Views beyond the SM from Belle (II) on flavor anomalies and other related subjects

MITP

SCIENTIFIC

PROGRAM

Youngjoon Kwon Yonsei Univ.

(네가) 뭘 좋아할지 몰라 다 넣어봤어

I didn't know what you'd like, so I put them all in!

Belle II Physics Mind-ma

p
СР
es
ions, Dalitz analyses
lavor violation
Tays Inclusive Measurements Vtd/Vts from penguins
Exclusive measurements B-SD(*) tau nu, lepton universality
ents Direct T violation ivew physics phases in b->s: B->phi Ks, B->eta' Ks

BDecays: B-->K pi, pi pi Direct CPV, isospin sum rules

B-->K* gamma and radiative penguins, B-->K(*) nu nubar

^{froweak} Penguins: b-->s I+I-, lepton universality, NP

gamma determinations

Image courtesy of Tom Browder

Masurements
e Measure
Vts from penguins
lusive measurements
au nu, lepton universality
oha, beta, gamma
Direct T violation
ew physics phases in b->s: B->phi Ks_B->eta' l

Overview

- Intro.
 - Belle & Belle II
- flavor anomalies in EWP B
- τ results from Belle, Belle II
- anomaly, tension in semileptonic B
- closing, just with a short quote

FBLE @ MITP, Mainz

Belle & Belle II

Fig. 1. Side view of the Belle detector.

$> 1 \text{ ab}^{-1}$ **On resonance:** $Y(5S): 121 \text{ fb}^{-1}$ $Y(4S): 711 \text{ fb}^{-1}$ $Y(3S): 3 \text{ fb}^{-1}$ $Y(2S): 25 \text{ fb}^{-1}$ $Y(1S): 6 \text{ fb}^{-1}$ **Off reson./scan:**

 $\sim 100 \text{ fb}^{-1}$

~ 550 fb⁻¹ **On resonance:** $Y(4S): 433 \text{ fb}^{-1}$ $Y(3S): 30 \text{ fb}^{-1}$ $Y(2S): 14 \text{ fb}^{-1}$ **Off resonance:** $\sim 54 \text{ fb}^{-1}$

8 8

Belle (and BaBar, too) achievements include:

- too)
- e.g. $D_{s0}^{*}(2317)^{+}$
- Quarkonium spectroscopy and discovery of (many) exotic states, e.g. $X(3872), Z_c(4430)^+$
- Studies of τ and 2γ

CPV, CKM, and rare decays of B mesons (and B_s ,

Mixing, CP, and spectroscopy of charmed hadrons,

SuperKEKB $e^{-} \xrightarrow{7 \text{ GeV}} (\star) \xleftarrow{4 \text{ GeV}} e^{+}$ **Bele**

Southern Ocean

26 countries/regions, ~120 institutions, ~1000 collaborators

Belle II

Collected luminosity up to now: 2019-2022

Belle II has been in operation through the Pandemic era, with modified working mode in accordance with the antipandemic policy. (See back-up slide!)

peak luminosity world record $4.7 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

Updated on 2022/06/22 18:13 JST

B-anomaly in EWP

The B-anomalies in EWP

In the SM, due to lepton flavor universality of Z/γ , we expect \bigcirc

$$\Rightarrow R_{K^{(*)}}^{\rm SM} \equiv \frac{\mathcal{B}(B \to K^{(*)} \mu^+ \mu^-)}{\mathcal{B}(B \to K^{(*)} e^+ e^-)} \approx 1$$

B-anomalies in EWP

- R_K and R_{K^*} , measured by LHCb, seem to be far less than 1
- a discrepancy (with the SM) in some angular observable

FBLE @ MITP, Mainz

Entries / (3.0303 MeV/c²) 05 05 05 05 Entries / (14 MeV **Entries** 30 30 20 20 10 10 0 ···· 5.2 5.22 5.24 5.28 5. M_{bc} (GeV/c²) 5.26 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0 ΔE (GeV) Entries / (3.0303 MeV/c²) 05 05 05 09 09 09 00 09 (0.5)(14 MeV) Entries / 30 5.2 -6 -4 -2 0 5.28 5. (GeV/c^2) 5.22 5.24 5.26 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 5.3 ΔE (GeV) • $137 \pm 14(138 \pm 15)$ events in the $B^+ \to K^+ \mu^+ \mu^- (K^+ e^+ e^-)$

• 27.3^{+6.6}_{-5.8} (21.8^{+7.0}_{-6.1}) events in the $B^0 \to K^0_S \mu^+ \mu^- (K^0_S e^+ e^-)$

R_K from Belle

Youngjoon Kwon (Yonsei U.)

*R_K** from Belle

- $103.0^{+13.4}_{-12.7}$ (139.0^{+16.0}_{-15.4}) events in the $e(\mu)$ modes

Prospects for R_{K,K^*,X_s} **at Belle II**

- with clean e^+e^- environment
 - easier Brems. recovery for e^{\pm}
 - wide q^2 range
 - inclusive measurements (R_X)
- limited by statistics even at 50 ab^{-1}
 - major syst. error from lepton ID (~0.4%)
- Prospects for discovery
 - ~10 ab^{-1} for $R_K \& R_{K*}$ combined
 - ~20 ab^{-1} for $R_{X_{a}}$
 - can study correlations among R_{K,K^*,X_s} and other observables (angular, etc.)

Observables

В

```
R_K ([1.0, 6.0] GeV<sup>2</sup>)
R_K (> 14.4 \,{\rm GeV^2})
R_{K^*} ([1.0, 6.0] GeV<sup>2</sup>)
R_{K^*} (>14.4 GeV<sup>2</sup>)
R_{X_s} ([1.0, 6.0] GeV<sup>2</sup>)
R_{X_{\rm s}} (>14.4 GeV<sup>2</sup>)
```


PTEP 2019, 123C01

Belle	Belle II	Belle II
$.71 \text{ ab}^{-1}$	5 ab^{-1}	$50 \mathrm{ab}^{-1}$
28%	11%	3.6%
30%	12%	3.6%
26%	10%	3.2%
24%	9.2%	2.8%
32%	12%	4.0%
28%	11%	3.4%

Progress in Belle II

- Exclusive EWP
 - $B \to K^* \ell^+ \ell^-$
- Precision measurement
 - $B \to KJ/\psi$
- Semi-invisible states
 - $B \to K \nu \bar{\nu}$

FBLE @ MITP, Mainz

Exclusive EWP: BUS

- Belle II can do independent check of $R_{K^{(*)}}$ with $\mathscr{L} \sim \mathcal{O}(1) \text{ ab}^{-1}$

	Measure $B \rightarrow$ charmonium $(e^+e^- \rightarrow q\bar{q})$	K*l+l with 18 veto; BDT for cont suppression	9 fb ⁻¹ inuum	Entries / [0.00	$ \begin{array}{c c} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\$
	similar precis:	ion for e_{e} and $\mu\mu$ $M_{bc} = \sqrt{E_{beam}^2 - M_{bB}^2} = 2$	$\sqrt{E_{\text{beam}}^{2\Delta E} - p_{BB}^{E^{2*}} - E_{\Delta}}$	$E_{am} = E_{B}^{*}$	$E_{200}^{22} = \frac{\text{Belle II}}{\int \mathcal{L} \mathrm{dt}} = \frac{\int \mathcal{L} \mathrm{dt}}{- \text{Signal}}$
	Decay	Belle II (10^{-6})	PDG (10^{-6})	033 (¹⁶ · Backgro ¹⁴ Total
e^+e^-	$B \rightarrow K^* e^+ e^-$	$1.42 \pm 0.48 \pm 0.09$	1.19 ± 0.20	0.0	12 –
$\mu^+\mu$	$B \to K^* \mu^+ \mu^-$	$1.19 \pm 0.31^{+0.08}_{-0.07}$	1.06 ± 0.09	Entries /	

Entries / [0.0033 GeV/c²

Precision measurement Not FWP but a control channel for $B \to K\ell^+\ell^-$

- Not EWP, but a control channel for $B \to K\ell^+\ell^ \bigcirc$
- Measure $R_K(J/\psi)$ with 189 fb⁻¹ \bigcirc

$$R_K(J/\psi) = \frac{\mathcal{B}(B \to KJ/\psi(\stackrel{M_{bc}}{\to} \mu^+ \mu^-))}{\mathcal{B}(B \to KJ/\psi(\to e^+ e^-))}$$

Observat	ole Belle II	Belle (2021)
$R_{K^+}(J/v)$	$(\psi) 1.009 \pm 0.022 \pm 0.008$	$0.994 \pm 0.011 \pm 0.010$
$R_{K^0_{ m S}}(J/\psi$	(b) $1.042 \pm 0.042 \pm 0.008$	$0.993 \pm 0.015 \pm 0.010$
	Lepton ID syst. und	certainty, improved over Belle
Observable	Belle II	Belle (2021)
$R_{K^+}(J/\psi)$	$1.009 \pm 0.022 \pm 0.008$	$0.994 \pm 0.011 \pm 0.010$
${ m R}_{K^0_{ m S}}(J/\psi)$	$1.042 \pm 0.042 \pm 0.008$	$0.993 \pm 0.015 \pm 0.010$

lle II	Belle (2021)
0.016 ± 0.030	$0.002 \pm 0.007 \pm 0.024$
0.15 ± 0.020	$-0.002 \pm 0.007 \pm 0.024$

Search for $B^+ \to K^+ \nu \overline{\nu}$ at Belle II

- In the SM,
 - $\mathscr{B}(B^+ \to K^+ \nu \bar{\nu}) = (4.6 \pm 0.5) \times 10^{-6} \, [4]$
- sensitive to new physics BSM, e.g.
 - leptoquarks,
 - axions,
 - DM particles, etc.

existing measurements (upper limits)

 $B^+ \rightarrow K^+ \overline{\nu} \nu$

• $\Gamma(B^+ \to K^+ \overline{\nu} \nu) / \Gamma_{\text{total}}$

Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interactions.

VALUE	CL%		DOCUMENT ID		TECN	COMMENT
$< 1.6 \times 10^{-5}$	90	1, 2	LEES	20131	BABR	$e^+ e^- \rightarrow \Upsilon(4S)$
 We do not use the following data for averages, fits, limits, etc. 						
$< 1.9 \times 10^{-5}$	90	3, 1	GRYGIER	2017	BELL	$e^+ e^- \rightarrow \Upsilon(4S)$
$< 5.5 \times 10^{-5}$	90	1	LUTZ	2013	BELL	$e^+ e^- \rightarrow \Upsilon(4S)$

(a) Penguin diagram

T. Blake, G. Lanfranchi, and D. M. Straub, Prog. Part. [4]Nucl. Phys. **92**, 50 (2017).

Youngjoon Kwon (Yonsei U.)

Oct. 11, 2022

W

(b) Box diagram

u, c, t

Tagging

hadronic + SL

semileptonic hadronic

FBLE @ MITP, Mainz

$B^+ \rightarrow K^+ \nu \overline{\nu}$ at Belle II

- 1. signal K^+ track of highest p_T w/ at least 1 PXD hit ($\varepsilon \sim 80\%$)
- 2. all other tracks & clusters \Rightarrow "ROE" (rest of the function of the functio $\times 10^{-2}$ 8 3. BDT for signal discrimination fraction of events use event-shape, ROE dynamics, B_{sig} kinematics, ve 6 4. BDT₁ & BDT₂ (consecutive applications) 4 : to suppress two different bkgds : BB and contin 2 5. signal region in 2D (BDT₂ vs. $p_T(K^+)$)
- 6. check BDT output with $B^+ \rightarrow J/\psi K^+$ sample for both signal and bkgd (see back-up slide for detail
- 7. check Data/MC agreement using Off-resonance data

1

PRL 127, 181802 (2021)

C

$^+ \rightarrow K^+ \nu \overline{\nu}$ at Belle II

- 1. signal K^+ track of highest p_T w/ at least 1 PXD hit ($\varepsilon \sim$
- 2. all other tracks & clusters \Rightarrow "ROE" (rest of the event)
- 3. BDT for signal discrimination use event-shape, ROE dynamics, B_{sig} kinematics, vertexing info.

S/<

$B^+ \rightarrow K^+ \nu \overline{\nu}$ at Belle II

- 1. signal K^+ track of highest p_T w/ at least 1 PXD hit (ϵ
- 2. all other tracks & clusters \Rightarrow "ROE" (rest of the event)
- 3. BDT for signal discrimination use event-shape, ROE dynamics, B_{sig} kinematics, vertexing i
- 4. BDT₁ & BDT₂ (consecutive applications)
 - : to suppress two different bkgds : BB and continuum
- 5. signal region in 2D (BDT₂ vs. $p_T(K^+)$)
- 6. check BDT output with $B^+ \rightarrow J/\psi K^+$ samples for both signal and bkgd (see back-up slide for details)
- 7. check Data/MC agreement using Off-resonance data
- 8. simultaneous ML fit to ON- & OFF-resonance data

2000

1500

1000

500

DESY.

400

300

200

100

Events

0.0

$B^+ \rightarrow K^+ \nu \overline{\nu}$ at Belle II

PRL 127, 181802 (2021)

· I	Belle II (63 f $1.9^{+1.6}_{-1.5}$ This work, pro	b ⁻¹ , Inclu	sive)
	Belle (711 ft $_{1.0\pm0.6}$ PRD96, 091	$_{101}^{-1}$, SL)	
	Belle (711 ft 3.0±1.6 PRD87, 111	p_{103}^{-1} , Had)	
	Babar (429 $_{0.8\pm0.7}$ PRD87, 112	b_{005}^{-1} , Had+	-SL)
4	6	8	10
$\times \operatorname{Br}($	$(B^+ \rightarrow K^+)$	uar u)	

other hints for anomaly in EWP?

FIG. 2. The *CP*-averaged observables (left) P_2 and (right) P'_5 in intervals of q^2 . The first (second) error bars represent the statistical (total) uncertainties. The theoretical predictions in blue are based on Ref. [77] with hadronic form factors taken from Refs. [78–80] and are obtained with the FLAVIO software package [84] (version 2.0.0). The theoretical predictions in orange are based on Refs. [81,82] with hadronic form factors from Ref. [83]. The gray bands indicate the regions of excluded $\phi(1020)$, J/ψ , and $\psi(2S)$ resonances.

- [78] A Bharucha D M Strauh and R Zwicky I High Energy
- [81] S. Descotes-Genon, L. Hofer, J. Matias, and J. Virto, J. High
- [82] B. Capdevila, A. Crivellin, S. Descotes-Genon, J. Matias, and J. Virto, J. High Energy Phys. 01 (2018) 093.
- [02] A Whadiaminian T Mannal A A Diversional V M

FBLE @ MITP, Mainz

Angular analysis of $B \rightarrow K^* \ell^+ \ell^ \theta_K$

Angular analysis of $B \rightarrow K^* \ell^+ \ell^-$

$$\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}\cos\theta_\ell \,\mathrm{d}\cos\theta_K \,\mathrm{d}\phi \,\mathrm{d}q^2} = \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_L) \sin^2\theta_K + F_L \cos^2\theta_K + \frac{1}{4} (1 - F_L) \sin^2\theta_K \cos 2\theta_\ell + \frac{1}{4} (1 - F_L) \sin^2\theta_K \sin 2\theta_\ell \cos \theta_\ell + \frac{1}{4} (1 - F_L) \sin^2\theta_K \sin 2\theta_\ell \sin \theta_\ell + \frac{1}{4} (1 - F_L) \sin^2\theta_K \sin 2\theta_\ell \sin \theta_\ell + \frac{1}{4} (1 - F_L) \sin^2\theta_K \sin 2\theta_\ell \sin \theta_\ell + \frac{1}{4} (1 - F_L) \sin^2\theta_K \sin 2\theta_\ell \sin \theta_\ell + \frac{1}{4} (1 - F_L) \sin^2\theta_K \sin 2\theta_\ell \sin \theta_\ell + \frac{1}{4} (1 - F_L) \sin^2\theta_K \sin 2\theta_\ell \sin \theta_\ell + \frac{1}{4} (1 - F_L) \sin^2\theta_K \sin 2\theta_\ell \sin \theta_\ell + \frac{1}{4} (1 - F_L) \sin^2\theta_K \sin 2\theta_\ell \sin \theta_\ell + \frac{1}{4} (1 - F_L) \sin^2\theta_K \sin 2\theta_\ell \sin \theta_\ell + \frac{1}{4} (1 - F_L) \sin^2\theta_K \sin 2\theta_\ell \sin \theta_\ell + \frac{1}{4} (1 - F_L) \sin^2\theta_K \sin 2\theta_\ell \sin \theta_\ell + \frac{1}{4} (1 - F_L) \sin^2\theta_K \sin 2\theta_\ell \sin \theta_\ell + \frac{1}{4} (1 - F_L) \sin^2\theta_K \sin 2\theta_\ell \sin \theta_\ell + \frac{1}{4} (1 - F_L) \sin^2\theta_K \sin 2\theta_\ell \sin \theta_\ell + \frac{1}{4} (1 - F_L) \sin^2\theta_K \sin 2\theta_\ell \sin \theta_\ell + \frac{1}{4} (1 - F_L) \sin^2\theta_K \sin 2\theta_\ell \sin \theta_\ell + \frac{1}{4} (1 - F_L) \sin^2\theta_K \sin 2\theta_\ell \sin \theta_\ell + \frac{1}{4} (1 - F_L) \sin^2\theta_K \sin^2\theta_\ell \sin \theta_\ell + \frac{1}{4} (1 - F_L) \sin^2\theta_K \sin^2\theta_\ell \sin^2\theta$$

$$P_{i=4,5,6,8}' = \frac{S_{j=4,5,7,8}}{\sqrt{F_L(1-F_L)}}$$

considered to be largely free from form-factor uncertainties

Extract transverse polarization asymmetry $A_T^{(2)} = 2S_3/(1 - F_L)$

 $\delta^2 \theta_K$

 $\sin^2 \theta_\ell \cos 2\phi$ $12\theta_K\sin\theta_\ell\cos\phi$ $in \theta_{\ell} \sin \phi$ $\ln^2 heta_K \sin^2 heta_\ell \sin 2\phi$

Angular analysis of $B_{\frac{d^4\Gamma}{d\cos\theta_\ell d\cos\theta_K d\phi dq^2}} \xrightarrow{K^*}_{\frac{d^4\Gamma}{d\cos\theta_\ell d\cos\theta_K d\phi dq^2}} = \frac{K^*}{32\pi} \left[\frac{3}{4}(1-F_L)\sin^2\theta_K + F_L\cos^2\theta_K\right]$

Extract transverse polarization asymmetry $A_T^{(2)} = 2S_3/(1 - F_L)$

- not enough statistics to perform full 8-dim fit for angular analysis
- reduce the # of fit parameters (hence improve fit convergence) by 'folding' technique à la LHCb
- For example,

$$P'_{4}, S_{4}: \begin{cases} \phi \to -\phi & \text{for } \phi < 0\\ \phi \to \pi - \phi & \text{for } \theta_{\ell} > \pi/2\\ \theta_{\ell} \to \pi - \theta_{\ell} & \text{for } \theta_{\ell} > \pi/2, \end{cases} \qquad P'_{5}, S_{5}: \begin{cases} \phi \to -\phi & \text{for } \phi < 0\\ \theta_{\ell} \to \pi - \theta_{\ell} & \text{for } \theta_{\ell} > \pi/2, \end{cases}$$

• Each of these foldings cause all the other S_i 's (except for S_3) to vanish \Rightarrow #(fit parameters) is reduced: 8 \rightarrow 3

 $+\frac{1}{4}(1-F_L)\sin^2\theta_K\cos 2\theta_\ell$ $-F_L\cos^2\theta_K\cos 2\theta_\ell + S_3\sin^2\theta_K\sin^2\theta_\ell\cos 2\phi$ $+ S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi$ $+ S_6 \sin^2 \theta_K \cos \theta_\ell + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi$ $+ S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\phi$

Fit projections for P'_5 of $B \to K^* \ell^+ \ell^-$

PRL 118, 111801 (2017)

bkgd. signal total

<i>P</i> [′] ₅	P_5'	
1.5		• com
1.0		LHC
0.5		 2.6σ 1.3σ
	Perspective	tensi
-0.5	rerspective	
-1.0	First Look (b)Resu ► The predi	measurements are co
-1.5	One the p same repor	measurement is four predicted value into t q^2 region where the rted the so-called P'_5
	Outlook	
	Resu (Bell	Its for the P' observe e Conference Paper

patible with both SM and

- σ in μ mode
- τ in e mode

ion from SM is in the same direction as in LHCb

compatible with the SM easurements nd to deviate by 2.1σ from the same direction and in the e LHCb collaboration $\frac{2}{5}$ anomaly

ables on arXiv: tomorrow on hep-ex).

So, why not search for $B \to K^{(*)} \ell^+ \ell^{'-} (\ell' \neq \ell)$?

* Lepton Flavor Violation in B Decays? Glashow, Guadagnoli, Lane, PRL 114, 091801 (2015)

lies and potential

ly associated

 $\mathscr{B}(B^+ \to K^+ \mu^+ e^-) < 8.5 \times 10^{-8}$ $\mathscr{B}(B^+ \to K^+ \mu^- e^+) < 3.0 \times 10^{-8}$ $\mathscr{B}(B^0 \to K_{\rm S}^0 \mu^- e^+) < 3.8 \times 10^{-8}$

$R(D^{(*)})$ & B decays to τ

• $B^0 \to \ell^{\pm} \tau^{\mp}$ • $B \rightarrow K^{*0} \tau^+ \tau^-$ • $B^+ \to K^+ \tau^{\pm} \ell^{\mp}$ (not today) • $B \rightarrow D^{(*)} \tau^+ \nu_{\tau}$ and related

Search for $B^0 \to \ell^{\pm} \tau^{\mp}$ (intro.)

- LFV, hence forbidden in the SM
- can occur via ν -mixing, but very small $\sim \mathcal{O}(10^{-54})^{[1]}$
- NP models (e.g. Pati-Salam LQ) can predict $\mathscr{B} \sim \mathcal{O}(10^{-9})^{[11]}$
 - ✓ leptoquarks, SUSY See-saw models, etc.
- **Existing** limits ✓ \mathscr{P} (*d*) → $\tau^{\mp} \ell^{\pm}$ at Belle
- use hadroni Eyidence of the decay
- do not explicitly reconstruct τ , instead, look at recoil mass

PRD 104, L091105 (2021)

[1] L. Calibbi and G. Signorelli, Charged lepton flavour violation: An experimental and theoretical introduction, Riv. Nuovo Cimento 41, 71 (2018).

[11] A.D. Smirnov, Mod. Phys. Lett. A 33, 1850019 (2018).

Search for Brindi Results for Builts lts Evidence of the decay extract signal yield by unbinned extended max. likelihood fit $B^0 \rightarrow \eta \pi^0$

PRD 104, L091105 (2021)

Signal Efficiency: 1.0 x 10⁻³

.9

$\mathscr{B}(B^0 \to e\tau) < 1.6 \times 10^{-5}$

Search for $B^0 \to K^{*0} \tau^+ \tau$

- Highly suppressed in SM : $\mathscr{B}_{SM} \sim \mathcal{O}(10^{-7})$
- Test of R_{K^*} with 3rd gen. lepton (τ)
 - potentially very sensitive to NP
- the only experimental result of $b \rightarrow s\tau^+\tau^-$: $\mathscr{B}(B^+ \to K^+ \tau^+ \tau^-) < 2.25 \times 10^{-3}$ (BaBar, 2017)
- use hadronic *B*-tagging
- Signal yield is extracted using $E_{\text{ECL}}^{\text{extra}}$
 - cross-check with $\mathscr{B}(B \to D^{(*)}\ell\nu)$

 $\mathscr{B} = (2.26 \pm 0.17) \%$ with $E_{\text{ECL}}^{\text{extra}}$ $= (2.19 \pm 0.15) \%$ with M_{miss}^2 compare w/ (2.31 ± 0.10) % W. Avg.

arXiv:2110.03871 submitted to PRD

FBLE @ MITP, Mainz

GeV

Search for $B^0 \to K^{*0} \tau^+ \tau^-$

- Main backgrounds (*same final-state particles*) \bigcirc
 - $B^0 \to D^{(*)-}\ell^+\nu, D^- \to K^{*0}\ell^-\bar{\nu}$ (for *ee*, *eµ*, *µµ* modes)
 - $B^0 \rightarrow D^{(*)-}X$, $D^- \rightarrow K^{*0}\pi^-$ (for $e\pi$, $\mu\pi$, $\pi\pi$ modes)
- Background suppression with $M_{\text{miss}}^2 \& M_{K^*\pi^-}$ \bigcirc

Signal Mode	$M_{K^{*0}\pi^{-}}$	$M_{ m miss}^2$
	$({ m GeV}/c^2)$	$(\text{GeV}^2/\text{c}^4)$
$K^{*0}e^{+}e^{-}$	> 1.4	> 3.2
$K^{*0}e^{\mp}\mu^{\pm}$	> 1.4	> 1.6
$K^{*0}\mu^+\mu^-$	> 1.6	> 1.6
$K^{*0}\pi^{\mp}e^{\pm}$	> 1.4	> 2.0
$K^{*0}\pi^{\mp}\mu^{\pm}$	> 1.4	> 2.0
$K^{*0}\pi^+\pi^-$	> 1.5	< 9

arXiv:2110.03871 submitted to PRD

FBLE @ MITP, Mainz

Search for $B^0 \to K^{*0} \tau^+ \tau^-$

Source statistics Number of $B^0 \overline{B}{}^0$ Tag efficiency Tracking K-ID π -ID e-ID μ -ID K-short veto π^0 veto Sum

Youngjoon Kwon (Yonsei U.)

arXiv:2110.03871 submitted to PRD

$\operatorname{error}(\%)$
5.2
1.8
4.6
1.4
1.25
1.15
1.66
0.93
0.17
1.56
7.88

$\mathcal{B}(B^0 \to K^{*0} \tau^+ \tau^-) < 2.0 \times 10^{-3} @ 90\% \text{ CL}$

more on τ from Belle, Belle II

•
$$\sigma(ee \to \tau\tau) \simeq \sigma(ee \to b\bar{b})$$

- low bkgd. & high resolution
- absolute BF

τ LFV in new physics beyond-SM

Ratios of τ LFV decay BF's allow one to discriminate between new physics models

	SUSY+GUT (SUSY+Seesaw)	Higgs mediated	Little Higgs	non-universal Z'
$\frac{\mathcal{B}(\tau \to \mu \mu \mu)}{\mathcal{B}(\tau \to \mu \gamma)}$	~2 x 10⁻³	0.06 - 0.1	0.4 - 2.3	~16
$\frac{\mathcal{B}(\tau \to \mu e e)}{\mathcal{B}(\tau \to \mu \gamma)}$	~1 x 10⁻²	~1 x 10⁻²	0.3 - 1.6	~16
$\mathcal{B}(au o \mu \gamma)_{\max}$	< 10-7	< 10 -10	< 10 -10	< 10-9

.:. Good to measure LFV in as many modes as possible!

Youngjoon Kwon (Yonsei U.)

Oct. 11, 2022

JHEP 0705, 013 (2007); PLB 547, 252 (2002)

FBLE @ MITP, Mainz

Search for $\tau^+ \rightarrow \ell^+ \gamma$

- $\sigma(e^+e^- \to \tau^+\tau^-) = (0.919 \pm 0.003) \text{ nb} \approx \sigma_{b\bar{b}}$, at $\sqrt{s} \approx 10.58 \text{ GeV}$ $\therefore e^+e^- B$ -factory is, at the same time, a τ -factory, too!
- tag-side and signal-side τ decays are cleanly separated
- signal extraction by $M_{\rm bc}$ and $\Delta E/\sqrt{s}$
- Calibration of E_{γ} by $e^+e^- \rightarrow \mu^+\mu^-\gamma$ events
 - by comparing $E_{\gamma} E_{\rm recoil}$ (data vs. MC), where $E_{\rm recoil} = \sqrt{s} E_{\mu^+} E_{\mu^-}$
 - calibrated resolution (for $1 < E_{\gamma} < 6$ GeV) agrees with data, and with test-beam result
 - performed for the first time at Belle; major improvement over the previous Belle result [PLB 666, 16 (2008)]

Oct. 11, 2022

JHEP 10 (2021) 019

FBLE @ MITP, Mainz

a new variable to suppress $\tau \tau$ bkgd.

	UL (90% CL)	Luminosity	Reference	$ au o \mu \gamma$	$ au o e \gamma$
	Belle	535 fb ⁻¹	PLB 666, 16 (2008)	4.5 x 10 ⁻⁸	12.0 x 10 ⁻⁸
	BaBar	515 fb ⁻¹	PRL 104, 021802 (2010)	4.4 x 10 ⁻⁸	3.3 x 10 ⁻⁸
Youngjoon Kwon (Yonsei U	J.)	Oct. 11, 2022	FBLE @ N	MITP, Mainz	47

JHEP 10 (2021) 019

EDM of τ

Youngjoon Kwon (Yonsei U.E

Oct. 11, 2022

τ studies at Belle II

• τ mass

•
$$\tau^+ \to \ell^+ \alpha$$

• and one more thing!

$$m_{\tau}^{2} = (p_{h} + p_{\nu})^{2}$$

$$= 2E_{h}(E_{\tau} - E_{h}) + \Re_{h}^{3}(\overrightarrow{p}_{2}, \overrightarrow{p}_{h}) (E_{\tau}^{-1} - E_{h}) \cos(\overrightarrow{p}_{h}, \overrightarrow{p}_{\nu}) \quad \Leftarrow$$
"pseudo-mass" $M_{\min}^{2} = 2E_{h}(E_{\tau} - E_{h}) + m_{h}^{2} - 2|\overrightarrow{p}_{h}|(E_{\tau})$

Oct. 11, 2022

 $\cos(\overrightarrow{n}, \overrightarrow{n}) = 1^{\text{Youngjoon Kwon (Yonsei U.)}}$

FBLE @ MITP, Mainz

arXiv:2008.04665

• m_{τ} is a crucial element for a test of

$$\times B_{\mu e} \frac{\tau_{\tau}}{\tau_{\mu}} \frac{m_{\tau}^{5}}{m_{\mu}^{5}}$$

 $B_{\tau\ell}$

= approx. $cos(\mathbf{p}_{\nu}, \mathbf{p}_{h})$

 $F_{\tau} - E_h) < m_{\tau}^2$

0.5 τ mass 0.4

DESY.

$\tau \rightarrow \ell + \alpha$ (invisible)

he two body decay $\tau \rightarrow e/\mu + \alpha$ where

served particle (missing energy)

is the three body SM decay $\tau \rightarrow 3\pi\nu$ PSEUDO LEST FLAME (DS) will manifest as a peak in the lepton momentum spectrum in the rest frame of the τ

 $e\, do$ not know the au momentum. Approximated by as $suming l ar{
u}_{T} = E_{CMS}/2$ $\tau \rightarrow l \alpha \vec{p_{\tau}} \approx \vec{p_{3\pi}} = \sum_{i=1}^{3} \vec{p_i}$ tion of the τ given by the opposite to the 3π direction b-rest frame built from the tag decay products

).0 GeV/c²) , τ→πππν L.4 GeV/c²), $\tau \rightarrow \pi \pi \pi \pi v$ τ→πππν packgrounds

 $\tau \rightarrow e \alpha (0.0 \text{ GeV/c}^2)$, $\tau \rightarrow \pi \pi \pi \nu$ $\tau \rightarrow e\alpha(1.4 \text{ GeV/c}^2)$, $\tau \rightarrow \pi\pi\pi\nu$ $\tau \rightarrow e v \bar{v}, \tau \rightarrow \pi \pi \pi v$ Other backgrounds

Search for $\tau \rightarrow \ell^+ \alpha$

• $\tau \rightarrow \ell \alpha$ channels shown normalised to a BF of 5%.

Youngjoon Kwon (Yonsei U.)

Results for $\tau \to \ell^+ \alpha$

- We find no signal excess and set 95% CL upper limits on $\mathscr{B}(\tau \to \ell \alpha)/\mathscr{B}(\tau \to \ell \nu \bar{\nu})$
- Most stringent limits in these channels to date

Results for $\tau \rightarrow \ell^+ \alpha$

One more thing on τ (Belle II)!

 $e^+e^- \rightarrow \mu^+\mu^- X (\rightarrow \tau^+\tau^-)$

X = Z', S, ALP $M_X = M_{\rm recoil}(\mu\mu)$

 $e^+e^- \rightarrow \mu^+\mu^- X(\rightarrow \tau^+\tau^-)$

- Dataset: 62.8 fb^{-1}
- Signal selection
 - 1-prong τ only \Rightarrow 4 charged tracks $[2\mu + 2(e/\mu/\pi)]$
 - M(4 tracks) < 9.5 GeV
 - scan $M_{\text{recoil}}(\mu\mu)$
- Background sources
 - $\tau \tau(\gamma)$ [1+3 prongs]
 - *qq*
 - $\ell^+ \ell^- \ell^{'+} \ell^{'-}$ (no ISR in MC)
 - μμππ
 - $e^+e^-X_{had}$ (no MC)
- Background suppression with ML
 - based on 14 input neurons & one hidden layer of 15 neurons
 - separately in 8 ranges of $M_{\rm recoil}(\mu\mu)$ lacksquare

B-anomaly in $B \to D^{(*)} \tau^+ \nu$ and related

- $m_{\tau} \gg m_{e}, m_{\mu}$ $\therefore B \rightarrow D^{*} \tau v$ can be more sensitive to NP, e.g. from H⁺
- $B \rightarrow D^* \tau v$ was first observed by Belle •
- \exists hints for deviations of R(D), $R(D^*)$ from SM; LUV?

PRL 99, 191807 (2007)

PHYSICAL REVIEW LETTERS

week ending 9 NOVEMBER 2007

Observation of $B^0 \rightarrow D^{*-} \tau^+ \nu_{\tau}$ Decay at Belle

A. Matyja,²⁷ M. Rozanska,²⁷ I. Adachi,⁸ H. Aihara,⁴¹ V. Aulchenko,¹ T. Aushev,^{18,13} S. Bahinipati,³ A. M. Bakich,³⁷ V. Balagura,¹³ E. Barberio,²¹ I. Bedny,¹ V. Bhardwaj,³³ U. Bitenc,¹⁴ A. Bondar,¹ A. Bozek,²⁷ M. Bračko,^{20,14} I Dradziaka 8 T E Drawdor 7 M C Chang 4 D Chang 26 A Chan 24 K E Chan 26 D C Chaon 6 D Chistory 13 I C Cha 46

 $\mathcal{R}(D^{(*)}) \equiv \frac{\mathcal{B}(B \to D^{(*)}\tau^+\nu)}{\mathcal{B}(B \to D^{(*)}\ell^+\nu)}$

R(D) and $R(D^*)$

$$\mathcal{R}(D^{(*)}) \equiv \frac{\mathcal{B}(B \to D^{(*)}\tau^+\nu)}{\mathcal{B}(B \to D^{(*)}\ell^+\nu)}$$
1.0 contours
Bar12
HFLAV
Spring 2019
P(\chi^2) = 27\%
0.5
R(D)

R(D) and $R(D^*)$

- Most precise R(D), $R(D^*)$ to date
- First *R*(*D*) with SL-tag
- 1.2 σ from SM

- Belle average, now within 2σ from SM
- World average tension with SM, now $\sim 3.1\sigma$

σ from SM th SM, now ~3.1σ

LFU test with inclusive $B \rightarrow X \ell \nu$

- *inclusing study* complementary to exclusi Belle one of the un nd high-profile goals of Belle T Belle II
- last measured by LEP (!)
- very challenging larger bkgd. & much less constrained
- \bigcirc precise modeling of $B \rightarrow X \ell \nu$ is critical

K. Vos, M. Rahimi, in progress

FBLE @ MITP, Mainz

LFU \longrightarrow with inclusive $B \rightarrow X \ell \nu$ Belle II

Reconstruct $\Upsilon(4S) \rightarrow B^-_{\mathrm{tag}} \ell^+ X$ $\Upsilon(4S) \rightarrow \overline{B}_{tag}^0 \ell^+ X$

• $p_\ell^* > 1.3 \text{ GeV}$

Only basic quality cuts on tracks and calorimeter signals

Tight constraints on tag quality

Reconstruct $\Upsilon(4S) \rightarrow B_{\text{tag}}^- \ell^+ X$ $\Upsilon(4S) \to \overline{B}^0_{\mathrm{tag}} \ell^+ X$

• $p_{\ell}^* > 1.3 \text{ GeV}$

Only basic quality cuts on tracks and calorimeter signals

Tight constraints on tag quality

LFU \longrightarrow with inclusive $B \rightarrow X \ell \nu$ Belle T

Reconstruct $\Upsilon(4S) \rightarrow B^-_{\mathrm{tag}} \ell^+ X$ $\Upsilon(4S) \to \overline{B}_{tag}^0 \ell^+ X$

• $p_{\ell}^* > 1.3 \, \text{GeV}$

Only basic quality cuts on tracks and calorimeter signals

Tight constraints on tag quality

LFU to with inclusive $B \to X \ell \nu$

Background is constrained by wrong-sign lepton charge samples (BU)

Youngjoon Kwon (Yonsei U.)

 $p_{\ell}^{\prime \circ}$ / Gev[™] $2.05 \bullet 2.3 + /1.3$ 1.55 1.[•]8 • •2.05 2.3 + p_{ℓ}^{*} / GeV/ U $R(X_{e/\mu}) = \frac{N_{Xe\nu} \cdot \epsilon_{X\mu\nu}}{N_{X\mu\nu} \cdot \epsilon_{Xe\nu}}$ with $\epsilon_{X\ell\nu} = \frac{N_{sel}^{\ell} \cdot (\epsilon_{B_{tag}}^{data} / \epsilon_{B_{tag}}^{MC})}{2 \cdot N_{BB} \cdot BR(B \to X\ell\nu)}$

$R(X_{e/\mu})^{p_{\ell}^* > 1.3} = 1.033 \pm 0.010 \pm 0.020$

D	$X_c \ell \nu$ BFs	$X_c \ell \nu$ FFs	Statistical	Total
	0.1%	0.2%	1.0%	2.2%

compatible within 0.6σ with exclusive Belle measurement: $R(\mathcal{D}_{e/\mu}^*) = 1.01 \pm 0.01 \pm 0.03$ [PRD 100, 052007 (2019)]

More on $B \to X\ell^+\nu$

- V_{cb} , $V_{\mu b}$ "inclusive vs. exclusive tension"
- $V_{\mu b}$ efforts (quick summary)
- V_{cb} a new method with q^2 moments (Belle, Belle II, hep-ph)

Inclusive vs. Exclusive Tension

in the measurements of $|V_{cb}|$, $|V_{ub}|$ between inclusive and exclusive approaches

 $|V_{ub}|_{\text{incl.}} = (4.19 \pm 0.12^{+0.11}_{-0.12}) \times 10^{-3} \text{ fm}^{\circ}_{\text{V}} \text{ (N_{ub})}_{\text{excl.}} = (3.51 \pm 0.12) \times 10^{-10} \text{ (N_{ub})}_{\text{excl.}} =$ $= (39.10 \pm$ $V_{cb} \mid_{\text{incl.}} = ($ $(|V_{cb}|, |V_{ub}|)$ $V_{cb} \mid_{excl.}$

PRD 104, 012008 (2021)

Determination of $|V_{ub}|$

 $|V_{ub}| = (4.10 \pm 0.09 \pm 0.22 \pm 0.15) \times 10^{-3}$

to quote a single value, we take a simple arithmetic avg. of the most inclusive results (2D fits)

Inclusive $B \to X_{\mu} \ell^+ \nu_{\ell}$ and $|V_{\mu b}|$

- $|V_{ub}|$ from inclusive $B \to X_{\mu} \ell^+ \nu_{\ell}$
 - compatible with exclusive determination by 1.3σ
 - compatibility with CKM unitarity^[73] : 1.6σ
 - differential shapes and other properties — left for future work
- [73] J. Charles et al. (CKMfitter Group), Eur. Phys. J. C 41, 1 (2005), arXiv:hep-ph/0406184.

Differential $\Delta \mathscr{B}(B \to X_{\mu}\ell^+\nu) - \text{Results}$

- Measure differential $\Delta \mathscr{B}(B \to X_u \mathscr{C}^+ \nu)$ with $E_{\mathscr{L}}^B > 1$ GeV (Figs. below)
- All MC shapes are normalized to $\Delta \mathscr{B} = 1.59 \times 10^{-3}$
- Useful input for future model-independent determination of $|V_{\mu\nu}|$

72
q^2 moments in $B \to X_c \ell^+ \nu_\ell$

Motivations

- \exists tension between exclusive & inclusive measurements of $|V_{ch}|$
- inclusive approach for $|V_{cb}|$
 - free from uncertainties of form factor shape and normalization
 - exploits HQE total decay rate and spectral moments can be expanded into a manageable number of non-perturbative matrix elements
- measure q^2 moments
 - a novel approach by Fael, Manel, Keri Vos [JHEP 02, 177 (2019)]
 - use "reparametrization invariance"
 - data-driven method for $|V_{cb}|$ up to $1/m_b^4$ reduce # of parameters $(13 \rightarrow 8)$

- Analysis features

 q^2 moments in $B \to X_c \ell^+ \nu_{\ell}$ (Belle)

- Analysis features
 - use full reconstruction tagging (of the accompanying B) B_{tag}
 - Remainder (after B_{tag}) of the signal event (ℓ^+, X_c and a missing ν) measure M_X, q^2

Youngjoon Kwon (Yonsei U.)

Oct. 11, 2022

PRD 104, 112011 (2021)

² moments in $B \to X_c \ell^+ \nu_{\ell}$ (Belle)

- Analysis features
 - use full reconstruction tagging (of the accompanying B) B_{tag}
 - Remainder (after B_{tag}) of the signal event (ℓ^+, X_c and a missing ν) measure M_X, q^2

PRD 104, 112011 (2021)

moments in $B \to X_c \ell^+ \nu_\ell$ (Belle)

PRD 104, 112011 (2021)

FBLE @ MITP, Mainz

moments in $B \to X_c \ell^+ \nu_\ell$ (Belle)

PRD 104, 112011 (2021)

moments in $B \to X_c \ell^+ \nu_{\ell}$ (Belle II)

Analysis features \bigcirc

- exploit FEI for B_{tag}
- raw and central (variance) moments for $q^2 > 1.5 \text{ GeV}^2$ up to $q^2 > 8.5 \text{ GeV}^2$
- first $\langle q^{2n} \rangle$ measurement in range [1.5, 2.5] GeV² range
- kinematic fit improves q^2 resolution significantly
- signal probability in q^2 bin estimated by M_X fit; interpolated with cubic spline

Youngjoon Kwon (Yonsei U.)

moments in $B \to X_c \ell^+ \nu_\ell$ (Belle II)

Analysis features \bigcirc

- exploit FEI for B_{tag}
- raw and central (variance) moments for $q^2 > 1.5 \text{ GeV}^2$ up to $q^2 > 8.5 \text{ GeV}^2$
- first $\langle q^{2n} \rangle$ measurement in range [1.5, 2.5] GeV² range

arXiv:2205.06372

 $\mathcal{L}dt = 62.8 \text{ fb}^{-1}$

moments in $B \to X_c \ell^+ \nu_\ell$ (Belle II)

Analysis features \bigcirc

- exploit FEI for B_{tag}
- raw and central (variance) moments for $q^2 > 1.5 \text{ GeV}^2$ up to $q^2 > 8.5 \text{ GeV}^2$
- first $\langle q^{2n} \rangle$ measurement in range [1.5, 2.5] GeV² range

arXiv:2205.06372

 $\mathcal{L}dt = 62.8 \text{ fb}^{-1}$

V_{ch} from q^2 moments in $B \to X_c \ell^+ \nu_{\ell}$

- a meta-analysis using q^2 moment spectra of Belle & Belle II (combined)
- use $\mathscr{B}(B \to X_c \ell^+ \nu) = (10.48 \pm 0.13) \%$
- HQE parameters and $|V_{cb}|$ by simultaneous χ^2 fit

First extraction of inclusive V_{cb} from q^2 moments

FLORIAN BERNLOCHNER^a, MATTEO FAEL^b, KEVIN OLSCHEWSKY^c, ERIC PERSSON^a, RAYNETTE VAN TONDER^d, K. KERI VOS^{e,f}, MAXIMILIAN WELSCH^a

arXiv:2205.1027

FBLE @ MITP, Mainz

Honorable mentions — the Dark Sector

We shall not cease from exploration And the end of all our exploring Will be to arrive where we started And know the place for the first time.

 $\bullet \bullet \bullet$

T. S. Eliot, from "Little Gidding"

Belle II operations under Pandemic

