RECENT B PHYSICS

Greg Landsberg - MITP Workshop Flavour of BSM in the LHC Era - October 19, 2022

Recent B Physics Results From CMS
 - Observation of Triple J/ ψ Production
 - Exotic States
 - Rare B0/Bs Decays
 $+B_{s} \rightarrow \mu \mu$
 \uparrow Connection to Flavour Anomalies
 - Fragmentation Fraction Story
 - Isospin Invariance Tests
 ↔ Premium: Run 2 LHC high- p_{\top} Excesses

 Observation of Triple J/世 Production

 Observation of Triple J/世 Production}

↔ Recent result [arXiv:2111.05370], accepted by Nature Phys.

+ Dominated by DPS (~80\%) and TPS (~20\%); SPS contribution is small

- First time TPS is directly accessed experimentally
\downarrow Observed 6 events in the $J / \psi(\mu \mu)$ mode, with the background of 1.0+1.4-0.8 events
- Shape analysis results is a 6.8σ observation
- Measured cross section:

$$
\sigma_{\mathrm{fid}}(p p \rightarrow J / \psi J / \psi J / \psi+X)=272_{-104}^{+141}(\text { stat }) \pm 17(\text { syst }) \mathrm{fb}
$$

For all muons	$p_{\mathrm{T}}>3.5 \mathrm{GeV}$ for $\|\eta\|<1.2$
	$p_{\mathrm{T}}>2.5 \mathrm{GeV}$ for $1.2<\|\eta\|<2.4$
For all J / ψ mesons	$p_{\mathrm{T}}>6 \mathrm{GeV}$ and $\|y\|<2.4$
	$2.9<m_{\mu^{+} \mu^{-}}<3.3 \mathrm{GeV}$

BROWN

Effective DPS Gross
 \uparrow Definition of effective nPS cross section is given by:

$$
\sigma_{\mathrm{DPS}}^{\mathrm{pp} \rightarrow \psi_{1} \psi_{2}+\mathrm{X}}=\left(\frac{\mathfrak{m}}{2}\right) \frac{\sigma_{\mathrm{SPS}}^{\mathrm{pp} \rightarrow \psi_{1}+\mathrm{X}} \sigma_{\mathrm{SPS}}^{\mathrm{pp} \rightarrow \psi_{2}+\mathrm{X}}}{\sigma_{\mathrm{eff}, \mathrm{DPS}}} \quad \sigma_{\mathrm{TPS}}^{\mathrm{pp} \rightarrow \psi_{1} \psi_{2} \psi_{3}+\mathrm{X}}=\left(\frac{\mathfrak{m}}{3!}\right) \frac{\sigma_{\mathrm{SPS}}^{\mathrm{pp} \rightarrow \psi_{1}+\mathrm{X}} \sigma_{\mathrm{SPS}}^{\mathrm{pp} \rightarrow \psi_{2}+\mathrm{X}} \sigma_{\mathrm{SPS}}^{\mathrm{pp} \rightarrow \psi_{3}+\mathrm{X}}}{\sigma_{\mathrm{eff}, \mathrm{TPS}}^{2}},
$$

Using fiducial cross section and $\sigma_{\text {eff,TPS }}=(0.82 \pm 0.11) \sigma_{\text {eff.pps }}$ as calculated in [arXiv:1612.05582] yields $\sigma_{\text {eff.pps }}=27_{-1.0}^{+1.4}$ (exp).1.1.0 (theo) mb, in line with double-quarkonium measurements

\& Recent preliminary CMS result confirmed a near-threshold structure in the $\mathrm{J} / \psi \mathrm{J} / \psi$ mass spectrum near 6.9 GeV observed earlier by LHCb [Sci. Bull. 65 (2020) 1983], but also observed a 6.55 GeV structure and an evidence for a 7.3 GeV structure

- Some of these structures could be a result of an interference with the backgrounds - fits with the LHCb interference models are not very good, but we are working on a more detailed interference study for the publication
- ATLAS also reported two excesses consistent with the two lower mass CMS structures - The $X(6900)$ is a good candidate for a charm tetraquark; the nature of other peaks remains a puzzle; they may be radial excitations ($\left.1{ }^{3} P_{1}, 2{ }^{3} P_{1}, 3{ }^{3} P_{1}\right)$ of the charm tetraquark

	BW1	BW2	BW3
m	$6552 \pm 10 \pm 12$	$6927 \pm 9 \pm 5$	$7287 \pm 19 \pm 5$
Γ	$124 \pm 29 \pm 34$	$122 \pm 22 \pm 19$	$95 \pm 46 \pm 20$
N	474 ± 113	492 ± 75	156 ± 56

Observation of Rare $\mathrm{B}^{0} \rightarrow \Psi(25) \mathrm{K}^{\mathrm{O}}$ s $^{+} \Pi^{-}$and

New CMS analysis based on 2017-2018 data, using the $\mathrm{K}^{0}{ }_{S} \rightarrow \pi^{+} \pi^{-}$decay mode with a large displacement of the $\pi^{+} \pi^{-}$vertex, inspired by searches for exotic states in B meson decays [arXiv:2201.09131, EPJC 82 (2022) 499]

$$
\begin{gathered}
R_{\mathrm{s}}=\frac{\mathcal{B}\left(\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \psi(2 \mathrm{~S}) \mathrm{K}_{\mathrm{S}}^{0}\right)}{\mathcal{B}\left(\mathrm{B}^{0} \rightarrow \psi(2 \mathrm{~K}) \mathrm{K}_{\mathrm{S}}^{0}\right)}=\left(3.33 \pm 0.69(\text { stat }) \pm 0.11(\text { syst }) \pm 0.34\left(f_{\mathrm{s}} / f_{\mathrm{d}}\right)\right) \times 10^{-2} \\
R_{\pi^{+} \pi^{-}}=\frac{\mathcal{B}\left(\mathrm{B}^{0} \rightarrow \psi(2 \mathrm{~S}) \mathrm{K}_{\mathrm{S}}^{0} \pi^{+} \pi^{-}\right)}{\mathcal{B}\left(\mathrm{B}^{0} \rightarrow \psi(2 \mathrm{~S}) \mathrm{K}_{\mathrm{S}}^{0}\right)}=0.480 \pm 0.013 \text { (stat) } \pm 0.032 \text { (syst) } \\
\mathcal{B}\left(\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \psi(2 \mathrm{~S}) \mathrm{K}_{\mathrm{S}}^{0}\right)=\left(0.97 \pm 0.20 \text { (stat) } \pm 0.03 \text { (syst) } \pm 0.22\left(f_{\mathrm{s}} / f_{\mathrm{d}}\right) \pm 0.08(\mathcal{B})\right) \times 10^{-5}, \\
\mathcal{B}\left(\mathrm{~B}^{0} \rightarrow \psi(2 \mathrm{~S}) \mathrm{K}_{\mathrm{S}}^{0} \pi^{+} \pi^{-}\right)=(13.9 \pm 0.4 \text { (stat) } \pm 0.9 \text { (syst) } \pm 1.2(\mathcal{B})) \times 10^{-5},
\end{gathered}
$$

- No peaking structures in the 2- and 3-body $\psi(2 S) h_{1}\left(h_{2}\right)$ spectra observed

\& Recently, a number of lepton flavor anomalies have been observed in various semileptonic channels, largely driven by the LHCb experiment:
$\bullet \sim 3 \sigma$ tension in $R\left(D / D^{*}\right)$, the ratio of $\mathscr{B}(\mathrm{b} \rightarrow \mathrm{ctv}) / \mathscr{B}(\mathrm{b} \rightarrow \mathrm{clv})$ [tree-level process]
- ~2 σ tension in $R(\mathrm{~J} / \psi)$, the ratio of $\mathscr{B}(\mathrm{b} \rightarrow \mathrm{ctv}) / \mathscr{B}(\mathrm{b} \rightarrow \mathrm{clv})$ [tree-level process]
- $\sim 2 \sigma$ deficit in various $b \rightarrow s \mu^{+} \mu^{-}$ transitions, compared to theory predictions, both in inclusive and differential measurements [loop-level process]
- $\sim 3 \sigma$ tension in $R(K), R\left(K^{*}\right)$, the ratio of $\mathscr{B}\left(\mathrm{b} \rightarrow \mathrm{s} \mu^{+} \mu^{-}\right) / \mathscr{B}\left(\mathrm{b} \rightarrow \mathrm{se}^{+} \mathrm{e}^{-}\right)$ [loop-level process]
\uparrow Arguably the strongest hints of new physics to date that survived a dozen of years of the LHC program

HFLAV 2021 Update

LHCb Nature Phys. 18 (2022) 277

* Recently, a number of lepton flavor anomalies have been observed in various semileptonic channels, largely driven by the LHCb experiment:
- $\sim 3 \sigma$ tension in $R\left(D / D^{*}\right)$, the ratio of $\mathscr{B}(\mathrm{b} \rightarrow \mathrm{ctv}) / \mathscr{B}(\mathrm{b} \rightarrow \mathrm{clv})$ [tree-level process]
- ~2 σ tension in $R(\mathrm{~J} / \psi)$, the ratio of $\mathscr{B}(\mathrm{b} \rightarrow \mathrm{ctv}) / \mathscr{B}(\mathrm{b} \rightarrow \mathrm{clv})$ [tree-level process]
- $\sim 2 \sigma$ deficit in various $b \rightarrow s \mu^{+} \mu^{-}$ transitions, compared to theory predictions, both in inclusive and differential measurements [loop-level process]
- $\sim 3 \sigma$ tension in $R(K), R\left(K^{*}\right)$, the ratio of $\mathscr{B}\left(\mathrm{b} \rightarrow \mathrm{s} \mu^{+} \mu^{-}\right) / \mathscr{B}\left(\mathrm{b} \rightarrow \mathrm{se}^{+} \mathrm{e}^{-}\right)$ [loop-level process]
- Arguably the strongest hints of new physics to date that survived a dozen of years of the LHC program

HFLAV 2021 Update

$\bullet-1$		$\mathrm{R}_{\mathrm{k}}{ }^{*}$ Belle $1.1<\mathrm{q}^{2}<6.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}$ $\mathrm{R}_{\mathrm{K}}{ }^{*}$ Belle $0.045<\mathrm{q}^{2}<1.1 \mathrm{GeV}^{2} / \mathrm{c}^{4}$ $\mathrm{R}_{\mathrm{K}_{\mathrm{s}}^{0}}$ Belle $1.0<\mathrm{q}^{2}<6.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}$ $\mathrm{R}_{\mathrm{K}^{*+}}$ LHCb $9 \mathrm{fb}^{-1}$ $0.045<\mathrm{q}^{2}<6.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}$ $\mathrm{R}_{\mathrm{K}_{\mathrm{s}}^{0}} \mathrm{LHCb} 9 \mathrm{fb}^{-1}$ $1.1<\mathrm{q}^{2}<6.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}$
		2 20
$\sim 2 \sigma$ tension ${ }^{1}$	$\mathrm{R}_{\mathrm{K}^{(4)}}$	${ }^{2}$ CERN Courier

\uparrow In CMS, a number of analyses probing these anomalies are ongoing

- While no new results are available as of yet, expect the first new results to become public later this year
- These analyses use both the 2018 parked data (1010 unbiased b hadron decays on tape) and standard dimuon triggers:
- R(K) - parked data
- $\mathrm{R}\left(\mathrm{D}^{*}\right)$ - parked data (leptonic τ decays)
- $\mathrm{R}(\mathrm{J} / \psi)=\mathscr{B}\left(B_{c}^{+} \rightarrow J / \psi \tau^{+} \nu_{\tau}\right) / \mathscr{B}\left(B_{c}^{+} \rightarrow J / \psi \mu^{+} \nu_{\mu}\right)$ - non-parked data (both the muonic and hadronic τ decays)
- $B / B_{s}(\mu \mu)$ - non-parked data, full Run 2 analysis
- $\mathrm{P}_{5}{ }^{\prime}$ and differential branching fractions in $B^{0} \rightarrow \mu^{+} \mu^{-} K^{0^{*}}$ decays -non-parked data, full Run 2 analysis
- Also have $B^{ \pm} \rightarrow \mu^{+} \mu^{-} K^{ \pm}$and $B_{\mathrm{s}}^{0} \rightarrow \mu^{+} \mu^{-} \phi$ angular analyses in progress using non-parked data, full Run 2 analyses

BROWN

Tag B $w /$ displaced μ

As the luminosity drops, turn on various single-muon |n|-restricted seeds, which allow to keep L1 rate constant and increase HLT rate toward the end of

Trigger strategy - L1
Fill 6371 L 1 trigger rate - Rate betore deadtime -- Prescale cha

Lumi (E34)	L1 seed	HLT	rate	purity
1.7	Mu12er1p5	Mu12_IP6	1585	0.92
1.5	Mu10er1p5	Mu9_IP5	3656	0.80
1.3	Mu8er1p5	Mu9_IP5	3350	0.80
1.1	Mu8er1p5	Mu7_IP4	6153	0.59
0.9	Mu7er1p5	Mu7_IP4	5524	0.59

~50/fb of data
recorded
<PU> = 20

Trigger strategy - HLT

BROWN

Tag B $w /$ displaced μ

As the luminosity drops, turn on various single-muon |n|-restricted seeds, which allow to keep L1 rate constant and increase HLT rate toward the end of

Trigger strategy - L1
Fill 6371 L1 trigger rate - Rate betore deadtime -- Prescale cha

Lumi (E34)	L1 seed	HLT	rate	purity
1.7	Mu12er1p5	Mu12_IP6	1585	0.92
1.5	Mu10er1p5	Mu9_IP5	3656	0.80
1.3	Mu8er1p5	Mu9_IP5	3350	0.80
1.1	Mu8er1p5	Mu7_IP4	6153	0.59
0.9	Mu7er1p5	Mu7_IP4	5524	0.59

Trigger strategy - HLT
<PU> = 20

Fill 6759 HLT rate \quad - Physics Streams \quad-- Prescale change
 General Strategy

Low-pt electrons are very hard (spent three years optimizing the reconstruction and selection - a lot more challenging than we originally thought) - do not expect competitive precision in $\mathrm{R}(\mathrm{K})$ with the 2018 parked data

- Rethought trigger strategy for Run 3
- Focusing on high precision in the muon channel, which may shed light on whether muons are suppressed compared to the SM predictions, which LHCb data seem to indicate
- Experimental situation: all over the place
- The results are consistent among the experiments; inconsistency with the theory is an open question (both experimentally and theoretically!)
\uparrow In CMS, working on the 13 TeV analysis with significantly higher statistics
- Will attempt to have finer bins and including the ones between J / ψ and $\psi(2 \mathrm{~S})$

- Up to x15 improvement w/ $3 \mathrm{ab}^{-1}$ compared to the 8 TeV CMS result [PLB 781 (2018) 517]
- Should be possible to resolve the situation experimentally already in Run 3

CMS PAS FTR-18-033

\uparrow Recent result on a challenging charged B angular analysis, with the K^{+*} reconstruction via the $\mathrm{K}^{0}{ }^{5} \pi^{+}$decay w/ 8 TeV 2012 data
\bullet Good agreement with the SM predictions in muon $A_{\text {FB }}$ and $\mathrm{K}^{*} \mathrm{~F}_{\mathrm{L}}$

CMS JHEP 04 (2021) 124

$\cos \theta_{l}$

SM: QCDF + lattice

BROWN

ATLAS, CMS, LHCb combination: $\sim 2 \sigma$ tension w.r.t. the SM prediction - similar to other $\mathrm{b} \rightarrow \mathrm{s} \mu \mu$ decays

* New LHCb result based on full 9/fb data set reduces the tension to $\sim 1 \sigma$ + Very recent CMS result based on 140/fb Run 2 data erased the discrepancy completely

* ATLAS, CMS, LHCb combination: ~2 σ tension w.r.t. the SM prediction - similar to other b \rightarrow s $\mu \mu$ decays
- New LHCb result based on full 9/fb data set reduces the tension to $\sim 1 \sigma$
- Very recent CMS result based on 140/fb Run 2 data erased the discrepancy completely

\downarrow ATLAS, CMS, LHCb combination: ~2 σ tension w.r.t. the SM prediction - similar to other b \rightarrow s $\mu \mu$ decays
- New LHCb result based on full 9/fb data set reduces the tension to $\sim 1 \sigma$
- Very recent CMS result based on 140/fb Run 2 data erased the discrepancy completely

For the $\mathrm{B}(\mu \mu)$ discovery, need HL-LHC; will also be able to probe the lifetime with sufficient enough precision to resolve the two B_{s} states

CMS PAS FTR-18-013

$3 \mathrm{ab}^{-1}(14 \mathrm{TeV})$

$3 \mathrm{ab}^{-1}(14 \mathrm{TeV})$

$\mathcal{L}\left(\mathrm{fb}^{-1}\right)$	$N\left(B_{s}\right)$	$N\left(B^{0}\right)$	$\delta \mathcal{B}\left(B_{s} \rightarrow \mu \mu\right)$	$\delta \mathcal{B}\left(B^{0} \rightarrow \mu \mu\right)$	$\sigma\left(B^{0} \rightarrow \mu \mu\right)$	$\delta\left[\tau\left(B_{s}\right)\right]$ (stat-only)
300	205	21	12%	46%	$1.4-3.5 \sigma$	0.15 ps
3000	2048	215	7%	16%	$6.3-8.3 \sigma$	0.05 ps

Connection to flavour anomalies

Slide 16

Altmannshofer, Stangl, EPJC 81 (2021) 952

\uparrow Connection to flavour anomalies

$\stackrel{\odot}{\bullet}$
 Slide

Altmannshofer, Stangl, EPJC 81 (2021) 952
\uparrow There is a connection between tests of flavour anomalies in $\mathrm{b} \rightarrow$ sll transitions and the determination of fragmentation fraction ratios (FFRs), which are relative probabilities of b quark fragmentation into B^{0}, B^{+}, and B_{s} mesons
\uparrow Experimental situation with the FFR determination is somewhat messy and there are a number of fine points that are often missed or ignored
\uparrow I'll talk about these caveats and the best ways to cleaning up the situation using the existing LHC and future Belle II data

- Some of these observations are explicitly targeting the CMS B physics program, particularly the new capabilities made possible by the large set of 2018 b-parked data
- The rest goes beyond CMS and targets more general issues related to both the LHC and the B factories

At the moment, all three LHC collaborations use $\mathrm{B}^{+} \rightarrow \mathrm{J} / \psi \mathrm{K}^{+}$as the normalization channel [LHCb also uses $B^{0} \rightarrow K^{+} \pi^{-}$, assuming $f_{u}=f_{d}$, but the uncertainty is dominated by the former]

- This brings the $\mathrm{f}_{\mathrm{s}} / \mathrm{f}_{\mathrm{u}}$ fragmentation function ratio (FFR) as the necessary input to the branching fraction measurement
- The current LHCb best value is 0.254 ± 0.008 [assuming $f_{u}=f_{d}$]
- In the CMS case, we correct this value for the p_{T} variation [the latter is reported at $\sim 8 \sigma$ by the LHCb at 13 TeV , but not seen by ATLAS or internally in CMS]:
$\% f_{s} / f_{u}=0.231 \pm 0.008$ (36 lower)
- This 3.5% uncertainty is the dominant systematic uncertainty in the overall result:
$\left.\mathcal{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right)=\left[3.83_{-0.36}^{+0.38}(\text { stat) })_{-0.16}^{+0.19} \text { (syst) }\right)_{0.13}^{00.15}\left(f_{s} / f_{w}\right)\right] \times 10^{-9}$ so it's important to reduce it!

LHCb PRD 104 (2021) 032005

* The jury is still out whether the linear slope suggested by LHCb holds \downarrow There is undoubtedly a strong рт dependence for the Λ_{b} fragmentation fraction, but:
- Different production mechanism from meson production
- Possible proton remnant effects
- Significant feed-down from heavier beauty baryons
+ CDF and ATLAS see no strong p_{T} dependence for f_{s} / f_{d} and agree with the asymptotic LEP value

LHCb PRD 100 (2019) 031102

- The jury is still out whether the linear slope suggested by LHCb holds \uparrow There is undoubtedly a strong p_{T} dependence for the Λ_{b} fragmentation fraction, but:
- Different production mechanism from meson production
- Possible proton remnant effects
- Significant feed-down from heavier beauty baryons
\uparrow CDF and ATLAS see no strong рт dependence for $^{\mathrm{f}_{\mathrm{s}} / \mathrm{f}_{\mathrm{d}} \text { and agree with the }}$ asymptotic LEP value

LHCb PRD 100 (2019) 031102

\uparrow Given the tension between different measurements of FFR and the claimed $\mathrm{p}_{\text {т }}$ dependence by LHCb, world average FFRs are no longer being updated:

- From HFLAV arXiv:2206.07501

With the ever increasing precision in heavy flavour measurements, the b-hadron fraction averages provided by HFLAV for high-energy hadron collisions are no longer of interest, since they are not directly transferable from one experiment to the other. We have therefore decided to no longer maintain these averages. The interested reader should refer to Sec. 4.1.3 of our previous publication [1].
[1] HFLAV collaboration, Y. S. Amhis et al., Averages of b-hadron, c-hadron, and τ-lepton properties as of 2018, Eur. Phys. J. C81 (2021) 226, arXiv:1909.12524.

PDG still provides the world average values:

Table 75.1: $\bar{\chi}$ and b-hadron fractions (see text).

	Z decays [96]	Tevatron [96]	LHC $(\sqrt{s})[97,98]$
$\bar{\chi}$	0.1259 ± 0.0042	0.147 ± 0.011	
$f_{u}=f_{d}$	0.408	± 0.007	0.344 ± 0.021
f_{s}	0.100	± 0.008	0.115 ± 0.013
$f_{\text {baryon }}$	0.084	± 0.011	0.198 ± 0.046
f_{s} / f_{d}	0.246 ± 0.023	0.333 ± 0.040	$0.239 \pm 0.007(7 \mathrm{TeV})$
			$0.239 \pm 0.008(8 \mathrm{TeV})$

\uparrow Alternative would be to use the $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \psi \phi$ decay for the $\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu$ normalization, which should eliminate the need for the $\mathrm{f}_{\mathrm{s}} / \mathrm{f}_{\mathrm{u}}$ ratio
\uparrow Currently, the world average [PDG] is based on three results:

- CDF, 1.96 TeV: $\mathrm{B}\left(\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \Psi \phi\right)=(1.5 \pm 0.5 \pm 0.1) \times 10^{-3}$
- Belle, $\mathrm{Y}(5 \mathrm{~S}) \rightarrow \mathrm{B}_{\mathrm{s}} \mathrm{B}_{\mathrm{s}}, \mathrm{B}\left(\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \Psi \phi\right)=(1.25 \pm 0.24) \times 10^{-3}$
- LHCb, 7,8,13 TeV: $\mathrm{B}\left(\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \Psi \phi\right)=(1.037 \pm 0.032 \pm 0.022) \times 10^{-3}$
$\%$ However, the dominant LHCb result uses B^{+}and B^{0} decays as the normalization channel, so this measurement is $\sim 100 \%$ correlated with their $\mathrm{f}_{\mathrm{s}} / \mathrm{f}_{\mathrm{u}}$ or $\mathrm{f}_{\mathrm{s}} / \mathrm{f}_{\mathrm{d}}$ measurement - not an independent normalization channel!
\downarrow Can we use some other B_{s} decay mode to normalize?
- Not really as none of them have been measured to a precision better than 10%, and most are affected by the same normalization channel issue
\uparrow Really need Belle II $\mathrm{Y}(5 \mathrm{~S})$ measurements to make a breakthrough in precision
- Why don't they run on the $\mathrm{Y}(5 \mathrm{~S})$ first??? :)
- Hadronic decays with charm $\left(\mathrm{B}_{(\mathrm{s})} \rightarrow \mathrm{D}_{(\mathrm{s})} \mathrm{K} ; \mathrm{D}_{(\mathrm{s})} \pi\right)$
\therefore Claimed to be the most clean theoretically
\therefore Calculations are done in the factorization scheme [Fleischer et al., arXiv:1004.3982]
* Dominant systematic uncertainty is in determination of the form-factor $\mathrm{B}_{(\mathrm{s})} \rightarrow \mathrm{D}_{(\mathrm{s})}$ ratio, N_{F} (discussed later)
※ Experimental advantage: fully reconstructible decays largely remove contamination from excited states
- Hadronic decays with charmonium ($\mathrm{B}_{(\mathrm{s})} \rightarrow \mathrm{J} / \psi \mathrm{K}^{*}(\phi)$)
\because The ATLAS method is based on a single available theoretical calculation of the ratio:

$$
\frac{\mathcal{B}\left(B_{s}^{0} \rightarrow J / \psi \phi\right)}{\mathcal{B}\left(B_{d}^{0} \rightarrow J / \psi K^{* 0}\right)}=0.83_{-0.02}^{+0.03}\left(\omega_{B}\right)_{-0.00}^{+0.01}\left(f_{M}\right)_{-0.02}^{+0.01}\left(a_{i}\right)_{-0.02}^{+0.01}\left(m_{c}\right)
$$

\because Unfortunately, this prediction [Liu et al., arXiv:1309.0313] is based on pQCD predictions, which are notoriously unreliable

* Thus, the claimed precision $\mathrm{f}_{\mathrm{s}} / \mathrm{f}_{\mathrm{d}}=0.240 \pm 0.004$ (stat) ± 0.010 (syst) ± 0.017 (th), which is completely dominated by the theoretical uncertainty, is likely to be overstated
\div This channel, while very clean experimentally, is only useful for shape measurements (e.g., p_{T} dependence), but not for the absolute $\mathrm{f}_{\mathrm{s}} / \mathrm{f}_{\mathrm{d}}$ determination

Several analyses are ongoing, with the results expected this year:

- FFR with charmonium $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \psi \phi, \mathrm{B}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}^{\star}$ (non-parked data; shape measurement - testing claimed p_{T} dependence)
- FFR with fully hadronic charm decays $B_{s} \rightarrow D_{s}^{-} \pi^{+} / K^{+}$, $\mathrm{B}^{0} \rightarrow \mathrm{D}^{-} \mathrm{K}^{+}$via $\mathrm{D}^{-} \pi^{+}$(parked data - never thought it would be possible - Charm Meson Spectrometer!)
- FFR with charmonium $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \Psi \phi, \mathrm{B}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}^{*}$ (parked data)
\uparrow However, one has to use theoretical input to calculate the FFR in hadronic charm decays (the present measurement of $B\left(B_{s} \rightarrow D_{s}-\pi^{+}\right)$is dominated by LHCb and uses f_{s} / f_{d} as an input): $\mathrm{B}\left(\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}}{ }^{-} \pi^{+}\right)=(3.20 \pm 0.10 \pm 0.16) \times 10^{-3}$
↔ Belle measurement has a 20\% uncertainty: $\mathrm{B}\left(\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}}-\pi^{+}\right)$ $=(3.6 \pm 0.5 \pm 0.5) \times 10^{-3}-$ need $Y(5 S)$ data!

Several analyses are ongoing, with the results expected this year:

- FFR with charmonium $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \psi \phi, \mathrm{B}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}^{*}$ (non-parked data; shape measurement - testing claimed p_{T} dependence)
- FFR with fully hadronic charm decays $B_{s} \rightarrow D_{s}^{-} \pi^{+} / K^{+}$, $\mathrm{B}^{0} \rightarrow \mathrm{D}^{-} \mathrm{K}^{+}$via $\mathrm{D}^{-\pi^{+}}$(parked data - never thought it would be possible - Charm Meson Spectrometer!)
- FFR with charmonium $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \Psi \phi, \mathrm{B}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}^{*}$ (parked data)
- However, one has to use theoretical input to calculate the FFR in hadronic charm decays (the present measurement of $B\left(B_{s} \rightarrow D_{s}-\pi^{+}\right)$is dominated by LHCb and uses f_{s} / f_{d} as an input): $B\left(B_{s} \rightarrow D_{s}-\pi^{+}\right)=(3.20 \pm 0.10 \pm 0.16) \times 10^{-3}$
\star Belle measurement has a 20\% uncertainty: $B\left(B_{s} \rightarrow D_{s}-\pi^{+}\right)$ $=(3.6 \pm 0.5 \pm 0.5) \times 10^{-3}-$ need $Y(5 S)$ data!

Theoretical Galculations

BROWN
The LHCb extraction is based on the QCD factorization framework [Fleischer, Serra, Tuning PRD 83 (2011) 014017]:

- Cabibbo-suppressed $\mathrm{D}^{-} \mathrm{K}^{+}$channel is cleaner than the $\mathrm{D}-\pi^{+}$channel, due to the lack of an extra non-factorizable diagram
$=\Phi_{\mathrm{PS}}\left|\frac{V_{u s}}{V_{u d}}\right|^{2}\left(\frac{f_{K}}{f_{\pi}}\right)^{2} \frac{\tau_{B^{0}}}{\tau_{B_{s}^{0}}} \stackrel{1}{\mathcal{N}_{a}\left(\mathcal{N}_{F}\right)} \frac{\mathcal{B}\left(D^{-} \rightarrow K^{+} \pi^{-} \pi^{-}\right)}{\mathcal{B}\left(D_{s}^{-} \rightarrow K^{+} K^{-} \pi^{-}\right)} \frac{\epsilon_{D K}}{\epsilon_{D_{s} \pi}} \frac{N_{D_{s} \pi}}{N_{D K}}$

Input	Value	Reference
$\mathcal{B}\left(\bar{D}^{0} \rightarrow K^{+} \pi^{-}\right)$	$(3.999 \pm 0.045) \%$	$[6]$
$\mathcal{B}\left(D^{-} \rightarrow K^{+} \pi^{-} \pi^{-}\right)$	$(9.38 \pm 0.16) \%$	$[7]$
$\mathcal{B}\left(D_{s}^{-} \rightarrow K^{-} K^{+} \pi^{-}\right)$	$(5.47 \pm 0.10) \%$	$[6,39]$
$\tau_{B_{s}^{0}} / \tau_{B^{0}}$	1.006 ± 0.004	$[6]$
$\left(\tau_{B^{+}}+\tau_{B^{0}}\right) / 2 \tau_{B_{s}^{0}}$	1.032 ± 0.005	$[6]$
$\left(1-\xi_{s}\right)$	1.010 ± 0.005	$[34]$
\mathcal{N}_{a} Non-fact. corr.	1.000 ± 0.020	$[36]$
\mathcal{N}_{F} Form factors	1.000 ± 0.042	$[19,40]<$
\mathcal{N}_{E} For DT decay	0.966 ± 0.062	$[7,36]$
$\left\|V_{u s}\right\| f_{K} /\left\|V_{u d}\right\| f_{\pi}$	0.2767	$[9]$

> On the other hand, what was a tendency to overestimate the individual branching fractions in the past, is now a clear discrepancy: naively we observe a 4σ difference between prediction and measurement in $\bar{B}_{s}^{0} \rightarrow D_{s}^{+} \pi^{-}$, over 5σ difference in $\bar{B}^{0} \rightarrow D^{+} K^{-}$, about 2σ in $\bar{B}_{s}^{0} \rightarrow D_{s}^{*+} \pi^{-}$and 3σ in $\bar{B}^{0} \rightarrow D^{*+} K^{-}$. A fit to the same data as above, but

- Bordone et al., EPJC 80 (2020) 347 and 951

Non-Gabibbo-Suppressed Chan

 Cabibbo-suppressed channel is difficult- Use non-Cabibbo-suppressed $\mathrm{B}^{0} \rightarrow \mathrm{D}^{-} \pi^{+}$instead and normalize to the theoretically clean channel via the ratio of the branching fractions: $\mathrm{B}\left(\mathrm{B}^{0} \rightarrow \mathrm{D}^{-} \mathrm{K}^{+}\right) / \mathrm{B}\left(\mathrm{B}^{0} \rightarrow \mathrm{D}^{-} \pi^{+}\right)$
- This ratio is known to a rather fine 3.3\% precision [PDG]: $(8.22 \pm 0.11 \pm 0.25) \%$
- This is twice better than the precision on the nonfactorizable diagram contribution $\mathrm{N}_{\mathrm{E}}=0.966 \pm 0.062$
- Using parked data we can also measure
$B\left(B_{s} \rightarrow J / \psi \phi\right) / B\left(B_{s} \rightarrow D_{s} \pi\right)$ (benefiting from the same trigger!) and normalize the charmonium channel to the same (clean!) theoretical hadronic charm value!

In all of the FFR measurements it is assumed that there is an isospin symmetry: $f_{u}=f_{d}$
+ In fact, this assumption is implicitly or explicitly used in most of the B^{+}and B^{0} branching fraction measurements at the B factories!
- The isospin symmetry enters the branching fractions
through the assumption: $R^{ \pm 0} \equiv \frac{\mathscr{B}\left(\Upsilon(4 S) \rightarrow B^{+} B^{-}\right)}{\mathscr{B}\left(\Upsilon(4 S) \rightarrow B^{0} \bar{B}^{0}\right)}=1$
- Is this really a good assumption?
- Actually, not quite, as the isospin violation at $Y(4 \mathrm{~S})$ from the final-state Coulomb interactions near threshold could be as large as $\sim 20 \%$, which would imply significant corrections to the measured $\mathrm{B}^{+} / \mathrm{B}^{0}$ branching fractions
+ Voloshin: Phys. Atom. Nucl. 68 (2005) 771: connection to the $\psi(3770) \rightarrow$ DD and $\phi \rightarrow$ KK decays; large variation of $\mathrm{R}^{ \pm 0}$ across the resonance
\uparrow Experimentally, however, the ratio appears to be significantly smaller:
- HFLAV arXiv:2206.07501 (CLEO, Belle, BaBar): $R^{ \pm 0}=1.059 \pm 0.027$ (2.2б from unity)
+ BaBar [PRL 95 (2005) 042001] used a clever technique of a double-tag vs. single tag to measure inclusive B^{+}and B^{0} semileptonic branching fractions without any isospin assumptions, resulting in $R^{ \pm 0}=1.048 \pm 0.042 \pm 0.044$
+ Work in progress: Bernlocher, Jung, GL, Ligeti:
- Difficult problem, as one has to disentangle isospin violation in production and decay
- Pursuing a novel idea on how to do it properly with the existing and future data
- Proposal for an experimental program for Belle II and the LHC experiments to resolve the $R^{ \pm 0}$ puzzle to $\sim 1 \%$ precision [paper in preparation]

Thank You!

- Search based on high-pт and high-dE/dx tracks in the ATLAS pixel detector
* Dedicated time-dependent calibration accounting for the pixel detector aging
$\star d E / d x$ to $\beta \gamma$ calibration based on dedicated low-pileup run
- Several signal regions, as well as a number of control and validation regions for background estimation
- An excess of high-dE/dx events in the 1.1-2.8 TeV mass window is seen, with the local (global) significance of 3.6 (3.3) σ
- Excess events very scanned for pixel detector pathologies, and none were found
- However, the time-of-flight information for these events is consistent with $\beta=1$ (which is not inconsistent with the $\mathrm{dE} / \mathrm{dx}$ results for $|\mathrm{q}|>\mathrm{e}$)

ATLAS, arXiv:2205.06013

No competitive CMS results yet final state also reinterpreted as a search for VLQs

* Sophisticated background prediction using the " τ embedding" method
- Two ~3 0 excesses are seen in the ditau mass distributions (or its proxy) around 0.1 and 1.2 TeV
\star Excesses are reasonably distributed between various π decay channels
\star The $\sim 100 \mathrm{GeV}$ excess appears to be well aligned with the low-mass diphoton excess seen in an earlier analysis of Run 1 + 2016 data

32

$\mu \tau_{\mathrm{h}}+e \tau_{h}$, No b tag, $\mathrm{p}_{\mathrm{T}}^{\mathrm{Tr}}>200 \mathrm{GeV}$

- No full Run 2 result in low-mass diphoton channel yet
* The 2016 ATLAS result is not inconsistent with the CMS one
- The full Run 2 MSSM H(tт) result contradicts the 1.2 TeV excess seen in CMS
- The 95-96 GeV light Higgs boson has long been a subject of

ADLO, hep-ex/0306033

ATLAS-CONF-2018-025 theoretical interest since an old

LEP hint in the $\mathrm{H}(\mathrm{bb})$ channel

Looking forward to ATLAS $139 \mathrm{fb}^{-1}$ updates in the y channel!

CMS Y(bb)H(yช) Excess

- Recent preliminary result from CMS on resonant search in the $X \rightarrow Y(b b) H(\gamma \gamma)$ channel
* See $\sim 3.5 \sigma$ (2.8σ globally) excess at $M(b b) \sim 100 \mathrm{GeV}, \mathrm{M}(\mathrm{X})=650 \mathrm{GeV}$

- Curiously, a 650 GeV bump is also observed in the recent CMS high-mass H(WW) search in dilepton channel (low resolution), but only in the VBF category with a 3.8σ (2.8 σ global) significance
* ATLAS 2016 leptonic H(WW) doesn't have an excess, but the sensitivity is not sufficient to rule out the CMS excess; neither does the full Run $2 Z^{\prime}(W W)$ semileptonic analysis
\star However, there is a small VBF $\mathrm{H}(\mathrm{ZZ} \rightarrow 4 \mathrm{I}+212 \mathrm{v})$ excess at $620 \mathrm{GeV}(2.4 \sigma ; 0.9 \sigma$ global) in the ATLAS data

- Curiously, a 650 GeV bump is also observed in the recent CMS high-mass H(WW) search in dilepton channel (low resolution), but only in the VBF category with a 3.8σ (2.8б global) significance

夫 ATLAS 2016 leptonic H(WW) doesn't have an excess, but the sensitivity is not sufficient to rule out the CMS excess; neither does the full Run $2 Z^{\prime}(W W)$ semileptonic analysis
\star However, there is a small VBF $\mathrm{H}(\mathrm{ZZ} \rightarrow 4 \mathrm{I}+212 v)$ excess at $620 \mathrm{GeV}(2.4 \sigma ; 0.9 \sigma$ global) in the ATLAS data

- Curiously, a 650 GeV bump is also observed in the recent CMS high-mass H(WW) search in dilepton channel (low resolution), but only in the VBF category with a 3.8σ (2.8 σ global) significance
* ATLAS 2016 leptonic H(WW) doesn't have an excess, but the sensitivity is not sufficient to rule out the CMS excess; neither does the full Run $2 Z^{\prime}(W W)$ semileptonic analysis
\star However, there is a small VBF $\mathrm{H}(\mathrm{ZZ} \rightarrow 4 \mathrm{I}+212 v)$ excess at $620 \mathrm{GeV}(2.4 \sigma ; 0.9 \sigma$ global) in the ATLAS data

- Curiously, a 650 GeV bump is also observed in the recent CMS high-mass H(WW) search in dilepton channel (low resolution), but only in the VBF category with a 3.8б (2.8 σ global) significance
* ATLAS 2016 leptonic H(WW) doesn't have an excess, but the sensitivity is not sufficient to rule out the CMS excess; neither does the full Run $2 Z^{\prime}(W W)$ semileptonic analysis
\star However, there is a small VBF $\mathrm{H}(\mathrm{ZZ} \rightarrow 4 \mathrm{I}+212 \mathrm{v})$ excess at $620 \mathrm{GeV}(2.4 \sigma ; 0.9 \sigma$ global) in the ATLAS data

- An excess observed in a Run 2 search looking for $\mathrm{H} \rightarrow \mathrm{a}(\mathrm{bb}) \mathrm{a}(\mu \mu)$ in highresolution dimuon mass distribution
* Local (global) significance of 3.3 (1.7) σ at $\mathrm{M}(\mathrm{a})=52 \mathrm{GeV}$

ATLAS, PRD 105 (2022) 012006

- Another preliminary result from CMS, inspired by the flavor anomalies
- Looks for single, pair, and t-channel production of LQ3 in the $\tau \tau+X$ final states

\star Uses $\mathrm{S}_{\mathrm{T}}=\Sigma \mathrm{p}_{\mathrm{T}}(\mathrm{T})+\mathrm{p}_{\mathrm{T}}\left(\mathrm{j}_{1}\right)+M \mathrm{E}_{\mathrm{T}}$ as ${ }^{\mathrm{b}}$ a discrimiñating variable for ${ }^{\dot{\Gamma}}$ resonant and $\chi=$ $e^{-2 y^{*}}$, where $y^{*}=\left|y_{1}-y_{2}\right| / 2$ the rapidity separation between two leading (tau) jets
- Global fit to multiple search regions for different LQ3 mass and couplings

太 See $\sim 3.5 \sigma$ excess peaking in non-resonant production at large VLQ masses and couplings; no excess is seen for resonant production; global σ is hard to quantify

- ATLAS reported a 3.1 (2.0) σ excess at about 1 TeV in an $X \rightarrow \mathrm{H}(\pi) \mathrm{H}(\mathrm{bb})$ resonant search
\star An excess can be clearly seen only in the NN discriminant distribution; the mass spectrum before the NN application doesn't show a sizable excess
* Consistent excess in semileptonic and hadronic final states
- Not directly comparable with the CMS LQ3 excess but could be related

ATLAS, arXiv:2209.10910

- No resonant $X \rightarrow H(\tau t) H(b b)$ results with full Run 2 data yet
- However, a search was done for $H \rightarrow H_{125}(\tau \tau) h_{s}(b b)$, with h_{s} being a scalar in a broad mass range for H and $\mathrm{h}_{\text {s }}$
* No excesses seen for $\mathrm{m}\left(\mathrm{h}_{\mathrm{s}}\right)=125 \mathrm{GeV}$, with the cross section times branching fraction (7.3\%) limit set $\sim 2 \mathrm{fb}$, which is very similar to the ATLAS observed limit

- Assuming that the $\mathrm{H}(\mathrm{bb}) \mathrm{H}(\tau \tau)$ channel corresponds to the SM Higgs boson decays, the 1 TeV excess in ATLAS is still present at 3.2σ ($2.1 \sigma \mathrm{global}$) level
- However, CMS rules it out by $\mathrm{X} \rightarrow \mathrm{HH}$ searches in more sensitive channels
- This technically doesn't hold in the case when there is another boson with the mass $\sim 125 \mathrm{GeV}$ decaying into either bb or $\tau \tau$ with branching fraction different from the SM ones

ATLAS-CONF-2021-052

CMS, Summary HH Plot

ATLAS, JHEP 09 (2016) 001

CMS, PRL 117 (2016) 051802

Excited? Memento 750:

ATLAS, JHEP 09 (2016) 001

CMS, PRL 117 (2016) 051802

expected

