MITP Topical Workshop, "Electroweak Precision Physics from Beta Decays to the Z Pole" Mainz, October 24-28, 2022

Overview of collider searches (and opportunities)

Aurelio Juste (ICREA/IFAE)

Hints for LFUV

Credit: A. Crivellin

Possible new physics explanations

- Hundreds of phenomenological papers proposing explanations.
- Successful explanations need to satisfy many constraints.
- A large fraction of models involve particles already being searched in ATLAS and CMS.
 - How well are we doing?
 - What are we missing?

Not discussing models where explanation is driven by new scalars or SUSY particles

Light resonances

Light leptophilic vectors/scalars: phenomenology

Anomaly scorecard

- R(K) R(K*)
- R(D) R(D*)

Other

- A Z' associated with the spontaneously broken U(1)_{Lµ-Lτ} symmetry only interacts with the second and third generation of leptons at tree level → challenging at a hadron collider.
- For $M_{Z'/S}$ >5 GeV can perform searches at the LHC.
- For lighter Z'/S can use fixed target experiments (very light scalars can be long-lived!).

Light resonances: current program

ATLAS-CONF-2022-041

Light resonances: opportunities

- Other explanations of a_{μ} involve e.g. flavor-violating vectors or scalars.
 - → New dedicated multilepton search involving taus at higher masses!

Heavy resonances

Heavy vector particles: phenomenology

arXiv:1704.06005

Anomaly scorecard

- B-anomalies can be explained with new heavy W' and Z' bosons with LH couplings to fermions. A heavy W'/ LFV Z' can also explain the CA/a_µ anomaly (*arXiv:2005.13542*).
- Many models, with different flavor structure, predict very different cross sections and decay rates to SM particles.
 - → decays to 3^{rd} generation quarks and $2^{nd}/3^{rd}$ generation leptons relevant!
- Flavor-violating couplings to quarks can also be generated without new sources of flavor violation via loops:

 $\int_{q}^{u} \underbrace{W = t}_{t} \underbrace{Z'}_{t} \underbrace{V'}_{\ell d^{j}} \underbrace{W = t}_{t} \underbrace{Z'}_{t} \underbrace{V'}_{\ell d^{j}} \underbrace{W = t}_{t} \underbrace{Z'}_{t} \underbrace{V'}_{\ell} \underbrace{V$

mz [GeV]

9

11

Anomaly scorecard

Oth

Events ATLAS √s=13 TeV, 139 fb⁻¹ 10 ≥1 b-taq 10⁶ 10⁵ 10⁴ 10³ 10² 10 10 Significance

Anomaly scorecard

Heavy vector particles: opportunities

Heavy vector particles: opportunities

High-p_T tails

Non-resonant dileptons: phenomenology

arXiv:2103.16558

Anomaly scorecard

$$\begin{split} \mathcal{L}_{q\ell} &= \frac{g_{\text{contact}}^2}{\Lambda^2} \Big[\eta_{\text{LL}}(\overline{q}_{\text{L}}\gamma^{\mu}q_{\text{L}})(\overline{\ell}_{\text{L}}\gamma_{\mu}\ell_{\text{L}}) + \eta_{\text{RR}}(\overline{q}_{\text{R}}\gamma^{\mu}q_{\text{R}})(\overline{\ell}_{\text{R}}\gamma_{\mu}\ell_{\text{R}}) \\ &+ \eta_{\text{LR}}(\overline{q}_{\text{L}}\gamma^{\mu}q_{\text{L}})(\overline{\ell}_{\text{R}}\gamma_{\mu}\ell_{\text{R}}) + \eta_{\text{RL}}(\overline{q}_{\text{R}}\gamma^{\mu}q_{\text{R}})(\overline{\ell}_{\text{L}}\gamma_{\mu}\ell_{\text{L}}) \Big], \end{split}$$

- Non-resonant inclusive ee, μμ searches published.
 - Slight excess in ee channel seen by CMS

CMS-EXO-19-019

Anomaly scorecard

Oth

$$\begin{split} \mathcal{L}_{q\ell} &= \frac{g_{\text{contact}}^2}{\Lambda^2} \Big[\eta_{\text{LL}}(\overline{q}_{\text{L}}\gamma^{\mu}q_{\text{L}}) (\overline{\ell}_{\text{L}}\gamma_{\mu}\ell_{\text{L}}) + \eta_{\text{RR}}(\overline{q}_{\text{R}}\gamma^{\mu}q_{\text{R}}) (\overline{\ell}_{\text{R}}\gamma_{\mu}\ell_{\text{R}}) \\ &+ \eta_{\text{LR}}(\overline{q}_{\text{L}}\gamma^{\mu}q_{\text{L}}) (\overline{\ell}_{\text{R}}\gamma_{\mu}\ell_{\text{R}}) + \eta_{\text{RL}}(\overline{q}_{\text{R}}\gamma^{\mu}q_{\text{R}}) (\overline{\ell}_{\text{L}}\gamma_{\mu}\ell_{\text{L}}) \Big], \end{split}$$

- Non-resonant inclusive ee, μμ searches published.
 - Slight excess in ee channel seen by CMS and ATLAS.

EXOT-2019-16

CMS-EXO-19-019

Anomaly scorecard

R(K) R(K*) R(D) R(D*)

Oth

- Unfolded spectra and LFUV ratio test also obtained by CMS.
 - $R_{\mu\mu/ee}$ normalized to 1 in 200-400 GeV m_{\parallel} region.
 - Compatibility with R_{µµ/ee}=1 hypothesis for m_{ll}>400 GeV: ~2.3σ.

Anomaly scorecard

R(K) R(K*) R(D) R(D*)

- R_{µµ/ee} normalized to 1 in 200-400 GeV m_{ll} region.
- Compatibility with R_{μμ/ee}=1 hypothesis for m_{ll}>400 GeV: ~2.3σ.
- Can be explained, along with the CAA anomaly, by this operator:

 $[Q_{\ell q}^{(3)}]_{1111} = (\bar{\ell}_1 \gamma^\mu \sigma^I \ell_1) (\bar{q}_1 \gamma_\mu \sigma^I q_1)$

Anomaly scorecard

First search for bsll CI recently completed by ATLAS: •

8 ellelle

 $\frac{g_*^2}{\Lambda^2}$

Non-resonant dileptons: opportunities

Anomaly scorecard

Develop broad program of non-resonant dilepton searches (ee, $\mu\mu$, $\tau\tau$, ev, $\mu\nu$, $\tau\nu$), both in inclusive and exclusive (e.g. 0b, ≥1b) final states.

e-

• Unfolded dilepton mass spectra and LFU ratio tests.

Leptoquarks

Vector leptoquarks: phenomenology

Anomaly scorecard

1		
	R(D)	
	D(D*)	
$\overline{)}$	r(D)	Ϊ

Single-particle explanation of B anomalies: V_1 (V_3 also possible).

Predicted by Pati-Salam lepton-guark unification models

Dominant decay if only explaining R(K), $R(K^*)$: $V_1^{+2/3} \rightarrow b\mu, t\nu$

Resonant production in pairs or singly.

 $V_3^{-1/3} \rightarrow b_V$ $V_3^{+2/3} \rightarrow b\mu$, tv $V_3^{+5/3} \rightarrow t\mu$

coupling.

If also explaining R(D), R(D^{*}), couplings to τ dominate.

m(LQ) [GeV]

Need a broad program!

Scalar leptoquarks: phenomenology

Anomaly scorecard

 Predicted by composite Higgs models (as pNGBs) or GUTs. Typical mass ~1 TeV.

Most successful models involve at least two LQs:

- S_1 and S_3 (e.g. arXiv:1912.04224)
- R₂ and S₃ (e.g. *arXiv:1806.05689*)
- Another possibility: S₁ and singlet ϕ^+ (e.g. arXiv:2104.05730)
 - Can also explain a_{μ} and the CA anomaly.
 - But large masses for S_1 and ϕ^+ preferred (multi-TeV).

However, other decay modes may actually dominate (e.g. $S_3^{-4/3} \rightarrow b\tau^-$) if similar hierarchies as in SM quark Yukawas hold ($\lambda_{b\tau} > \lambda_{b\mu}$).

Need a broad program!

Anomaly scorecard

Broad program of searches for pair-production underway.

	u, d, s	С	b	t	
νν	Х		Х	Х	
vl	vl		X		
II	Х	Х	Х	Х	
ντ				X	
ττ	Х		Х	Х	

- Typical mass exclusions:
 - LQ_S: ~1.0-1.7 TeV depending on search/benchmark
 - LQ_V : ~ LQ_S limit + 0.4 TeV

Anomaly scorecard

R(K) R(K*)

R(D)

a

- Growing program of single LQ searches: I+LQ(\rightarrow bl) (I=e, μ , τ), τ +LQ(\rightarrow b ν), ν +LQ(\rightarrow b τ), ν +LQ(\rightarrow c τ).
- Also considering non-resonant production. Interference with SM background can be relevant!

LQ

CMS-HIG-21-001

Anomaly scorecard

- R(K) **R(K*** R(D) a
- Growing program of single LQ searches: $I+LQ(\rightarrow bI)$ ($I=e,\mu,\tau$), $\tau+LQ(\rightarrow b\nu)$, $\nu+LQ(\rightarrow b\tau)$, $\nu+LQ(\rightarrow c\tau)$.
- Also considering non-resonant production. Interference with SM background can be relevant!

CMS-PAS-EXO-19-016

Anomaly scorecard

R(K)

R(K*

R(D)

a

- Growing program of single LQ searches: I+LQ(\rightarrow bl) (I=e, μ , τ), τ +LQ(\rightarrow b ν), ν +LQ(\rightarrow b τ), ν +LQ(\rightarrow c τ).
- Also considering non-resonant production. Interference with SM background can be relevant!

<u>CMS-PAS-EXO-19-016</u>

Leptoquarks: opportunities

Anomaly scorecard

- Pair production
- Single production
- Non-resonant production
- Combinations!
- Explore single resonant production

Vector-like quarks

Vector-like quarks: phenomenology

charge

 \overline{V}

harge

 $B_{L,R}$

 $\begin{pmatrix} T\\ B \end{pmatrix}$

B

• Can explain CA anomaly.

 $T_{L,R}$

 $\frac{X}{T}$

T

B

Triplets

charge

Branching Ratio (T,B) or (X,T) Doublet SU(2) Singlet ••••• $T \rightarrow Wb$ 0.8 $\rightarrow Zt$ $\cdots T \rightarrow Zt$ $\cdots T \rightarrow Ht$ 0.6 0.4 0.2 PROTOS 400 600 800 1000 1200 m_T [GeV]

Anomaly scorecard

Oth

- Broad program of searches for pair production of VLQs preferentially coupled to 3rd generation quarks with partial Run 2 data (36 fb⁻¹).
 - Combinations can lead to significant improvements in sensitivity.

Anomaly scorecard

Oth

- Broad program of searches for pair production of VLQs preferentially coupled to 3rd generation quarks with partial Run 2 data (36 fb⁻¹).
 - Combinations can lead to significant improvements in sensitivity.

VLT (VLB) masses below 1.3 (1.0) TeV excluded for any combination of BRs.

Anomaly scorecard

- Broad program of searches for pair production of VLQs preferentially coupled to 3rd generation quarks with partial Run 2 data (36 fb⁻¹).
 - Combinations can lead to significant improvements in sensitivity.
 - Full Run 2 program underway. Individual searches now have comparable/better sensitivity than partial Run 2 combination:
 - x4 larger integrated luminosity
 - Improved experimental techniques (e.g. boosted object tagging).

- Powerful handles against backgrounds:
 - Forward jet tagging
 - Boosted object tagging
 - VLQ mass reconstruction
- More complex interpretations (mass- and coupling-dependent).
- Highest sensitivity achieved for singlet representations.

Vector-like quarks: opportunities

Anomaly scorecard

Oth

- Non-standard production: e.g. via W'/Z'.
 - Non-standard decay modes: e.g. Q→q+η, η CP-odd scalar;
 3-body final states as in 4321 model, etc.

• VLQs preferentially coupled to light-quark generations. Most recent search by CMS in Run 1!

Ο

 q_{3}, l_{3}

q₃

3

Vector-like leptons

Vector-like leptons

W

 ν_{e}

Oth

- Predicted in Composite Higgs models and other UV-complete constructions. Typical mass O(TeV).
- Can explain R(K), R(K*) (via loop effects), a_{μ} , and/or CA anomalies.

- DY pair production dominant (via W* and/or Z/γ^*).
- Typically CC (l'→Wv, v'→Wl) and/or NC decays (l'→Z/Hl), depending on the SU(2)_L representation.

Vector-like leptons: current program

Vector-like leptons: current program

Anomaly scorecard

- R(K) R(K*)
- R(D) R(D*)

Other

- Recent CMS search for the VLLs appearing in the 4321 model.
- Complex cascades giving heavy-flavored multilepton+multijet final states.

Tau	VLL production	Final	
multiplicity	+ decay mode	state	
	$EE \rightarrow b(t\nu_{\tau})b(t\nu_{\tau})$	$4b + 4j + 2\nu_{\tau}$	
0τ	$EN \rightarrow b(t\nu_{\tau})t(t\nu_{\tau})$	$4b + 6j + 2\nu_{\tau}$	
	$NN \rightarrow t(t\nu_{\tau})t(t\nu_{\tau})$	$4b + 8j + 2\nu_{\tau}$	
	$EE \rightarrow b(b\tau)b(t\nu_{\tau})$	$4b+2j+\tau+\nu_{\tau}$	
1 ~	$EN \rightarrow b(t\nu_{\tau})t(b\tau)$	$4b + 4j + \tau + \nu_{\tau}$	
1 t	$EN \rightarrow b(b\tau)t(t\nu_{\tau})$	$4b+4j+\tau+\nu_{\tau}$	
	$NN \rightarrow t(b\tau)t(t\nu_{\tau})$	$4b+6j+\tau+\nu_{\tau}$	
	${ m EE} ightarrow { m b}({ m b} au) { m b}({ m b} au)$	$4b + 2\tau$	
2 τ	$EN \rightarrow b(b\tau)t(b\tau)$	$4b + 2j + 2\tau$	
	$NN \to t(b\tau)t(b\tau)$	$4b+4j+2\tau$	

Obs significance VLL (600 GeV):

	2017	2018	Combinatior
0-τ	0	0	0
1 - τ	1.44	1.65	1.93
2-τ	0.83	2.04	2.26
$1+2-\tau$	1.63	2.55	2.88
$0+1+2-\tau$	1.38	2.57	2.83

<u>CMS-B2G-21-004</u>

Vector-like leptons: opportunities

 Develop optimized searches for the three different vector-like lepton flavors separately. Given the small production cross section, must optimally exploit broad range of possible signatures (including hadronic W/Z/H decays!):

Vector-like leptons: opportunities

Anomaly scorecard

R(K) R(K*) R(D) R(D*)

- Develop optimized searches for the three different vector-like lepton flavors separately.
 Given the small production cross section, must optimally exploit broad range of possible signatures (including hadronic W/Z/H decays!):
- Consider other novel production/decay modes.
 - E.g. Simplified model with VLLs (to address a_µ) and a Z' (to address R(K), R(K*)): e.g. arXiv:2104.04461

E.g. Flavourful vector-like leptons decaying into flavor-violating scalars: e.g. arXiv:2011.12964

→ Analyze ≥4I events split by lepton flavor!

Conclusions

- The picture painted by LFUV anomalies is exciting, but also quite confusing! More experimental information is needed.
- We have a broad search program probing relevant theory parameter space that can explain current anomalies.

→ Long-term program with real potential for discovery!

...But there are many areas where we need to improve to make sure we leave no stone unturned.

Conclusions

- The picture painted by LFUV anomalies is exciting, but also quite confusing! More experimental information is needed!
- We have a broad search program probing relevant theory parameter space that can explain current anomalies.

→ Long-term program with real potential for discovery!

...But there are many areas where we need to improve to make sure we leave no stone unturned.

• The landscape to be probed is vast, and the available resources/time limited.

A vibrant theory-experiment interplay critical to sort this out!

Anomaly scorecard

R(K) R(K*)

105

≥¹⁰⁴

94 10³

Events /

10¹

10⁰

10-1

10-2

1000

2000

3000

4000

5000

6000 7000 M_T(GeV)

CMS e+p^{mi}

• Non-resonant interpretation only available from CMS as constraint on the oblique W parameter.

138 fb⁻¹(13 TeV)

M = 3.8 TeV

Syst. uncertainties

SSM W'. M = 5.6 TeV

10⁹

108

20107

8 10

Events 10⁴

10³

10²

10¹

10

10-2

6.0 3.5 1.0 -1.5

1000

2000 3000

4000

5000

CMS

Modification of W-boson propagator:

CMS-EXO-19-017

6000 7000 M_T(GeV)

138 fb⁻¹(13 TeV)

Syst. uncertainties

SSM W'. M = 5.6 Te\