MITP Topical Workshop "Electroweak Precision Physics from Beta Decays to the Z Pole" Mainz, October 24-28 2022

Electroweak precision physics: from beta decays to the Z pole

Vincenzo Cirigliano Institute for Nuclear Theory University of Washington

Outline

- Introduction: beta decays in the SM and beyond
- Input on V_{ud} , V_{us} , and the "Cabibbo angle anomaly"
- BSM implications: EFT framework and connection to Z pole & LHC
- Conclusions and outlook

Beta decays in the SM and beyond

• In the SM, mediated by W exchange between L-handed fermions \Rightarrow

 $[G_{F}^{(\beta)}]_{ij} \sim g^{2} V_{ij} / M_{w}^{2} \sim G_{F}^{(\mu)} V_{ij} \sim I / v^{2} V_{ij}$

- "V-A" imprint in decay distributions
- Universality relations

Lepton universality

$$[G_F]_{e}/[G_F]_{\mu} = 1$$
$$|V_{ud}|^2 + |V_{us}|^2 + |V_{us}|^2 = 1$$

Cabibbo universality

Beta decays in the SM and beyond

• In the SM, mediated by W exchange between L-handed fermions \Rightarrow

$$[G_{F}^{(\beta)}]_{ij} \sim g^2 V_{ij} / M_w^2 \sim G_{F}^{(\mu)} V_{ij} \sim I / v^2 V_{ij}$$

- "V-A" imprint in decay distributions
- Universality relations

Lepton universality

$$[G_F]_{e}/[G_F]_{\mu} = 1$$
$$|V_{ud}|^2 + |V_{us}|^2 + |V_{us}|^2 = 1$$

Cabibbo universality

 $G_{F}^{(\beta)} \leq ([G_{F}^{(\beta)}]_{ud}^{2} + [G_{F}^{(\beta)}]_{us}^{2})^{1/2} = G_{F}^{(\mu)}$ is a loop-level precision EW test

Beta decays in the SM and beyond

• In the SM, mediated by W exchange between L-handed fermions \Rightarrow

V_{ud}, V_{us} , and the Cabibbo Angle Anomaly

Cabibbo universality tests

Extract $V_{ud} = Cos\theta_C$ and $V_{us} = Sin\theta_C$ from various decays

V _{ud}	$\begin{array}{c} 0^{+} \rightarrow 0^{+} \\ (\pi^{\pm} \rightarrow \pi^{0} e \nu) \end{array}$	$n \rightarrow pev$ (Mirror transitions)	$\pi \to \mu \nu$	$ au o h_{NS} u$
V _{us}	$K \to \pi \mid v$	$(\Lambda \rightarrow pev,)$	$K \rightarrow \mu \nu$	$ au o h_S u$

Input from *many* experiments and *many* theory papers. All covered in greater detail in other talks at this workshop. Here I will present a brief overview

Traditionally "Golden modes" (mediated by the V current): normalization known in SU(2) [SU(3)] limit, corrections are 2nd order in SU(2) [SU(3)] breaking

Berhends-Sirlin Ademollo-Gatto

• Nuclear $0^+ \rightarrow 0^+$ decays:

$$|V_{ud}|^2 = \frac{2984.432(3) s}{ft \left(1 + \Delta_R^V + \delta_R' + \delta_{NS} - \delta_C\right)}$$

• Nuclear $0^+ \rightarrow 0^+$ decays:

 $|V_{ud}|^2 = \frac{2984.432(3) s}{ft \left(1 + \Delta_R^V + \delta_R' + \delta_{NS} - \delta_C\right)}$

Special thanks to M. Hoferichter
$$q$$
 q Δ_R^V $Ref.$ Δ_R^V Marciano, Sirlin 2006 $0.02361(38)$ Seng, Gorchtein, Patel, Ramsey-Musolf 2018 $0.02467(22)$ Czarnecki, Marciano, Sirlin 2019 $0.02426(32)$ Seng, Feng, Gorchtein, Jin 2020 $0.02477(24)$ Hayen 2020 $0.02474(31)$ Shiells, Blunden, Melnitchouk 2021 $0.02472(18)$

VC-Crivellin-Hoferichter-Moulson 2208.11707

0.02467(27)

Combined value (taking into account common input): largest uncertainty from the "Regge region"

Nuclear $0^+ \rightarrow 0^+$ decays: \bullet

$$|V_{ud}|^2 = \frac{2984.432(3) s}{ft \left(1 + \Delta_R^V + \delta_R' + \delta_{NS} - \delta_C\right)}$$

$$V_{ud}^{0^+ \to 0^+} = 0.97367(11)_{\exp}(13)_{\Delta_V^R}(27)_{NS}[32]_{total}$$

Hardy-Towner, PRC 2020 Seng et al. 1812.03352 Gorchtein 1812.04229

Special thanks to M. Hoferichter
$$q$$
 q Δ_R^V q $Ref.$ Δ_R^V Marciano, Sirlin 2006 $0.02361(38)$ Seng, Gorchtein, Patel, Ramsey-Musolf 2018 $0.02467(22)$ Czarnecki, Marciano, Sirlin 2019 $0.02426(32)$ Seng, Feng, Gorchtein, Jin 2020 $0.02477(24)$ Hayen 2020 $0.02474(31)$ Shiells, Blunden, Melnitchouk 2021 $0.02472(18)$ VC-Crivellin-Hoferichter-Moulson 2208.11707

-01 (21

Combined value (taking into account common input): largest uncertainty from the "Regge region"

$$V_{ud} = \begin{bmatrix} 0^+ \to 0^+ & n \to pe\bar{\nu} \\ \pi^\pm \to \pi^0 e\nu \end{bmatrix} \quad \begin{bmatrix} n \to pe\bar{\nu} \\ (Mirror transitions) \end{bmatrix} \quad \pi \to \mu\nu \qquad \tau \to h_{NS}\nu$$
$$V_{us} = \begin{bmatrix} K \to \pi \mid \nu \end{bmatrix} \quad (\Lambda \to pe\bar{\nu},...) \qquad K \to \mu\nu \qquad \tau \to h_S\nu$$

- Pion beta decay:
 - Theory in great shape: calculation of radiative
 Feng, Gorchtein, Jin, Ma, Seng 2003.09798
 corrections with input on γ-W box from lattice QCD
 - Experiment needs order-of-magnitude improvement in PIONEER precision to be competitive → PIONEER @ PSI

- KI3 decays:
 - New analysis of radiative corrections based on Sirlin's formalism + lattice. Compatible with older ChPT analysis, but order-of-magnitude smaller uncertainty
 - Lattice calculations of $<\pi|V|K>$ (f₊(0)) keep improving (0.2%)
 - Expt. input has received small updates since 2010

2103.00975. 2103.4843. 2107.14708. 2203.05217 Ma et al. 2102.12048 VC, Giannotti, Neufeld 0807.4607 FLAG 21, Aoki et al., 2%)

Seng et al, 1910.13209.

Flavianet WG, 1005.2323 Moulson 1704.04104

 $V_{us}^{K_{\ell 3}} = 0.22330(35)_{\exp}(39)_{f_+}(8)_{\text{IB}}[53]_{\text{total}}$

Both V and A currents contribute: need experimental input on <A>

• Neutron decay:

$$|V_{ud}|^2 \tau_n \left(1 + 3g_A^2\right) \left(1 + \Delta_R\right) = 5099.3(3)s$$

Dispersive γ -W box calculations + other tweaks: $\Delta_R = 0.03983(27)$

Both V and A currents contribute: need experimental input on $\langle A \rangle$

• Mirror transitions: V_{ud} uncertainty is >3 greater than the one in $0^+ \rightarrow 0^+$

Falkowski et al. 2110.13797

• Hyperon decays: currently lower expt. and theoretical precision

V _{ud}	$0^{+} \rightarrow 0^{+}$ $(\pi^{\pm} \rightarrow \pi^{0} e \nu)$	$n \rightarrow pev$ (Mirror transitions)	$\pi \to \mu \nu$	$ au o h_{NS} u$
V _{us}	$K \to \pi \mid v$	$(\Lambda \rightarrow pev,)$	$K \rightarrow \mu \nu$	$ au o h_S u$

A current transitions: need F_K and F_{π}

- Lattice QCD calculations of F_K/F_{π} are at the 0.2% level
- First calculation of radiative and isospin-breaking corrections in Lattice QCD is compatible with ChPT, factor of ~2 more precise

FLAG 21, Aoki et al., 2111.09849

```
Di Carlo et al., VC-Neufeld,
1904.08731 1102.0563
```

Flavianet WG, 1005.2323 Moulson 1704.04104

• Expt. input hasn't changed since 2010

$$\frac{V_{us}}{V_{ud}}\Big|_{K_{\ell 2}/\pi_{\ell 2}} = 0.23108(23)_{\exp}(42)_{F_K/F_{\pi}}(16)_{\mathrm{IB}}[51]_{\mathrm{total}},$$

- Information from both inclusive and exclusive modes
- Use OPE to calculate inclusive BRs: very different theory "systematics"
- Currently larger uncertainties on V_{us} compared to K decays \rightarrow not included in following discussion (see talks on Friday)

Gamiz et al. hep-ph/0212230, hep-ph/0408044, ... See HFLAG WG (1909.12524) for complete reference list and status

The Cabibbo angle "anomaly"

VC-Crivellin-Hoferichter-Moulson 2208.11707

- Two 'anomalies':
 - ~3 σ effect in global fit (Δ_{CKM} = -1.48(53) ×10⁻³)
 - ~3σ problem in meson sector (KI2 vs KI3)

The Cabibbo angle "anomaly"

VC-Crivellin-Hoferichter-Moulson 2208.11707

- Two 'anomalies':
 - ~3 σ effect in global fit (Δ_{CKM} = -1.48(53) ×10⁻³)
 - ~3σ problem in meson sector (KI2 vs KI3)
- Three versions of Δ_{CKM} :

$$\begin{split} \Delta_{CKM}^{(1)} &= |V_{ud}^{\beta}|^{2} + |V_{us}^{K_{\ell 3}}|^{2} - 1 \\ &= -1.76(56) \times 10^{-3} \\ \Delta_{CKM}^{(2)} &= |V_{ud}^{\beta}|^{2} + |V_{us}^{K_{\ell 2}/\pi_{\ell 2},\beta}|^{2} - 1 \\ &= -0.98(58) \times 10^{-3} \\ \Delta_{CKM}^{(3)} &= |V_{ud}^{K_{\ell 2}/\pi_{\ell 2},K_{\ell 3}}|^{2} + |V_{us}^{K_{\ell 3}}|^{2} - 1 \\ &= -1.64(63) \times 10^{-2} \end{split}$$

Desirable next experimental steps

- Neutron decay: aim for $\delta \tau_n \sim 0.1$ s and $\delta g_A/g_A \sim 0.01\%$ ($\delta a/a$, $\delta A/A \sim 0.05\%$) to match current error on Δ_R and get $\delta V_{ud} \sim 1.5 \ 10^{-4}$
- Pion beta decay: 3x to 10x at PIONEER phases II, III [10+ years]

Desirable next experimental steps

- Neutron decay: aim for $\delta \tau_n \sim 0.1$ s and $\delta g_A/g_A \sim 0.01\%$ ($\delta a/a$, $\delta A/A \sim 0.05\%$) to match current error on Δ_R and get $\delta V_{ud} \sim 1.5 \ 10^{-4}$
- Pion beta decay: 3x to 10x at PIONEER phases II, III [10+ years]
- New $K_{\mu3}/K_{\mu2}$ BR measurement at NA62 will shed light on KI3 vs KI2 tension
 - KI2 database dominated by KLOE (2007)
 - Global fit to kaon data not so great (p-value ~1%)

Special thanks to M. Hoferichter

	current fit	$\kappa_{\mu3}/\kappa_{\mu2}$ BR at 0.5%		$\kappa_{\mu3}^{}/\kappa_{\mu2}^{}$ BR at 0.2%			
		central	$+2\sigma$	-2σ	central	$+2\sigma$	-2σ
$\frac{V_{us}}{V_{ud}}\Big _{K_{\ell 2}/\pi_{\ell 2}}$	0.23108(51)	0.23108(50)	0.23085(51)	0.23133(51)	0.23108(49)	0.23071(51)	0.23147(52)
$V_{us}^{K_{\ell 3}}$	0.22330(53)	0.22337(51)	0.22360(52)	0.22309(54)	0.22342(49)	0.22386(52)	0.22287(52)
10 ² ∆ <mark>(3)</mark> CKM	-1.64(63) -2.6σ	-1.57(60) -2.6σ	-1.18(62) -1.9σ	-2.02(63) -3.2σ	$-1.53(59) \\ -2.6\sigma$	$-0.83(62) -1.4\sigma$	-2.33(62) -3.8σ

Tension 'resolved'

VC-Crivellin-Hoferichter-Moulson 2208.11707

Tension 'confirmed' or strengthened, pointing towards BSM

Desirable next theoretical steps

- Refined systematics in $f_+(0)$ and F_K/F_{π} lattice QCD calculations
- Radiative corrections in lattice QCD
 - $K \rightarrow \mu \nu / \pi \rightarrow \mu \nu$: more than one lattice collaboration
 - $K \rightarrow \pi Iv \text{ and } \pi^+ \rightarrow \pi^0 e^+ v$:
 - More than one lattice collaboration
 - Beyond γ-W box
 - Neutron decay: γ-W box and beyond
 - All decays: think hard about 'isospin' scheme dependence
- Nuclear decays: EFT framework + ab-initio calculations for δ_{NS} , δ_{C}

BSM implications (1)

Connecting scales — EFT

To connect UV physics to beta decays, use EFT

Effective Lagrangian at E~GeV

• New physics effects are encoded in ten quark-level couplings Connecting scales — EFT

• Quark-level version of Lee-Yang effective Lagrangian

VC, Gonzalez-Alonso, Jenkins 0908.1754, NPB

VC, Graesser, Gonzalez-Alonso 1210.4553, JHEP

Leptonic interactions

$$\mathcal{L}_{CC}^{(\mu)} = -\frac{G_F^{(0)}}{\sqrt{2}} \left(1 + \epsilon_L^{(\mu)} \right) \bar{e} \gamma^{\rho} (1 - \gamma_5) \nu_e \cdot \bar{\nu}_{\mu} \gamma_{\rho} (1 - \gamma_5) \mu + \dots$$

VC, Gonzalez-Alonso, Jenkins 0908.1754, NPB

VC, Graesser, Gonzalez-Alonso 1210.4553, JHEP

Leptonic interactions

$$\mathcal{L}_{CC}^{(\mu)} = -\frac{G_F^{(0)}}{\sqrt{2}} \left(1 + \epsilon_L^{(\mu)}\right) \bar{e}\gamma^{\rho} (1 - \gamma_5)\nu_e \cdot \bar{\nu}_{\mu}\gamma_{\rho} (1 - \gamma_5)\mu + \dots$$

Semi-leptonic interactions

$$\mathcal{L}_{CC} = -\frac{G_F^{(0)} V_{ud}}{\sqrt{2}} \times \left[\left(\delta^{ab} + \epsilon_L^{ab} \right) \bar{e}_a \gamma_\mu (1 - \gamma_5) \nu_b \cdot \bar{u} \gamma^\mu (1 - \gamma_5) d \right. \\ \left. + \epsilon_R^{ab} \bar{e}_a \gamma_\mu (1 - \gamma_5) \nu_b \cdot \bar{u} \gamma^\mu (1 + \gamma_5) d \right. \\ \left. + \epsilon_S^{ab} \bar{e}_a (1 - \gamma_5) \nu_b \cdot \bar{u} d \right. \\ \left. - \epsilon_P^{ab} \bar{e}_a (1 - \gamma_5) \nu_b \cdot \bar{u} \gamma_5 d \right. \\ \left. + \epsilon_T^{ab} \bar{e}_a \sigma_{\mu\nu} (1 - \gamma_5) \nu_b \cdot \bar{u} \sigma^{\mu\nu} (1 - \gamma_5) d \right] + \text{h.c.}$$

VC, Gonzalez-Alonso, Jenkins 0908.1754, NPB

VC, Graesser, Gonzalez-Alonso 1210.4553, JHEP

Leptonic interactions

$$\mathcal{L}_{CC}^{(\mu)} = -\frac{G_F^{(0)}}{\sqrt{2}} \left(1 + \epsilon_L^{(\mu)} \right) \bar{e} \gamma^{\rho} (1 - \gamma_5) \nu_e \cdot \bar{\nu}_{\mu} \gamma_{\rho} (1 - \gamma_5) \mu + \dots$$

$$\frac{G_F^{(0)} V_{ud}}{\sqrt{2}} \left(1 - \epsilon_L^{(\mu)} \right) \qquad \text{Semi-leptonic interactions}$$

$$\mathcal{L}_{CC} = -\frac{G_F^{(0)} V_{ud}}{\sqrt{2}} \times \left[\left(\delta^{ab} + \epsilon_L^{ab} \right) \bar{e}_a \gamma_{\mu} (1 - \gamma_5) \nu_b \cdot \bar{u} \gamma^{\mu} (1 - \gamma_5) d \right]$$

$$+ \epsilon_R^{ab} \bar{e}_a \gamma_{\mu} (1 - \gamma_5) \nu_b \cdot \bar{u} \gamma^{\mu} (1 + \gamma_5) d$$

$$+ \epsilon_S^{ab} \bar{e}_a (1 - \gamma_5) \nu_b \cdot \bar{u} \gamma_5 d$$

$$- \epsilon_P^{ab} \bar{e}_a (1 - \gamma_5) \nu_b \cdot \bar{u} \gamma_5 d$$

$$+ \epsilon_T^{ab} \bar{e}_a \sigma_{\mu\nu} (1 - \gamma_5) \nu_b \cdot \bar{u} \sigma^{\mu\nu} (1 - \gamma_5) d \right] + \text{h.c.}$$

VC, Gonzalez-Alonso, Jenkins 0908.1754, NPB

VC, Graesser, Gonzalez-Alonso 1210.4553, JHEP

Leptonic interactions

Corrections to V_{ud} and V_{us}

$$\begin{split} |\bar{V}_{ud}|_{i}^{2} &= |V_{ud}|^{2} \left(1 + \sum_{\alpha} C_{i\alpha} \epsilon_{\alpha}\right) \\ |\bar{V}_{us}|_{j}^{2} &= |V_{us}|^{2} \left(1 + \sum_{\alpha} C_{j\alpha} \epsilon_{\alpha}\right) \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

Find set of ε 's so that V_{ud} and V_{us} bands meet on the unitarity circle

Corrections to V_{ud} and V_{us}

• General case

$$\begin{split} |\bar{V}_{ud}|^{2}_{0^{+} \to 0^{+}} &= |V_{ud}|^{2} \left(1 + 2\left(\epsilon_{L}^{ee} + \epsilon_{R} - \epsilon_{L}^{(\mu)}\right) + c_{0^{+}}^{S}(Z) \epsilon_{S}^{ee} \right) \\ |\bar{V}_{ud}|^{2}_{n \to pe\bar{\nu}} &= |V_{ud}|^{2} \left(1 + 2\left(\epsilon_{L}^{ee} + \epsilon_{R} - \epsilon_{L}^{(\mu)}\right) + c_{n}^{S}\epsilon_{S}^{ee} + c_{n}^{T}\epsilon_{T}^{ee} \right) \\ |\bar{V}_{us}|^{2}_{Ke3} &= |V_{us}|^{2} \left(1 + 2\left(\epsilon_{L}^{ee(s)} + \epsilon_{R}^{(s)} - \epsilon_{L}^{(\mu)}\right)\right) \right) \\ |\bar{V}_{ud}|^{2}_{\pi_{e3}} &= |V_{ud}|^{2} \left(1 + 2\left(\epsilon_{L}^{ee} + \epsilon_{R} - \epsilon_{L}^{(\mu)}\right)\right) \\ |\bar{V}_{us}|^{2}_{K\mu2} &= |V_{us}|^{2} \left(1 + 2\left(\epsilon_{L}^{\mu\mu(s)} - \epsilon_{R}^{(s)} - \epsilon_{L}^{(\mu)}\right) - 2\frac{B_{0}}{m_{\ell}}\epsilon_{P}^{\mu\mu(s)} \right) \\ |\bar{V}_{ud}|^{2}_{\pi\mu2} &= |V_{ud}|^{2} \left(1 + 2\left(\epsilon_{L}^{\mu\mu} - \epsilon_{R} - \epsilon_{L}^{(\mu)}\right) - 2\frac{B_{0}}{m_{\ell}}\epsilon_{P}^{\mu\mu} \right) \end{split}$$

 $\varepsilon_{S}^{(s)}$: shifts the slope of the scalar form factor, at levels well below EXP and TH uncertainties

ε_T(s): suppressed by m_{lept}/m_K

Right-handed quark couplings

• Right-handed currents (in the 'ud' and 'us' sectors)

Grossman-Passemar-Schacht 1911.07821 JHEP Alioli et al 1703.04751, JHEP

• CKM elements from vector (axial) channels are shifted by $|+\epsilon_R|$ ($|-\epsilon_R$). V_{us}/V_{ud} , V_{ud} and V_{us} shift in correlated way, can resolve all tensions!

Unveiling R-handed quark currents?

$$\Delta_{\text{CKM}}^{(1)} = 2\epsilon_R + 2\Delta\epsilon_R V_{us}^2,$$

$$\Delta_{\text{CKM}}^{(2)} = 2\epsilon_R - 2\Delta\epsilon_R V_{us}^2,$$

$$\Delta_{\text{CKM}}^{(3)} = 2\epsilon_R + 2\Delta\epsilon_R (2 - V_{us}^2)$$

$$\downarrow$$

$$\epsilon_R = -0.69(27) \times 10^{-3}$$

$$\Delta\epsilon_R = -3.9(1.6) \times 10^{-3}$$

$$\Delta\epsilon_R = -3.9(1.6) \times 10^{-3}$$

Unveiling R-handed quark currents?

$$\Delta_{\text{CKM}}^{(1)} = 2\epsilon_R + 2\Delta\epsilon_R V_{us}^2,$$

$$\Delta_{\text{CKM}}^{(2)} = 2\epsilon_R - 2\Delta\epsilon_R V_{us}^2,$$

$$\Delta_{\text{CKM}}^{(3)} = 2\epsilon_R + 2\Delta\epsilon_R (2 - V_{us}^2)$$

$$\downarrow$$

$$\epsilon_R = -0.69(27) \times 10^{-3}$$

$$\Delta\epsilon_R = -3.9(1.6) \times 10^{-3}$$

$$\Delta\epsilon_R = -3.9(1.6) \times 10^{-3}$$

- Preferred ranges are not in conflict with other constraints from β decays
- VC, Hayen, deVries, Mereghetti, Walker-Loud, 2202.10439

$$\frac{\lambda^{\text{exp}}}{\lambda^{\text{QCD}}} = 1 + \delta_{\text{RC}} - 2\epsilon_R$$

$$\epsilon_R = -0.2(1.2)\%$$

$$\lambda \equiv \frac{g_A}{g_V}$$
$$\delta_{RC} \simeq (2.0 \pm 0.6)\%$$

Unveiling R-handed quark currents?

... nor with high energy data, at least at the EFT level (see later)

For other BSM explanations, see A. Crivellin 2207.02507 and references therein [and talks at this workshop]

BSM implications (II): connection to high energy

Need to know high-scale origin of the various EFT
 Connecting scales — EFT
 Connecting scales — EFT

• Model-independent statements possible in <u>"heavy BSM" scenarios</u>: $M_{BSM} > TeV \rightarrow$ new physics looks point-like at LHC scales

Need to know high-scale origin of the various EFT
 Connecting scales — EFT
 Connecting scales — EFT

• Model-independent statements possible in <u>"heavy BSM" scenarios</u>: $M_{BSM} > TeV \rightarrow$ new physics looks point-like at LHC scales

• Need to know high-scale origin of the various ε_{α}

 $\epsilon_{L,R}$ originate from SU(2)xU(1) invariant vertex corrections

Need to know high-scale origin of the various ε_α

Need to know high-scale origin of the various ε_α

• Need to know high-scale origin of the various ε_{α}

High scale e

 $\mathcal{L}^{(ext{eff})} = \mathcal{L}_{ ext{SM}} + \sum_i rac{1}{\Lambda_i^2}$ (

$$\mathcal{L}^{(\text{eff})} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{1}{\Lambda_i^2} O_i \equiv \mathcal{L}_{\text{SM}} + \frac{1}{v^2} \sum_{i} \hat{\alpha}_i O_i$$

traints

$$\begin{array}{l} \begin{array}{l} \begin{array}{l} \left| \left(\psi^{\alpha} \tau^{\alpha} (l) (\psi_{\alpha} \tau^{\alpha}) (l) (\psi_{\alpha} \tau^{\alpha$$

The scale checcive Lagrangian

traints

 $-1 + \delta_{-\alpha} = 2c_{-\alpha}$

$$\mathcal{L}^{(\text{eff})} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{1}{\Lambda_{i}^{2}} \qquad \qquad \mathcal{L}^{(\text{eff})} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{1}{\Lambda_{i}^{2}} O_{i} \equiv \mathcal{L}_{\text{SM}} + \frac{1}{v^{2}} \sum_{i} \hat{\alpha}_{i} O_{i}$$

traints

Έ7

Constrained by Z-pole (and
$$\sigma_{had}$$
). Included^{**} in 'precision EW' fits

$$\begin{aligned} |V_{ud}|^{2} &= \frac{J^{*} \left(2^{+} 2384432(3) + 8^{-} 5^{-} c^{+}\right)}{ft\left(1 + \Delta_{K}^{*} + \delta_{K}^{*} + \delta_{K}^{*} - \delta_{C}^{*}\right)} \\ \Delta_{CKM}^{(1)} &= |V_{ud}^{(2)}|^{2} + |V_{uK2}^{(K)}|^{2} - 1 \\ \Delta_{CKM}^{(2)} &= |V_{ud}^{(2)}|^{2} + |V_{uK2}^{(K)}|^{2} - 1 \\ \Delta_{CKM}^{(2)} &= -\frac{1}{1} \sqrt{\frac{9}{9}} \left(\frac{5}{6}\right) \times \frac{10^{-3}}{1} - 1 \\ \Delta_{CKM}^{(2)} &= -\frac{1}{1} \sqrt{\frac{9}{9}} \left(\frac{5}{6}\right) \times \frac{10^{-3}}{1} - 1 \\ \Delta_{CKM}^{(2)} &= -\frac{1}{1} \sqrt{\frac{9}{9}} \left(\frac{5}{6}\right) \times \frac{10^{-2}}{1} \\ \Delta_{CKM}^{(2)} &= -\frac{1}{1} \sqrt{\frac{9}{9}} \left(\frac{5}{6}\right) \times \frac{10^{-2}}{1} \\ \Delta_{CKM}^{(2)} &= -\frac{1.64(63)}{\sqrt{2}} \times 10^{-2} \\ \lambda &= \frac{9}{9\sqrt{2}} \\ \Delta_{CKM}^{(2)} &= -\frac{1.64(63)}{\sqrt{2}} \times 10^{-2} \\ \lambda &= \frac{9}{9\sqrt{2}} \\ \frac{\lambda^{exp}}{\sqrt{2}CD} &= \frac{1}{1} + \delta_{RC} - 2c_{R}^{d} \\ \frac{\lambda^{exp}}{\sqrt{2}CD} &= 1 + \delta_{RC} - 2c_{R}^{d} \\ \frac{\lambda^{exp}}{\sqrt{2}CD} &= 1 + \delta_{RC} - 2c_{R}^{d} \\ 1 \\ 1 \\ 33 \\ \end{array}$$

**

 $\mathcal{L}^{(ext{eff})} = \mathcal{L}_{ ext{SM}} + \sum_{i} rac{1}{\Lambda_i^2} \; ($

$$\mathcal{L}^{(\text{eff})} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{1}{\Lambda_{i}^{2}} O_{i} \equiv \mathcal{L}_{\text{SM}} + \frac{1}{v^{2}} \sum_{i} \hat{\alpha}_{i} O_{i}$$

traints

 $-1 + \delta_{-\alpha}$ $2c_{-\alpha}$

Examples of impact of $\Delta_{CKM}(I)$

VC, Dekens, deVries, Mereghetti, Tong 2204.08440

• Explanations of M_W anomaly in SMEFT (beyond oblique corrections) are in tension with Δ_{CKM} in MFV limit Bagnaschi et al 2204.04204, Bagnaschi et al 2204.05260, ...

 $\frac{\delta m_W^2}{m_W^2} = v^2 \frac{s_w c_w}{s_w^2 - c_w^2} \left[2 C_{HWB} + \frac{c_w}{2s_w} C_{HD} + \frac{s_w}{c_w} \left(2 C_{Hl}^{(3)} - C_{ll} \right) \right]$

Examples of impact of $\Delta_{CKM}(I)$

VC, Dekens, deVries, Mereghetti, Tong 2204.08440

• Explanations of M_W anomaly in SMEFT (beyond oblique corrections) are in tension with Δ_{CKM} in MFV limit deBlas et al 2204.04204,

deBlas et al 2204.04204, Bagnaschi et al 2204.05260, ...

$$\frac{\delta m_W^2}{m_W^2} = v^2 \frac{s_w c_w}{s_w^2 - c_w^2} \left[2 C_{HWB} + \frac{c_w}{2s_w} C_{HD} + \frac{s_w}{c_w} \left(2 C_{Hl}^{(3)} - C_{ll} \right) \right]$$

MFV

$$\Delta_{\rm CKM} = v^2 \left[C_{\Delta} - 2 C_{lq}^{(3)} \right]$$

$$C_{\Delta} = 2 \left[C_{Hq}^{(3)} - C_{Hl}^{(3)} + \hat{C}_{ll} \right]$$

 Decouple by turning on C_{lq}⁽³⁾: but constraints from Drell-Yan at the LHC are catching up and will test this scenario

Examples of impact of Δ_{CKM} (2)

Bagnaschi et al 2204.05260

Conclusions & Outlook

- The Cabibbo angle anomaly is one of few low-energy "cracks" in the SM, probing new physics up to $\Lambda \sim 20 \text{ TeV}$ big deal if confirmed!
- Therefore, it deserves both experimental and theoretical scrutiny / improvement
 - Experiment: neutron, K, π
 - Theory [my point of view]: (i) radiative correction with lattice QCD for neutron, K, π ; (ii) EFT+ and ab-initio methods for nuclei
- Most likely BSM explanations are "vertex corrections" in the EFT language
- Even now, precision on Δ_{CKM} warrants its inclusion in precision EW fits