the ⌧lep⌧had channel (top) and ⌧had⌧had channel

(bottom). The binning displayed is that entering into the fit. The predictions and uncertainties for the background
processes are obtained from the fit assuming the background-only hypothesis. Expectations from signal processes
are superimposed. Overflows are included in the last bin of the distributions.

7

Source: ArXiv:2002.12223 (ATLAS)

ATLAS 2020

U1

Resonant excess 
in -vetob

https://cds.cern.ch/record/2803739/files/HIG-21-001-pas.pdf
https://arxiv.org/pdf/2002.12223.pdf


3. High-energy searches at the LHC

15

3.2 Drell-Yan production (DY): Overview

• CMS and ATLAS are searching for  signatures in the Drell-Yan spectrum. U1

8. Results 11

Ev
en

ts
 / 

G
eV

4−10

3−10

2−10

1−10
1

10

210

310

410

510 Observed
 and single toptt

Diboson
QCD multijet
Z + jets
W + jets
Bkg. unc.

=1κ=1, β=2.5, λLQ, 2000 GeV, 
 fb19−

+20 = 62σScalar, 
 fb14−

+15 = 43σVector, 

 (13 TeV)1−137 fb

CMS
Preliminary

, 0bµe

 [GeV]MET
TS

500 1000 1500 2000 2500

O
bs

. /
 B

kg
.

0.5

1

1.5

Ev
en

ts
 / 

G
eV

4−10

3−10

2−10

1−10
1

10

210

310

410

510

610
Observed

 and single toptt
QCD multijet
Diboson
Z + jets
Bkg. unc.

=1κ=1, β=2.5, λLQ, 2000 GeV, 
 fb19−

+20 = 62σScalar, 
 fb14−

+15 = 43σVector, 

 (13 TeV)1−137 fb

CMS
Preliminary

1b≥, µe

 [GeV]MET
TS

500 1000 1500 2000 2500

O
bs

. /
 B

kg
.

0.5

1

1.5

Ev
en

ts
 / 

G
eV

4−10

3−10

2−10

1−10

1
10

210

310

410 Observed
hτhτ →Z 

 and single toptt
 fakeshτ →j 

hτ →Drell-Yan with l 
Diboson
Bkg. unc.

=1κ=1, β=2.5, λLQ, 2000 GeV, 
 fb19−

+20 = 62σScalar, 
 fb14−

+15 = 43σVector, 

 (13 TeV)1−137 fb

CMS
Preliminary

, 0bhτhτ

 [GeV]MET
TS

500 1000 1500 2000 2500

O
bs

. /
 B

kg
.

0.5

1

1.5

Ev
en

ts
 / 

G
eV

4−10

3−10

2−10

1−10

1

10

210

310

410
Observed

 and single toptt
 fakeshτ →j 

hτhτ →Z 
Bkg. unc.

=1κ=1, β=2.5, λLQ, 2000 GeV, 
 fb19−

+20 = 62σScalar, 
 fb14−

+15 = 43σVector, 

 (13 TeV)1−137 fb

CMS
Preliminary

1b≥, hτhτ

 [GeV]MET
TS

500 1000 1500 2000 2500

O
bs

. /
 B

kg
.

0.5

1

1.5

Figure 3: Postfit distributions of S
MET
T for the combined 2016–2018 dataset after a simultane-

ous fit of the scalar LQ signal to the data in each data-taking period. The last bin includes the
overflow. The eµ (top) and thth (bottom) channels in the 0b (left) and �1b (right) category
are shown. The fitted signal distributions for the total scalar (solid red) and vector LQ model
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Figure 7: Distributions of mtot
T in the global (left) no b-tag and (right) b-tag categories in the

(upper row) eµ, (middle row) eth and µth, and (lower row) thth final states, for the most
signal sensitive categories. For the eµ final state, the Medium-Dz category is displayed, for
the eth and µth final states the Tight-mT categories are shown. The black horizontal line in
the upper panel of each subfigure indicates the change from logarithmic to linear scale on the
vertical axis. The distributions are shown for all data-taking years combined.
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Figure 1: The mtot
T for the b-veto (left) and b-tag (right) categories of the ⌧lep⌧had channel (top) and ⌧had⌧had channel

(bottom). The binning displayed is that entering into the fit. The predictions and uncertainties for the background
processes are obtained from the fit assuming the background-only hypothesis. Expectations from signal processes
are superimposed. Overflows are included in the last bin of the distributions.
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Figure 3: Postfit distributions of S
MET
T for the combined 2016–2018 dataset after a simultane-

ous fit of the scalar LQ signal to the data in each data-taking period. The last bin includes the
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Figure 7: Distributions of mtot
T in the global (left) no b-tag and (right) b-tag categories in the

(upper row) eµ, (middle row) eth and µth, and (lower row) thth final states, for the most
signal sensitive categories. For the eµ final state, the Medium-Dz category is displayed, for
the eth and µth final states the Tight-mT categories are shown. The black horizontal line in
the upper panel of each subfigure indicates the change from logarithmic to linear scale on the
vertical axis. The distributions are shown for all data-taking years combined.

Source: HIG-21-001-PAS (CMS)
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Figure 1: The mtot
T for the b-veto (left) and b-tag (right) categories of the ⌧lep⌧had channel (top) and ⌧had⌧had channel

(bottom). The binning displayed is that entering into the fit. The predictions and uncertainties for the background
processes are obtained from the fit assuming the background-only hypothesis. Expectations from signal processes
are superimposed. Overflows are included in the last bin of the distributions.
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Figure 6. Distributions of mtot
T in the no b -tag (left panel) and the b -tag (right panel) category

in the final state containing two hadronic tau leptons. The black curves correspond to the SM
expectations of the DY background provided by CMS in [54]. This search is based on 138 fb�1 of
integrated luminosity collected in pp collisions at

p
s = 13TeV. The yellow and red curves instead

represent the LQ LO and LQ NLO predictions assuming g4 = 1 and MU = 2TeV. In the case of the
solid (dashed) red lines the coloron mass is set to MG0 = 2TeV (MG0 = 5TeV). The blue histograms
illustrate the size of the interference effects between the LQ signal and the SM background called
SM-LQ LO. The definition of the signal regions (SRs) and other experimental details can be found
in the main text.

The solid (dashed) red LQ NLO results assume MG0 = 2TeV (MG0 = 5TeV). All predic-
tions correspond to 138 fb�1 of pp data collected at

p
s = 13TeV. From the lower left panel

one sees that in the no b -tag category the NLO LQ contribution amounts to a relative
correction of less than 10% compared to the SM DY background for m

tot
T > 1300GeV.

For what concerns the b -tag category, one instead observes from the lower right panel that
in the highest m

tot
T bin with m

tot
T > 900GeV the NLO LQ signal constitutes around 85%

of the SM DY background. This feature clearly shows that for third-generation vector LQs
the sensitivity of DY searches notably improves by demanding an additional b -jet in the
final state. It is furthermore important to realise that the NLO QCD effects enhance
the LO LQ predictions in the no b -tag (b -tag) category by approximately 35% (30%) in the
highest m

tot
T bin, making higher-order QCD effects phenomenologically relevant. On the

other hand, the dependence of the NLO LQ distributions on MG0 is weak. This renders the
constraints derived below model-independent in the sense that one can set a limit on g4 as a
function of MU essentially without making a reference to the choice of the coloron mass as
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Figure 6. Distributions of mtot
T in the no b -tag (left panel) and the b -tag (right panel) category

in the final state containing two hadronic tau leptons. The black curves correspond to the SM
expectations of the DY background provided by CMS in [54]. This search is based on 138 fb�1 of
integrated luminosity collected in pp collisions at

p
s = 13TeV. The yellow and red curves instead

represent the LQ LO and LQ NLO predictions assuming g4 = 1 and MU = 2TeV. In the case of the
solid (dashed) red lines the coloron mass is set to MG0 = 2TeV (MG0 = 5TeV). The blue histograms
illustrate the size of the interference effects between the LQ signal and the SM background called
SM-LQ LO. The definition of the signal regions (SRs) and other experimental details can be found
in the main text.

The solid (dashed) red LQ NLO results assume MG0 = 2TeV (MG0 = 5TeV). All predic-
tions correspond to 138 fb�1 of pp data collected at

p
s = 13TeV. From the lower left panel

one sees that in the no b -tag category the NLO LQ contribution amounts to a relative
correction of less than 10% compared to the SM DY background for m

tot
T > 1300GeV.

For what concerns the b -tag category, one instead observes from the lower right panel that
in the highest m

tot
T bin with m

tot
T > 900GeV the NLO LQ signal constitutes around 85%

of the SM DY background. This feature clearly shows that for third-generation vector LQs
the sensitivity of DY searches notably improves by demanding an additional b -jet in the
final state. It is furthermore important to realise that the NLO QCD effects enhance
the LO LQ predictions in the no b -tag (b -tag) category by approximately 35% (30%) in the
highest m

tot
T bin, making higher-order QCD effects phenomenologically relevant. On the

other hand, the dependence of the NLO LQ distributions on MG0 is weak. This renders the
constraints derived below model-independent in the sense that one can set a limit on g4 as a
function of MU essentially without making a reference to the choice of the coloron mass as

– 12 –

Source: ArXiv:2209.12780  
(U. Haisch, LS, S. Schulte)

SM LO LQ LO

One can win 
over SM 

background in 
the tails

LQ NLO real 
(non-res.)

LQ NLO real 
(res.)

LO: MG5 + PS

Partial NLO: MG5 + PS + Merging

More accurate  
NP predictions  

for the tailsHow does this 
improve with 

-tags?b

U1

https://arxiv.org/pdf/2209.12780.pdf


3. High-energy searches at the LHC

16

3.2 Drell-Yan production (DY): Going beyond the LQ LO

10-4

0.001

0.010

0.100

1

10

100

ev
en
ts
/G
eV

g4 = 1, MU = 2 TeV

600 800 1000 1200 1400 1600

0.01

0.1

0.5
1

mTtot [GeV]

ra
tio

SM NLO

LQ LO

LQ NLO (MG′ = 2 TeV)

LQ NLO (MG′ = 5 TeV)

SM-LQ LO

pp → τh+τh-, no b-tag

Figure 6. Distributions of mtot
T in the no b -tag (left panel) and the b -tag (right panel) category

in the final state containing two hadronic tau leptons. The black curves correspond to the SM
expectations of the DY background provided by CMS in [54]. This search is based on 138 fb�1 of
integrated luminosity collected in pp collisions at

p
s = 13TeV. The yellow and red curves instead

represent the LQ LO and LQ NLO predictions assuming g4 = 1 and MU = 2TeV. In the case of the
solid (dashed) red lines the coloron mass is set to MG0 = 2TeV (MG0 = 5TeV). The blue histograms
illustrate the size of the interference effects between the LQ signal and the SM background called
SM-LQ LO. The definition of the signal regions (SRs) and other experimental details can be found
in the main text.

The solid (dashed) red LQ NLO results assume MG0 = 2TeV (MG0 = 5TeV). All predic-
tions correspond to 138 fb�1 of pp data collected at

p
s = 13TeV. From the lower left panel

one sees that in the no b -tag category the NLO LQ contribution amounts to a relative
correction of less than 10% compared to the SM DY background for m

tot
T > 1300GeV.

For what concerns the b -tag category, one instead observes from the lower right panel that
in the highest m

tot
T bin with m

tot
T > 900GeV the NLO LQ signal constitutes around 85%

of the SM DY background. This feature clearly shows that for third-generation vector LQs
the sensitivity of DY searches notably improves by demanding an additional b -jet in the
final state. It is furthermore important to realise that the NLO QCD effects enhance
the LO LQ predictions in the no b -tag (b -tag) category by approximately 35% (30%) in the
highest m

tot
T bin, making higher-order QCD effects phenomenologically relevant. On the

other hand, the dependence of the NLO LQ distributions on MG0 is weak. This renders the
constraints derived below model-independent in the sense that one can set a limit on g4 as a
function of MU essentially without making a reference to the choice of the coloron mass as

– 12 –

Source: ArXiv:2209.12780  
(U. Haisch, LS, S. Schulte)

SM LO LQ LO

One can win 
over SM 

background in 
the tails

LQ NLO real 
(non-res.)

LQ NLO real 
(res.) LQ NLO virtual

LO: MG5 + PS

Partial NLO: MG5 + PS + Merging

More accurate  
NP predictions  

for the tailsHow does this 
improve with 

-tags?b

U1

https://arxiv.org/pdf/2209.12780.pdf


3. High-energy searches at the LHC

16

3.2 Drell-Yan production (DY): Going beyond the LQ LO

10-4

0.001

0.010

0.100

1

10

100

ev
en
ts
/G
eV

g4 = 1, MU = 2 TeV

600 800 1000 1200 1400 1600

0.01

0.1

0.5
1

mTtot [GeV]

ra
tio

SM NLO

LQ LO

LQ NLO (MG′ = 2 TeV)

LQ NLO (MG′ = 5 TeV)

SM-LQ LO

pp → τh+τh-, no b-tag

Figure 6. Distributions of mtot
T in the no b -tag (left panel) and the b -tag (right panel) category

in the final state containing two hadronic tau leptons. The black curves correspond to the SM
expectations of the DY background provided by CMS in [54]. This search is based on 138 fb�1 of
integrated luminosity collected in pp collisions at

p
s = 13TeV. The yellow and red curves instead

represent the LQ LO and LQ NLO predictions assuming g4 = 1 and MU = 2TeV. In the case of the
solid (dashed) red lines the coloron mass is set to MG0 = 2TeV (MG0 = 5TeV). The blue histograms
illustrate the size of the interference effects between the LQ signal and the SM background called
SM-LQ LO. The definition of the signal regions (SRs) and other experimental details can be found
in the main text.

The solid (dashed) red LQ NLO results assume MG0 = 2TeV (MG0 = 5TeV). All predic-
tions correspond to 138 fb�1 of pp data collected at

p
s = 13TeV. From the lower left panel

one sees that in the no b -tag category the NLO LQ contribution amounts to a relative
correction of less than 10% compared to the SM DY background for m

tot
T > 1300GeV.

For what concerns the b -tag category, one instead observes from the lower right panel that
in the highest m

tot
T bin with m

tot
T > 900GeV the NLO LQ signal constitutes around 85%

of the SM DY background. This feature clearly shows that for third-generation vector LQs
the sensitivity of DY searches notably improves by demanding an additional b -jet in the
final state. It is furthermore important to realise that the NLO QCD effects enhance
the LO LQ predictions in the no b -tag (b -tag) category by approximately 35% (30%) in the
highest m

tot
T bin, making higher-order QCD effects phenomenologically relevant. On the

other hand, the dependence of the NLO LQ distributions on MG0 is weak. This renders the
constraints derived below model-independent in the sense that one can set a limit on g4 as a
function of MU essentially without making a reference to the choice of the coloron mass as

– 12 –

Source: ArXiv:2209.12780  
(U. Haisch, LS, S. Schulte)

SM LO LQ LO

One can win 
over SM 

background in 
the tails

LQ NLO real 
(non-res.)

LQ NLO real 
(res.) LQ NLO virtual

LO: MG5 + PS

Partial NLO: MG5 + PS + Merging Full NLO: POWHEG-BOX + PS

More accurate  
NP predictions  

for the tailsHow does this 
improve with 

-tags?b

U1

https://arxiv.org/pdf/2209.12780.pdf


3. High-energy searches at the LHC

17

3.2 Drell-Yan production (DY): POWHEG-BOX implementation

U1



3. High-energy searches at the LHC

17

3.2 Drell-Yan production (DY): POWHEG-BOX implementation

Input parameters

powheg.input

PhysPars.h 
init_couplings.f

Flavour structure 
and phase space

Born_phsp.f

init_processes.f

Matrix elements

Born.f

real.f

virtual.f

U1



3. High-energy searches at the LHC

18

3.2 Drell-Yan production (DY): POWHEG-BOX implementation

Input parameters

powheg.input

PhysPars.h 
init_couplings.f

Flavour structure 
and phase space

Born_phsp.f

init_processes.f

Matrix elements

Born.f

real.f

virtual.f

U1



3. High-energy searches at the LHC

18

3.2 Drell-Yan production (DY): POWHEG-BOX implementation

Input parameters

powheg.input

PhysPars.h 
init_couplings.f

Flavour structure 
and phase space

Born_phsp.f

init_processes.f

Matrix elements

Born.f

real.f

virtual.f

Input parameters: 

U1



3. High-energy searches at the LHC

18

3.2 Drell-Yan production (DY): POWHEG-BOX implementation

Input parameters

powheg.input

PhysPars.h 
init_couplings.f

Flavour structure 
and phase space

Born_phsp.f

init_processes.f

Matrix elements

Born.f

real.f

virtual.f

Input parameters: 

U1

NLO width (PackageX, cross-checked with FormCalc):

Source: ArXiv:2209.12780 (U. Haisch, LS, S. Schulte)
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Kinematics the same as in the SM:  

• We focussed on .pp → τ+τ− + X
• There are ideas to extend this to  

.pp → τντ + X
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• Calculation with PackageX, cross-checked with FormCalc, numerical evaluation with LoopTools. 
• UV divergences cancel between the  and  contributions, IR divergences handled with dimensional 

regularisation. 
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• It can be used to generate events (.lhe and .hepmc) for dedicated MC studies. 

• We have also implemented the contributions from SLQs, this is available on GitLab and the POWHEG-
BOX website, too. 

https://gitlab.com/lucschnell/Drell-Yan-LQ-NLO
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Figure 4. Inclusive pp ! ⌧
+
⌧
� production cross sections as a function of m⌧⌧ for the parameter

choices g4 = 1 and MU = 2TeV. The yellow and red curves correspond to the LQ distributions
at the LO (LQ LO) and the NLO (LQ NLO) in QCD, respectively, while the blue histograms
illustrate the magnitude of the interference effects between the SM background and the LQ sig-
nal (SM-LQ LO). In the case of the solid (dashed) red line the coloron mass is set to MG0 = 2TeV
(MG0 = 5TeV). The lower panel depicts the ratios between the different LQ contributions and the
relevant LQ LO distribution.

that the NLO QCD effects play an important role in obtaining precise predictions as they
amount compared to the tree-level LQ prediction to around 40% (150%) at m⌧⌧ = 1.5TeV

(m⌧⌧ = 3TeV). Notice that at NLO in QCD the DY ditau production spectra resulting from
LQ exchange depend on the mass MG0 of the coloron. For the two choices of MG0 shown in
the figure we find relative differences of the order of 10% between the two distributions. The
observed effects are therefore similar in size to the MG0 dependence of the O(↵s) corrections
to the partial decay width of the U ! b⌧ channel (cf. Figure 3). The interference effects be-
tween the SM DY background and the LQ signal turn out to be destructive in the shown m⌧⌧

range,5 amounting to approximately 15% (5%) for m⌧⌧ = 1.5TeV (m⌧⌧ = 3TeV).
In Figure 5 we furthermore display the ratios between the individual LQ contributions

and the DY ditau SM background. The normalisation is calculated at the NLO in QCD
and we select events with two opposite-sign same-flavour tau leptons that are both required
to have a transverse momentum of pT,⌧ > 30GeV and a pseudorapidity of |⌘⌧ | < 2.5.
The invariant masses of the ditau pairs must fall into the range m⌧⌧ 2 [1300, 5000]GeV.

5
The SM-LQ LO results shown in Figures 4, 5 and 6 represent the magnitudes of the corresponding

predictions for the interference effects between the SM background and the LQ signal.

– 9 –

Source: ArXiv:2209.12780 (U. Haisch, LS, S. Schulte)
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• Full NLO+PS analysis, LHC cuts 
modelled in MadAnalysis5 
(normal + expert mode).
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Figure 6. Distributions of mtot
T in the no b -tag (left panel) and the b -tag (right panel) category

in the final state containing two hadronic tau leptons. The black curves correspond to the SM
expectations of the DY background provided by CMS in [54]. This search is based on 138 fb�1 of
integrated luminosity collected in pp collisions at

p
s = 13TeV. The yellow and red curves instead

represent the LQ LO and LQ NLO predictions assuming g4 = 1 and MU = 2TeV. In the case of the
solid (dashed) red lines the coloron mass is set to MG0 = 2TeV (MG0 = 5TeV). The blue histograms
illustrate the size of the interference effects between the LQ signal and the SM background called
SM-LQ LO. The definition of the signal regions (SRs) and other experimental details can be found
in the main text.

The solid (dashed) red LQ NLO results assume MG0 = 2TeV (MG0 = 5TeV). All predic-
tions correspond to 138 fb�1 of pp data collected at

p
s = 13TeV. From the lower left panel

one sees that in the no b -tag category the NLO LQ contribution amounts to a relative
correction of less than 10% compared to the SM DY background for m

tot
T > 1300GeV.

For what concerns the b -tag category, one instead observes from the lower right panel that
in the highest m

tot
T bin with m

tot
T > 900GeV the NLO LQ signal constitutes around 85%

of the SM DY background. This feature clearly shows that for third-generation vector LQs
the sensitivity of DY searches notably improves by demanding an additional b -jet in the
final state. It is furthermore important to realise that the NLO QCD effects enhance
the LO LQ predictions in the no b -tag (b -tag) category by approximately 35% (30%) in the
highest m

tot
T bin, making higher-order QCD effects phenomenologically relevant. On the

other hand, the dependence of the NLO LQ distributions on MG0 is weak. This renders the
constraints derived below model-independent in the sense that one can set a limit on g4 as a
function of MU essentially without making a reference to the choice of the coloron mass as

– 12 –

Source: ArXiv:2209.12780 (U. Haisch, LS, S. Schulte)
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• Full NLO+PS analysis, LHC cuts 
modelled in MadAnalysis5 
(normal + expert mode).
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• Full NLO+PS analysis, LHC cuts 
modelled in MadAnalysis5 
(normal + expert mode).
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Figure 7: Distributions of mtot
T in the global (left) no b-tag and (right) b-tag categories in the

(upper row) eµ, (middle row) eth and µth, and (lower row) thth final states, for the most
signal sensitive categories. For the eµ final state, the Medium-Dz category is displayed, for
the eth and µth final states the Tight-mT categories are shown. The black horizontal line in
the upper panel of each subfigure indicates the change from logarithmic to linear scale on the
vertical axis. The distributions are shown for all data-taking years combined.

Source: HIG-21-001-PAS (CMS)
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Figure 3: Postfit distributions of S
MET
T for the combined 2016–2018 dataset after a simultane-

ous fit of the scalar LQ signal to the data in each data-taking period. The last bin includes the
overflow. The eµ (top) and thth (bottom) channels in the 0b (left) and �1b (right) category
are shown. The fitted signal distributions for the total scalar (solid red) and vector LQ model
(dashed red) with a mass of 2000 GeV and a coupling strength of l = 2.5 are overlaid to illus-
trate the sensitivity. They include the single and pair LQ production, as well as the nonresonant
production of a t lepton pair. The lower panel shows the ratio between the observed data and
background from the S+B fit (black). The hatched uncertainty bands include the total postfit
uncertainties in the background.

Source: EXO-19-016-PAS (CMS)
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Figure 1: The mtot
T for the b-veto (left) and b-tag (right) categories of the ⌧lep⌧had channel (top) and ⌧had⌧had channel

(bottom). The binning displayed is that entering into the fit. The predictions and uncertainties for the background
processes are obtained from the fit assuming the background-only hypothesis. Expectations from signal processes
are superimposed. Overflows are included in the last bin of the distributions.
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Source: ArXiv:2002.12223 (ATLAS)
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Figure 7: Distributions of mtot
T in the global (left) no b-tag and (right) b-tag categories in the

(upper row) eµ, (middle row) eth and µth, and (lower row) thth final states, for the most
signal sensitive categories. For the eµ final state, the Medium-Dz category is displayed, for
the eth and µth final states the Tight-mT categories are shown. The black horizontal line in
the upper panel of each subfigure indicates the change from logarithmic to linear scale on the
vertical axis. The distributions are shown for all data-taking years combined.

Source: HIG-21-001-PAS (CMS)
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Figure 3: Postfit distributions of S
MET
T for the combined 2016–2018 dataset after a simultane-

ous fit of the scalar LQ signal to the data in each data-taking period. The last bin includes the
overflow. The eµ (top) and thth (bottom) channels in the 0b (left) and �1b (right) category
are shown. The fitted signal distributions for the total scalar (solid red) and vector LQ model
(dashed red) with a mass of 2000 GeV and a coupling strength of l = 2.5 are overlaid to illus-
trate the sensitivity. They include the single and pair LQ production, as well as the nonresonant
production of a t lepton pair. The lower panel shows the ratio between the observed data and
background from the S+B fit (black). The hatched uncertainty bands include the total postfit
uncertainties in the background.

Source: EXO-19-016-PAS (CMS)

U1

https://cds.cern.ch/record/2803739/files/HIG-21-001-pas.pdf
https://cds.cern.ch/record/2815309/files/EXO-19-016-pas.pdf


3. High-energy searches at the LHC

24

3.3 Drell-Yan production (DY): Phenomenology

Exclusion limits: 

Source: ArXiv:2209.12780 (U. Haisch, LS, S. Schulte)Figure 8. As Figure 7 but using a recast of the results of the ATLAS [51] and CMS [55] ditau
search in the left and right panel, respectively. For additional details see the text.

b -tagger can reach up to 90% but degrades down to approximately 60% for pT,b > 500GeV.
To remove DY background an additional cut on the invariant mass mvis of the visible tau
decay products of mvis > 100GeV is applied. The scalar sum

S
MET
T = pT,⌧1 + pT,⌧2 + pT,j + ET,miss , (B.1)

built from the transverse momenta pT,⌧1 and pT,⌧2 of the two ⌧ candidates, the transverse
momentum pT,j of the leading jet and the missing transverse energy ET,miss is used in the
analysis [55] as a discriminating variable. Furthermore, two orthogonal event categories
are constructed: one which requires no b -jet with pT,b > 50GeV and another one which
requires at least one such jet.

The 95% CL exclusion bounds on the MU –g4 plane that follow from the recast of
the ATLAS [51] and CMS [55] search are shown in the left and right panel of Figure 8,
respectively. For simplicity we again employ MG0 = MU when determining the exclusion
limits. Compared to the constraints depicted in Figure 7, one observes that the difference
between the no b -tag and b -tag bounds that derive from the considered ATLAS analysis
is much smaller. This feature is readily understood by noticing that the ATLAS search,
unlike the CMS analysis [54] does not see an excess in the high-mass m

tot
T distribution in

the no b -tag category. In fact, ATLAS observes small deficits compared to the expected SM
background in the tails of the m

tot
T spectra, which explains why for large values of MU the

95% CL limits on g4 as shown in the left panel of Figure 8 are notably better than those
displayed in Figure 7. To understand the shape of the exclusion limits following from the
CMS search [55] presented on the right-hand side in Figure 8, one has to realise that the
latter search observes a non-resonant excess with a significance of a bit more than 3� above
the SM expectation in the data. As a result, the obtained 95% CL limits in the MU –g4
plane turn out to be weaker than expected, in particular in the large mass regime.
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Figure 7: Distributions of mtot
T in the global (left) no b-tag and (right) b-tag categories in the

(upper row) eµ, (middle row) eth and µth, and (lower row) thth final states, for the most
signal sensitive categories. For the eµ final state, the Medium-Dz category is displayed, for
the eth and µth final states the Tight-mT categories are shown. The black horizontal line in
the upper panel of each subfigure indicates the change from logarithmic to linear scale on the
vertical axis. The distributions are shown for all data-taking years combined.

Source: HIG-21-001-PAS (CMS)
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Figure 3: Postfit distributions of S
MET
T for the combined 2016–2018 dataset after a simultane-

ous fit of the scalar LQ signal to the data in each data-taking period. The last bin includes the
overflow. The eµ (top) and thth (bottom) channels in the 0b (left) and �1b (right) category
are shown. The fitted signal distributions for the total scalar (solid red) and vector LQ model
(dashed red) with a mass of 2000 GeV and a coupling strength of l = 2.5 are overlaid to illus-
trate the sensitivity. They include the single and pair LQ production, as well as the nonresonant
production of a t lepton pair. The lower panel shows the ratio between the observed data and
background from the S+B fit (black). The hatched uncertainty bands include the total postfit
uncertainties in the background.

Source: EXO-19-016-PAS (CMS)
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3.3 Drell-Yan production (DY): Phenomenology

Exclusion limits: 

Source: ArXiv:2209.12780 (U. Haisch, LS, S. Schulte)Figure 8. As Figure 7 but using a recast of the results of the ATLAS [51] and CMS [55] ditau
search in the left and right panel, respectively. For additional details see the text.

b -tagger can reach up to 90% but degrades down to approximately 60% for pT,b > 500GeV.
To remove DY background an additional cut on the invariant mass mvis of the visible tau
decay products of mvis > 100GeV is applied. The scalar sum

S
MET
T = pT,⌧1 + pT,⌧2 + pT,j + ET,miss , (B.1)

built from the transverse momenta pT,⌧1 and pT,⌧2 of the two ⌧ candidates, the transverse
momentum pT,j of the leading jet and the missing transverse energy ET,miss is used in the
analysis [55] as a discriminating variable. Furthermore, two orthogonal event categories
are constructed: one which requires no b -jet with pT,b > 50GeV and another one which
requires at least one such jet.

The 95% CL exclusion bounds on the MU –g4 plane that follow from the recast of
the ATLAS [51] and CMS [55] search are shown in the left and right panel of Figure 8,
respectively. For simplicity we again employ MG0 = MU when determining the exclusion
limits. Compared to the constraints depicted in Figure 7, one observes that the difference
between the no b -tag and b -tag bounds that derive from the considered ATLAS analysis
is much smaller. This feature is readily understood by noticing that the ATLAS search,
unlike the CMS analysis [54] does not see an excess in the high-mass m

tot
T distribution in

the no b -tag category. In fact, ATLAS observes small deficits compared to the expected SM
background in the tails of the m

tot
T spectra, which explains why for large values of MU the

95% CL limits on g4 as shown in the left panel of Figure 8 are notably better than those
displayed in Figure 7. To understand the shape of the exclusion limits following from the
CMS search [55] presented on the right-hand side in Figure 8, one has to realise that the
latter search observes a non-resonant excess with a significance of a bit more than 3� above
the SM expectation in the data. As a result, the obtained 95% CL limits in the MU –g4
plane turn out to be weaker than expected, in particular in the large mass regime.
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Figure 3: Postfit distributions of S
MET
T for the combined 2016–2018 dataset after a simultane-

ous fit of the scalar LQ signal to the data in each data-taking period. The last bin includes the
overflow. The eµ (top) and thth (bottom) channels in the 0b (left) and �1b (right) category
are shown. The fitted signal distributions for the total scalar (solid red) and vector LQ model
(dashed red) with a mass of 2000 GeV and a coupling strength of l = 2.5 are overlaid to illus-
trate the sensitivity. They include the single and pair LQ production, as well as the nonresonant
production of a t lepton pair. The lower panel shows the ratio between the observed data and
background from the S+B fit (black). The hatched uncertainty bands include the total postfit
uncertainties in the background.

Source: EXO-19-016-PAS (CMS)
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3.3 Drell-Yan production (DY): Phenomenology

Exclusion limits: 

Source: ArXiv:2209.12780 (U. Haisch, LS, S. Schulte)Figure 7. Comparison of the 95% CL constraints on the MU –g4 plane that arise from the latest
LHC Run II hadronic ditau analysis [54]. The red (green) exclusion corresponds to the no b -tag (b -
tag) category of the latter search, while the hatched grey parameter space is excluded by strong
pair production of third-generation LQs [113]. Consult the main text for additional explanations.

long as MG0 = O(MU ). One finally sees that the considered SM-LQ LO interference ef-
fects amount to a few permille in the case of the no b -tag category, while they can exceed
the level of 5% if one requires the presence of a b -tag in the events. In contrast to what
has been suggested in the recent work [54], interference effects therefore play only a minor
role in the SRs that are relevant for non-resonant DY searches for third-generation singlet
vector LQs at the LHC.

Based on the ditau search strategies detailed above, we now derive NLO+PS accurate
95% confidence level (CL) limits on the MU –g4 plane. Since we have seen that the choice
of coloron mass has only a minor impact on the m

tot
T spectrum, we employ MG0 = MU

for simplicity when determining the exclusion bounds. Figure 7 shows our 95% CL limits
on the MU –g4 parameter space that follow from the two b -jet categories considered in the
CMS search [54] for two hadronic tau leptons. The red and green exclusion corresponds
to the no b -tag and the b -tag category of this analysis, respectively, while the parameter
space excluded by strong pair production of third-generation LQs [53] is indicated by the
hatched grey vertical band. This search excludes MU < 1650GeV at 95% CL. The signifi-
cance of the individual b -jet categories of the search [54] is calculated as a ratio of Poisson
likelihoods modified to incorporate systematic uncertainties on the background as Gaus-
sian constraints [114]. Our statistical analysis includes the six (three) highest m

tot
T bins in

the case of the no b -tag (b -tag) category. One first observes that the bound on g4 that
follows from the search with a b -tag is more stringent than the one that derives from a
strategy that requires no b -jet. We add that the difference between the no b -tag and b -tag
constraints is rather pronounced in the case of the CMS analysis [54], because this search
observes a resonant-like excess with a significance of around 3� at m

tot
T ' 1.2TeV in the

– 13 –

Figure 8. As Figure 7 but using a recast of the results of the ATLAS [51] and CMS [55] ditau
search in the left and right panel, respectively. For additional details see the text.

b -tagger can reach up to 90% but degrades down to approximately 60% for pT,b > 500GeV.
To remove DY background an additional cut on the invariant mass mvis of the visible tau
decay products of mvis > 100GeV is applied. The scalar sum

S
MET
T = pT,⌧1 + pT,⌧2 + pT,j + ET,miss , (B.1)

built from the transverse momenta pT,⌧1 and pT,⌧2 of the two ⌧ candidates, the transverse
momentum pT,j of the leading jet and the missing transverse energy ET,miss is used in the
analysis [55] as a discriminating variable. Furthermore, two orthogonal event categories
are constructed: one which requires no b -jet with pT,b > 50GeV and another one which
requires at least one such jet.

The 95% CL exclusion bounds on the MU –g4 plane that follow from the recast of
the ATLAS [51] and CMS [55] search are shown in the left and right panel of Figure 8,
respectively. For simplicity we again employ MG0 = MU when determining the exclusion
limits. Compared to the constraints depicted in Figure 7, one observes that the difference
between the no b -tag and b -tag bounds that derive from the considered ATLAS analysis
is much smaller. This feature is readily understood by noticing that the ATLAS search,
unlike the CMS analysis [54] does not see an excess in the high-mass m

tot
T distribution in

the no b -tag category. In fact, ATLAS observes small deficits compared to the expected SM
background in the tails of the m

tot
T spectra, which explains why for large values of MU the

95% CL limits on g4 as shown in the left panel of Figure 8 are notably better than those
displayed in Figure 7. To understand the shape of the exclusion limits following from the
CMS search [55] presented on the right-hand side in Figure 8, one has to realise that the
latter search observes a non-resonant excess with a significance of a bit more than 3� above
the SM expectation in the data. As a result, the obtained 95% CL limits in the MU –g4
plane turn out to be weaker than expected, in particular in the large mass regime.
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Figure 3: Postfit distributions of S
MET
T for the combined 2016–2018 dataset after a simultane-

ous fit of the scalar LQ signal to the data in each data-taking period. The last bin includes the
overflow. The eµ (top) and thth (bottom) channels in the 0b (left) and �1b (right) category
are shown. The fitted signal distributions for the total scalar (solid red) and vector LQ model
(dashed red) with a mass of 2000 GeV and a coupling strength of l = 2.5 are overlaid to illus-
trate the sensitivity. They include the single and pair LQ production, as well as the nonresonant
production of a t lepton pair. The lower panel shows the ratio between the observed data and
background from the S+B fit (black). The hatched uncertainty bands include the total postfit
uncertainties in the background.

Source: EXO-19-016-PAS (CMS)
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3.3 Drell-Yan production (DY): Phenomenology

Exclusion limits: 

Source: ArXiv:2209.12780 (U. Haisch, LS, S. Schulte)Figure 7. Comparison of the 95% CL constraints on the MU –g4 plane that arise from the latest
LHC Run II hadronic ditau analysis [54]. The red (green) exclusion corresponds to the no b -tag (b -
tag) category of the latter search, while the hatched grey parameter space is excluded by strong
pair production of third-generation LQs [113]. Consult the main text for additional explanations.

long as MG0 = O(MU ). One finally sees that the considered SM-LQ LO interference ef-
fects amount to a few permille in the case of the no b -tag category, while they can exceed
the level of 5% if one requires the presence of a b -tag in the events. In contrast to what
has been suggested in the recent work [54], interference effects therefore play only a minor
role in the SRs that are relevant for non-resonant DY searches for third-generation singlet
vector LQs at the LHC.

Based on the ditau search strategies detailed above, we now derive NLO+PS accurate
95% confidence level (CL) limits on the MU –g4 plane. Since we have seen that the choice
of coloron mass has only a minor impact on the m

tot
T spectrum, we employ MG0 = MU

for simplicity when determining the exclusion bounds. Figure 7 shows our 95% CL limits
on the MU –g4 parameter space that follow from the two b -jet categories considered in the
CMS search [54] for two hadronic tau leptons. The red and green exclusion corresponds
to the no b -tag and the b -tag category of this analysis, respectively, while the parameter
space excluded by strong pair production of third-generation LQs [53] is indicated by the
hatched grey vertical band. This search excludes MU < 1650GeV at 95% CL. The signifi-
cance of the individual b -jet categories of the search [54] is calculated as a ratio of Poisson
likelihoods modified to incorporate systematic uncertainties on the background as Gaus-
sian constraints [114]. Our statistical analysis includes the six (three) highest m

tot
T bins in

the case of the no b -tag (b -tag) category. One first observes that the bound on g4 that
follows from the search with a b -tag is more stringent than the one that derives from a
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Figure 3: Postfit distributions of S
MET
T for the combined 2016–2018 dataset after a simultane-

ous fit of the scalar LQ signal to the data in each data-taking period. The last bin includes the
overflow. The eµ (top) and thth (bottom) channels in the 0b (left) and �1b (right) category
are shown. The fitted signal distributions for the total scalar (solid red) and vector LQ model
(dashed red) with a mass of 2000 GeV and a coupling strength of l = 2.5 are overlaid to illus-
trate the sensitivity. They include the single and pair LQ production, as well as the nonresonant
production of a t lepton pair. The lower panel shows the ratio between the observed data and
background from the S+B fit (black). The hatched uncertainty bands include the total postfit
uncertainties in the background.

Source: EXO-19-016-PAS (CMS)
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long as MG0 = O(MU ). One finally sees that the considered SM-LQ LO interference ef-
fects amount to a few permille in the case of the no b -tag category, while they can exceed
the level of 5% if one requires the presence of a b -tag in the events. In contrast to what
has been suggested in the recent work [54], interference effects therefore play only a minor
role in the SRs that are relevant for non-resonant DY searches for third-generation singlet
vector LQs at the LHC.

Based on the ditau search strategies detailed above, we now derive NLO+PS accurate
95% confidence level (CL) limits on the MU –g4 plane. Since we have seen that the choice
of coloron mass has only a minor impact on the m

tot
T spectrum, we employ MG0 = MU

for simplicity when determining the exclusion bounds. Figure 7 shows our 95% CL limits
on the MU –g4 parameter space that follow from the two b -jet categories considered in the
CMS search [54] for two hadronic tau leptons. The red and green exclusion corresponds
to the no b -tag and the b -tag category of this analysis, respectively, while the parameter
space excluded by strong pair production of third-generation LQs [53] is indicated by the
hatched grey vertical band. This search excludes MU < 1650GeV at 95% CL. The signifi-
cance of the individual b -jet categories of the search [54] is calculated as a ratio of Poisson
likelihoods modified to incorporate systematic uncertainties on the background as Gaus-
sian constraints [114]. Our statistical analysis includes the six (three) highest m

tot
T bins in

the case of the no b -tag (b -tag) category. One first observes that the bound on g4 that
follows from the search with a b -tag is more stringent than the one that derives from a
strategy that requires no b -jet. We add that the difference between the no b -tag and b -tag
constraints is rather pronounced in the case of the CMS analysis [54], because this search
observes a resonant-like excess with a significance of around 3� at m

tot
T ' 1.2TeV in the
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Figure 8. As Figure 7 but using a recast of the results of the ATLAS [51] and CMS [55] ditau
search in the left and right panel, respectively. For additional details see the text.

b -tagger can reach up to 90% but degrades down to approximately 60% for pT,b > 500GeV.
To remove DY background an additional cut on the invariant mass mvis of the visible tau
decay products of mvis > 100GeV is applied. The scalar sum

S
MET
T = pT,⌧1 + pT,⌧2 + pT,j + ET,miss , (B.1)

built from the transverse momenta pT,⌧1 and pT,⌧2 of the two ⌧ candidates, the transverse
momentum pT,j of the leading jet and the missing transverse energy ET,miss is used in the
analysis [55] as a discriminating variable. Furthermore, two orthogonal event categories
are constructed: one which requires no b -jet with pT,b > 50GeV and another one which
requires at least one such jet.

The 95% CL exclusion bounds on the MU –g4 plane that follow from the recast of
the ATLAS [51] and CMS [55] search are shown in the left and right panel of Figure 8,
respectively. For simplicity we again employ MG0 = MU when determining the exclusion
limits. Compared to the constraints depicted in Figure 7, one observes that the difference
between the no b -tag and b -tag bounds that derive from the considered ATLAS analysis
is much smaller. This feature is readily understood by noticing that the ATLAS search,
unlike the CMS analysis [54] does not see an excess in the high-mass m

tot
T distribution in

the no b -tag category. In fact, ATLAS observes small deficits compared to the expected SM
background in the tails of the m

tot
T spectra, which explains why for large values of MU the

95% CL limits on g4 as shown in the left panel of Figure 8 are notably better than those
displayed in Figure 7. To understand the shape of the exclusion limits following from the
CMS search [55] presented on the right-hand side in Figure 8, one has to realise that the
latter search observes a non-resonant excess with a significance of a bit more than 3� above
the SM expectation in the data. As a result, the obtained 95% CL limits in the MU –g4
plane turn out to be weaker than expected, in particular in the large mass regime.
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b -tagger can reach up to 90% but degrades down to approximately 60% for pT,b > 500GeV.
To remove DY background an additional cut on the invariant mass mvis of the visible tau
decay products of mvis > 100GeV is applied. The scalar sum

S
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T = pT,⌧1 + pT,⌧2 + pT,j + ET,miss , (B.1)

built from the transverse momenta pT,⌧1 and pT,⌧2 of the two ⌧ candidates, the transverse
momentum pT,j of the leading jet and the missing transverse energy ET,miss is used in the
analysis [55] as a discriminating variable. Furthermore, two orthogonal event categories
are constructed: one which requires no b -jet with pT,b > 50GeV and another one which
requires at least one such jet.

The 95% CL exclusion bounds on the MU –g4 plane that follow from the recast of
the ATLAS [51] and CMS [55] search are shown in the left and right panel of Figure 8,
respectively. For simplicity we again employ MG0 = MU when determining the exclusion
limits. Compared to the constraints depicted in Figure 7, one observes that the difference
between the no b -tag and b -tag bounds that derive from the considered ATLAS analysis
is much smaller. This feature is readily understood by noticing that the ATLAS search,
unlike the CMS analysis [54] does not see an excess in the high-mass m

tot
T distribution in

the no b -tag category. In fact, ATLAS observes small deficits compared to the expected SM
background in the tails of the m

tot
T spectra, which explains why for large values of MU the

95% CL limits on g4 as shown in the left panel of Figure 8 are notably better than those
displayed in Figure 7. To understand the shape of the exclusion limits following from the
CMS search [55] presented on the right-hand side in Figure 8, one has to realise that the
latter search observes a non-resonant excess with a significance of a bit more than 3� above
the SM expectation in the data. As a result, the obtained 95% CL limits in the MU –g4
plane turn out to be weaker than expected, in particular in the large mass regime.
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respectively. For simplicity we again employ MG0 = MU when determining the exclusion
limits. Compared to the constraints depicted in Figure 7, one observes that the difference
between the no b -tag and b -tag bounds that derive from the considered ATLAS analysis
is much smaller. This feature is readily understood by noticing that the ATLAS search,
unlike the CMS analysis [54] does not see an excess in the high-mass m
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FIG. 3. 95% CL limits on the parameter space of minimal LQeq bosons with q = u, d, s, c. The red (orange) shaded regions correspond
to the parameter space that is excluded by resonant single LQ production at the LHC Run II (future LHC runs). The black lines
indicate the PP limits obtained in [18] by recasting the results [9], the green lines correspond to the DY bounds derived in [18]
using [58], while the yellow lines represent the SP projections [18] of the search [59]. The dashed blue lines depicts the constraints
from QW measurements [18]. The parameter spaces to the left and/or above the lines are ruled out. See text for further details.

LHC the corresponding limits can be expected to surpass
the bounds from QW measurements for minimal scalar LQ
masses up to around 5.7 TeV (4.2 TeV). Strong bounds
on the couplings �µu and �µd are also obtained using our
method, while the minimal scalar LQ interactions involving
a s or a c quark are more di�cult to constrain given the
suppression of the relevant quark PDFs.

Conclusions and outlook. In this letter, we have
demonstrated that lepton-initiated processes, which so far

have been completely neglected experimentally, can be valu-
able probes of BSM physics at hadron colliders. We have, in
particular, shown that s-channel single LQ production pro-
vides very sensitive direct tests of certain LQ-`-q couplings
at the LHC. Our new proposal takes advantage of the fact
that the lepton PDFs in the proton are su�ciently large
to yield measurable rates for `q ! LQ ! `q scattering in
pp collisions. By studying final states with a high-pT elec-
tron or muon and a light-flavour jet, we have shown that a

Source: ArXiv:2005.06475 (L. Buonocore, 

U. Haisch, P. Nason, F. Tramontano, G. Zanderighi)

• Provides complementary constraints if the LQ mass is not too high. 

https://arxiv.org/pdf/2005.06475.pdf
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• Has very recently also been implemented at NLO+PS in POWHEG-BOX. 
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Figure 1: Feynman diagrams for the resonant leptoquark production at NLO. Diagrams
a) and b) are for g(p1) + `(p2) ! q(k) + LQ(q) contributing at O(↵s). Diagrams c) and d)

are for q(p1) + `(p2) ! g(k) + LQ(q) contributing at O(↵s). Diagrams e), f) and g) are
for �(p1) + q(p2) ! `(k) + LQ(q) contributing at O(↵), but enhanced by the ratio of the
photon PDF over the lepton PDF. Finally, diagrams h), i) and j) are the virtual corrections
at O(↵s).

p(0:3,i) denote the components of the four-momenta of the i-th particle. We enumerate
the particles in the process q+ ` ! LQ as 1+2 ! 3, respectively, such that ŝ = p(0,3)2�
p(1,3)2 � p(2,3)2 � p(3,3)2, while the color correlated squared amplitude, bornjk, and
the spin correlated one, bmunu, read

bornjk(1,2) = bornjk(2,3) = 0 , (2.3)

bornjk(1,3) =
4

3
born , (2.4)

bmunu = 0 , (2.5)

as explained in [66], with bornjk being symmetric.
Apart from the leading (Born) contribution, this process receives important NLO cor-

rections from interactions with gluons and photons. As shown in [63], the QED corrections
that we need to include are such that the smallness of the QED coupling is compensated by
the PDF enhancement due to the photon in the initial state of the process �+ q ! `+LQ,
so that they are in fact of the same order as the QCD corrections.

In the context of QCD corrections, the first relevant partonic process is g(p1)+`(p2) !

q(k) + LQ(q), shown in Figure 1 a) and b). The partonic cross-section for this process was
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Figure 6: Invariant mass distribution of the leading-pT lepton and jet system, m`j , in a
model of resonant s-channel leptoquark production through lepton-quark fusion at the LHC.
In each figure, the various predictions correspond to generators at different accuracy, as ex-
plained in the main text, while the bottom panel contains the ratio to the LO+PS (HW7)
one. We display results for the number of events requiring only cut A (left) and the com-
bination cut A+B (right). Radiation from the decay products is disabled in the two top
figures.
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Source: ArXiv:2209.02599 (L. Buonocore,  
A. Greljo, P. Krack, P. Nason, N. Selimovic,  
F. Tramontano, G. Zanderighi)

https://arxiv.org/pdf/2005.06475.pdf
https://arxiv.org/pdf/2209.02599.pdf
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• Leptoquarks (LQs) yield interesting effects in low-energy precision observables.
- A possible solution of the CAA via first-generation SLQ contributions is excluded. 
- Parity violation experiments (PVES, APV, CE NS) give strong constraints, could be 
used to disentangle NP effects, if present. 
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• LQ effects in high-energy searches are implemented in POWHEG-BOX at full NLO+PS. 
- SLQ effects in Drell-Yan spectrum. 
-  from 4321 effects in Drell-Yan spectrum. U1

-Interesting interplay between non-resonant/resonant contributions, b-veto/b-tag

- Single-resonant SLQ effects in lepton + jet. 
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Thank you for your attention!


