The Search for LFUV in $\Lambda_b \to p K^- \ell^+ \ell^- \text{ at LHCb}$

Amy Marie Schertz with Biplab Dey

Eötvös Loránd University

Flavour of BSM in the LHC Era Workshop, MITP, Oct. 11, 2022

Flavour Anomalies

- Tensions with the standard model are evident
- Nothing discovery-level at this point
- One important measurement is R_{pK}which involves baryons!

Quark-level reaction, $b \rightarrow s\ell^+\ell^-$

- Reaction suppressed in SM, only available at loop level
- Tree-level contributions are possible in new physics
- Sensitivity to virtual contributions from BSM particles with masses that can't be directly probed at current energies
- Can be used to test for lepton flavour universality

Branching Fractions

- (Relatively) simple to experimentally extract
- Theoretical calculations are affected by hadronic uncertainties
- Trend: $b \rightarrow s\mu^+\mu^-$ BFs systematically lower than the standard model predicts

Theory Predictions: JHEP 01 (2003) 074 JHEP 02 (2013) 010 PRD 88 (2013) 094004

Angular Fits

- Form factors partially cancel a "
 clean observables!
- Need to understand detector acceptance
- Many angular parameters require large yields
- Right: Angular observable P'_5
 - in $B^0 \to K^{*0} \mu^+ \mu^-$ decay

Theory Predictions: JHEP 12 (2014) 125 JHEP 09 (2010) 089

What is Lepton Flavour Universality?

- In SM, electroweak couplings of all three lepton flavours are the same
- Decay properties and hadronic effects are expected to also be the same (up to leptonic mass corrections)
- For example, the branching ratio, predicted by SM to be unity with high precision away from threshold

$$R_{H} \equiv \frac{\mathscr{B}[B \to H\mu^{+}\mu^{-}]}{\mathscr{B}[B \to He^{+}e^{-}]}$$

Theory Predictions: JHEP 06 (2016) 092 JHEP 12 (2007) 040 EPJC 76 (2016) 440 JHEP 12 (2020) 104

History of $\Lambda_b \to \Lambda^{(*)} \mathscr{C}^+ \mathscr{C}^-$ at LHCb

- 2017 First observation of $\Lambda_b \to p K^- \mu^+ \mu^-$
 - 3 fb⁻¹, tested for evidence of CP violation, none found
- 2018 Angular moments of $\Lambda_b \to \Lambda \mu^+ \mu^-$ measured

• 5 fb $^{-1}$, consistent with SM predictions

- 2020 Branching ratio in $\Lambda_b \to p K^- \ell^+ \ell^- \, {\rm decays}$
 - 5 fb⁻¹, $R_{pK}^{-1} = 1.17 \left({}^{+0.18}_{-0.16} \right)_{\text{stat}} \pm (0.07)_{\text{syst}}$
 - First test of LFU with *b*-baryons
 - First observation of $\Lambda_b \to p K^- e^+ e^-$

Theory Predictions: JHEP 06 (2016) 092 JHEP 12 (2007) 040 EPJC 76 (2016) 440 JHEP 12 (2020) 104

History of
$$\Lambda_b \to \Lambda^{(*)} \mathscr{C}^+ \mathscr{C}^-$$
 at LHCb

History of $\Lambda_h \to \Lambda^{(*)} \ell^+ \ell^-$ at LHCb

- 2017 First observation of $\Lambda_h \rightarrow p K^- \mu^+ \mu^-$
 - 3 fb^{-1} , tested for evidence of CP violation, none found
- 2018 Angular moments of $\Lambda_b \to \Lambda \mu^+ \mu^-$ measured

• 5 fb^{-1} , consistent with SM predictions

- 2020 Branching ratio in $\Lambda_h \to p K^- \ell^+ \ell^- \operatorname{decays}$
 - 5 fb⁻¹, $R_{pK}^{-1} = 1.17 \left({}^{+0.18}_{-0.16} \right)_{\text{stat}} \pm (0.07)_{\text{syst}}$
 - First test of LFU with *b*-baryons
 - First observation of $\Lambda_h \rightarrow p K^- e^+ e^-$

Candidates per 50 MeV/c

30

Theoretical and Experimental Challenge

 $\frac{\mathrm{d}\Gamma}{\mathrm{d}q^2}$

- LFU ratios depend on the strong phases of the intermediate states
- So many states much more overlap than R_K or $R_{K*}!$
- Interpretation is a challenge

Theoretical and Experimental Challenge

 $4 [m(\mu)]^{2}$

- LFU ratios depend on the strong phases of the intermediate states
- So many states much more overlap than R_K or R_{K^*} !
- Interpretation is a challenge
- Better statistics at the J/ψ pole $_{J/\psi(1S)}$ range, can give information on the spectrum

Decay Angles for $\Lambda_b \to pK^-\ell^+\ell^-$

- Decay rate is written in terms of three angles
 - The angle between the negative lepton and z-axis, θ_l
 - ${\scriptstyle \bullet}$ The angle between the proton and z-axis, θ_p
 - The angle between the leptonic and hadronic decay planes, $\phi = \phi_p + \phi_l$
- Assuming unpolarized Λ_b
 - True at LHCb JHEP 2006 (2020) 110

Building the Amplitude

Building the Amplitude

$$\begin{split} & \Lambda_b \to \Lambda V \\ \mathcal{M}(q^2, m_{pK}, \Omega) \propto e^{i\delta} \mathcal{H}^{\Lambda, \mathcal{O}_i}_{\lambda_\Lambda, \lambda_V}(q^2, m_{pK}) d^{1/2}_{\lambda_b, \lambda_\Lambda - \lambda_V}(\theta_b) \\ & \times \tilde{h}^{\mathcal{O}_i, \lambda_V}_{\lambda_1, \lambda_2}(q^2) D^{J_V *}_{\lambda_V, \lambda_1 - \lambda_2}(\phi_\ell, \theta_\ell, -\phi_\ell) \\ & \times h^{\Lambda}_{\lambda_\Lambda, \lambda_p}(m_{pK}) D^{J_\Lambda *}_{\lambda_\Lambda, \lambda_p}(\phi_p, \theta_p, -\phi_p) \end{split}$$

Building the Amplitude

$$\mathcal{M}(q^{2}, m_{pK}, \Omega) \propto e^{i\delta_{\Lambda}} \mathcal{H}^{\Lambda, \mathcal{O}_{i}}_{\lambda_{\Lambda, \lambda_{V}}}(q^{2}, m_{pK}) d^{1/2}_{\lambda_{b}, \lambda_{\Lambda} - \lambda_{V}}(\theta_{b}) \\ \times \tilde{h}^{\mathcal{O}_{i}, \lambda_{V}}_{\lambda_{1}, \lambda_{2}}(q^{2}) D^{J_{V}*}_{\lambda_{V}, \lambda_{1} - \lambda_{2}}(\phi_{\ell}, \theta_{\ell}, -\phi_{\ell}) \\ \times h^{\Lambda}_{\lambda_{\Lambda, \lambda_{p}}}(m_{pK}) D^{J_{\Lambda}*}_{\lambda_{\Lambda, \lambda_{p}}}(\phi_{p}, \theta_{p}, -\phi_{p}) \\ V \to \ell^{+} \ell^{-}$$

Building the Amplitude

$$\mathcal{M}(q^{2}, m_{pK}, \Omega) \propto e^{i\delta_{\Lambda}} \mathcal{H}^{\Lambda, \mathcal{O}_{i}}_{\lambda_{\Lambda}, \lambda_{V}}(q^{2}, m_{pK}) d^{1/2}_{\lambda_{b}, \lambda_{\Lambda} - \lambda_{V}}(\theta_{b}) \\ \times \tilde{h}^{\mathcal{O}_{i}, \lambda_{V}}_{\lambda_{1}, \lambda_{2}}(q^{2}) D^{J_{V}*}_{\lambda_{V}, \lambda_{1} - \lambda_{2}}(\phi_{\ell}, \theta_{\ell}, -\phi_{\ell}) \\ \times h^{\Lambda}_{\lambda_{\Lambda}, \lambda_{p}}(m_{pK}) D^{J_{\Lambda}*}_{\lambda_{\Lambda}, \lambda_{p}}(\phi_{p}, \theta_{p}, -\phi_{p}) \\ \Lambda \to pK^{-}$$

Initial Amplitudes for $\Lambda_b \to \Lambda V$

$$\begin{aligned} \mathcal{H}_{\lambda_{\Lambda},\lambda_{V}}^{\Lambda,7^{(\prime)}}(q^{2},m_{pK}) &= -\frac{2m_{b}}{q^{2}}\frac{\mathcal{C}_{7^{(\prime)}}^{\text{eff}}}{2} \ e^{i\delta_{\Lambda}}\left(H_{\lambda_{\Lambda},\lambda_{V}}^{\Lambda,T} \mp H_{\lambda_{\Lambda},\lambda_{V}}^{\Lambda,T5}\right) \\ \mathcal{H}_{\lambda_{\Lambda},\lambda_{V}}^{\Lambda,9^{(\prime)}}(q^{2},m_{pK}) &= \qquad \frac{\mathcal{C}_{9^{(\prime)}}^{\text{eff}}}{2} \ e^{i\delta_{\Lambda}}\left(H_{\lambda_{\Lambda},\lambda_{V}}^{\Lambda,V} \mp H_{\lambda_{\Lambda},\lambda_{V}}^{\Lambda,A}\right) \\ \mathcal{H}_{\lambda_{\Lambda},\lambda_{V}}^{\Lambda,10^{(\prime)}}(q^{2},m_{pK}) &= \qquad \frac{\mathcal{C}_{10^{(\prime)}}}{2} e^{i\delta_{\Lambda}}\left(H_{\lambda_{\Lambda},\lambda_{V}}^{\Lambda,V} \mp H_{\lambda_{\Lambda},\lambda_{V}}^{\Lambda,A}\right) \end{aligned}$$

$$H^{\Lambda,\Gamma^{\mu}}_{\lambda_{\Lambda},\lambda_{V}} = arepsilon_{\mu}^{*}\left(\lambda_{V}
ight) \left\langle \Lambda | \bar{s} \Gamma^{\mu} b | \Lambda_{b}
ight
angle$$

Form Factors

 $\left\langle \Lambda | \bar{s} \Gamma^{\mu} b | \Lambda_b \right\rangle_{\text{gen}} = \bar{u}_{\alpha} \left(\Lambda \right) \left[v^{\alpha} \left(X_{\Gamma^1}(q^2) \gamma^{\mu} + X_{\Gamma^2}(q^2) v^{\mu} + X_{\Gamma^3}(q^2) v'^{\mu} \right) + X_{\Gamma^4}(q^2) g^{\alpha \mu} \right] u \left(\Lambda_b \right)$

- For $J_{\Lambda}=1/2$:
 - 3 form factors per current: $F_1^{(T)}\left(q^2\right)$, $F_2^{(T)}\left(q^2\right)$, and $F_3^{(T)}\left(q^2\right)$
- For $J_{\Lambda} = 3/2$ or 5/2:
 - 4 form factors per current: $F_1^{(T)}\left(q^2
 ight)$, $F_2^{(T)}\left(q^2
 ight)$, $F_3^{(T)}\left(q^2
 ight)$, and $F_4^{(T)}\left(q^2
 ight)$
- The above are for vector and tensor currents. The axial vector and axial tensor form factors are similarly named, with $F_i^{(T)} \rightarrow G_i^{(T)}$

Mott-Roberts: IJMPA 27 05 1250016 (2012)

Form Factor History

- 2012 Mott and Roberts calculate form factors for $\Lambda_b \to \Lambda^{(*)}$ in a non-relativistic quark model, using analytic and numeric methods (<u>IJMPA 27 05 1250016 (2012)</u>)
 - Most general description of $\Lambda_b \to \Lambda^{(*)}$ form factors
- 2019 Descotes-Genon and Novoa-Brunet study form factors for $\Lambda_b \to \Lambda^*(1520)$, in terms of a helicity basis (JHEP 06 (2019) 136)
- 2021 Meinel and Rendon publish first lattice QCD calculation of form factors for $\Lambda_b \rightarrow \Lambda^*(1520)$ (PRD 103 (2021) 074505)
- 2022 Amhis et al perform dispersive analysis of $\Lambda_b \to \Lambda^*(1520)$ and obtain predictions for some observables in $\Lambda_b \to \Lambda^*(1520)\ell^+\ell^-$ decays (arXiv:2208.08937)

Building the Amplitude

$$d\Gamma = rac{\overline{\left|\mathcal{M}
ight|}^2}{2m_{\Lambda_b}}(2\pi)^4 d\Phi_4$$

$$\frac{d^{5}\Gamma}{dq^{2}dm_{pK}d\Omega} \propto \sum_{i=1}^{46} K_{i}\left(q^{2}, m_{pK}\right) f_{i}\left(\Omega\right)$$

i	$f_i(\vec{\Omega})$	i	$f_i(ec{\Omega})$
1	$\frac{1}{\sqrt{3}}P_0^0(\cos\theta_p)P_0^0(\cos\theta_\ell)$	24	$\frac{1}{2}\sqrt{\frac{7}{3}}P_3^1(\cos\theta_p)P_1^1(\cos\theta_\ell)\cos\phi$
2	$P_0^0(\cos\theta_p)P_1^0(\cos\theta_\ell)$	25	$\frac{1}{2}P_4^1(\cos\theta_p)P_2^1(\cos\theta_\ell)\cos\phi$
3	$\sqrt{\frac{5}{3}}P_0^0(\cos\theta_p)P_2^0(\cos\theta_\ell)$	26	$\frac{3}{2\sqrt{5}}P_4^1(\cos\theta_p)P_1^1(\cos\theta_\ell)\cos\phi$
4	$P_1^0(\cos\theta_p)P_0^0(\cos\theta_\ell)$	27	$\frac{1}{3}\sqrt{\frac{11}{6}}P_5^1(\cos\theta_p)P_2^1(\cos\theta_\ell)\cos\phi$
5	$\sqrt{3}P_1^0(\cos\theta_p)P_1^0(\cos\theta_\ell)$	28	$\sqrt{\frac{11}{30}}P_5^1(\cos\theta_p)P_1^1(\cos\theta_\ell)\cos\phi$
6	$\sqrt{5}P_1^0(\cos\theta_p)P_2^0(\cos\theta_\ell)$	29	$\sqrt{\frac{5}{6}}P_1^1(\cos\theta_p)P_2^1(\cos\theta_\ell)\sin\phi$
7	$\sqrt{\frac{5}{3}}P_2^0(\cos\theta_p)P_0^0(\cos\theta_\ell)$	30	$\sqrt{\frac{3}{2}}P_1^1(\cos\theta_p)P_1^1(\cos\theta_\ell)\sin\phi$
8	$\sqrt{5}P_2^0(\cos\theta_p)P_1^0(\cos\theta_\ell)$	31	$\frac{\sqrt{5}}{3\sqrt{6}}P_2^1(\cos\theta_p)P_2^1(\cos\theta_\ell)\sin\phi$
9	$\frac{5}{\sqrt{3}}P_2^0(\cos\theta_p)P_2^0(\cos\theta_\ell)$	32	$\sqrt{\frac{5}{6}}P_2^1(\cos\theta_p)P_1^1(\cos\theta_\ell)\sin\phi$
10	$\sqrt{\frac{7}{3}}P_3^0(\cos\theta_p)P_0^0(\cos\theta_\ell)$	33	$\frac{1}{6}\sqrt{\frac{35}{3}}P_3^1(\cos\theta_p)P_2^1(\cos\theta_\ell)\sin\phi$
11	$\sqrt{7}P_3^0(\cos\theta_p)P_1^0(\cos\theta_\ell)$	34	$\frac{1}{2}\sqrt{\frac{7}{3}}P_3^1(\cos\theta_p)P_1^1(\cos\theta_\ell)\sin\phi$
12	$\sqrt{rac{35}{3}}P_3^0(\cos heta_p)P_2^0(\cos heta_\ell)$	35	$\frac{1}{2}P_4^1(\cos\theta_p)P_2^1(\cos\theta_\ell)\sin\phi$
13	$\sqrt{3}P_4^0(\cos\theta_p)P_0^0(\cos\theta_\ell)$	36	$\frac{3}{2\sqrt{5}}P_4^1(\cos\theta_p)P_1^1(\cos\theta_\ell)\sin\phi$
14	$3P_4^0(\cos\theta_p)P_1^0(\cos\theta_\ell)$	37	$\frac{1}{3}\sqrt{\frac{11}{6}}P_5^1(\cos\theta_p)P_2^1(\cos\theta_\ell)\sin\phi$
15	$\sqrt{15}P_4^0(\cos\theta_p)P_2^0(\cos\theta_\ell)$	38	$\sqrt{\frac{11}{30}} P_5^1(\cos\theta_p) P_1^1(\cos\theta_\ell) \sin\phi$
16	$\sqrt{\frac{11}{3}}P_5^0(\cos\theta_p)P_0^0(\cos\theta_\ell)$	39	$\frac{5}{12\sqrt{6}}P_2^2(\cos\theta_p)P_2^2(\cos\theta_\ell)\cos 2\phi$
17	$\sqrt{11}P_5^0(\cos\theta_p)P_1^0(\cos\theta_\ell)$	40	$\frac{1}{12}\sqrt{\frac{7}{6}}P_3^2(\cos\theta_p)P_2^2(\cos\theta_\ell)\cos 2\phi$
18	$\sqrt{\frac{55}{3}}P_5^0(\cos\theta_p)P_2^0(\cos\theta_\ell)$	41	$\frac{1}{12\sqrt{2}}P_4^2(\cos\theta_p)P_2^2(\cos\theta_\ell)\cos 2\phi$
19	$\sqrt{\frac{5}{6}}P_1^1(\cos\theta_p)P_2^1(\cos\theta_\ell)\cos\phi$	42	$\frac{1}{12}\sqrt{\frac{11}{42}}P_5^2(\cos\theta_p)P_2^2(\cos\theta_\ell)\cos 2\phi$
20	$\sqrt{\frac{3}{2}}P_1^1(\cos\theta_p)P_1^1(\cos\theta_\ell)\cos\phi$	43	$\frac{5}{12\sqrt{6}}P_2^2(\cos\theta_p)P_2^2(\cos\theta_\ell)\sin 2\phi$
21	$\frac{5}{3\sqrt{6}}P_2^1(\cos\theta_p)P_2^1(\cos\theta_\ell)\cos\phi$	44	$\frac{1}{12}\sqrt{\frac{7}{6}}P_3^2(\cos\theta_p)P_2^2(\cos\theta_\ell)\sin 2\phi$
22	$\sqrt{\frac{5}{6}}P_2^1(\cos\theta_p)P_1^1(\cos\theta_\ell)\cos\phi$	45	$\frac{1}{12\sqrt{2}}P_4^2(\cos\theta_p)P_2^2(\cos\theta_\ell)\sin 2\phi$
23	$\frac{1}{6}\sqrt{\frac{35}{3}}P_3^1(\cos\theta_p)P_2^1(\cos\theta_\ell)\cos\phi$	46	$\frac{1}{12}\sqrt{\frac{11}{42}}P_5^2(\cos\theta_p)P_2^2(\cos\theta_\ell)\sin 2\phi$

Table 2: Orthonormal basis functions for the angular terms $f_1(\vec{\Omega}) - f_{50}(\vec{\Omega})$ that arise in **20** he unpolarised case, where $\phi = \phi_p + \phi_\ell$.

The Method of Moments - Why?

- Extract individual angular "moments" from a data sample
- Advantages:

PRD 91 (2015) 114012

- Don't need to do a fit
- Can extract model-independent observables
- Robustness of result doesn't depend on the size of the dataset
- Disadvantage: uncertainties are 10-30% higher than those from a good fit
- Well-established procedure from B-factory era, has been used in several LHCb analyses

<u>JHEP 12 (2016) 065</u> <u>PRL 117 (2016) 8, 082002</u> <u>JHEP 09 (2018) 146</u>

The Method of Moments - How?

• Derive/choose an angular basis $f_i(\Omega)$:

$$\frac{d\Gamma}{dq^2 dm_{pK} d\Omega} = \sum_i K_i \left(q^2, m_{pK}\right) f_i(\Omega)$$

- Derive weighting functions $w_j(\Omega)$ orthogonal to the basis, such that $\int f_i(\Omega) w_j(\Omega) d\Omega \propto \delta_{ij}$
- And then it's just addition*

$$K_{j}\left(q^{2}, m_{pK}\right) = \int \sum_{i} K_{i}\left(q^{2}, m_{pK}\right) f_{i}(\Omega) w_{j}(\Omega) d\Omega = \sum_{n} w_{j}(\Omega_{n})$$

PRD 91 (2015) 114012

*assuming no acceptance effects

 $\Lambda_b \rightarrow p K^- \mu^+ \mu^-$ Studies

Branching fraction for SM and 5 non-SM scenarios

 $\Lambda_b \rightarrow p K^- \mu^+ \mu^-$ Studies

• Branching fraction for SM and 5 non-SM scenarios

 $\Lambda_b \rightarrow p K^- \mu^+ \mu^-$ Observables

 $\Lambda_b \rightarrow p K^- \mu^+ \mu^-$ Observables

Standard Model $C_9 = -C_9^{SM}$ $C_{10} = -C_{10}^{SM}$ $C'_9 = C_9^{SM}$ $C'_{10} = C_{10}^{SM}$ global fit

 $K_2(q^2)$ - measures lepton-side forwardbackward asymmetry, proportional to what's also referred to as \mathscr{A}_{FB}

 $\Lambda_b \rightarrow p K^- \mu^+ \mu^-$ Observables

Standard Model $C_9 = -C_9^{SM}$ $C_{10} = -C_{10}^{SM}$ $C'_9 = C_9^{SM}$ $C'_{10} = C_{10}^{SM}$ global fit

$$\begin{split} K_3\left(q^2\right) &\text{- asymmetry in}\\ \text{the squares of the}\\ \text{amplitudes between}\\ \text{amplitudes with}\\ |\lambda_V| &= 1 \text{ and } \lambda_V = 0 \end{split}$$

 $\Lambda_b \rightarrow p K^- \mu^+ \mu^-$ Observables

Standard Model $C_9 = -C_9^{SM}$ $C_{10} = -C_{10}^{SM}$ $C'_9 = C_9^{SM}$ $C'_{10} = C_{10}^{SM}$ global fit

 $K_4(q^2)$ - measures hadron-side forwardbackward asymmetry, among other contributions

$\Lambda_b \rightarrow p K^- \mu^+ \mu^-$ Observables

Experimental Challenges with Electrons

Experimental Challenges with Electrons

What Do We Do About Acceptance?

• Given a detector efficiency function $\epsilon(\Omega)$, the efficiency matrix is defined as

$$E_{(i,j,\dots,n)} = \int \epsilon(\Omega) \left[f_i(\Omega) f_j(\Omega) \dots f_n(\Omega) \right] d\Omega = \frac{\Phi}{N_{MC,gen}} \left[\sum_{k=1}^{N_{MC,aec}} f_i(\Omega_k) f_j(\Omega_k) \dots f_n(\Omega_k) \right]$$

• Where the measured moments are defined in terms of the efficiency matrix and the true moments

$$K_{i,\text{meas}}\left(q^{2}, m_{pK}\right) = \sum_{k=1}^{N_{data}} f_{i}(\Omega_{k}) = E_{ij}K_{j,\text{true}}\left(q^{2}, m_{pK}\right)$$

• And we can recover the efficiency-corrected true moments by inverting the efficiency matrix

$$K_{i,\text{true}}\left(q^2, m_{pK}\right) = \left(E^{-1}\right)_{ij} K_{j,\text{meas}}\left(q^2, m_{pK}\right)$$

A Non-Trivial Calculation

- To describe the unpolarized $\Lambda_b \to p K^- \mu^+ \mu^-$ decay, a basis of 46 angular moments is used 186 are required if the Λ_b is polarized
- Detector acceptance and resolution generate higher unphysical moments that must be unfolded
- To properly extract the true observables, a much larger basis is needed than is necessary to simply describe the system
- This statement becomes more true as acceptance effects become stronger, and as detector resolution decreases
- How large of a basis do we need? We don't know (yet)

LHCb Experimental Overview

- pp Collisions
- Forward
 Spectrometer
- Collected 9 fb⁻¹ in Runs 1 and 2
- Run 3 ongoing
- Plan to collect over 300 fb^{-1} by end of Run 5

Brem Recovery Challenge

- e^{\pm} loses energy before it reaches the ECal
- Energy reconstruction difficult
- Worse energy resolution
- At LHCb, most electrons emit one energetic brem before the magnet
- Over half of brem photons are not detected

Figure credit: M. Borsato

Future plans

- Future upgrades will see an overhaul of the LHCb ECal
- Goals:
 - Increase radiation tolerance
 - Maintain energy resolution
 - Include timing resolution

Smaller Cell Sizes→Better Spatial Resolution

- The geometry of the proposed ECal upgrade is projected to provide better spatial resolution of our ECal showers
- Right: Position resolution of each type of ECal module for single photon cluster
- Current technology consists of largecelled modules - the addition of smaller-celled modules should improve position resolution

Plans for
$$\Lambda_b \to pK^-e^+e^-$$

- Go beyond R_{pK} we could also take the μ/e ratios of angular observables
- LHCb is studying this in $B^0 \to K^{*0} \ell^+ \ell^-$ decays
- We could do the same for $\Lambda_b \to p K^- \ell^+ \ell^-$
 - Richer spin structure \rightarrow more observables
 - Better understanding of the form factors is necessary for interpretation

Summary

- Current tests of LFU show tensions with the Standard Model
- LHCb's production of b-baryons provides the opportunity to test LFU in the baryonic sector
- Electron reconstruction capabilities at LHCb add a level of difficulty
- Understanding the angular structure is critical
- Goal: measure μ/e ratios of angular observables
- Suggestions?

Backup

Ensemble of Lambdas

resonance	$\mid m_{\Lambda} \; [{ m GeV} / c^2 \;]$	$\Gamma_{\Lambda} \; [{ m GeV} / c^2 \;]$	$2J_{\Lambda}$	P_{Λ}	$\mathcal{B}(\Lambda o \overline{N}K)$	used \mathcal{B}_{Λ}
$\Lambda(1405)$	1.405	0.051	1	_	n/a	1.0000
$\Lambda(1520)$	1.519	0.016	3	—	0.45	0.2250
$\Lambda(1600)$	1.600	0.200	1	+	0.15-0.30	0.1125
$\Lambda(1670)$	1.674	0.030	1	—	0.20-0.30	0.1250
$\Lambda(1690)$	1.690	0.070	3	—	0.20-0.30	0.1250
$\Lambda(1800)$	1.800	0.200	1	—	0.25-0.40	0.1625
$\Lambda(1810)$	1.790	0.110	1	+	0.05-0.35	0.1000
$\Lambda(1820)$	1.820	0.080	5	+	0.55-0.65	0.3000
$\Lambda(1890)$	1.890	0.120	3	+	0.24-0.36	0.1500
$\Lambda(2110)$	2.090	0.250	5	+	0.05-0.25	0.0750

A. Beck et al: Private Communication

(Publication in Preparation)

Hadronic Amplitudes for $\Lambda \rightarrow pK^-$

• Natural parity Λ

$$h_{\lambda_{\Lambda},\lambda_{p}}^{\Lambda}\left(m_{pK}\right) = \frac{g}{\left(m_{pK}^{2} - m_{\Lambda}^{2}\right) - im_{pK}\Gamma\left(m_{pK}\right)}\bar{u}\left(p\right)\gamma_{5}U(\Lambda)$$

- Unnatural parity Λ

$$U(k,\lambda_{\Lambda}) = egin{cases} u(k,\lambda_{\Lambda}) &, J_{\Lambda} = rac{1}{2} \ k_{1}^{\mu}u_{\mu}(k,\lambda_{\Lambda}) &, J_{\Lambda} = rac{3}{2} \ k_{1}^{\mu}k_{1}^{
u}u_{\mu
u}(k,\lambda_{\Lambda}) &, J_{\Lambda} = rac{5}{2} \end{cases}$$

$$h_{\lambda_{\Lambda},\lambda_{p}}^{\Lambda}\left(m_{pK}\right) = -\frac{g}{\left(m_{pK}^{2} - m_{\Lambda}^{2}\right) - im_{pK}\Gamma\left(m_{pK}\right)}\bar{u}\left(p\right)U(\Lambda)$$

Leptonic Amplitudes for $V \to \ell^+ \ell^-$

$$\tilde{h}_{\lambda_{1},\lambda_{2}}^{J_{\ell\ell}}\left(q^{2}\right) = \varepsilon_{\mu}\left(\lambda_{1}-\lambda_{2}\right)\bar{u}\left(\ell_{2}\right)\Gamma^{\mu}v\left(\ell_{1}\right)$$

$$\begin{split} \tilde{h}_{++}^{V,0} \left(q^{2}\right) &= 0 & \tilde{h}_{++}^{A,0} \left(q^{2}\right) = 2m_{\ell} \\ \tilde{h}_{++}^{V,1} \left(q^{2}\right) &= 2m_{\ell} & \tilde{h}_{++}^{A,1} \left(q^{2}\right) = 0 \\ \tilde{h}_{+-}^{V,1} \left(q^{2}\right) &= -\sqrt{2q^{2}} & \tilde{h}_{+-}^{A,1} \left(q^{2}\right) = \sqrt{2q^{2}}\beta_{\ell} \\ \tilde{h}_{-\lambda_{1},-\lambda_{2}}^{V,J_{\ell\ell}} \left(q^{2}\right) &= -\tilde{h}_{+\lambda_{1},+\lambda_{2}}^{V,J_{\ell\ell}} \left(q^{2}\right) & \tilde{h}_{-\lambda_{1},-\lambda_{2}}^{A,J_{\ell\ell}} \left(q^{2}\right) = \tilde{h}_{+\lambda_{1},+\lambda_{2}}^{A,J_{\ell\ell}} \left(q^{2}\right) \end{split}$$

$$\beta_{\ell} = \sqrt{1 - \frac{4m_{\ell}^2}{q^2}}$$
A. Beck et al: Private Communication
(Publication in Preparation)

Digging Deeper Into
$$R_{pK}$$

$$R_{pK}^{-1} = \frac{\mathscr{B}(\Lambda_b \to pK^-e^+e^-)}{\mathscr{B}(\Lambda_b \to pK^-J/\psi(\to e^+e^-))} * \frac{\mathscr{B}(\Lambda_b \to pK^-J/\psi(\to \mu^+\mu^-))}{\mathscr{B}(\Lambda_b \to pK^-\mu^+\mu^-)}$$

- Here we use the inverse definition because we expect small yields in the electron mode
- LHCb (right) found $R_{pK} = 0.86 \begin{pmatrix} +0.14 \\ -0.11 \end{pmatrix}_{stat} \pm (0.05)_{syst}$
- Uncertainty is dominated by statistics

Form Factors for $\Lambda_b \to \Lambda V$ $H^{\Lambda,\Gamma^{\mu}}_{\lambda_{\Lambda},\lambda_{V}} = \varepsilon^*_{\mu} (\lambda_{V}) \langle \Lambda | \bar{s} \Gamma^{\mu} b | \Lambda_b \rangle$

$$\left\langle \Lambda |\bar{s}\Gamma^{\mu}b|\Lambda_{b}\right\rangle_{\text{gen}} = \bar{u}_{\alpha}\left(\Lambda\right) \left[v^{\alpha}\left(X_{\Gamma^{1}}(q^{2})\gamma^{\mu} + X_{\Gamma^{2}}(q^{2})v^{\mu} + X_{\Gamma^{3}}(q^{2})v'^{\mu}\right) + X_{\Gamma^{4}}(q^{2})g^{\alpha\mu}\right]u\left(\Lambda_{b}\right)$$

Vector Current:

$$\left\langle \Lambda | \bar{s} \gamma^{\mu} b | \Lambda_b \right\rangle_{\text{gen}} = \bar{u}_{\alpha} \left(\Lambda \right) \left[v^{\alpha} \left(F_1(q^2) \gamma^{\mu} + F_2(q^2) v^{\mu} + F_3(q^2) v'^{\mu} \right) + F_4(q^2) g^{\alpha \mu} \right] u \left(\Lambda_b \right)$$

$$\begin{split} \langle \Lambda | \bar{s} \gamma^{\mu} b | \Lambda_{b} \rangle_{\text{hel}} &= \bar{u}_{\alpha} \left(\Lambda \right) \left\{ p^{\alpha} \bigg[f_{t}^{V}(q^{2}) \frac{m_{\Lambda_{b}} - m_{\Lambda}}{q^{2}} q^{\mu} + f_{0}^{V}(q^{2}) \frac{m_{\Lambda_{b}} + m_{\Lambda}}{s_{+}} e^{\mu} \right. \\ &\left. + f_{\perp}^{V}(q^{2}) \left(\gamma^{\mu} - 2 \frac{m_{\Lambda} p^{\mu} + m_{\Lambda_{b}} p'^{\mu}}{s_{+}} \right) \bigg] \right. \\ &\left. + f_{g}^{V}(q^{2}) \left[g^{\alpha \mu} + m_{\Lambda} \frac{p^{\alpha}}{s_{-}} \left(\gamma^{\mu} - 2 \frac{p'^{\mu}}{m_{\Lambda}} + 2 \frac{m_{\Lambda} p^{\mu} + m_{\Lambda_{b}} p'^{\mu}}{s_{+}} \right) \right] \right\} u \left(\Lambda_{b} \right) \end{split}$$

Form Factors (Helicity Basis)

- For $J_{\Lambda} = 1/2$:
 - (Axial) vector: 3 form factors: $f_t^{V(A)}(q^2)$, $f_0^{V(A)}(q^2)$, and $f_{\perp}^{V(A)}(q^2)$
 - (Axial) tensor: 2 form factors: $f_0^{T(T5)}\left(q^2
 ight)$ and $f_{\perp}^{T(T5)}\left(q^2
 ight)$
- For $J_{\Lambda} = 3/2$:
 - (Axial) vector: 4 form factors: $f_t^{V(A)}(q^2)$, $f_0^{V(A)}(q^2)$, $f_{\perp}^{V(A)}(q^2)$, and $f_g^{V(A)}(q^2)$
 - (Axial) tensor: 3 form factors: $f_0^{T(T5)}\left(q^2\right)$, $f_{\perp}^{T(T5)}\left(q^2\right)$, and $f_g^{T(T5)}\left(q^2\right)$
- Tensor and axial tensor amplitudes require fewer form factors in helicity basis than in general basis.

The Method of Moments - Who?

- 2004 Studies of semileptonic B decays at BaBar
 - PRD 69 (2004) 111103, PRD 69 (2004) 111104, PRL 93 (2004) 011803
- 2006 Branching Fraction and Photon Energy Moments of $B \rightarrow X_s \gamma$ at BaBar
 - PRL 97 (2006) 171803
- 2016 Branching Fraction and Angular Moments of $B^0 \to K^+ \pi^- \mu^+ \mu^-$ at LHCb
 - JHEP 12 (2016) 065
- 2018 Angular Moments of $\Lambda_b \to \Lambda \mu^+ \mu^-$ at LHCb
 - JHEP 09 (2018) 146

Angular Fits

- Form factors partially cancel
 clean observables!
- Need to understand detector acceptance
- Many angular parameters require large yields
- Right: Angular observable P'_5

in $B^+ \to K^{*+} \mu^+ \mu^-$ decay

Theory Predictions: <u>EPJC 75 (2015) 382</u> <u>JHEP 06 (2016) 92</u> <u>JHEP 01 (2018) 93</u>

