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Strong CP problem? 

QCD axion and its quality problem, point for heavy axion, against DM … 

The classical relaxion and its (clockwork) quality problem (only classical evolution !) 

Strong CP + hierarchy problem, why the QCD relaxion doesn’t work 

Relaxed-relation 

Hook’s Zn high quality ultra light QCD axion model 

A high quality Z4n QCD relaxion model 

Outlook cool pheno



The strong CP “problem”
and

The axion solution



“QCD problem” & the SM

In the SM the CKM phase is order 1 but  

Is this a problem? Not necessarily, different spurions at tree level they are 

orthogonal, as exploited in Nelson-Barr type of models  

 At 7 loops the EDM receives log-div contributions but it is tiny, and the finite 

contribution predicts  so it doesn’t look like a serious problem at the moment, 

similar to the flavor problem … 

In fact in Nelson-Barr the two CP phases are related but not in axion models …

θ̄ = θ − arg [ det (YuYd)] ≲ 10−10

θ̄ ∼ 10−16



SM vs. QCD axion model, quality

Within the SM everything is immune against UV (Planck) suppressed 

contribution 

 Neutrino masses are the closest but they require lower scale …  

The QCD axion in fact is not, to see let’s look at the axion-QCD para’:

V(θ̄) = −
m2

π f 2
π

(1 + z)2
1 + z2 + 2 z cos(θ̄) ⇔ ℒa = (a /fa + θ) 1

32π2
GG̃ ⟹ V(θ̄) ⇒ V (θ̄ +

a
fa )

Let’s also mention:   m2
π(θ̄) = m2

π |θ̄=0
1 + z2 + 2z cos θ̄

(1 + z)2
∼ m2

π |θ̄=0 (1 − z θ̄2/2)

with z ≡ mu /md and V(a /fa) ∼ − zm2
π f 2

π cos(a /fa + θ̄)



QCD axion’s quality problem

where with n<7 operators,  and the strong CP problem is not solve! 

This may be solved if one impose a (gauged) discrete symmetry, respected by gravity 

   

δθ > 10−10

V = Λ4
QCD cos(a /f + θ̄) +

Φn

Mn
Pl

(Φ†Φ)2 ⇒ Λ4
QCD sin δθ ∼ ϵNf 4 ⇒f→1010 GeV (

ΛQCD

1010 GeV )
4

10−10 ∼ ( 1010 GeV
MPl )

n



The relaxion mechanism in a nutshell

Graham, Kaplan & Rajendran (15)
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low freq. 

high freq. 
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Graham, Kaplan & Rajendran (15)
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The basic relations & parametric dependence 

As the relaxion is an axion, the potential must be a periodic function of it:  

                    μ2(ϕ) = Λ2 + M2 cos(ϕ/F) + m 2
back cos(ϕ/f + α)V(ϕ)rol ∼ M4 cos(ϕ/F) ↔ gΛ3ϕ

We start assuming  and the stopping condition reads:      

              

Require very big hierarchy between f and F

ϕ ∼ F

V′ (ϕ) = 0 ⇔ M4/F = v2m 2
back /f ⇒ v/Λ ≲ ( f /F)1

4

F ≫ f ≳ M ∼ Λ ≫ v ≳ mback
Espinosa et al. (15)

Gupta, Komargodski, GP & Ubaldi (15)



Clockwork

14

Choi, Kim & Yun (14); Choi & Im; Kaplan & Rattazzi (15) 

To have a cut-off of 104 v we need f/F =10-16 



Clockwork model
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♦ The following linear sigma model:

♦ However there is only one true Goldstone, upon the charge 
assignment:

In the ✏ ! 0 limit have U(1)N ) N Goldstones.

Q = 1,1/3,1/9,...1/3
N 

♦ Move to the non-linear sigma model:



Clockwork model at low energies
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♦ The following effective low energy non-linear sigma potential:

Choi, Kim & Yun (14); Choi & Im; Kaplan & Rattazzi (15) 

♦ There is only one true Goldstone with the following profile:



The 0-mode/exact Goldstone profile & breaking
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Choi, Kim & Yun (14); Choi & Im; Kaplan & Rattazzi (15) 

 

 

CHOI-KIM-YUN ALIGNMENT/
CLOCKWORK RELAXION

• Double breaking again on 1st and last site: 

Choi, Kim & Yun (2014) 
Choi & Im (2015) 

Kaplan & Rattazzi(2015)

soft 
breaking

soft 
breaking

0   1    2                                  N-1 N  
⇤N⇤0

♦ Add small breaking on first and last sites:



The 0-mode/exact Goldstone profile & breaking
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Choi, Kim & Yun (14); Choi & Im; Kaplan & Rattazzi (15) 

♦ Add small breaking on first and last sites:

f ≡ fa & F = 3Nf

To have a cut-off of 104 v we need f/F =10-16 => 35 cites …



Relaxion and cosmology

Must not disturb inflation  

                    

H2 > Λ4/M2
Mpl

There is also an interesting relation between the cutoff and the number of e-folds  

      

                                  

Δϕ ∼ F ⇒ Nef ∼ F/ ·ϕ × H ∼ FH2/V′ ∼ F2H2/Λ4 ≳ F2/M2
Pl

∼ (Λ /v)8 f 2/M2
Pl ≳ Λ10/v8M2

Pl ∼ ( Λ
100 TeV )

10

Dominated by classical evolution    H < ·ϕ/H ∼ V′ /H2 ≲ v4/fH2 ⇒ Λ < f < v4/H3

Combining the two Λ ≲ M
3
7v

4
7 ∼ 108 GeV



Challenges of the relaxion

i.   QCD relaxion CP problem
ii.  Quality Problem



Relaxion and CP violation

The relaxion is based on two breaking of the shift symmetry 

The Rolling potential and the backreaction potential  

As seen the stopping condition is when the derivative of the Rolling potential is equal to 

the one of the backreaction potential, where QCD axion require the the axion settles at the 

minimum of its potential =>   (in fact very close to ) 

This is incompatible unless one is giving up on classical evolution, which my force us to 

think about the measure problem & eternal inflation                     

a /fa ∼ 1 π/2

Nelson & Prescod-Weinstein (17) Gupta (18) 
Chatrchyan & Servant (22)



Relaxed relaxion & some pheno



m2
ϕ ∼ ∂2

ϕVbr(ϕ, h) ∼
μ2

bv2
EW

f 2
cos

ϕ0

f

sin θhϕ ∼ ∂ϕ∂hVbr(ϕ, h)/v2
EW ∼

μ2
b

f vEW
sin

ϕ0

f

∼ 1

Naively: mixing angle in terms of mass sin ✓h� ⇠ m�

vEW

µb

vEW
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Relaxion’s naive parameters (similar to ALP, backreaction domination)

The relaxion is light 
and mixes with the Higgs

Flacke, Frugiuele, Fuchs, Gupta & GP; 
Choi & Im (16); Banerjee, Kim & GP (18)
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Credit: A. Banerjee 
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Lesson 1 - finding NP requires diverse approach, searches across frontier 

Lesson 2 - experimentally, worth checking where many decades are covered:

NOT FOR DISTRIBUTION JHEP_196P_0420 v1
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Figure 7. Updated parameter space for relaxion. The region between two solid green lines denotes
the parameter space for relaxion when it stops at the first minimum. The region between the black
solid lines represents the parameter space for relaxion when it stops at a generic minima (see the
discussion in Sec. 5.3). The region above the dashed green line represents super-Planckian decay
constant. The brown triangular region represents relaxion DM parameter space as discussed in [8].
The blue, light yellow, light brown, and the light black shaded regions on the top right corner
describe excluded parameter space from various collider collider experiments and astrophysical
considerations. These are discussed in more detail in Section 5.5 and in Fig. 4. The turquoise, light
orange, magenta, pink, and grey dashed shaded region represents constraints on sub- eV relaxion
scenario from various fifth force and clock-comparison experiments which has been discussed in
Section 5.6 and in Fig. 5. The purple shaded region is excluded by recent clock caparison test with
dynamic decoupling [10], while the darker yellow shaded region is excluded by Cesium clock-cavity
comparison test [74].
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The log crisis

Banerjee, Kim, Matsedonski, GP & Safranova (20)
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Potential height grows 
incrementally

Resolution parameter

Less naive treatment, the relaxed relaxion

F ≡ δ2 ≪ 1
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Credit: A. Banerjee 

Stopping condition, fine resolution
Banerjee, Kim, Matsedonski, GP, Safranova (20)

The relaxion stops
at ~ max’ of the derivative
of backreaction potential!

θ̄ = π/2
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Relaxion: barriers increase incrementally:
relaxion stops at shallow region => small mass 

Credit: A. Banerjee 

Stopping condition, fine resolution
Banerjee, Kim, Matsedonski, GP, Safranova (20)

m2
ϕ ≈ δ × (m2

ϕ)naive
≪ (m2

ϕ)naive
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Credit: A. Banerjee 

Banerjee, Kim, Matsedonski, GP, Safranova (20)



Zn QCD axion model
Hook (2018)



The magic of the model

Consider the following model based on N copies of the SM 

  

Under the U(1) and ZN sym’: 
 

Resulting with the following QCD axion potential 

 

ℒ =
N

∑
k=1

ℒk
SM + Φ∑

k

QkQc
k exp(2πik /N) , ⟨Φ⟩ = ( fa + ρ)exp(ia /fa)/ 2

ℒi
SM → ℒi+1

SM , Q(c)
i → Q(c)

i+1 , Φ → e2πi/NΦ and Qi → eiθQi , Φ → e−iθΦ

V(θ̄) = − ∑
k

m2
π f 2

π

(1 + z)2
1 + z2 + 2 z cos(θ̄ + 2πik /N) ⇔ ℒk = (θ̄ + a /fa + 2πk /N) 1

32π2
GG̃
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Naturally light high quality QCD axion 

Expanding in z makes it obvious that the leading contribution arise at order zN

Thus the axion mass is suppressed by zN/2 allow to go above the QCD line:

For sufficient large N it also avoid the quality problem

m2f 2
a ∼ Λ4

QCDzN ≪ Λ4
QCD
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High quality (classical) solution to the QCD relaxion problem

Banerjee, Eby & GP, last week



Combine ingredients to avoid the QCD relaxion CP problem

Assume Z4N sym’ QCD relaxion model, say Z4 and make the backreaction 
dominated by a single sector, k, which is not the SM.   

As we showed, the relaxion will stop the evolution at  

Consider for instance having the SM at the Nth site and the site with the 
dominant backreaction on the site after: 

 

If this is just the sector after the SM then the SM will have  

  solving the strong CP problem. 

θ̄k ∼ π/2

V(θ̄) ∼ − Λ′ 4
QCD′ cos(θ̄ + a /f + π/2) ⇔ ℒk = (θ̄ + a /fa + π/2) 1

32π2
G′ G̃′ ⟹ (a /fa)relax ≈ − θ̄

ℒSM = (θ̄ + a /fa) 1
32π2

GG̃ , 34



The model requirements and parameters 

We need to make the N+1’th site to dominate the backreaction we do it by  

breaking the sym’ choosing    and  

The leading deviation from  is coming from two sources: the fact that 
  

and that the SM sector contributions push toward  

We can’t switch the two off (nor we want) in particular: suppressing tunneling   

(+ quantum):   

Ensuring inflation domination  

 

γ ≡ v/v′ ∼ 0.1 − 0.001 ϵb ≡
yuΛ3

QCD

y′ uΛ′ 
3
QCD′ 

≲ γ

θ̄N−1 = π/2
δ ≠ 0 [Δv2/v2 = gΛf /v2 = gΛ3f /v2Λ2 ∼ Λ4

br /v
2Λ2 ∼ yuΛ3

QCD/Λ2v ≡ μ2
br /Λ

2] ≡ δ

θ̄N = π/2

ΔV ∼ Λ4
backδ3 ≡ (m′ uΛ′ 3

QCD′ )
4

δ3 ≫ H4
I

H2
I ≫ Λ4/M2

Pl ⇒ Λ4
back (μ2

back /Λ2)3 ≪ Λ8/M4
Pl
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Pheno

Let me highlight two interesting effect the first is just related to the fact that the 
QCD axion coupled quadratically to masses: 
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Oscillations of energy levels induced by QCD-axion-like DM

37

Kim & GP, last month 

 Consider axion model \w  coupling, usually searched by magnetometers (αs /8) (a /f) GG̃

 However, spectrum depends on  :  θ2 = (a(t)/f )2

DESY-22-088

Oscillations of atomic energy levels induced by QCD axion dark matter

Hyungjin Kim⇤
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Gilad Perez†
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Axion-gluon interaction induces quadratic couplings between the axion and the matter fields. We
find that, if the axion is an ultralight dark matter field, it induces small oscillations of the mass of
the hadrons as well as other nuclear quantities. As a result, atomic energy levels oscillate. We use
currently available atomic spectroscopy data to constrain such axion-gluon coupling. We also project
the sensitivities of future experiments, such as ones using molecular and nuclear clock transitions.
We show that current and near-future experiments constrain a finely-tuned parameter space of
axion models. These can compete or dominate the already-existing constraints from oscillating
neutron electric dipole moment and supernova bound, in addition to those expected from near
future magnetometer-based experiments.

We consider axion models, consisting of a pseudo-scalar
field a with the following coupling to the gluon field
strength,

L =
g
2
s

32⇡2

a

f
G

a

µ⌫
eGaµ⌫

, (1)

where f is an axion decay constant, gs is a strong cou-
pling and eGaµ⌫ is the dual gluon field strength. Below
the QCD scale, the above axion-gluon interaction induces
axion coupling to the hadronic states. The pion mass de-
pends on the axion field as

m
2
⇡
(✓) = B

q
m2

u
+m

2
d
+ 2mumd cos ✓ .

Here ✓ = a/f and B = �hq̄qi0/f
2
⇡

with a pion decay
constant f⇡ ' 93MeV. The resulting axion potential can
be described by V (✓) = �m

2
⇡
(✓)f2

⇡
to leading order [1].

Due to the ✓-dependent potential, the axion relaxes to
the CP conserving vacuum, thereby solving the strong
CP problem dynamically [2–9].
Axion oscillation around its minimum may comprise

dark matter (DM) in the present universe [10–12]. If so,
the pion mass develops a subdominant oscillatory com-
ponent, given by

�m
2
⇡

m2
⇡

= �
mumd

2(mu +md)2
✓
2
. (2)

Other nuclear quantities such as hadron masses and mag-
netic moments consist of similar oscillating contributions,
all induced by the e↵ective quadratic coupling between
the axion and the matter fields. It results in a correspond-
ing time-variation of the atomic energy levels, which can
be probed by monitoring transition frequencies of stable
frequency standards. This method was suggested by Ar-
vanitaki et al. [13] for dilaton/scalar DM searches (or a

⇤ hyungjin.kim@desy.de
† gilad.perez@weizmann.ac.il

relaxion DM [14]), where the DM field naturally couples
to the field strength of the strong and electromagnetic
interactions as well as fermion masses (see also [15, 16]).
Various experimental techniques have been used to search
for such scalar-SM interactions [17–29]. See Refs. [30, 31]
for recent reviews.

The goal of this work is to assess the possibility of
whether the axion-gluon coupling can be probed by the
same method, i.e. by monitoring atomic energy levels
of stable frequency standards. We claim that the same
principle can be applied to probe the coupling (1). We
show the current constraints and projections of future
experiments as well as other constraints in Figure 1. We
explain the main idea below.

For the purpose of demonstration, we consider the
ground state hyperfine transition in the hydrogen atom.
The hyperfine structure arises due to the interaction be-
tween the electron magnetic moment and the magnetic
field generated by the proton magnetic moment. The
transition frequency of the ground state hydrogen hyper-
fine structure is

fH =
2

3⇡

gpm
2
e
↵
4

mp

' 1420MHz,

where gp = 5.586 is the proton g-factor. In the presence
of axion dark matter and the axion-gluon coupling, the
proton g-factor and proton mass develop a small oscil-
lating component, and so does transition frequency fH .
The fractional variation of hyperfine transition frequency
can be written as

�fH

fH
=

�gp

gp
�

�mp

mp

=


@ ln gp
@ lnm2

⇡

�
@ lnmp

@ lnm2
⇡

�
�m

2
⇡

m2
⇡

' 10�15
⇥

cos(2mt)

m
2
15f

2
10

(3)

where we have defined m15 = m/10�15 eV and f10 =
f/1010 GeV, and used @ ln gp/@ lnm2

⇡
' �0.17 and
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FIG. 1. Constraints and future projections on the axion-
gluon coupling are summarized as follows: Rb/Cs clock
comparison (blue) [19], H/Si comparison (red) [24], Iodine
molecular spectroscopy (brown) [28], GEO 600 gravitational
wave detector (orange) [22], 229Th nuclear isomer transition
(red dashed) [13, 32], and strontium monohydroxide (green
dashed) [33]. The gray dotted line is f = Mpl. The diag-
onal grey line is allowed parameter space for the QCD ax-
ion, m2f2 ⇠ m2

⇡f
2
⇡ . Other bounds, such as oscillating neu-

tron EDM (purple) [34], supernova 1987A [35] (light cyan),
co-magnetometer and NASDUCK [36, 37] (gray), and axion
superradiance [38] (cyan), are also included for the compar-
ison. Projections of axion-nucleon interaction searches, such
as CASPEr-electric (blue dashed) [39] and NASDUCK (gray
dashed) [37], are also included. Spectroscopy bounds above
the green solid line must be taken carefully as the axion could
develop a static profile around the earth [40]. If such a static
profile exists, it a↵ects the propagation of DM axion, but this
parameter space is already excluded by static neutron EDM
experiments. See the main text for details.

@ lnmp/@ lnm2
⇡
' 0.06. For now, we take m and f as

independent parameters to investigate the reach of spec-
troscopy experiments for axion-gluon coupling search.
Axion DM background does not change fine structure
constant and electron mass to the leading order, so the
variation of those quantities is ignored. The dependence
of gp and mp on the pion mass is computed by using
chiral perturbation theory at the chiral order O(p3) and
compared with lattice computations. See Appendix A for
details. We have used ✓

2(t) = (⇢DM/m
2
f
2)[1+cos(2mt)]

with ⇢DM ' 0.4GeV/cm3. A constant o↵set is ignored as
it is unobservable. Equation (3) suggests that the axion-
gluon coupling strength might be probed by looking for
a harmonic signal in �fH/fH at the frequency ! = 2m.

The above discussion is more than an academic ex-
ercise. A recent experiment performed by Kennedy et
al [24] monitored hydrogen maser frequency (fH) to-
gether with silicon optical cavity resonance frequency
(fSi) to probe scalar DM interactions to electromagnetic
field strength and electron mass. Since the silicon optical
cavity resonance frequency has a rather weak dependence
on proton mass, the fractional variation of frequencies is

dominated by that of hydrogen maser,

�(fH/fSi)

(fH/fSi)
'

�fH

fH
.

Claimed short-term stability of transition frequency is
⇠ 3 ⇥ 10�13

/
p
Hz. Using Eq. (3) and 33 days of experi-

mental results obtained in Ref. [24], we place a constraint
on axion-gluon coupling, shown as a red line in Figure 1.

Hydrogen maser is one example of many frequency
standards based on hyperfine structure. An earlier at-
tempt to probe scalar DM based on hyperfine transitions
was made by Hees et al [19], where they used measure-
ment of rubidium (87Rb) and cesium (133Cs) hyperfine
transitions. For the hyperfine structure of heavier atoms,
the parametric dependence of transition frequency is sim-
ilar,

f / gm
2
e
↵
4
/mp,

but the g-factor is replaced by that of the nucleus. The
nuclear g-factor can be written as a function of nucleon
g-factor and the spin expectation value of valence and
core nucleons. Using the result of Ref. [41] together with
the nucleon g-factor computed in the chiral perturbation
theory, we find

@ ln g

@ lnm2
⇡

=

(
�0.024 87Rb,

+0.011 133Cs,
(4)

See Appendix A for details. The fractional frequency
variation is therefore

�(fA/fB)

(fA/fB)
' �0.04

�m
2
⇡

m2
⇡

' �10�16 cos(2mt)

m
2
15f

2
10

(5)

where A = 87Rb and B = 133Cs. Using the experimental
result of Rb/Cs fountain clock [19], we obtain a constraint
on axion-gluon coupling constant, which is shown as blue
line in Figure 1. It is similar to the constraint from the
H/Si comparison test, but Rb/Cs constraint extends to a
much lower mass range due to its long experimental time
scale.

We have only considered hyperfine transitions so far.
In principle, any stable frequency standards can be used
for axion DM search as long as the transition frequency
depends on g-factor and/or nucleon mass. Another ex-
ample is a vibrational molecular excitation. Since the

vibrational energy level depends on fvib / m
�1/2
p , we

find

�fvib

fvib
= �

1

2

�mp

mp

' �10�16
⇥

cos(2mt)

m
2
15f

2
10

. (6)

A recent experiment performed by Oswald et al [28] used
molecular transitions in molecular iodine (I2) to probe
the variation of fundamental constants. We use their re-
sult to place a constraint on axion-gluon coupling, which
is shown as brown in the summary figure. The constraint
is relevant for the relatively high mass end of the shown
parameter space.

5

the purpose of order of magnitude estimation, we use
Eqs. (A5)–(A6).

The nuclear g-factor can be written as a function of nu-
cleon g-factor as well as spin expectation value of valence
and core nucleons. Following Ref. [41], one finds

�g

g
=


Kn

@ ln gn
@ lnm2

⇡

+Kp

@ ln gp
@ lnm2

⇡

� 0.17Kb

�
�m

2
⇡

m2
⇡

With values of Kn,p,b given in [41], we find �g/g =
�0.02(�m2

⇡
/m

2
⇡
) for 87Rb and �g/g = 0.01(�m2

⇡
/m

2
⇡
) for

133Cs.

The variation of nuclear clock transition in 299Th is

estimated in Refs. [45, 46].

�fTh

fTh

' 1.3⇥ 105
✓
�12

�mN

mN

+ 10
�m�

m�
+ 6

�m⇡

m⇡

� 43
�mV

mV

◆

' 2⇥ 105
�m

2
⇡

m2
⇡

, (A7)

where m� and mV are the masses of �-baryon and vec-
tor meson. Among contributions from di↵erent mesons
and hadrons, the pion contribution dominates all. It is
straightforward to check that

�mN

mN

' 0.13
�m⇡

m⇡

(A8)

�m�

m�
' 0.03

�m⇡

m⇡

(A9)

�mV

mV

' 0.04
�m⇡

m⇡

(A10)

where the variance of � baryon can be obtained directly
from Eq. (62) in [76] or from �⇡� = m

2
⇡
@m�/@m

2
⇡

=
20.6MeV. The variation of vector meson mass is obtained
in [45, 77].
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[19] A. Hees, J. Guéna, M. Abgrall, S. Bize, and P. Wolf,
Searching for an oscillating massive scalar field as a
dark matter candidate using atomic hyperfine frequency
comparisons, Phys. Rev. Lett. 117, 061301 (2016),
arXiv:1604.08514 [gr-qc].

[20] S. Aharony, N. Akerman, R. Ozeri, G. Perez, I. Savoray,
and R. Shaniv, Constraining Rapidly Oscillating Scalar
Dark Matter Using Dynamic Decoupling, Phys. Rev. D
103, 075017 (2021), arXiv:1902.02788 [hep-ph].

[21] D. Antypas, O. Tretiak, A. Garcon, R. Ozeri, G. Perez,
and D. Budker, Scalar dark matter in the radio-
frequency band: atomic-spectroscopy search results,
Phys. Rev. Lett. 123, 141102 (2019), arXiv:1905.02968
[physics.atom-ph].

[22] H. Grote and Y. V. Stadnik, Novel signatures of dark
matter in laser-interferometric gravitational-wave detec-
tors, Phys. Rev. Res. 1, 033187 (2019), arXiv:1906.06193
[astro-ph.IM].

MeV × θ2n̄n ⇒
δf
f

∼
δmN

mN
∼ 10−16 × cos(2ma) × ( 10−15 eV

mϕ

109 GeV
f )

2

vs mN
a
f

n̄γ5n ⇒ (f ≳ 109 GeV)SN

δm2
π

m2
π

≈
1
4

θ2



Pheno

Let me highlight two interesting effect the first is just related to the fact that the 
QCD axion coupled quadratically to masses: see next page 

The 2nd is due to the fact that the min’ of relaxion potential deviates from pi/2. 

                          

38

8

(a) (b)

(c)
FIG. 4: Parameter space for the ZN QCD relaxion
using as parameter inputs (a) ✓10 = 2.7, � = 10�3,
(b) ✓10 = 2.7, � = 10�1, and (c) ✓10 = 0.9,
� = 5 ⇥ 10�3. The two symmetry-breaking param-
eters ✏b and � are defined in Eq. (III.2). The con-
straints shown in green, red, blue, and purple are
given in Eqs. (III.8-III.11) (respectively). The dashed
line illustrates where the relaxion mass is equal to
(m�)QCD ⌘ ⇤4

a/f
2; above the line, m� < (m�)QCD.

which approaches unity at N ! 23. Recall that the
constraint III.11 requires ✏b . �. Therefore any N � 24
will give the same prediction for ✓10 = 0.7. However, as
can be seen from Fig. 4(b), to reach � ⇠ 10�1, we need
N � 28. As a result, the parameter space of our model
is fully bounded by 4  N  28 and 0.7 . ✓10 . 3. This
range of CP-violating phase will be probed within the
next five years by neutron EDM experiments [73]. It is
also worth noting that in this model 10�3 . � . 10�1;
the cut-o↵ scale in this model is also bounded, between
105 GeV. ⇤ . 107 GeV.

At the intersection of (III.8-III.10), the mass of the
relaxion can also easily be calculated:

 
m

2
�

(m2
�)QCD

!

int

= N
2
 = 0.56N3/2

p
1� z2z

N�1
.

(III.19)
Owing to the narrowness of our parameter space, this
estimate roughly holds across the full range of model pa-
rameters.

A. Quality of the Z4N QCD relaxion

As before, we combine the low-energy axion poten-
tial with that induced by Planck-suppressed operators

in Eq. (I.2) to see whether the latter will spoil the solu-
tion to the strong CP problem. The combined potential
is

V (�) = |cN |�N
M

4
Pl cos

✓
N �

f
+ �

0
◆
�m

2
�f

2 cos

✓
�

f

◆

= |cN |�N
M

4
Pl cos

✓
N �

f
+ �

0
◆
�

�⇤4
a

✏b�
cos

✓
�

f

◆
.

(III.20)

The first derivative is

0 = V
0(h�i) ⇡ |cN |�N

N M
4
Pl sin �

0 +
�⇤4

a

✏b�
✏, (III.21)

which implies the constraint

|✏| =

����
|cN | sin �0 �N

NM
4
Pl

⇤4
a

✏b�

�

���� . 10�10
. (III.22)

For the case of N = 8, the leading Planck-
suppressed operator is proportional to �8

/M
4
Pl + h.c.,

i.e. Eq. (III.22) with N = 8. For the parameters given
in Eq. (III.15), the constraint gives fmax ⇠ 108 GeV,
very near the magnitude of the black lines in Figure 1.
As N grows, Eq. (III.22) approaches the QCD case in
Eq. (II.8), since the additional factor ✏b�/� is bounded
(roughly) by 1 � 106 over the available parameter space
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The QCD axion also induces a scalar interaction with the nucleon in the presence of a CP-violating phase of the form of 

9

of the model N � 8, but the inequality depends on ever-
higher powers of fN . Therefore within a factor of O(few)
in fmax, the quality of the ZN QCD relaxion is equivalent
to that of ZN QCD (Section IIC) at any given N .

B. Direct searches for a Z4N QCD relaxion

Here we outline the phenomenological implication of
our QCD relaxion. In our model, the axion has a CP-
violating phase of �✓. Like the usual relaxion models, due
to the relaxion-Higgs mixing angle

sin ✓h� '
⇤4
a

v3f
✓0 , (III.23)

the QCD-axion also has scalar interaction with the SM.
See [26, 75, 76] for a detailed discussion of relaxion phe-
nomenology.

The QCD axion also induces a scalar interaction with
the nucleon in the presence of a CP-violating phase of
the form of

L � �g�NN�N̄N , (III.24)

through the pion-nucleon sigma term as noted in [77–80].
Using @ lnmN/@ lnm2

⇡ ' 0.06 [35, 81], and mumd/(mu+
md)2 ' 0.22 , we obtain

g�NN ' 1.3⇥ 10�2 mN

f
�✓ . (III.25)

The predictive range of 0.7 . (�✓/10�10) . 3, limits the
strength of the scalar interaction of the QCD-axion to
the SM as

9⇥ 10�24

f11
. g�NN . 4⇥ 10�23

f11
, (III.26)

where, f11 = f/(1011 GeV) and we have used mN ⇠

1GeV. The strongest bound on g�NN comes from
the experiments looking for the existence of fifth force
and/or violation of equivalence principle (EP) [37–41].
The bound from EP violation searches, for the axion
mass around 10�6 eV, is g�NN . 10�21, which becomes
stronger as we go to the lower masses. Note that, in our
model, the mass of the QCD relaxion is slightly lighter
than the QCD axion. Thus, for a given f , one should be
careful about analysing the EP bounds.

The QCD axion also has pseudoscalar interaction
with the SM fermions as, L � �g

a
 a ̄i�

5
 with g

a
 =

C m /f . The coe�cient C depends on QCD axion
models [4–9, 14]. Many experimental e↵orts are concen-
trated on probing QCD axion through its pseudoscalar
interaction with the SM (see e.g. [82] and Refs. therein).
In our model, the product of the scalar and the pseu-
doscalar coupling of the QCD relaxion to the nucleon
can be written as

g
a
Ng�NN = 1.3⇥ 10�2 CN m

2
N

f2
�✓ , (III.27)

where CN is some model dependent coe�cient of the nu-
cleons arising from the pseudoscalar interaction of the
axion to protons and/or neutrons [14]. In our model,
the strength of the axion-nucleon scalar interaction is
bounded and using Eq. (III.26) one can more specifi-
cally limit the product of axion-proton pseudoscalar and
axion-nucleon scalar coupling as,

4⇥ 10�35

f
2
11

. |g
a
pg�NN | . 2⇥ 10�34

f
2
11

. (III.28)

Note that, in the above estimate we use the axial cou-
pling strength of proton Cp = �0.47 which is obtained
in the KSVZ QCD axion model. Another QCD axion
model such as DFSZ may provide a di↵erent value of
Cp [14]. Note that, the above parameter range will be
probed by the ARIADNE experiment whose projected
reach is |gapg�NN | . 10�36 for f ⇠ 1011 GeV [83, 84].
The QUAX experiment is also looking for similar

scalar-pseudoscalar interaction, using the pseudoscalar
electron coupling g

a
e rather than g

a
p . They provide the

current constraint on |g
a
eg�NN | . 5.7⇥10�32 in the mass

range of 10�5 & m�/ eV & 6 ⇥ 10�13 by updating their
previous result by O(102) [85, 86]. We estimate the the
range of |gaeg�NN | in our model as

10�38

f
2
11

. |g
a
eg�NN | . 6⇥ 10�38

f
2
11

, (III.29)

where we use Ce = 1/3; this parameter is model-
dependent, and this value is on the larger side of model-
parameter possibilities [87]. Although our predicted
range is beyond the current experimental reach, our
model presents an opportunity for scalar and pseu-
doscalar searches to work together to confirm (or refute)
the existence of such axions in a complementary way.

IV. DISCUSSION

In this work we analysed how Planck-suppressed (qual-
ity) operators a↵ect the low-energy dynamics of theories
involving QCD axions or axion like particles (ALPs).
For the QCD axion, the quality operators lead to the
well-known QCD axion quality problem, whereas for
ALPs, they may lead to a fairly severe fine-tuning prob-
lem. Quality operators also induce scalar interaction be-
tween the Standard Model (SM) fields and the QCD ax-
ion/ALPs. In the absence of CP violation, we obtain
SM-ALP scalar interaction in quadratic order of the ALP
field, whereas if CP is broken by gravity, ALP-SM scalar
interactions are generated even at linear order. These
interactions can be probed by various precision experi-
ments. The strength of the scalar and pseudoscalar in-
teractions are closely related, and therefore these search
strategies can complement one another.
We also provide a framework for addressing both the

Higgs hierarchy and the strong CP problems together.
We invoke a relaxation mechanism where the Higgs mass
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of the model N � 8, but the inequality depends on ever-
higher powers of fN . Therefore within a factor of O(few)
in fmax, the quality of the ZN QCD relaxion is equivalent
to that of ZN QCD (Section IIC) at any given N .

B. Direct searches for a Z4N QCD relaxion

Here we outline the phenomenological implication of
our QCD relaxion. In our model, the axion has a CP-
violating phase of �✓. Like the usual relaxion models, due
to the relaxion-Higgs mixing angle
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v3f
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the QCD-axion also has scalar interaction with the SM.
See [26, 75, 76] for a detailed discussion of relaxion phe-
nomenology.

The QCD axion also induces a scalar interaction with
the nucleon in the presence of a CP-violating phase of
the form of

L � �g�NN�N̄N , (III.24)

through the pion-nucleon sigma term as noted in [77–80].
Using @ lnmN/@ lnm2

⇡ ' 0.06 [35, 81], and mumd/(mu+
md)2 ' 0.22 , we obtain

g�NN ' 1.3⇥ 10�2 mN
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The predictive range of 0.7 . (�✓/10�10) . 3, limits the
strength of the scalar interaction of the QCD-axion to
the SM as
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where, f11 = f/(1011 GeV) and we have used mN ⇠

1GeV. The strongest bound on g�NN comes from
the experiments looking for the existence of fifth force
and/or violation of equivalence principle (EP) [37–41].
The bound from EP violation searches, for the axion
mass around 10�6 eV, is g�NN . 10�21, which becomes
stronger as we go to the lower masses. Note that, in our
model, the mass of the QCD relaxion is slightly lighter
than the QCD axion. Thus, for a given f , one should be
careful about analysing the EP bounds.

The QCD axion also has pseudoscalar interaction
with the SM fermions as, L � �g

a
 a ̄i�

5
 with g

a
 =

C m /f . The coe�cient C depends on QCD axion
models [4–9, 14]. Many experimental e↵orts are concen-
trated on probing QCD axion through its pseudoscalar
interaction with the SM (see e.g. [82] and Refs. therein).
In our model, the product of the scalar and the pseu-
doscalar coupling of the QCD relaxion to the nucleon
can be written as

g
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Ng�NN = 1.3⇥ 10�2 CN m

2
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where CN is some model dependent coe�cient of the nu-
cleons arising from the pseudoscalar interaction of the
axion to protons and/or neutrons [14]. In our model,
the strength of the axion-nucleon scalar interaction is
bounded and using Eq. (III.26) one can more specifi-
cally limit the product of axion-proton pseudoscalar and
axion-nucleon scalar coupling as,
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Note that, in the above estimate we use the axial cou-
pling strength of proton Cp = �0.47 which is obtained
in the KSVZ QCD axion model. Another QCD axion
model such as DFSZ may provide a di↵erent value of
Cp [14]. Note that, the above parameter range will be
probed by the ARIADNE experiment whose projected
reach is |gapg�NN | . 10�36 for f ⇠ 1011 GeV [83, 84].
The QUAX experiment is also looking for similar

scalar-pseudoscalar interaction, using the pseudoscalar
electron coupling g

a
e rather than g
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p . They provide the

current constraint on |g
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eg�NN | . 5.7⇥10�32 in the mass

range of 10�5 & m�/ eV & 6 ⇥ 10�13 by updating their
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range of |gaeg�NN | in our model as
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where we use Ce = 1/3; this parameter is model-
dependent, and this value is on the larger side of model-
parameter possibilities [87]. Although our predicted
range is beyond the current experimental reach, our
model presents an opportunity for scalar and pseu-
doscalar searches to work together to confirm (or refute)
the existence of such axions in a complementary way.

IV. DISCUSSION

In this work we analysed how Planck-suppressed (qual-
ity) operators a↵ect the low-energy dynamics of theories
involving QCD axions or axion like particles (ALPs).
For the QCD axion, the quality operators lead to the
well-known QCD axion quality problem, whereas for
ALPs, they may lead to a fairly severe fine-tuning prob-
lem. Quality operators also induce scalar interaction be-
tween the Standard Model (SM) fields and the QCD ax-
ion/ALPs. In the absence of CP violation, we obtain
SM-ALP scalar interaction in quadratic order of the ALP
field, whereas if CP is broken by gravity, ALP-SM scalar
interactions are generated even at linear order. These
interactions can be probed by various precision experi-
ments. The strength of the scalar and pseudoscalar in-
teractions are closely related, and therefore these search
strategies can complement one another.
We also provide a framework for addressing both the

Higgs hierarchy and the strong CP problems together.
We invoke a relaxation mechanism where the Higgs mass

where, f11 = f/(1011 GeV) and we have used mN ∼ 1 GeV. The strongest bound on gφN N comes from the experiments looking for the existence of 
fifth force and/or violation of equivalence principle (EP). The bound from EP violation searches, for the axion mass around 10−6 eV, is gφNN ︎ 
10−21 
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of the model N � 8, but the inequality depends on ever-
higher powers of fN . Therefore within a factor of O(few)
in fmax, the quality of the ZN QCD relaxion is equivalent
to that of ZN QCD (Section IIC) at any given N .

B. Direct searches for a Z4N QCD relaxion

Here we outline the phenomenological implication of
our QCD relaxion. In our model, the axion has a CP-
violating phase of �✓. Like the usual relaxion models, due
to the relaxion-Higgs mixing angle

sin ✓h� '
⇤4
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v3f
✓0 , (III.23)

the QCD-axion also has scalar interaction with the SM.
See [26, 75, 76] for a detailed discussion of relaxion phe-
nomenology.

The QCD axion also induces a scalar interaction with
the nucleon in the presence of a CP-violating phase of
the form of

L � �g�NN�N̄N , (III.24)

through the pion-nucleon sigma term as noted in [77–80].
Using @ lnmN/@ lnm2

⇡ ' 0.06 [35, 81], and mumd/(mu+
md)2 ' 0.22 , we obtain

g�NN ' 1.3⇥ 10�2 mN

f
�✓ . (III.25)

The predictive range of 0.7 . (�✓/10�10) . 3, limits the
strength of the scalar interaction of the QCD-axion to
the SM as
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where, f11 = f/(1011 GeV) and we have used mN ⇠

1GeV. The strongest bound on g�NN comes from
the experiments looking for the existence of fifth force
and/or violation of equivalence principle (EP) [37–41].
The bound from EP violation searches, for the axion
mass around 10�6 eV, is g�NN . 10�21, which becomes
stronger as we go to the lower masses. Note that, in our
model, the mass of the QCD relaxion is slightly lighter
than the QCD axion. Thus, for a given f , one should be
careful about analysing the EP bounds.

The QCD axion also has pseudoscalar interaction
with the SM fermions as, L � �g

a
 a ̄i�

5
 with g

a
 =

C m /f . The coe�cient C depends on QCD axion
models [4–9, 14]. Many experimental e↵orts are concen-
trated on probing QCD axion through its pseudoscalar
interaction with the SM (see e.g. [82] and Refs. therein).
In our model, the product of the scalar and the pseu-
doscalar coupling of the QCD relaxion to the nucleon
can be written as
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where CN is some model dependent coe�cient of the nu-
cleons arising from the pseudoscalar interaction of the
axion to protons and/or neutrons [14]. In our model,
the strength of the axion-nucleon scalar interaction is
bounded and using Eq. (III.26) one can more specifi-
cally limit the product of axion-proton pseudoscalar and
axion-nucleon scalar coupling as,
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Note that, in the above estimate we use the axial cou-
pling strength of proton Cp = �0.47 which is obtained
in the KSVZ QCD axion model. Another QCD axion
model such as DFSZ may provide a di↵erent value of
Cp [14]. Note that, the above parameter range will be
probed by the ARIADNE experiment whose projected
reach is |gapg�NN | . 10�36 for f ⇠ 1011 GeV [83, 84].
The QUAX experiment is also looking for similar
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electron coupling g
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where we use Ce = 1/3; this parameter is model-
dependent, and this value is on the larger side of model-
parameter possibilities [87]. Although our predicted
range is beyond the current experimental reach, our
model presents an opportunity for scalar and pseu-
doscalar searches to work together to confirm (or refute)
the existence of such axions in a complementary way.

IV. DISCUSSION

In this work we analysed how Planck-suppressed (qual-
ity) operators a↵ect the low-energy dynamics of theories
involving QCD axions or axion like particles (ALPs).
For the QCD axion, the quality operators lead to the
well-known QCD axion quality problem, whereas for
ALPs, they may lead to a fairly severe fine-tuning prob-
lem. Quality operators also induce scalar interaction be-
tween the Standard Model (SM) fields and the QCD ax-
ion/ALPs. In the absence of CP violation, we obtain
SM-ALP scalar interaction in quadratic order of the ALP
field, whereas if CP is broken by gravity, ALP-SM scalar
interactions are generated even at linear order. These
interactions can be probed by various precision experi-
ments. The strength of the scalar and pseudoscalar in-
teractions are closely related, and therefore these search
strategies can complement one another.
We also provide a framework for addressing both the

Higgs hierarchy and the strong CP problems together.
We invoke a relaxation mechanism where the Higgs mass
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QCD low energy (2 gen ignoring eta’)

At low energies: 

follow a semi-historical route. We first describe how to get low-energy QCD, aka the theory of pions, incorrectly. We
then fix it via a better understanding of anomalous symmetries. Next, we describe how to get the theory of pions
correctly. Finally, we add neutrons into the theory and calculate the neutron eDM.

A. Low-energy QCD done incorrectly

We consider QCD with two light flavors. This theory has gluons (Aµ), left-handed quarks (q = (u d)) and
right-handed quarks (qc = (uc dc)). The fermions q and qc are Weyl fermions. For those unfamiliar or in search of a
review of Weyl fermions, both Ref. [5] and Ref. [6] provide good introductions to the topic. Aside from the kinetic
terms, the theory has the Lagrangian

L � ✓g2
s

32⇡2
GG̃ + qMqc, M =

✓
, mu 0

0 md

◆
(9)

where G̃µ⌫ = 1
2✏µ⌫⇢�G⇢�. ✓ plays no roll in this subsection and will be ignored for now. This theory has an SU(3)

gauge group and 4 global symmetries SU(2)L ⇥ SU(2)R ⇥ U(1)B ⇥ U(1)A. Under these symmetries, the particles
and spurions transform as

SU(3) SU(2)L SU(2)R U(1)B U(1)A

Aµ adj

q 1 1

qc -1 1

M -2

(10)

At low energies, this theory becomes strongly coupled and we have no analytic traction on what happens.
Instead, what we will do is use various inputs from experiment to build an e↵ective field theory of the pions. The
starting point is the measured fact that QCD confines. In particular, it has been determined experimentally that

hqqci 6= 0, (11)

which breaks SU(2)L ⇥ SU(2)R down to its diagonal SU(2)D, and also breaks U(1)A. As with any spontaneous
symmetry breaking, there will exist Goldstone bosons: These are called the pions and are expressed in terms of the
matrix

U = e
i

⇧a
p

2f⇡
�
a

, (12)

where �1�3 are the Pauli spin matrices and �0 is the identity matrix. ⇧0 is associated with the breaking of U(1)A
and is called the ⌘0 boson. Meanwhile the other pions are typically referred to as ⇧3 = ⇡0 and ⇧1,2 = ⇡1,2. U is a
unitary matrix so that UU† is the identity matrix. U has the symmetry transformation properties

SU(2)L SU(2)R U(1)B U(1)A

U 2
(13)

I’ll leave it as an exercise to the reader to demonstrate that the vev of U preserved the diagonal group L = R while
breaking the axial group L = R†.

As we know nothing of how we got to this theory, we will write down all renormalizable operators consistent
with symmetries with arbitrary coe�cients. The leading order operator that one can write down is

L = f2
⇡

Tr @µU@µU† =
1

2
@µ⇡a@µ⇡a + · · · (14)

All other terms in the potential are higher-dimensional operators and their coe�cients are fixed by the requirement
that when U is expanded in terms of the pion fields, the kinetic term is canonically normalized. We now include the
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mass of the quarks, keeping only the leading-order operator. In other words, we perform a series expansion in small
masses. Remembering that the mass matrix has transformation properties under the flavor symmetries, we write the
leading-order operator as

L = f2
⇡

Tr @µU@µU † + af3
⇡

Tr MU + h.c., (15)

where a is an arbitrary constant that will be determined by matching with data. Expanding this Lagrangian in terms
of the pion fields, one obtains the mass matrix

V = af⇡(mu + md)⇡
+⇡� +

af⇡
2

⇣
⇡0 ⌘0

⌘ mu + md mu � md

mu � md mu + md

! 
⇡0

⌘0

!
, ⇡± =

⇡1 ± i⇡2

p
2

. (16)

We see that there are four light particles whose masses obey 2m⇡+ = m⇡0 + m⌘0 . At this point, we again turn to
experiment and find that m⇡+ ⇡ m⇡0 ⇡ 140 MeV while m⌘0 ⇡ 960 MeV. This clearly does not obey the sum rule
that the EFT just derived, so something has gone wrong. As we will discuss in the next section, it turns out that
U(1)A is actually not a good symmetry and that the ⌘0 boson obtains a large mass from another source.

B. Anomalous symmetries

In this subsection, we discuss how the U(1)A symmetry discussed above is actually not a good symmetry of the
theory and the implications of it. From any number of QFT textbooks, e.g. Ref. [7], one finds that if one rotates the
quarks by

u ! ei↵u, uc ! ei↵uc, (17)

then under this rotation, the Lagrangian also changes as

L ! L + ↵
g2

16⇡2
GG̃. (18)

The reason for this anomalous symmetry is that the measure is not invariant under this transformation.
Because there is no symmetry, there should be no Goldstone boson. However, explicitly broken symmetries are

still useful. After all, in the previous subsection, we showed how to start building a theory of pions even when there
are explicit mass terms that break the symmetries. The star of the previous show were spurions, constants that
transform under symmetries. Thus, we wish to find a constant under which we can take this non-symmetry and turn
it into a spurious symmetry. This particular example is usually called an anomalous symmetry due to the association
with the anomaly in Eq. 18.

By remembering that there was a term in the Lagrangian that is

L � ✓
g2

32⇡2
GG̃, (19)

we see that we can cancel the piece added to the Lagrangian in Eq. 18 by shifting ✓. ✓ is now our spurion. For
2-flavor QCD, the proper anomalous symmetry is

u ! ei↵u, d ! ei↵d, ✓ ! ✓ � 2↵. (20)

Note that there are several important di↵erences between ✓ as a spurion and M as a spurion. A major di↵erence
is that ✓ realizes the symmetry non-linearly, i.e. it shifts under the symmetry rather than changing multiplicatively
the way U(1)A acts on the pion matrix U . To obtain a spurion that transforms linearly, we let ✓ appear in the
Lagrangian as ei✓.

For the spurion M , the masses of the pseudo-Goldstone bosons are suppressed by M in the M ! 0 limit. The
reason is that the symmetry is restored in the M ! 0 limit so that the Goldstone boson masses must go to zero in
this limit. Thus we can take M small and apply a Taylor series. However, this sort of expansion is impossible for ✓
because |ei✓| = 1, so even if ✓ = 0, the pseudo-Goldstone boson mass is still non-zero. This is reflected in the fact
that ✓ = 0 does not convert the anomalous symmetry into a true symmetry. The anomalous symmetry never was
and never will be a symmetry of the theory 1. Despite this, it still has its uses, as we will see in the next subsection.

1
If gs = 0 then the anomalous symmetry would be a good symmetry, but then confinement does not occur.
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C. The theory of pions and neutrons done properly

As mentioned in the previous subsection, the U(1)A symmetry is not a good symmetry of nature. Recall that
the anomalous symmetry is

u ! ei↵u, d ! ei↵d, ✓ ! ✓ � 2↵. (21)

Because a constant of nature, ✓, transforms under this symmetry, the corresponding pseudo-Goldstone boson, ⌘0,
obtains a mass even in the limit where the quark masses go to zero.

As in the case of non-zero quark masses, broken symmetries are still useful in constraining how their correspond-
ing pseudo-Goldstone boson appears. To see how ⌘0 transforms under U(1)A, we note that q ! ei↵q tells us how
U / qqc transforms. Thus there is an anomalous symmetry

U ! ei↵U, ✓ ! ✓ � 2↵, M ! e�i↵M. (22)

Written in terms of the ⌘0 boson, this means that the following is a good symmetry of the theory :

⌘0 ! ⌘0 +
p

2↵f⌘0 , ✓ ! ✓ � 2↵, M ! e�i↵M. (23)

Now armed with the fact that U(1)A is not a good symmetry of nature, we can write down a new term in the
e↵ective Lagrangian :

L = f2
⇡

Tr @µU@µU † + af3
⇡

Tr MU + bf4
⇡

det U + h.c. (24)

which is invariant under SU(2)L ⇥ SU(2)R ⇥ U(1)B but not invariant under U(1)A. But that is fine because U(1)A
was never a true symmetry to begin with. Note that while U(1)A isn’t a good symmetry, the anomalous symmetry
given in Eq. 23 is still valid. Thus we see that the phase of the complex coe�cient b is fixed to be

b = |b|ei✓. (25)

The mass of the ⌘0 boson can be obtained by Taylor expanding Eq. 24 as

L =
1

2
m2

⌘0

✓
⌘0 � ✓f⌘0

p
2

◆2

+ · · · (26)

Plugging this expectation value into the matrix U , we find that

U = ei
✓
2 e

i
⇡a

p
2f⇡

�
a

. (27)

Now that we understand how the ⌘0 behaves, we can finally go back and redo the theory of pions carefully. The
first step is to find the vacuum about which to expand. This vacuum can be non-trivial. The easiest way to see this
is to look at the pion masses, m⇡ ⇠ mu + md. If the quark masses were negative, then the pion mass would also
be negative. To find the vacuum state, we assume that ⇡0 has an expectation value h⇡0i = �

p
2f⇡. It is left as an

exercise to the reader to show that the charged pions do not obtain an expectation value. Thus we are expanding
about

U =

 
ei�+i✓ 0

0 e�i�+i✓

!
. (28)

� comes from the expectation value of ⇡0, while ✓ appears due to the expectation value of ⌘0.
The potential comes from the term

V = �af3
⇡

Tr

  
muei✓u 0

0 mdei✓d

!
U

!
+ h.c. = �2af3

⇡


mu cos(� +

✓

2
) + md cos(� � ✓

2
)

�
, (29)

✓ = ✓ + ✓u + ✓d, (30)
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that ✓ = 0 does not convert the anomalous symmetry into a true symmetry. The anomalous symmetry never was
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mass of the quarks, keeping only the leading-order operator. In other words, we perform a series expansion in small
masses. Remembering that the mass matrix has transformation properties under the flavor symmetries, we write the
leading-order operator as

L = f2
⇡

Tr @µU@µU † + af3
⇡

Tr MU + h.c., (15)

where a is an arbitrary constant that will be determined by matching with data. Expanding this Lagrangian in terms
of the pion fields, one obtains the mass matrix

V = af⇡(mu + md)⇡
+⇡� +

af⇡
2

⇣
⇡0 ⌘0

⌘ mu + md mu � md

mu � md mu + md

! 
⇡0

⌘0

!
, ⇡± =

⇡1 ± i⇡2

p
2

. (16)

We see that there are four light particles whose masses obey 2m⇡+ = m⇡0 + m⌘0 . At this point, we again turn to
experiment and find that m⇡+ ⇡ m⇡0 ⇡ 140 MeV while m⌘0 ⇡ 960 MeV. This clearly does not obey the sum rule
that the EFT just derived, so something has gone wrong. As we will discuss in the next section, it turns out that
U(1)A is actually not a good symmetry and that the ⌘0 boson obtains a large mass from another source.

B. Anomalous symmetries

In this subsection, we discuss how the U(1)A symmetry discussed above is actually not a good symmetry of the
theory and the implications of it. From any number of QFT textbooks, e.g. Ref. [7], one finds that if one rotates the
quarks by

u ! ei↵u, uc ! ei↵uc, (17)

then under this rotation, the Lagrangian also changes as

L ! L + ↵
g2

16⇡2
GG̃. (18)

The reason for this anomalous symmetry is that the measure is not invariant under this transformation.
Because there is no symmetry, there should be no Goldstone boson. However, explicitly broken symmetries are

still useful. After all, in the previous subsection, we showed how to start building a theory of pions even when there
are explicit mass terms that break the symmetries. The star of the previous show were spurions, constants that
transform under symmetries. Thus, we wish to find a constant under which we can take this non-symmetry and turn
it into a spurious symmetry. This particular example is usually called an anomalous symmetry due to the association
with the anomaly in Eq. 18.

By remembering that there was a term in the Lagrangian that is

L � ✓
g2

32⇡2
GG̃, (19)

we see that we can cancel the piece added to the Lagrangian in Eq. 18 by shifting ✓. ✓ is now our spurion. For
2-flavor QCD, the proper anomalous symmetry is

u ! ei↵u, d ! ei↵d, ✓ ! ✓ � 2↵. (20)

Note that there are several important di↵erences between ✓ as a spurion and M as a spurion. A major di↵erence
is that ✓ realizes the symmetry non-linearly, i.e. it shifts under the symmetry rather than changing multiplicatively
the way U(1)A acts on the pion matrix U . To obtain a spurion that transforms linearly, we let ✓ appear in the
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C. The theory of pions and neutrons done properly

As mentioned in the previous subsection, the U(1)A symmetry is not a good symmetry of nature. Recall that
the anomalous symmetry is

u ! ei↵u, d ! ei↵d, ✓ ! ✓ � 2↵. (21)

Because a constant of nature, ✓, transforms under this symmetry, the corresponding pseudo-Goldstone boson, ⌘0,
obtains a mass even in the limit where the quark masses go to zero.

As in the case of non-zero quark masses, broken symmetries are still useful in constraining how their correspond-
ing pseudo-Goldstone boson appears. To see how ⌘0 transforms under U(1)A, we note that q ! ei↵q tells us how
U / qqc transforms. Thus there is an anomalous symmetry

U ! ei↵U, ✓ ! ✓ � 2↵, M ! e�i↵M. (22)

Written in terms of the ⌘0 boson, this means that the following is a good symmetry of the theory :

⌘0 ! ⌘0 +
p

2↵f⌘0 , ✓ ! ✓ � 2↵, M ! e�i↵M. (23)

Now armed with the fact that U(1)A is not a good symmetry of nature, we can write down a new term in the
e↵ective Lagrangian :

L = f2
⇡

Tr @µU@µU † + af3
⇡

Tr MU + bf4
⇡

det U + h.c. (24)

which is invariant under SU(2)L ⇥ SU(2)R ⇥ U(1)B but not invariant under U(1)A. But that is fine because U(1)A
was never a true symmetry to begin with. Note that while U(1)A isn’t a good symmetry, the anomalous symmetry
given in Eq. 23 is still valid. Thus we see that the phase of the complex coe�cient b is fixed to be

b = |b|ei✓. (25)

The mass of the ⌘0 boson can be obtained by Taylor expanding Eq. 24 as

L =
1

2
m2

⌘0

✓
⌘0 � ✓f⌘0

p
2

◆2

+ · · · (26)

Plugging this expectation value into the matrix U , we find that

U = ei
✓
2 e

i
⇡a

p
2f⇡

�
a

. (27)

Now that we understand how the ⌘0 behaves, we can finally go back and redo the theory of pions carefully. The
first step is to find the vacuum about which to expand. This vacuum can be non-trivial. The easiest way to see this
is to look at the pion masses, m⇡ ⇠ mu + md. If the quark masses were negative, then the pion mass would also
be negative. To find the vacuum state, we assume that ⇡0 has an expectation value h⇡0i = �

p
2f⇡. It is left as an

exercise to the reader to show that the charged pions do not obtain an expectation value. Thus we are expanding
about

U =

 
ei�+i✓ 0

0 e�i�+i✓

!
. (28)

� comes from the expectation value of ⇡0, while ✓ appears due to the expectation value of ⌘0.
The potential comes from the term

V = �af3
⇡

Tr

  
muei✓u 0

0 mdei✓d

!
U

!
+ h.c. = �2af3

⇡


mu cos(� +

✓

2
) + md cos(� � ✓

2
)

�
, (29)

✓ = ✓ + ✓u + ✓d, (30)
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Removing the GGdual coupling, phase freedom

wrote all the possible terms that are invariant under SU(2)L ⇥ SU(2)R, with the fields obeying the

transformation rules

NL ! LNL, NR ! RNR, U ! LUR†, (MU0)! R(MU0)L†, (8)

for L, R in SU(2).

The pion mass. We first obtain a formula for the mass of the pion as a function of ✓. We can start by

writing

U = ei⇡
a
⌧

a
/f⇡ = cos

|~⇡|
f⇡

+ i
⇡a

|~⇡|⌧
a sin

|~⇡|
f⇡

. (9)

It will prove convenient also to adopt the following parametrization for the quark mass matrix

MU0 = A12 + iB12 + C⌧3 + iD⌧3. (10)

Using (9) and (10), the potential V in the Lagrangian (7) reduces to

V = �B0Tr[(MU0)U + (MU0)†U †] = �B0


4A cos

|~⇡|
f⇡

� 4D
⇡3

|~⇡| sin
|~⇡|
f⇡

�
. (11)

In order not to have a tadpole in ⇡3, we impose the condition D = 0

D =
1
2
Tr


⌧3

✓
mu sin �u 0

0 md sin �d

◆�
=

1
2
(mu sin �u �md sin �d) = 0 (12)

Solving (5) and (12) we find the useful relations

sin �u =
md sin ✓

[m2
u + m2

d
+ 2mumd cos ✓]1/2

(13)

sin �d =
mu sin ✓

[m2
u + m2

d
+ 2mumd cos ✓]1/2

(14)

cos �u =
mu + md cos ✓

[m2
u + m2

d
+ 2mumd cos ✓]1/2

(15)

cos �d =
md + mu cos ✓

[m2
u + m2

d
+ 2mumd cos ✓]1/2

. (16)

Next we determine A

A =
1
2
Tr

✓
mu cos �u 0

0 md cos �d

◆
=

1
2
(mu cos �u + md cos �d). (17)

We now have all the ingredients to get an expression for the pion mass. From eq. (11), expanding cos |~⇡|
f⇡

to second order we find

m2
⇡ =

2B0

f2
⇡

[m2
u + m2

d + 2mumd cos ✓]1/2. (18)
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4

2 Lagrangian for Nucleon-Pion interactions

2.1 ✓-dependence in the quark mass matrix

For the purposes of the following discussion, it is convenient to remove the term (1) from the Lagrangian

by performing a rotation of the quark fields

u ! ei�uu (3)

d ! ei�dd, (4)

such that

�u + �d = ✓. (5)

This introduces an equivalent ✓ dependence in the quark mass matrix, that we write as MU0, where

M =
✓

mu 0
0 md

◆
, U0 =

✓
ei�u 0
0 ei�d

◆
. (6)

2.2 The sigma model

The sigma model Lagrangian provides a framework for understanding the very low energy limit of

QCD. We use the notation of the text by Srednicki [9], and write our effective Lagrangian for pions and

nucleons as

L =� 1
4
f2

⇡Tr[@µU@µU †] + B0Tr[(MU0)U + (MU0)†U †]

+ iN̄�µ@µN �mN N̄(U †PL + UPR)N

� 1
2
(gA � 1)iN̄�µ(U@µU †PL + U †@µUPR)N

� c1N̄((MU0)PL + (MU0)†PR)N � c2N̄(U †(MU0)†U †PL + U(MU0)UPR)N

� c3Tr((MU0)U + (MU0)†U †)N̄(U †PL + UPR)N

� c4Tr((MU0)U � (MU0)†U †)N̄(U †PL � UPR)N,

(7)

where U = ei⇡
a
⌧

a
/f⇡ , ⇡a is the pion field, ⌧a are the isospin matrices, f⇡ = 92.4 MeV is the pion decay

constant, N is the nucleon field, PL = 1
2(1 � �5) and PR = 1

2(1 + �5) are the projection operators,

gA = 1.27 is the axial vector coupling, and c1, c2, c3, c4 are dimensionless constants. B0 is a constant

with dimension of [mass]3 that can be determined from ratios of meson masses in SU(3). Roughly

speaking, B0 ⇠ ⇤3
QCD. In this paper we use B0 = 7.6 ⇥ 106 MeV3. In the Lagrangian above we

3

2 Lagrangian for Nucleon-Pion interactions

2.1 ✓-dependence in the quark mass matrix

For the purposes of the following discussion, it is convenient to remove the term (1) from the Lagrangian

by performing a rotation of the quark fields

u ! ei�uu (3)

d ! ei�dd, (4)

such that

�u + �d = ✓. (5)

This introduces an equivalent ✓ dependence in the quark mass matrix, that we write as MU0, where

M =
✓

mu 0
0 md

◆
, U0 =

✓
ei�u 0
0 ei�d

◆
. (6)

2.2 The sigma model

The sigma model Lagrangian provides a framework for understanding the very low energy limit of

QCD. We use the notation of the text by Srednicki [9], and write our effective Lagrangian for pions and

nucleons as

L =� 1
4
f2

⇡Tr[@µU@µU †] + B0Tr[(MU0)U + (MU0)†U †]

+ iN̄�µ@µN �mN N̄(U †PL + UPR)N

� 1
2
(gA � 1)iN̄�µ(U@µU †PL + U †@µUPR)N

� c1N̄((MU0)PL + (MU0)†PR)N � c2N̄(U †(MU0)†U †PL + U(MU0)UPR)N

� c3Tr((MU0)U + (MU0)†U †)N̄(U †PL + UPR)N

� c4Tr((MU0)U � (MU0)†U †)N̄(U †PL � UPR)N,

(7)

where U = ei⇡
a
⌧

a
/f⇡ , ⇡a is the pion field, ⌧a are the isospin matrices, f⇡ = 92.4 MeV is the pion decay

constant, N is the nucleon field, PL = 1
2(1 � �5) and PR = 1

2(1 + �5) are the projection operators,

gA = 1.27 is the axial vector coupling, and c1, c2, c3, c4 are dimensionless constants. B0 is a constant

with dimension of [mass]3 that can be determined from ratios of meson masses in SU(3). Roughly

speaking, B0 ⇠ ⇤3
QCD. In this paper we use B0 = 7.6 ⇥ 106 MeV3. In the Lagrangian above we

3

2 Lagrangian for Nucleon-Pion interactions

2.1 ✓-dependence in the quark mass matrix

For the purposes of the following discussion, it is convenient to remove the term (1) from the Lagrangian

by performing a rotation of the quark fields

u ! ei�uu (3)

d ! ei�dd, (4)

such that

�u + �d = ✓. (5)

This introduces an equivalent ✓ dependence in the quark mass matrix, that we write as MU0, where

M =
✓

mu 0
0 md

◆
, U0 =

✓
ei�u 0
0 ei�d

◆
. (6)

2.2 The sigma model

The sigma model Lagrangian provides a framework for understanding the very low energy limit of

QCD. We use the notation of the text by Srednicki [9], and write our effective Lagrangian for pions and

nucleons as

L =� 1
4
f2

⇡Tr[@µU@µU †] + B0Tr[(MU0)U + (MU0)†U †]

+ iN̄�µ@µN �mN N̄(U †PL + UPR)N

� 1
2
(gA � 1)iN̄�µ(U@µU †PL + U †@µUPR)N

� c1N̄((MU0)PL + (MU0)†PR)N � c2N̄(U †(MU0)†U †PL + U(MU0)UPR)N

� c3Tr((MU0)U + (MU0)†U †)N̄(U †PL + UPR)N

� c4Tr((MU0)U � (MU0)†U †)N̄(U †PL � UPR)N,

(7)

where U = ei⇡
a
⌧

a
/f⇡ , ⇡a is the pion field, ⌧a are the isospin matrices, f⇡ = 92.4 MeV is the pion decay

constant, N is the nucleon field, PL = 1
2(1 � �5) and PR = 1

2(1 + �5) are the projection operators,

gA = 1.27 is the axial vector coupling, and c1, c2, c3, c4 are dimensionless constants. B0 is a constant

with dimension of [mass]3 that can be determined from ratios of meson masses in SU(3). Roughly

speaking, B0 ⇠ ⇤3
QCD. In this paper we use B0 = 7.6 ⇥ 106 MeV3. In the Lagrangian above we

3



QCD parameter space

wrote all the possible terms that are invariant under SU(2)L ⇥ SU(2)R, with the fields obeying the

transformation rules

NL ! LNL, NR ! RNR, U ! LUR†, (MU0)! R(MU0)L†, (8)

for L, R in SU(2).

The pion mass. We first obtain a formula for the mass of the pion as a function of ✓. We can start by

writing

U = ei⇡
a
⌧

a
/f⇡ = cos

|~⇡|
f⇡

+ i
⇡a

|~⇡|⌧
a sin

|~⇡|
f⇡

. (9)

It will prove convenient also to adopt the following parametrization for the quark mass matrix

MU0 = A12 + iB12 + C⌧3 + iD⌧3. (10)

Using (9) and (10), the potential V in the Lagrangian (7) reduces to

V = �B0Tr[(MU0)U + (MU0)†U †] = �B0


4A cos

|~⇡|
f⇡

� 4D
⇡3

|~⇡| sin
|~⇡|
f⇡

�
. (11)

In order not to have a tadpole in ⇡3, we impose the condition D = 0

D =
1
2
Tr


⌧3

✓
mu sin �u 0

0 md sin �d

◆�
=

1
2
(mu sin �u �md sin �d) = 0 (12)

Solving (5) and (12) we find the useful relations

sin �u =
md sin ✓

[m2
u + m2

d
+ 2mumd cos ✓]1/2

(13)

sin �d =
mu sin ✓

[m2
u + m2

d
+ 2mumd cos ✓]1/2

(14)

cos �u =
mu + md cos ✓

[m2
u + m2

d
+ 2mumd cos ✓]1/2

(15)

cos �d =
md + mu cos ✓

[m2
u + m2

d
+ 2mumd cos ✓]1/2

. (16)

Next we determine A

A =
1
2
Tr

✓
mu cos �u 0

0 md cos �d

◆
=

1
2
(mu cos �u + md cos �d). (17)

We now have all the ingredients to get an expression for the pion mass. From eq. (11), expanding cos |~⇡|
f⇡

to second order we find

m2
⇡ =

2B0

f2
⇡

[m2
u + m2

d + 2mumd cos ✓]1/2. (18)
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The QCD line

ma ∼
1
f

× Λ2
QCD or ma ∼ ggluon × Λ2

cutoff, shiftsym

It is not hard to go naturally below the QCD line but it is very hard to go above it.

ma ≳ ggluon × Λ2
cutoff, shiftsym or 1/f ≲ ma/Λ2

QCD



The QCD line
2

FIG. 1. Constraints and future projections on the axion-
gluon coupling are summarized as follows: Rb/Cs clock
comparison (blue) [19], H/Si comparison (red) [24], Iodine
molecular spectroscopy (brown) [28], GEO 600 gravitational
wave detector (orange) [22], 229Th nuclear isomer transition
(red dashed) [13, 32], and strontium monohydroxide (green
dashed) [33]. The gray dotted line is f = Mpl. The diag-
onal grey line is allowed parameter space for the QCD ax-
ion, m2f2 ⇠ m2

⇡f
2
⇡ . Other bounds, such as oscillating neu-

tron EDM (purple) [34], supernova 1987A [35] (light cyan),
co-magnetometer and NASDUCK [36, 37] (gray), and axion
superradiance [38] (cyan), are also included for the compar-
ison. Projections of axion-nucleon interaction searches, such
as CASPEr-electric (blue dashed) [39] and NASDUCK (gray
dashed) [37], are also included. Spectroscopy bounds above
the green solid line must be taken carefully as the axion could
develop a static profile around the earth [40]. If such a static
profile exists, it a↵ects the propagation of DM axion, but this
parameter space is already excluded by static neutron EDM
experiments. See the main text for details.

@ lnmp/@ lnm2
⇡
' 0.06. For now, we take m and f as

independent parameters to investigate the reach of spec-
troscopy experiments for axion-gluon coupling search.
Axion DM background does not change fine structure
constant and electron mass to the leading order, so the
variation of those quantities is ignored. The dependence
of gp and mp on the pion mass is computed by using
chiral perturbation theory at the chiral order O(p3) and
compared with lattice computations. See Appendix A for
details. We have used ✓

2(t) = (⇢DM/m
2
f
2)[1+cos(2mt)]

with ⇢DM ' 0.4GeV/cm3. A constant o↵set is ignored as
it is unobservable. Equation (3) suggests that the axion-
gluon coupling strength might be probed by looking for
a harmonic signal in �fH/fH at the frequency ! = 2m.

The above discussion is more than an academic ex-
ercise. A recent experiment performed by Kennedy et
al [24] monitored hydrogen maser frequency (fH) to-
gether with silicon optical cavity resonance frequency
(fSi) to probe scalar DM interactions to electromagnetic
field strength and electron mass. Since the silicon optical
cavity resonance frequency has a rather weak dependence
on proton mass, the fractional variation of frequencies is

dominated by that of hydrogen maser,

�(fH/fSi)

(fH/fSi)
'

�fH

fH
.

Claimed short-term stability of transition frequency is
⇠ 3 ⇥ 10�13

/
p
Hz. Using Eq. (3) and 33 days of experi-

mental results obtained in Ref. [24], we place a constraint
on axion-gluon coupling, shown as a red line in Figure 1.

Hydrogen maser is one example of many frequency
standards based on hyperfine structure. An earlier at-
tempt to probe scalar DM based on hyperfine transitions
was made by Hees et al [19], where they used measure-
ment of rubidium (87Rb) and cesium (133Cs) hyperfine
transitions. For the hyperfine structure of heavier atoms,
the parametric dependence of transition frequency is sim-
ilar,

f / gm
2
e
↵
4
/mp,

but the g-factor is replaced by that of the nucleus. The
nuclear g-factor can be written as a function of nucleon
g-factor and the spin expectation value of valence and
core nucleons. Using the result of Ref. [41] together with
the nucleon g-factor computed in the chiral perturbation
theory, we find

@ ln g

@ lnm2
⇡

=

(
�0.024 87Rb,

+0.011 133Cs,
(4)

See Appendix A for details. The fractional frequency
variation is therefore

�(fA/fB)

(fA/fB)
' �0.04

�m
2
⇡

m2
⇡

' �10�16 cos(2mt)

m
2
15f

2
10

(5)

where A = 87Rb and B = 133Cs. Using the experimental
result of Rb/Cs fountain clock [19], we obtain a constraint
on axion-gluon coupling constant, which is shown as blue
line in Figure 1. It is similar to the constraint from the
H/Si comparison test, but Rb/Cs constraint extends to a
much lower mass range due to its long experimental time
scale.

We have only considered hyperfine transitions so far.
In principle, any stable frequency standards can be used
for axion DM search as long as the transition frequency
depends on g-factor and/or nucleon mass. Another ex-
ample is a vibrational molecular excitation. Since the

vibrational energy level depends on fvib / m
�1/2
p , we

find

�fvib

fvib
= �

1

2

�mp

mp

' �10�16
⇥

cos(2mt)

m
2
15f

2
10

. (6)

A recent experiment performed by Oswald et al [28] used
molecular transitions in molecular iodine (I2) to probe
the variation of fundamental constants. We use their re-
sult to place a constraint on axion-gluon coupling, which
is shown as brown in the summary figure. The constraint
is relevant for the relatively high mass end of the shown
parameter space.

1/f ≲ ma/Λ2
QCD

Unnatural models

1/f ≳ ma/Λ2
QCD

Natural models



Simplest possible model, free massive scalar

Most minimal model would be just a free massive scalar : 

                      

                              

    (can add a few more bounds, SR, isogurvature but still large parameter space, reasonable field excursion) 

Just remind you that if we add Planck suppressed operators then we did find bounds … 

Also, in the presence of these coupling if it’s too light there will be naturalness issues …

ℒ ∈ m2
ϕϕ2 , ρDM

Eq ∼ eV4 ∼ m2
ϕϕ2

Eq = m2
ϕϕ2

init(eV/Tosc)3

Tos ∼ MPlmϕ ⟹ ϕinit ∼ MPl ( 10−27 eV
mϕ )

1
4



The relaxion DM dynamical missalignment 

♦ Basic idea is similar to axion DM:

V (�)

�

�

Banerjee, Kim & GP (18)
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Concrete ex.: relaxion dark matter (DM)

♦ Basic idea is similar to axion DM (but avoiding missalignment problem):

After reheating the wiggles disappear (sym’ restoration):

V (�)

�

�
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Concrete ex.: relaxion dark matter (DM)

♦ Basic idea is similar to axion DM (but avoiding missalignment problem):

After reheating the wiggles disappear: and the 
relaxion roles a bit.

V (�)

�

�
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Concrete ex.: relaxion dark matter (DM)

♦ Basic idea is similar to axion DM (but avoiding missalignment problem):

V (�)

�

�

After reheating the wiggles disappear: and the 
relaxion roles a bit.
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Concrete ex.: relaxion dark matter (DM)

V (�)

�

�

When the universe cools the electroweak symmetry is broken, brings back 
the wiggles.
Now the relaxion not at the min’, if trapped it starts to oscillates = DM

58



Concrete ex.: relaxion dark matter (DM)

V (�)

�

�
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When the universe cools the electroweak symmetry is broken, brings back 
the wiggles.
Now the relaxion not at the min’, if trapped it starts to oscillates = DM



Concrete ex.: relaxion dark matter (DM)

V (�)

�

�

60

When the universe cools the electroweak symmetry is broken, brings back 
the wiggles.
Now the relaxion not at the min’, if trapped it starts to oscillates = DM



Concrete ex.: relaxion dark matter (DM)

V (�)

�

�
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When the universe cools the electroweak symmetry is broken, brings back 
the wiggles.
Now the relaxion not at the min’, if trapped it starts to oscillates = DM



Concrete ex.: relaxion dark matter (DM)

V (�)

�

�

♦ Basic idea is similar to axion DM (but avoiding missalignment problem):

Now the relaxion not at the min’ & if it is trapped it starts to oscillates = DM.
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relaxion DM+GW

Banerjee, Kim & GP (18), update: Banerjee, Madge, GP, Ratzinger & Schwaller, submitted
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FIG. 3. Available parameter space (black framed region) for relaxion dark matter in the relaxion mass m„ vs. mixing angle
sin ◊h„ plane. The red and orange shaded regions are excluded by the indicated constraints of combinations thereof. The colored
regions inside the viable dark matter space can be probed via gravitational waves in µAres (green) or SKA (blue/turquoise).
The light shading and solid lines indicate points that can be probed for a subrange of reappearance temperatures, whereas the
darker shaded parts enclosed by dotted lines are accessible for all valid Tra.

by

flGW = M
2
Pl

4
+
ḣij ḣ

ij
,

=
⁄

df

f

dflGW
d log f

. (28)

Here, hij denotes the gravitational wave metric perturba-
tions and the dot indicates the derivative with respect to
cosmic time t. Switching to conformal time · , dt = a d· ,
where a is the scale factor of the Universe, the metric
reads

ds
2 = a(·)

)
d·

2
≠

#
”ij + hij(x, ·)

$
dx

i
dx

j
*

. (29)

During radiation domination, the Einstein equations in
the linear regime for the metric perturbations in momen-
tum space using transverse-traceless gauge become

(ˆ2
·

+ k
2) a(·) hij(k, ·) = 2 a(·)

M
2
Pl

�ij(k, ·) , (30)

where k = |k| is the comoving wave number. The
anisotropic stress tensor �ij relates to the energy-
momentum tensor Tij , via �ij(k, ·) = �ab

ij
(k)Tab(k, ·),

where �ab

ij
= P

a

i
P

b

j
≠

1
2 PijP

ab with Pij = ”ij ≠ kikj/k
2

is the projector that extracts the transverse and trace-
less part [1]. The equations of motion are then solved by
(by neglecting the a

ÕÕ term which vanishes in a radiation
dominated universe i.e. for a Ã ·)

ĥij(k, ·) = 2
M

2
Pl

⁄
·

d·
Õ a(· Õ)

a(·) �̂ij(k, ·) G(k, ·, ·
Õ) , (31)

where G(k, ·, ·
Õ) = sin[k(· ≠ ·

Õ)]/k is the causal Green’s
function. For notational convenience, we have denoted
the operator from of any quantity Q by Q̂.

A. Gravitational wave production

The gravitational wave energy density per logarith-
mic interval in the comoving momentum k of a generic
stochastic source at conformal time · is given by [1]

dflGW
d log k

(k, ·) = k
3

4fi2M
2
Pla

4(·)

·⁄

·i

d·
Õ

·⁄

·i

d·
Õ
a(· Õ) a(· ÕÕ) ◊

cos[k(· Õ
≠ ·

ÕÕ)] �2(k, ·
Õ
, ·

ÕÕ) , (32)

where ·i is the time at which the gravitational
wave source starts operating and �2(k, ·

Õ
, ·

ÕÕ)
is the unequal time correlator (UTC) defined as
È0|�̂ab(k, ·)�̂ú

ab
(kÕ

, ·
Õ)|0Í = (2fi)3

”(k ≠ kÕ)�2(k, ·, ·
Õ).

In our case, the gravitational waves are generated
between reheating and reappearance, hence ·i = ·rh and
· Æ ·ra. As the gravitational waves produced before
the relaxion reaches its terminal velocity will however
be subdominant, we can take ·i = ·pp, so that to first
approximation the gravitational wave signature becomes
independent of the temperature to which the Universe
was reheated.

The dark-photon anisotropic stress sourcing the gravi-
tational waves can be written in terms of the dark electric
and magnetic fields as

�̂ab(k, ·) = ≠
�ij

ab
(k)

a2(·)

⁄
d

3
q

(2fi)3
#
Êi(q, ·)Êj(k ≠ q, ·) +

B̂i(q, ·)B̂j(k ≠ q, ·)
$

. (33)

Focusing on the dominant modes which have com-
pleted their phase of maximal tachyonic growth,

minimal relaxion DM

relaxion DM 
\w friction

The black solid line encompass the DM relaxion parameter space. The colored regions inside the viable DM space can be probed via 
GWs in μAres (green) or SKA (blue/turquoise). The light shading and solid lines indicate points that can be probed for a subrange of 
reappearance temperatures, whereas the darker shaded parts enclosed by dotted lines are accessible for all valid Tra. 

(         )
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Equivalence principle (EP) tests, prelim

Consider the following effective action for scalar DM:   

The leading action in the non-relativistic limit, say, of the electron is 

    

Inside an atom we can rewrite it as:

  

   which can be readily generalised to any system.  

For a test particle at distances such that  and say  have  and 

the acceleration is given by  

ℒϕ ∈ dme

ϕ
MPl

meēe + dg
ϕ

2gMPl
βgGG

ℒNR
e = me(ϕ) +

1
2

mev2 = m0
e + dme

ϕ
MPl

⇒ a = dme

ϕ′ 

MPl

ℒNR
atm = MNuc(ϕ) + Nme(ϕ) + B ⇒ Matma = ϕ′ (∂ϕMNuc(ϕ) + N∂ϕme(ϕ)) ⇒ a = ϕ′ ∂ϕ ln Matm ≡ GNϕ′ αatm

mϕR ≪ 1 R ≳ REarth ϕ′ ∝ 1/R2

a = GNMtestαtestMEarthαEarth /R2
Damour & Donoghue (10)



Equivalence principle (EP) tests

We would compare two bodies, A and B, to search for a differential acceleration effect via 
the EotWash parameter     δaAB

a
= αEarth(αA − αB)

Or if we switch on one coupling  it is useful to define the corresponding individual 
“diatonic charge”     

di
diQi ≡ αi

The experiment test is very simple, let’s search for masses smaller than the inverse size of 
the Earth then we can use two test bodies on a satellite that are free falling with the satellite 
and just track them. That’s exactly what the Microscope mission is doing some 700km 
above earth

After >5 yrs of running they’ve achieve precision of better than  < 10-14 , which can be 
translated to the following bounds on generic scalar models

ηEP



Equivalence principle (EP) tests

For variety of coupling it can be expressed as: 

EP bounds : ( δatest
a ) < ηEP ∼ 10−14 ⇔ (d(1)

i d(1)
j ) ΔQtest

i QEarth
j

⃗Qa ≈ Fa (3 10−4 − 4 rI + 8 rZ , 3 10−4 − 3 rI , 0.9 ,0.09 −
0.04
A1/3

− 2 × 106r2
I − rZ,0.002 rI)

Where  
being the atomic number of the atom a 

⃗X ≡ Xe,me,g,m̂,δm , with m̂ ≡ (md + mu)/2 , δm ≡ (md − mu) , 104 rI;Z ≡ 1 − 2Z /A; Z(Z − 1)/A4/3 , & Fa = 931 Aa /(ma /MeV) with Aa

Tretiak, et al.; Oswald, et al (22)

Δ ⃗Q
Mic

≃ 10−3(−1.94 , 0.03 , 0.8 , − 2.61 , − 0.19)



Equivalence principle (EP) tests
Banerjee, GP, Safronova, Savoray & Shalit (to appear)

EP-violating acceleration as discussed in [? ? ].
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Fifth force

Figure 11. Bounds from various experiments which are looking for EP-violation and/or

deviation from Newtonian gravity (fifth force searches) on dme (left) and dg (right). The

turquoise line shows the strongest constraints from various EP violation searches [? ? ? ?
] assuming a model where only di 6= 0 where i = me, g. The blue line depicts the strongest

bound coming from various fifth force experiments (see [? ? ? ] and Refs. therein). The

red dashed (solid) line indicates di = 1.

3 The Challenges of Probing the Quadratic Interactions

[AB: I think the name is misleading]

[IS: Consider integrating in: As shown in the above figures, a linear

coupling between an ultralight DM and the SM is highly constrained.

In contrast to the linear � couplings, quadratic �2
couplings between an

ultralight DM and the SM could escape the strong bounds coming from

EP and DDM tests. In addition, as highly irrelevant couplings, they

are expected to be naturally suppressed by the e↵ective cuto↵ of the

theory. Therefore, probing quadratic DM interactions with the SM poses

a significant challenge.][AB: I guess it fits better in 1.2..but if not we can put it

here]

In this section, we want to discuss the sensitivity of EP tests and DDM searches

in the presence of both linear and quadratic coupling between DM and the SM. We

show that a theory with linear and quadratic couplings has a stronger constraint

on each individual coupling than a theory with only one of the couplings turned on.

Also, in the presence of both the couplings, there is a small region of parameter space

where the DDM bounds are stronger than that of the EP tests. The Lagrangian of

– 28 –

Where one can find models that avoid the strongest EP bounds and for a pure dilaton the EP bound can 
be avoided

Tretiak, et al.; Oswald, et al (22)



Direct dark matter searches, sensitivity

How do we search for ULDM directly?  

Take for example the Lagrangian  and focus first about 

the electron coupling? 

The most sensitive way is with clocks, because                                         then the electron 

mass oscillates with time => energy levels oscillates with time: 

ℒϕ ∈ dme

ϕ
MPl

meēe + dg
ϕ

2gMPl
βgGG

En ∼ meα21/2n2

ϕ ∼
2ρDM

mϕ
cos(mϕt)

For instance: ΔE21 ∼ meα21/2 × 3/4 × 1 + dme

2ρDM

mϕMPl ( ∼ 10−15 ×
dme

10−3

10−15 eV
mϕ ) × cos(mϕt)



Direct dark matter searches via clocks

Which implies that clocks can win over EP for precision of roughly 1:1015 for about 1 Hz 

DM mass

How the clock works: for this school it’s just creating a state which is a superposition of 

the two states and thus oscillates with time and picking up the above phase:  

However, to see the effect you need to compare it to another system that would not have 

the above precise dependence …

expiΔE(me(t))t



Enhanced sensitivity

The most robust coupling is to the gluons: 

Mixing with the Higgs, dilaton and even QCD axion have coupling to the gluons
How to be sensitive to the coupling to QCD? 

Could be via reduced mass, or via g-factor, magnetic moment-spin interactions-hyperfine          

or vibrational model in molecules, or the queen of all nuclear clock , 229Th 

It is super sensitive because   Enu−clock ∼ Enu − EQED ∼ 8 eV ≪ Enu ∼ MeV

ΔE
E

=
Enu(t) − EQED

Enu−clock
⇒

ΔEnu(t)
Enu−clock

∼
Enu

Enu−clock
× dg

mN

MPl
cos(mϕt) ∼ 105dg

mN

MPl
cos(mϕt)


