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Introduction

Cavity/shielded experiments search for ultralight EM-coupled DM:

® Dark-photon dark matter
® Axionlike dark matter

Signal scales with size of apparatus
DPDM constraints below 1071* eV (sub-Hz) all astrophysical
We use the Earth as our apparatus/transducer!

Ultralight DM — magnetic field at Earth’s surface
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Introduction

ADMX/DM Radio Earth

Scales with L Scales with R, not hl
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Kinetically Mixed Dark Photon
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e Two modes: “interacting” A, “sterile” A’



Effective Current Approach
©0000

of SuperMAG Data

Kinetically Mixed Dark Photon
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e Two modes: “interacting” A, “sterile” A’

® Only A couples to charges

® Only A is affected (at leading order) by conductors
® The observable fields are E and B (no contribution from E’ and B’)
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e Two modes: “interacting” A, “sterile” A’

® Only A couples to charges

® Only A is affected (at leading order) by conductors
® The observable fields are E and B (no contribution from E’ and B’)

® One massless and one massive (mass my/) propagation state
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Kinetically Mixed Dark Photon

1 1 1 5 2
L=y FuF" = ZFLVF’“” + §mA'ALA/” +emy AV AL = JeAu

Two modes: “interacting” A, “sterile” A’

Only A couples to charges

® Only A is affected (at leading order) by conductors
® The observable fields are E and B (no contribution from E’ and B’)

One massless and one massive (mass my/) propagation state

A and A’ are not propagation states in vacuum!

® Mixing (and all observable effects) are proportional to mas
® Aand A’ are propagation states in conductor — mixing at boundary
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Dark-Photon Effective Current
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® When A’ is DM and £ < 1 (no backreaction), then Ji = —em3, A’
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Dark-Photon Effective Current

1 1
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® When A’ is DM and € < 1 (no backreaction), then Ji = —em3, A"

® Non-relativistic (v = 0)
0 _
* Jig=0
® J. constant in space (for dark photons)
® Oscillates with frequency w = mpa/
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Dark-Photon Effective Current

1 1
LD =g FuF" - ZF,;V I o mipg A AV empy ATAL — Sy Ay

® When A’ is DM and € < 1 (no backreaction), then Ji = —em3, A"

® Non-relativistic (v = 0)
0 _
* Jig=0
® J. constant in space (for dark photons)
® Oscillates with frequency w = mpa/

® Just a single-photon EM problem with a background current!
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Axionlike Particle

1 1 1 L1 .
LD 5(8#3)2 — Emgaz — ZFHVFM + Zga*,aFuuFN

Allows axion to convert into photon in background By

In non-relativistic limit,

VxB-— atE = 7gan,/(ata)B

Also behaves as Jeff = igaymaaBy (replace ema A" — —igayaBy)

Note that direction set by By not by DM!
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Toy Geometry: ADMX/DM Radio Cavity

Top view Side view
R
A
® . o W
—E 1 v w l L
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0> mi, Jw o> md Jw

Scales with transverse direction R,
not longitudinal direction L
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Ampere's Law Argument

Side view

Top view
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Ampere's Law Argument

Top view

Side view

Analysis of SuperMAG Data

0000000

Zar DN
3
\\

\

~
1" Amperian R
o |—1|
|

loop
1

e

\,

\\\\__,

o> m}, fw

0> mi, Jw

BR~?{B-dﬁz//Jeff-dAwemf\,R2A’

BA/ ~ €m,24,RA’ ~ €mA/R\/pDM



Effective Current Approach Earth Signal Analysis of SuperMAG Data
0000e 000000000 0000000

Ampere's Law Argument

Top view Side view
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Ba ~emz RA ~ emaR\/pom  (Ba ~ gayBoRv/Pom)
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What makes a good shield?

® Good conductor or plasma: o, wp, > m

e Sufficiently thick: h>§

® jr~ \/% for conductor

® § ~w,? for collisionless plasma
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Earth Conductivity Profile
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Earth Conductivity Profile
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Ampere's Law Argument (for Earth)

BRN]{B-de://Jeff-dANsmf\,RM’

B ~em% RA ~ emaR\/ppm
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Vector Spherical Harmonics

® Three types of vector spherical harmonics: Yy, Yom, Pom
® Only £ =1 relevant for dark photon case

® Real and imaginary parts of m = +1 oriented along x- and y-axes

Y10 ‘1’10 (I)IO
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VSH Calculus

VX |r = —

Yio P9
Vx|r =2

\Illo <I)10
Vx|r = -2

P Y10+ Wi
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Dark Photon Signal

e Uniform A’ sources

1
et = —emz A’ o emjy Z AL (Yim + Typ) e Mt

m=-—1
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Dark Photon Signal

e Uniform A’ sources

1
et = —emz A’ o emjy Z AL (Yim + Typ) e Mt

m=—1

® Since cavity is sub-wavelength, E is generically small, so

V x B«—ﬁ%E(:.kﬁ
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Dark Photon Signal

e Uniform A’ sources

1
et = —emz A’ o emjy Z Al (Yim + Typ) e Mt

m=—1

® Since cavity is sub-wavelength, E is generically small, so

V x B«—i%E’:.kﬁ

® Magnetic field at surface r = R is

1
B o« em3, R E Al ®1me” "™t + curl-free

m=-—1
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Dark Photon Signal

Uniform A’ sources

1
et = —emz A’ o emjy Z Al (Yim + Typ) e Mt

m=—1

Since cavity is sub-wavelength, E is generically small, so
V x B~—L%E{:.kﬁ

Magnetic field at surface r = R is

1
B o« em3, R E Al ®1me” "™t + curl-free

m=-—1

Curl-free part made of Y;,,'s and Wy,,'s
®;,, part independent of boundary conditions (to leading order)!
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Dark Photon Signal

Uniform A’ sources

1
et = —emz A’ o emjy Z AL (Yim + Typ) e Mt

m=—1

® Since cavity is sub-wavelength, E is generically small, so
V x B«—i%E’:.kﬁ

Magnetic field at surface r = R is (in corotating coordinates)

1
B o em% R E Al B mattemilamt 4 oyl free

m=-—1

where fy = 1/(sidereal day)

Curl-free part made of Y;,,'s and Wy,,'s

®;,, part independent of boundary conditions (to leading order)!
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SuperMAG Data

Axion Signal
® |nternational Geomagnetic Reference Field model: By = —V Vj with

R€+2
Vo = Z Cgmm Y[n’

£,m

where Cy,, provided at 5-year intervals
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Axion Signal
® |nternational Geomagnetic Reference Field model: By = —V Vj with

RIH+2
Vo=>_ Com g Y™

£,m

where Cy,, provided at 5-year intervals

e FEffective current is

r

R 0+2 .

f,m
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Axion Signal
® |nternational Geomagnetic Reference Field model: By = —V Vj with
Rf+2
Vo=> Com—7ig V("
£,m

where Cy,, provided at 5-year intervals

e FEffective current is

r

R 0+2 .

f,m

® Axion signal at surface is (in corotating coordinates)

B = —i(gayR)(maap) Z %q)gme_"mat + curl-free

£,m
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Signal Properties

Observable magnetic field at Earth's surface

Large: scales with R not h

Spatially coherent: global spatial pattern ®,,

Temporally coherent: sharply peaked in frequency with Q@ ~ 10°

Robust: ®,,, component of signal is unaffected to leading order by
boundary conditions!
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Dark-Photon vs. Axion Signal

Dark Photon Axion
Only uses £ =1 modes Mostly (but not exactly) dipolar
Sidebands at f = mpy /27 £ 1y Only at f = m,/2m
Amplitude, phase, and orientation Only amplitude and phase
change between coherence times | change between coherence times
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SuperMAG
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Stations reporting
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® Collaboration of over 500 ground-based magnetometers
® Data collected over 50 years

® 1-minute time resolution
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Analysis Difficulties

e What we'd like to do:

e Project onto ®,,, modes
e Fourier transform

e Look for single-frequency peak

Stations reporting

Analysis of SuperMAG Data
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Analysis Difficulties
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® \What we'd like to do:
e Project onto ®,,, modes Noise variations/correlations

e Fourier transform

e Look for single-frequency peak
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Analysis Difficulties
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® \What we'd like to do:
e Project onto ®,,, modes Noise variations/correlations
e Fourier transform Active stations highly variable

e Look for single-frequency peak
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Analysis Difficulties

e What we'd like to do:

e Project onto ®,,, modes
e Fourier transform

e Look for single-frequency peak

250~ B

200

150 = -

100~ B

Stations reporting

50~ —

N ¢
o N o

Noise variations/correlations
Active stations highly variable

Total time > coherence time
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Analysis Overview

Combine data from active stations into a few time series

Weight by ®,,, modes and inverse noise

Do same to signal

Divide temporally into chunks of duration equal to coherence time
Search each chunk coherently, then combine incoherently

Utilize Bayesian framework to derive posterior for € or g,
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Dark-Photon Constraint

far=mal(2m) [HZ]
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Axion Constraint
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1073 1072
I This workI
This work, smoothed
10-8 ~ =~ CAST
------- SN1987A
10-°
T
>
(]
S
>
g
o 10—10
10—11 L 4




Analysis of SuperMAG Data
0000080

Future Prospects

e Currently analyzing SuperMAG's 1-second resolution data

® Will probe higher masses

® |f 1/f noise continues, then our bound scales better than others!

® SNIPE Hunt: Derek goes camping with a magnetometer

® Take our own data to probe above 1 Hz
® Won't have as much data, and may lose m scaling of signal

® [f noise is mostly man-made, may have much lower noise!
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Summary

We demonstrated a novel mechanism to probe ultralight dark
matter using the Earth as a transducer.

It utilizes the natural conductivity environment near the Earth.
Our signal is not suppressed by the height of the atmosphere!

It is highly spatially and temporally coherent, and robust to
environmental details.

We set competitive bounds on DPDM and axion parameter space.

Stay tuned for 1-second analyses and SNIPE Hunt!
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Mixing in Medium

e Consider (transverse) modes of frequency w

In vacuum

In good conductor (o > m3%, /w)

State A—cA A +:A

Propagation | Massless Mass my

A A

Damped Mass my
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Solving the wave equation with a current
(V2 = 07)E = OrJest

E = EDM + Eresponse

Epwm (specific) Ecsponse (homogeneous)

(Vz - 8?)EDM = Ot Jesr (V2 - 8?)Eresp0nse =0
Field “sourced by” DM | Cavity response to cancel Ej at boundary

Constant in space (Slowly) varying with k = ma

Bpy =0 Bresponse # 0
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ADMX /DM Radio Solution
Top view Side view
//’: N
ATy boAmd A b
H*\ ., Vo y* H
AN/
R
0> mi, Jw o> mi Jw

E = Epm + Eresponse X m/24/(R2 - r2)

B—__

V x E x marr
mas
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Spherical Modes

Transverse Electric (TE)

Transverse Magnetic (TM)

Ete ~ P

Bt~ Yim+ ¥y,

Etv ~ Yim+Yom
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Full TM Modes

E(Z + 1)g€m(mA’r)
Ery=>)_ <— ot Yim

- (gém(mA/r) + gem(mA/r)> ‘I’Em) e~ imat

marr

Im

Brm =—i Z Gom(mar)®gme”mat

Im
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Earth Field Oscillations

= 0.0007

£ = 0.2507

= 07507

= 05007

i

= 06257
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Earth Signal

Side view Side view Top view

Ylm + lIllm Ylm + lIllm q)lm

B has particular ®1,, spatial pattern that we can search for!
® |f A’ points in z-direction, then only ®;5 mode

Note that Eresponse (almost) cancels Epy everywhere!

Eresponse correct (to leading order) regardless of boundary conditions

Can show ®;,, component of B correct (to LO) regardless of BCs!



Backup Slides
0000000@000000

Robustness to Boundary Conditions

® As long as geometry is sub-wavelength, our solution is the correct
leading-order TM magnetic field, regardless of boundary conditions!
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® As long as geometry is sub-wavelength, our solution is the correct
leading-order TM magnetic field, regardless of boundary conditions!

® To LO (and NLO), Eresponse = —Epwm regardless of boundaries
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Robustness to Boundary Conditions

® As long as geometry is sub-wavelength, our solution is the correct
leading-order TM magnetic field, regardless of boundary conditions!

e To LO (and NLO), E,

response = —Epwm regardless of boundaries
Eresponse, TE  Eresponse, TM Bte Btwm
LO X v
NLO X X
NNLO ? ?
NNNLO ? ?
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® As long as geometry is sub-wavelength, our solution is the correct
leading-order TM magnetic field, regardless of boundary conditions!

® To LO (and NLO), Eresponse = —Epwm regardless of boundaries

Eresponse, TE  Eresponse, TM Bte Btwm
LO X v
NLO X X
NNLO ? ?
NNNLO ? ?

® B\ higher order than Ety, but Byg lower order than Etg
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Robustness to Boundary Conditions

® As long as geometry is sub-wavelength, our solution is the correct
leading-order TM magnetic field, regardless of boundary conditions!

® To LO (and NLO), Eresponse = —Epwm regardless of boundaries

Eresponse, TE  Eresponse, TM Bte Brwm

LO X v X X
NLO X X ? Vv
NNLO ? ? ? X
NNNLO ? ? ? 0?2

® B\ higher order than Ety, but Byg lower order than Etg
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Robustness to Boundary Conditions

® As long as geometry is sub-wavelength, our solution is the correct
leading-order TM magnetic field, regardless of boundary conditions!

® To LO (and NLO), Eresponse = —Epwm regardless of boundaries

Eresponse, TE  Eresponse, TM Bte Brwm

LO X v X X
NLO X X ? Vv
NNLO ? ? ? X
NNNLO ? ? ? 0?2

® B\ higher order than Ety, but Byg lower order than Etg

® As long as our search projects onto ®1,,,, we can just look for Bty!
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IGRF Model

® |/, expansion described by gy, and hyp, via

AN

1
M8
Me\
Rl X
£

(g¢m cos m¢ + hyp, sin me) P;"(cos 6),

where Schmidt-normalized associated Legendre polynomials are

PP (x) = \/(2 - 537)5 . :;: (1-x3)™? C%Pf(x)

® Cym related to gy, and hy,, by

47T(2 B 5m) 8tm — ihém
_(_1\m 0
Com = (=1 =57 2
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Time Series Construction

Station 1
Station 2

Station 3

Station 4

® Combine data from active stations into new time series
® Weight by inverse noise and ®1,,, (different m's will be correlated)

® Do same for signal and just work with time series
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Time Series Construction

Station 1
Station 2
Station 3

Station 4

Constructed

® Combine data from active stations into new time series
® Weight by inverse noise and ®1,,, (different m's will be correlated)

® Do same for signal and just work with time series
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Station 1
Station 2
Station 3

Station 4

Constructed

® Combine data from active stations into new time series
® Weight by inverse noise and ®1,,, (different m's will be correlated)

® Do same for signal and just work with time series
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Time Series Construction

Station 1
Station 2
Station 3

Station 4

Constructed

® Combine data from active stations into new time series
® Weight by inverse noise and ®1,,, (different m's will be correlated)

® Do same for signal and just work with time series
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Time Series Construction

Station 1
Station 2
Station 3

Station 4

Constructed

® Combine data from active stations into new time series
® Weight by inverse noise and ®1,,, (different m's will be correlated)

® Do same for signal and just work with time series
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Time Series Partitioning

| Tcoh |

Split time series into chunks of length Ty,

Find single-frequency signal size z, in each chunk k separately

Combine results incoherently, i.e. >, |zk|?

Utilize Bayesian framework to derive posterior for ¢
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Time Series Partitioning

Split time series into chunks of length Ty,

Find single-frequency signal size z, in each chunk k separately

Combine results incoherently, i.e. >, |zk|?

Utilize Bayesian framework to derive posterior for ¢
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Bayesian Analysis

® Analysis variables:

Data . Signal
/Noise ™ /Noise

® |ikelihood of data zj given coupling
3|Z,'k’2
{Zlk}|€ O(H3+ 25 p(_3+525i2k

® Definition of bound ¢ (using Jeffreys prior p(¢))

Zik ~

/0 Cde L({zte) - ple) = 0.95
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Coherence Time Approximation

— T T T ——
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= I 4% 108 |- ]
) [ — ]
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Candidate Rejection

® |dentified 30 DPDM signal candidates and 27 axion signal
candidates by comparing > _; , |zik|? to x2-distribution

® Tested candidates with resampling analysis

® Reran analysis with 4 subsets of time and saw if zj consist with signal

® Also with 4 subsets of stations

e All candidates in tension with tests — no robust DM candidates
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