
Effective Current Approach Earth Signal Analysis of SuperMAG Data

Earth as a transducer for ultralight dark-matter
detection

Saarik Kalia

based on arXiv:2106.00022, arXiv:2108.08852, arXiv:2112.09620

with Ariel Arza, Michael A. Fedderke, Peter W. Graham, Derek F. Jackson Kimball

Searches for Wave-Like Dark Matter with Quantum Networks

August 18, 2022



Effective Current Approach Earth Signal Analysis of SuperMAG Data

Introduction

• Cavity/shielded experiments search for ultralight EM-coupled DM:
• Dark-photon dark matter
• Axionlike dark matter

• Signal scales with size of apparatus

• DPDM constraints below 10−14 eV (sub-Hz) all astrophysical

• We use the Earth as our apparatus/transducer!

• Ultralight DM −→ magnetic field at Earth’s surface
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Outline

1. Effective Current Approach

2. Earth Signal

3. Analysis of SuperMAG Data



Effective Current Approach Earth Signal Analysis of SuperMAG Data

Kinetically Mixed Dark Photon
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′
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′µAµ − JµEMAµ

• Two modes: “interacting” A, “sterile” A′

• Only A couples to charges
• Only A is affected (at leading order) by conductors
• The observable fields are E and B (no contribution from E ′ and B ′)

• One massless and one massive (mass mA′) propagation state

• A and A′ are not propagation states in vacuum!
• Mixing (and all observable effects) are proportional to mA′

• A and A′ are propagation states in conductor → mixing at boundary
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Dark-Photon Effective Current
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• When A′ is DM and ε� 1 (no backreaction), then Jµeff = −εm2
A′A
′µ.

• Non-relativistic (v = 0)
• J0

eff = 0
• Jeff constant in space (for dark photons)
• Oscillates with frequency ω = mA′

• Just a single-photon EM problem with a background current!
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Axionlike Particle

L ⊃ 1
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(∂µa)2 − 1
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2 − 1

4
FµνF

µν +
1

4
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• Allows axion to convert into photon in background B0

• In non-relativistic limit,

∇× B − ∂tE = −gaγ(∂ta)B

• Also behaves as Jeff = igaγmaaB0 (replace εmA′A′ → −igaγaB0)

• Note that direction set by B0 not by DM!
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Toy Geometry: ADMX/DM Radio Cavity
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Side view

Scales with transverse direction R,
not longitudinal direction L
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Ampère’s Law Argument
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What makes a good shield?

• Good conductor or plasma: σ, ωp � m

• Sufficiently thick: h� δ

• δ ∼
√

2
mσ for conductor

• δ ∼ ω−1
p for collisionless plasma
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Earth Conductivity Profile

Core Lower Ionosphere IPM
Atmosphere σq σ⊥

σ (ωp) [eV]

100 10−18 10−2 10−8 10−10

h [km]

3000 5 100 3× 105

δ [km]

0.03 108 2 1000 2

Shield?

Yes No ??? Yes

m ∼ 10−18 eV
f ∼ 10−4 Hz
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Earth Conductivity Profile
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Ampère’s Law Argument (for Earth)

BR ∼
∮

B · d` =

∫∫
Jeff · dA ∼ εm2

A′R
2A′

B ∼ εm2
A′RA

′ ∼ εmA′R
√
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Vector Spherical Harmonics
• Three types of vector spherical harmonics: Y`m, Ψ`m, Φ`m

• Only ` = 1 relevant for dark photon case

• Real and imaginary parts of m = ±1 oriented along x- and y -axes

Y10 Ψ10 Φ10
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VSH Calculus

∇×
[
r ·

]
= −

Y10 Φ10

∇×
[
r ·

]
= 2·

Ψ10 Φ10

∇×
[
r ·

]
= −2·

Φ10 Y10 + Ψ10
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Dark Photon Signal
• Uniform A′ sources

Jeff = −εm2
A′A
′ ∝ εm2

A′

1∑
m=−1

A′m (Y1m + Ψ1m) e−imA′ t

• Since cavity is sub-wavelength, E is generically small, so

∇× B −���∂tE = Jeff

• Magnetic field at surface r = R is

(in corotating coordinates)

B ∝ εm2
A′R

1∑
m=−1

A′mΦ1me
−imA′ t + curl-free

where fd = 1/(sidereal day)

• Curl-free part made of Y`m’s and Ψ`m’s

• Φ1m part independent of boundary conditions (to leading order)!
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Axion Signal
• International Geomagnetic Reference Field model: B0 = −∇V0 with

V0 =
∑
`,m

C`m
R`+2

r `+1
Ym
` ,

where C`m provided at 5-year intervals

• Effective current is

Jeff = igaγmaa0

∑
`,m

C`m

(
R

r

)`+2 [
(`+ 1)Y`m −Ψ`m

]
e−imat

• Axion signal at surface is (in corotating coordinates)

B = −i(gaγR)(maa0)
∑
`,m

C`m
`

Φ`me
−imat + curl-free
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Signal Properties

• Observable magnetic field at Earth’s surface

• Large: scales with R not h

• Spatially coherent: global spatial pattern Φ`m

• Temporally coherent: sharply peaked in frequency with Q ∼ 106

• Robust: Φ`m component of signal is unaffected to leading order by
boundary conditions!
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Dark-Photon vs. Axion Signal

Dark Photon Axion

Only uses ` = 1 modes Mostly (but not exactly) dipolar

Sidebands at f = mA′/2π ± fd Only at f = ma/2π

Amplitude, phase, and orientation Only amplitude and phase
change between coherence times change between coherence times
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SuperMAG
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• Collaboration of over 500 ground-based magnetometers

• Data collected over 50 years

• 1-minute time resolution
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Analysis Difficulties
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• What we’d like to do:

• Project onto Φ`m modes

Noise variations/correlations

• Fourier transform

Active stations highly variable

• Look for single-frequency peak

Total time > coherence time
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Analysis Overview

• Combine data from active stations into a few time series

• Weight by Φ`m modes and inverse noise

• Do same to signal

• Divide temporally into chunks of duration equal to coherence time

• Search each chunk coherently, then combine incoherently

• Utilize Bayesian framework to derive posterior for ε or gaγ
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Dark-Photon Constraint

10 3 10 2
fA ′ = mA ′/(2 ) [Hz]

10 173 × 10 18 6 × 10 17

mA ′ [eV]
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10 2
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Axion Constraint

10 3 10 2
f = m /(2 ) [Hz]

10 173 × 10 18 6 × 10 17

m  [eV]
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Future Prospects

• Currently analyzing SuperMAG’s 1-second resolution data

• Will probe higher masses

• If 1/f noise continues, then our bound scales better than others!

• SNIPE Hunt: Derek goes camping with a magnetometer

• Take our own data to probe above 1 Hz

• Won’t have as much data, and may lose m scaling of signal

• If noise is mostly man-made, may have much lower noise!
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Summary

• We demonstrated a novel mechanism to probe ultralight dark
matter using the Earth as a transducer.

• It utilizes the natural conductivity environment near the Earth.

• Our signal is not suppressed by the height of the atmosphere!

• It is highly spatially and temporally coherent, and robust to
environmental details.

• We set competitive bounds on DPDM and axion parameter space.

• Stay tuned for 1-second analyses and SNIPE Hunt!
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Mixing in Medium

• Consider (transverse) modes of frequency ω

In vacuum In good conductor (σ � m2
A′/ω)

State A− εA′ A′ + εA A A′

Propagation Massless Mass mA′ Damped Mass mA′

σ ≫ m
A'

2 /ω

A' ≠ 0 A' ≠ 0 A' ≠ 0
A ≠ 0 A = 0 A ∝ ε
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Solving the wave equation with a current

(∇2 − ∂2
t )E = ∂tJeff

E = EDM + Eresponse

EDM (specific) Eresponse (homogeneous)

(∇2 − ∂2
t )EDM = ∂tJeff (∇2 − ∂2

t )Eresponse = 0

Field “sourced by” DM Cavity response to cancel E‖ at boundary

Constant in space (Slowly) varying with k = mA′

BDM = 0 Bresponse 6= 0
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ADMX/DM Radio Solution

Bresp.

σ � m2
A′/ω

Top view

EDM

Eresp.

σ � m2
A′/ω

Side view

E = EDM + Eresponse ∝ m2
A′(R

2 − r2)

B = − i

mA′
∇× E ∝ mA′r
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Spherical Modes

Transverse Electric (TE) Transverse Magnetic (TM)

ETE ∼ Φ`m ETM ∼ Y`m + Ψ`m

BTE ∼ Y`m + Ψ`m BTM ∼ Φ`m
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Full TM Modes

ETM =
∑
`m

(
− `(`+ 1)g`m(mA′r)

mA′r
Y`m

−
(
g ′`m(mA′r) +

g`m(mA′r)

mA′r

)
Ψ`m

)
e−imA′ t

BTM = −i
∑
`m

g`m(mA′r)Φ`me
−imA′ t
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Earth Field Oscillations
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Earth Signal

Side view Side view Top view

EDM Eresponse Bresponse

Y1m + Ψ1m Y1m + Ψ1m Φ1m

• B has particular Φ1m spatial pattern that we can search for!
• If A′ points in z-direction, then only Φ10 mode

• Note that Eresponse (almost) cancels EDM everywhere!

• Eresponse correct (to leading order) regardless of boundary conditions

• Can show Φ1m component of B correct (to LO) regardless of BCs!
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Robustness to Boundary Conditions

• As long as geometry is sub-wavelength, our solution is the correct
leading-order TM magnetic field, regardless of boundary conditions!

• To LO (and NLO), Eresponse = −EDM regardless of boundaries

Eresponse,TE Eresponse,TM BTE BTM

LO

NLO

NNLO

NNNLO

• BTM higher order than ETM, but BTE lower order than ETE

• As long as our search projects onto Φ1m, we can just look for BTM!
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IGRF Model

• V0 expansion described by g`m and h`m via

V0 =
∞∑
`=1

∑̀
m=0

R`+2

r `+1
(g`m cosmφ+ h`m sinmφ)Pm

` (cos θ),

where Schmidt-normalized associated Legendre polynomials are

Pm
` (x) =

√
(2− δm0 )

(`−m)!

(`+ m)!

(
1− x2

)m/2 dm

dxm
P`(x)

• C`m related to g`m and h`m by

C`m = (−1)m
√

4π(2− δm0 )

2`+ 1

g`m − ih`m
2
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Time Series Construction

Station 4

Station 3

Station 2

Station 1

Constructed

• Combine data from active stations into new time series

• Weight by inverse noise and Φ1m (different m’s will be correlated)

• Do same for signal and just work with time series
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Time Series Partitioning

Tcoh

• Split time series into chunks of length Tcoh

• Find single-frequency signal size zk in each chunk k separately

• Combine results incoherently, i.e.
∑

k |zk |2

• Utilize Bayesian framework to derive posterior for ε
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Bayesian Analysis

• Analysis variables:

zik ∼
Data√
Noise

sik ∼
Signal√

Noise

• Likelihood of data zik given coupling ε

L({zik}|ε) ∝
∏
i ,k

1

3 + ε2s2
ik

exp

(
− 3|zik |2

3 + ε2s2
ik

)
• Definition of bound ε̂ (using Jeffreys prior p(ε))∫ ε̂

0
dε L({zik}|ε) · p(ε) = 0.95
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Coherence Time Approximation

10−3 10−2

f [Hz]

108

109

T
im

e
[s

]

Tn

(fv2
dm)−1

Ttot

(fv2
dm)−1 ± 3%

2.0× 10−3 2.5× 10−3

4× 108

5× 108
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Candidate Rejection

• Identified 30 DPDM signal candidates and 27 axion signal
candidates by comparing

∑
i ,k |zik |2 to χ2-distribution

• Tested candidates with resampling analysis

• Reran analysis with 4 subsets of time and saw if zik consist with signal

• Also with 4 subsets of stations

• All candidates in tension with tests −→ no robust DM candidates
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