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By now Soft-Collinear Effective Theory (SCET) is a textbook
method to perform resummations of large logarithms in
collider processes.

Many successful applications, but for hadron colliders mostly
at the level of inclusive cross sections (threshold
resummations).

Important to extent methods to processes with narrow jets in
the final state. Difficulties

e Traditional jet definitions impose complicated phase-
space constraints on high multiplicity final states

* Not all large logarithms are captured by standard soft-
collinear factorization (“non-global logarithms™)
Dasgupta, Salam ‘01
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Size of corrections

For narrow jets, perturbative corrections are
enhanced by Sudakov logarithms L = In(MJ/E.).

Correction to L~1

NLO
LL OCS”L” ~ 1

exp ( L gi(asL) + ga(asL) + aggs(asL) + aZgs(agl) + . .. )



Matching

For a description valid both at small and large jet mass,
one can should match fixed-order and resummed results.

e State of the artis NLO + LL (parton shower)

e For uniform accuracy throughout phase space, we
want NLO + NNLL.

Weak point of our current theoretical description of jet
processes Is poor parametric accuracy of resummation.



Outline

Will discuss three topics of increasing jettiness

1. Automated NLO+NNLL resummation for jet-veto

cross sections 1B, Frederix, Neubert, Rothen "14
(JHEP)

2. NNLL resummation for hadron collider dijet event
shapes 1B, Garciay Tormo '15 (JHEP) + ongoing
with Jan Piclum

3. Jet Effective Theory: Towards resummation for cone-
jet cross sections. Ongoing with Neubert, Rothen,
Shao



Automated NNLL+NLO resummation
for cross sections with a jet veto

1B, Frederix, Neubert, Rothen 1412.8408 (JHEP)



Higher-log resummations (in SCET or in QCD) are usually
carried out analytically, on a case-to-case basis. (Notable
exception: CAESAR Banfi, Salam, Zanderighi ‘04, ARES
Banfi, McAslan, Monni, Zanderighi ‘14)

* |nefficient and error prone
In contrast, LO and NLO computations have been
completely automated over the past years. These codes

can be used as a basis to perform resummation:

e Large logarithms arise near Born-level kinematics. Can
reweight LO events to achieve resummation.

« Can use NLO codes to compute ingredients for the
resummation: hard function, jet and soft functions



Cross section with a jet veto

A veto on jets p‘?ﬁt < p}eto ~ 15 — 30GeV isusedto
suppress top background, in particular in processes
iInvolving W-bosons, e.g. In

pp— W+ W-, pp—>H — W+ W-, etc.

veto
— Large Sudakov logarithms o I’ (pg )

A lot of work on their resummation, both in QCD and SCET;

* Higgs: Banfi, Salam, Zanderighi '12; + Monni '12; TB Neubert '12 +
Rothen '13; Tackmann, Walsh, Zuberi ’12 + Stewart '13; Liu Petriello ’13;
+ Boughezal, Tackmann and Walsh ‘14

o WA+ W-:Jaiswal, Okui’'14; Monni, Zanerighi '14; TB, Frederix, Neubert,
Rothen ‘14



Factorization theorem for o(pr'e*°)
W+ 1B, Neubert '12 + Rothen ‘13

Beam functions B(prvet) Hard functions H(Q)

* real emission with veto.  virtual corrections,
perturbative part ® PDF standard QCD loops
e process independent * process dependent

Born-level kinematics for small prveto



Resummed cross section

Born-level evolution factors, resummation
o (py?) _
dy dQ? dt

. , Q —2F,(p™°, 1)
UO(Q 7t7:UJ) UQ(Q ,/Lh,,u) <pveto>

T
X HQCY(Qza fa :uh)Bq(gla Ly p%etO) Bcj(an Iy p%etO)

hard function beam functions

“Born-level cross section” x “prefactor A(prveto)”

e Can obtain resummed cross section by
reweighting Born-level events with P(prVeto)



Automated Resummation using Madgraph5_aMC@NLO
Scheme A: NNLL from reweighting Born events

* Rescale each LO event weight with the ratio to the
resummed cross section.

* Beam functions included via modified PDFs
e Tabulate grid of values, use standard PDF interpolation

* One-loop hard function (only process dependent piece)
computed using the MadGraph5_aMC@NLO code

* Additive matching to NLO fixed-order

ONNLL4NLO = ONNLL(/4; fn) + (UNLO(Nm> — onNLL (Him) ’expanded to NLO)



Automated Resummation using Madgraph5_aMC@NLO

Scheme B: NNLL+NLO with automated computation of the beam
functions and matching corrections

* Define reduced cross section by dividing out hard function

and evolution factors
Power-correction
d;;(pT™°) = dU?j(Q2a t, 1) Bi(&1, 7*°) Bj(&a, p7°) + Ad

* Reduced cross section is free of large log’s. Compute it at
NLO for p=pr®*° by running aMC@NLO in fixed-order mode

* multiply back evolution factor and hard function

« MadGraph5_aMC@NLO computes both hard and beam
functions!

* Automatically includes multiplicative matching to NLO



Comparison
Scheme A

* |s easily extended to higher accuracy
e Can be applied to other processes

* Flexible, since it works with events (up to the NLO
matching!) s,
Scheme B ;"

30F

* Resummation and NLO
matching in one run 0}

a(py™) [pb]

* Beam functions on the fly ol |

10 15 20 25 30 35
Py [GeV]

Both will be included in version 2.3 of Madgraph5_aMC@NLO
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e For NLO result we vary pr¥¢°/2 < u < 2Q.

=Q

e NNLL+NLO is close to NLO at u

Matching corrections are small, grow linearly to 3% at

80 GeV. Can neglect matching at low pr¥e®.

veto_

o7



Decays and Cuts

Important advantage:

Straightforward to include the

decay of the vector bosons and

cuts on the final state leptons.

E.g. cuts by ATLAS in ete-
channel

1. lepton pr > 20 GeV
2. leading lepton pr > 25 GeV

3. lepton pseudorapidity n. < 1.37
or 1.52 < n. < 2.47

4. Myt~ > 15GeV and
Mt - —myz| > 15GeV

020 ———————————————————————
 ppoOWrW sete vv+ 0=227 GeV |
0.15
=
=
£ 0.10
>N
S
5
0.05 ¢ NNLL+NLO -
NLL+NLO
NLO
0.00 | S A L
10 15 20 25 30 35
0015 —4mMm———————————————————
5 0.010:
T 0005 _ E
3 0.000° ;
-00056 . . o / ““““““ E
10 15 0 25 30 35

Py [GeV]

matching corrections remain small!



Comparison to matched PS

457*‘*‘\““\‘*“\“‘*\*“‘

Observation: At higher
values of pr’®* the matched
parton shower leads to lower
results.

40 -
35

30 -

a(py*) [pb]

25:
Unitarity of the shower, leads -
to compensation of changes
at low transverse momentum.

NNLL+NLO

15
NLO

1 O I I I I | I I I I | I I I I | I I I I | I I I I
10 15 20 25 30 35

Py [GeV]

Matched parton shower underestimates the jet-veto
Cross section

* Inline with conclusions of Monni, Zanderighi 14



Extension to other observables

Since Sudakov logarithms always arise near Born-level
Kinematics, the same technique for automated resummation
can also be used for more general observables.

Complications:

* Nontrivial color structure of the hard function. Need color
information and imaginary part of amplitudes. Modified
GoSam (Broggio + GoSam) can provide this information.

 NNLL needs automated computations of one-loop beam,
jet, and soft functions, two-loop anomalous dimensions.

» Restriction to global observables



NNLL resummation for dijet event shapes
at hadron colliders

B, Xavier Garcia Tormo 1502.04136 (JHEP)
and ongoing + Jan Piclum



Resummation for LHC processes

Many higher-log results for ete- but, only for a handful

of NNLL predictions for differential cross sections for
hadron colliders

e //W/H transverse momentum spectra

e Z/W/H/WWY/... cross sections with jet-veto
* Beam thrust

e 1-jettiness in Hand W production

Not a single dijet observable! (Some threshold results.)
Chien, Kelley, Schwartz, Zhu '10-12



Canonical e e event shape: thrust

— — - §
T D i |pi - 1| = =
= max —
T=1-T T 0 TR 1/2

Precise measurement at LEP, theoretical predictions
at N3SLL+NNLO 718, schwartz ‘08.

as(mz) = 0.1135 £ (0.0002) expt £ (0.0005)nadr £ (0.0009) pert
Abbate, Fickinger, Hoang, Mateu and Stewart ‘10



Hadron collider event shapes

 Each event has two jets down the beam pipe, no
detector close to the beam.

* Natural to define event shapes in the transverse plane.
(Alternative: N-jettiness Stewart, Tackmann, Waalewijn ‘10. Groups
particles using multiple reference vectors.)

side view transverse plane

X

o]




Hadron collider event shapes

Going into the transverse plane, basically any ete™ event
shape can be turned into a hadron collider event shape.

Large class of such observables was computed at NLL

+NLO using automated CAESAR framework. Banfi, Salam,
Zanderighi '04, '10

e Ongoing work to extend this to NNLL (“ARES”), first
results for e*e™ Banfi, McAslan, Monni and Zanderighi ‘14

Transverse thrust has been measured both at the Tevatron
and the LHC

Have analyzed transverse thrust in SCET, as a first step
towards a more general understanding of this class of
event shapes.



v \6, -
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Factorization involves several interesting aspects
o Collinear fields with different virtuality: SCET4
e Nontrivial color structure of hard and soft function

e Collinear anomaly (with color structure!)



Factorization theorem

do~H;i ;S J1Q Jo® B, ® By
« Beam functions B, By describe initial state radiation.

e Different partonic channels

A

e nontrivial color structure in hard function H,y and soft
functions Sy



NNLL Resummation
Need
 One-loop hard, jet, , beam functions

e Two-loop anomalous dimensions for all these
objects

* The two-loop anomaly exponent

Computed all one-loop ingredients in 1502.04136

1

XX N <l




At first sight, many two-loop computations seem necessary
to achieve NNLL, but using

 RG invariance and universality
e same jet functions in p p and ete collisions
e same beam func. in pp — 2 jets and pp — ete”

« known results for two-loop hard anomalous dimensions
Becher, Neubert ‘09, Casimir scaling of soft function

It turns out, everything is known except anomaly exponent
F. and jet anomalous dimension y., !

e Have determined both of these ingredients
numerically. TB, Garcia-Tormo, Piclum, to appear.



NNLL

We now have all ingredients for full NNLL resummation.
Implementation is work in progress

e Have coded up two-loop hard function matrices for
the different channels Broggio, Ferroglia, Pecjak and Zhang
1409.5294, including RG evolution.

 Have beam function interpolations in PDF format,
one-loop soft functions

e Find large perturbative corrections to jet, beam and
soft functions and to their anomalous dimensions!
This will translate into large corrections at NNLL.



NLL+NLO from CAESAR

Banfi, Salam and Zanderighi "10
15 S B —

10

0 0.1 0.2

NNLL correction will be relatively large, but the basic shape
stays the same.



Toy example: 1, In e"¢e

0.4
03"
do 0.2
dIn T

0.0

0.1

NLL

/Preliminary

NNLL

[ R | . | P N I
0.010 0.0150.020 0.030 0.050 0.070 0.100 0.150

T1

Pure resummation, no matching to NLO.



Underlying event

LHC, 14 TeV
Pt >200 GeV, lyjgiel <1,mc=1.5

o N A~ OO 0O O

Pvthia 6.4

from Banfi, Salam and Zanderighi '10

20

15

10

LHC, 14 TeV
pyy >1TeV, ijetsl <1,nc=15

O 005 0.1 0.15

parton level
hadron level (no UE)
hadron level (with UE) - - -



Glauber Gluons?

 From a theoretical perspective, UE modeling is quite unsatisfactory
* True MPI is power suppressed!

« Shouldn’t we be able to model-independently describe O(1)
effects in infrared safe observables?

e Glauber gluons [p* ~( A", N, \), m+n >2] could be the source of
remnant interactions

e Shown to be absent in DY Collins, Soper, Sterman, but could
contribute to transverse thrust Gaunt '15.

o Implementation in SCET is under way. Donoghue, Kamal El-
Menoufi, Ovanesyan; Fleming; Rothstein and Stewart

« Mao Zeng, last week: explicit example for the presence of
factorization breaking in beam thrust (spin asymmetry for yy
scattering in toy model with scalar quarks)



&

.

From SCET to
Jet Effective Theory

1B, Neubert, Rothen, Shao, work in progress



Jet cross section in SCET

Cross sections for narrow cone jets (e.g. Sterman-Weinberg)

contains large logarithnms In(o) and In([3).

Can compute such cross sections using standard SCET, but
this does not translate into a resummation of all large
logarithms:

* Non-global logarithms: soft function contains multiple
scales and therefore large logarithms, independent of .

Dasgupta, Salam ‘01



Non-global logarithms in SCET

A number fixed-order computations for hemisphere soft functions

« Two-loop result for S(w,wg). Kelley, Schwartz, Schabinger and Zhu
'11; Hornig, Lee, Stewart, Walsh and Zuberi '11; Kelley; with jet-
cone Kelley, Schwartz, Schabinger and Zhu ‘11; von Manteuffel,
Schabinger and Zhu ‘13

e Leading non-global log terms in S(w,wR) up to 5 loops by solving
BMS equation. Schwartz, Zhu ‘14

Recently, interesting framework for approximate resummation of such

logs, based on resummation for observables with n soft subjets was
proposed. Larkoski, Moult and Neill “15

« Seems to work numerically well in the considered example, but
systematics of expansion in subjets unclear. Expansion parameter?

A systematic factorization of non-global observables is missing.



Cheung, Luke and Zuberi '09 have computed one-
loop jet cross sections using SCET.

Result for the soft function for Sterman-Weinberg

1 Cr (4 2
—U§W _ LsTF (—ln5—4ln25+81n51nL—w—)
g 2T € 5Q 3

multiple scales!
they use SCET with the following scaling:

(p+7p—7pJ_)
collinear: p.~Q( 1, 8 , §)

soft: ps~Q( B8, B, 6)



The proper effective theory should completely separate the
physics at different scales.

To achieve homogeneous scaling one must systematically

expand away power suppressed contributions, also in the
phase-space constraints: method of regions

As a result of the expansion

« Collinear fields are always inside the jet (they have
generically large energies).

0(BQ — 2E.) — 0(—2E;) =0

« Soft fields are always outside jet (they have generically
large angle).



Coft mode

To reproduce QCD when performing the expansion, we
need additional region

(p+7p—7pJ_)
coft: pi~BQ( 1, 02, 6)

This momentum mode is simultaneously collinear and soft
e Describes soft small angle radiation.
« Characteristic scale 60O, much lower than soft scale!

e Can be be emitted both inside and outside of the jet.



One-loop result

2€ 2
4 6 Ir
hard Aoy — asCF fad =20y
oh ar 0 Q e ¢ T 3 0

| SC 2¢ 4 6
(@nti)eoll.  Aree= "o (g5) (57 )
C % /4 Complete scale
Ol :
soft Aoy = 47TF o0 (é) (6_2 _ W2> separation!

. OASCF 9! 2€ 4 7T2
(anti-)coft Aoy ;= 1 00 048 =t 3 )

5%

tot _ %sCF ’
Ao = o0 —161n51n6—|—121n5+00—|—7—16

47

Constant ¢g depends on definition of jet axis:
co = —3m2 + 26. (Sterman-Weinberg)
co = —5m?/3+14+12In2 (thrust axis)



Higher-order structure?

Can now construct effective field theory with collinear,
soft and coft degrees of freedom and then analyze
factorization of cross section.

Simplest guess would be factorization theorem

o(8,8) = a0 H(Q, 11)[J(Q5, )]> S(QB, 1) ® U(QBS, )

hard  (anti-)coll. soft (anti-)coft

It turns out that there is a much richer structure due to
nontrivial interplay of coft and collinear fields!



Factorization of the soft function

The soft function for cone jets factorizes as

B
St (Q8, 6, 1) = / 18 Spy (QB — QF, 1) U(QS', )

0

Soft contribution (anti-)coft
(same as in DY) contribution

* Veritied this explicitly at the 2-loop level. Two-loop
Stul can be derived from results for the thrust cone-
jet soft function. Manteuffel, Schabinger and Zhu ‘13

* Can resum large logs in Suiusing RG.



Soft-collinear factorization Coft-collinear factorization

Large angle soft radiation sees Small angle coft radiation
total charge of collinear resolves individual collinear
radiation inside jet. particles.

e Coft Wilson line for each

o Soft emissions described . . .
final state collinear particle!

by single Wilson line.

e Multi-Wilson-line structure of
operators

Verified by expanding y* — gggeg amplitude in all regions.



Coft operator structure

collinear splitting
amplitude

Ol(nl) = UT(’ﬁ) U(nl)

T

Wilson line along quark

adjoint Wilson line

Wilson line along other jet along gluon

n; are light-like reference vectors along collinear partons



Operator matrix elements

Coft matrix element for collinear gg final state

As(68Q,01,09) = > Meore({pi}) (01(03) g Xcott) (Xcott| (O2)7a|0)

Xcoft
/ phase-space 03 (ny,n9) = UT(R)tA U(ny) UAE (ns)

constraints

interesting similiarities to
1 n-nyg 1 n- no : :
— = 0 color density matrix
021 -n

01 = = — —
1 62 M - Mo by Simon Caron-Huot

gets integrated against collinear matrix element:

/d91d92 J2(Q9,01,02) A2(08Q,01,02)

collinear matrix element
splitting function



Two-loop check

Have determined/computed all two-loop ingredients,
except for purely collinear contribution 2-loop terms.

Checks:

e Cancellation of divergences involves nontrivial
interplay of different regions, determines
divergences and therefore all logarithms in
collinear part

e Can then compare numerically to fixed-order
results from Event?2 at small 5 and 6, extract
missing collinear constants numerically



Two-loop result
7(8,9)

00

s

— 1+ ;—;A(ﬁ,(S) | ( )23(5,5)

2T

2
B(B,0) = C% [(321n25+481n5— 16% +18) In§ +1In B (10¢3 — 2 — 12In*2 4 41n 2)

9
+1nd ((8—481n2)1n5—24g3+27r2+ 5 —361n2> +c§]

441 2 172
+OFCA[< n6+11)1n26—§7r21n26+1n6 (—4g3+§—31g —61n22—41n2>
44 1In? 472 2
+1nd - B—l— im” 268 ln6—|—12C3—5—7—221n2 + ¢
3 3 9 2
161 1 1
+ CpTpng K— 63”5 —4) In?§ + <—§1n26+809n5—|—10—|—81n2> In &
472 4
+(%—§) 1nﬁ+c§], (5.2)

All logarithmic dependence is known, but three unknown
constants ¢o ¢, ¢
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Solid lines: analytic prediction

Points: Event 2 numerical result (billions of events in
quadruple precision)

Two-loop constants are set to zero in these plots, but
difference is not visible because logarithmic terms are huge.
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A B(B,9)

terms suppressed
by powers of & and 3

For & and [3 both small, difference to full result must be
missing two-loop constants

* Works, except for nsterms. Problems for this color
structure, also for other observables including thrust.



Jet Effective Theory

Understand

e the relevant scales and
degrees of freedom

o the (complicated!)
structure of the
operators

Important first step, but does not immediately translate
INnto resummation. Next step

- Study renormalization and RG evolution in the
effective theory!



summary

o Automated NNLL resummation for jet-veto cross sections

» First example of an automated SCET resummation

« Other observables can be resummed using the same technigque
 NNLL resummation for transverse thrust

 Interesting factorization theorem: SCET+SCET,, rapidity
divergences with nontrivial color structure, ...

* Role of Glauber gluons? UE?
« Jet Effective Theory
 New ‘coft' mode to describe soft small angle radiation

« Coft radiation resolves individual collinear final-state particles:
leads to multi-Wilson-line structure of coft operators
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Numerical problem in Event2 code.



