Analysis of SuperMAG Data

Earth as a transducer for ultralight dark-matter detection

Saarik Kalia

based on arXiv:2106.00022, arXiv:2108.08852, arXiv:2112.09620

with Ariel Arza, Michael A. Fedderke, Peter W. Graham, Derek F. Jackson Kimball

Searches for Wave-Like Dark Matter with Quantum Networks

August 18, 2022

Earth Signal

Analysis of SuperMAG Data

- Cavity/shielded experiments search for ultralight EM-coupled DM:
 - Dark-photon dark matter
 - Axionlike dark matter
- Signal scales with size of apparatus
- DPDM constraints below 10^{-14} eV (sub-Hz) all astrophysical
- We use the Earth as our apparatus/transducer!
- Ultralight DM \longrightarrow magnetic field at Earth's surface

Earth Signal

Analysis of SuperMAG Data

Introduction

ADMX/DM Radio

Earth

Earth Signal

Analysis of SuperMAG Data

Earth Signal

Analysis of SuperMAG Data

Earth Signal

Analysis of SuperMAG Data

Earth Signal

Analysis of SuperMAG Data

Introduction

Scales with L

Earth Signal

Analysis of SuperMAG Data

Introduction

Scales with L

Scales with R, not h!

Earth Signal

Analysis of SuperMAG Data

Outline

1. Effective Current Approach

2. Earth Signal

3. Analysis of SuperMAG Data

Earth Signal

Analysis of SuperMAG Data

$$\mathcal{L} \supset -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + \frac{1}{2} m_{A'}^2 A'_\mu A'^\mu + \varepsilon m_{A'}^2 A'^\mu A_\mu - J^\mu_{\mathsf{EM}} A_\mu$$

Earth Signal

Analysis of SuperMAG Data

Kinetically Mixed Dark Photon

$$\mathcal{L} \supset -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + \frac{1}{2} m_{A'}^2 A'_\mu A'^\mu + \varepsilon m_{A'}^2 A'^\mu A_\mu - J^\mu_{\mathsf{EM}} A_\mu$$

• Two modes: "interacting" A, "sterile" A'

Earth Signal

Analysis of SuperMAG Data

$$\mathcal{L} \supset -rac{1}{4} F_{\mu
u} F^{\mu
u} - rac{1}{4} F'_{\mu
u} F'^{\mu
u} + rac{1}{2} m_{\mathcal{A}'}^2 \mathcal{A}'_\mu \mathcal{A}'^\mu + arepsilon m_{\mathcal{A}'}^2 \mathcal{A}'^\mu \mathcal{A}_\mu - \mathcal{J}^\mu_{\mathsf{EM}} \mathcal{A}_\mu$$

- Two modes: "interacting" A, "sterile" A'
- Only A couples to charges
 - Only A is affected (at leading order) by conductors
 - The observable fields are E and B (no contribution from E' and B')

Earth Signal

Analysis of SuperMAG Data

$$\mathcal{L} \supset -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + \frac{1}{2} m_{\mathcal{A}'}^2 \mathcal{A}'_{\mu} \mathcal{A}'^{\mu} + \varepsilon m_{\mathcal{A}'}^2 \mathcal{A}'^{\mu} \mathcal{A}_{\mu} - J^{\mu}_{\mathsf{EM}} \mathcal{A}_{\mu}$$

- Two modes: "interacting" A, "sterile" A'
- Only A couples to charges
 - Only A is affected (at leading order) by conductors
 - The observable fields are E and B (no contribution from E' and B')
- One massless and one massive (mass $m_{A'}$) propagation state

Earth Signal

Analysis of SuperMAG Data

$$\mathcal{L} \supset -rac{1}{4} F_{\mu
u} F^{\mu
u} - rac{1}{4} F'_{\mu
u} F'^{\mu
u} + rac{1}{2} m_{\mathcal{A}'}^2 \mathcal{A}'_\mu \mathcal{A}'^\mu + arepsilon m_{\mathcal{A}'}^2 \mathcal{A}'^\mu \mathcal{A}_\mu - J^\mu_{\mathsf{EM}} \mathcal{A}_\mu$$

- Two modes: "interacting" A, "sterile" A'
- Only A couples to charges
 - Only A is affected (at leading order) by conductors
 - The observable fields are E and B (no contribution from E' and B')
- One massless and one massive (mass $m_{A'}$) propagation state
- A and A' are not propagation states in vacuum!
 - Mixing (and all observable effects) are proportional to $m_{A'}$
 - A and A' are propagation states in conductor \rightarrow mixing at boundary

Earth Signal

Analysis of SuperMAG Data

Dark-Photon Effective Current

$$\mathcal{L} \supset -rac{1}{4} F_{\mu
u} F^{\mu
u} - rac{1}{4} F'_{\mu
u} F'^{\mu
u} + rac{1}{2} m_{\mathcal{A}'}^2 \mathcal{A}'_\mu \mathcal{A}'^\mu + arepsilon m_{\mathcal{A}'}^2 \mathcal{A}'^\mu \mathcal{A}_\mu - \mathcal{J}^\mu_{\mathsf{EM}} \mathcal{A}_\mu$$

• When A' is DM and $\varepsilon \ll 1$ (no backreaction), then $J^{\mu}_{eff} = -\varepsilon m_{A'}^2 A'^{\mu}$.

Earth Signal

Analysis of SuperMAG Data

Dark-Photon Effective Current

$$\mathcal{L} \supset -rac{1}{4} F_{\mu
u} F^{\mu
u} - rac{1}{4} F'_{\mu
u} F'^{\mu
u} + rac{1}{2} m_{A'}^2 A'_\mu A'^\mu + arepsilon m_{A'}^2 A'^\mu A_\mu - J^\mu_{\mathsf{EM}} A_\mu$$

- When A' is DM and $\varepsilon \ll 1$ (no backreaction), then $J^{\mu}_{eff} = -\varepsilon m_{A'}^2 A'^{\mu}$.
- Non-relativistic (v = 0)
 - $J_{\rm eff}^0 = 0$
 - **J**_{eff} constant in space (for dark photons)
 - Oscillates with frequency $\omega = m_{A'}$

Earth Signal

Analysis of SuperMAG Data

Dark-Photon Effective Current

$$\mathcal{L} \supset -rac{1}{4} F_{\mu
u} F^{\mu
u} - rac{1}{4} F'_{\mu
u} F'^{\mu
u} + rac{1}{2} m_{A'}^2 A'_\mu A'^\mu + arepsilon m_{A'}^2 A'^\mu A_\mu - J^\mu_{\mathsf{EM}} A_\mu$$

- When A' is DM and $\varepsilon \ll 1$ (no backreaction), then $J^{\mu}_{eff} = -\varepsilon m_{A'}^2 A'^{\mu}$.
- Non-relativistic (v = 0)
 - $J_{\rm eff}^0 = 0$
 - **J**_{eff} constant in space (for dark photons)
 - Oscillates with frequency $\omega = m_{A'}$
- Just a single-photon EM problem with a background current!

Earth Signal

Analysis of SuperMAG Data

Axionlike Particle

$$\mathcal{L} \supset \frac{1}{2} (\partial_{\mu} a)^2 - \frac{1}{2} m_a^2 a^2 - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{4} g_{a\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu}$$

- Allows axion to convert into photon in background **B**₀
- In non-relativistic limit,

$$abla imes oldsymbol{B} - \partial_t oldsymbol{E} = -g_{a\gamma}(\partial_t a) oldsymbol{B}$$

• Also behaves as $J_{\rm eff} = ig_{a\gamma}m_a a B_0$ (replace $\varepsilon m_{A'} A' \to -ig_{a\gamma} a B_0$)

Note that direction set by B₀ not by DM!

Earth Signal

Analysis of SuperMAG Data

Toy Geometry: ADMX/DM Radio Cavity

Scales with transverse direction R, not longitudinal direction L

Earth Signal

Analysis of SuperMAG Data

Ampère's Law Argument

$$BR \sim \oint \boldsymbol{B} \cdot d\ell = \iint \boldsymbol{J}_{\text{eff}} \cdot d\boldsymbol{A} \sim \varepsilon m_{A'}^2 R^2 A'$$

Earth Signal

Analysis of SuperMAG Data

Ampère's Law Argument

$$BR \sim \oint \boldsymbol{B} \cdot d\boldsymbol{\ell} = \iint \boldsymbol{J}_{\text{eff}} \cdot d\boldsymbol{A} \sim \varepsilon m_{\mathcal{A}'}^2 R^2 A'$$

 $B_{A'}\sim arepsilon m_{A'}^2 RA'\sim arepsilon m_{A'} R\sqrt{
ho_{
m DM}}$

Earth Signal

Analysis of SuperMAG Data

Ampère's Law Argument

$$BR \sim \oint \boldsymbol{B} \cdot d\ell = \iint \boldsymbol{J}_{eff} \cdot d\boldsymbol{A} \sim \varepsilon m_{\mathcal{A}'}^2 R^2 \mathcal{A}'$$

 $B_{A'}\sim arepsilon m_{A'}^2 RA'\sim arepsilon m_{A'} R\sqrt{
ho_{
m DM}}~~(B_a\sim g_{a\gamma}B_0R\sqrt{
ho_{
m DM}})$

Analysis of SuperMAG Data

What makes a good shield?

• Good conductor or plasma: $\sigma, \omega_p \gg m$

• Sufficiently thick: $h \gg \delta$

•
$$\delta \sim \sqrt{\frac{2}{m\sigma}}$$
 for conductor

• $\delta \sim \omega_p^{-1}$ for collisionless plasma

	Core	Lower	lonosphere		IPM
		Atmosphere	σ_{\shortparallel}	σ_{\perp}	
$\sigma (\omega_p) [eV]$					
<i>h</i> [km]					
δ [km]					
Shield?					

	Core	Lower	lonosphere		IPM
		Atmosphere	σ_{\shortparallel}	σ_{\perp}	
$\sigma (\omega_p) [eV]$	100				
<i>h</i> [km]	3000				
δ [km]	0.03				
Shield?	Yes				

	Core	Lower	lonosphere		IPM
		Atmosphere	σ_{\shortparallel}	σ_{\perp}	
$\sigma (\omega_p) [eV]$	100	10^{-18}			
<i>h</i> [km]	3000	5			
δ [km]	0.03	10 ⁸			
Shield?	Yes	No			

	Core	Lower	lonosphere		IPM
		Atmosphere	σ_{\shortparallel}	σ_{\perp}	
$\sigma (\omega_p) [eV]$	100	10^{-18}	10 ⁻²	10^{-8}	
<i>h</i> [km]	3000	5	100		
δ [km]	0.03	10 ⁸	2	1000	
Shield?	Yes	No	???		

	Core	Lower	lonosphere		IPM
		Atmosphere	σ_{\shortparallel}	σ_{\perp}	
$\sigma (\omega_p) [eV]$	100	10^{-18}	10^{-2}	10^{-8}	10^{-10}
<i>h</i> [km]	3000	5	100		$3 imes 10^5$
δ [km]	0.03	10 ⁸	2	1000	2
Shield?	Yes	No	???		Yes

Analysis of SuperMAG Data

Ampère's Law Argument (for Earth)

$$BR \sim \oint \boldsymbol{B} \cdot d\boldsymbol{\ell} = \iint \boldsymbol{J}_{\text{eff}} \cdot d\boldsymbol{A} \sim \varepsilon m_{A'}^2 R^2 A'$$

 $B\sim \varepsilon m_{A'}^2 RA'\sim \varepsilon m_{A'} R\sqrt{
ho_{\rm DM}}$

Analysis of SuperMAG Data

Vector Spherical Harmonics

- Three types of vector spherical harmonics: $oldsymbol{Y}_{\ell m}, \, oldsymbol{\Phi}_{\ell m}, \, oldsymbol{\Phi}_{\ell m}$
- Only $\ell = 1$ relevant for dark photon case
- Real and imaginary parts of $m = \pm 1$ oriented along x- and y-axes

Earth Signal

Analysis of SuperMAG Data

VSH Calculus

 Ψ_{10}

 Φ_{10}

 Φ_{10}

Earth Signal

Analysis of SuperMAG Data

Dark Photon Signal

• Uniform **A**' sources

$$m{J}_{
m eff} = -arepsilon m_{A'}^2 m{A}' \propto arepsilon m_{A'}^2 \sum_{m=-1}^1 A_m' \left(m{Y}_{1m} + m{\Psi}_{1m}
ight) e^{-im_{A'}t}$$

Earth Signal

Analysis of SuperMAG Data

Dark Photon Signal

• Uniform **A**' sources

$$m{J}_{
m eff} = -arepsilon m_{A'}^2 m{A}' \propto arepsilon m_{A'}^2 \sum_{m=-1}^1 A'_m \left(m{Y}_{1m} + m{\Psi}_{1m}
ight) e^{-im_{A'}t}$$

• Since cavity is sub-wavelength, *E* is generically small, so

$$\nabla \times \boldsymbol{B} - \partial_t \boldsymbol{\mathcal{E}} = \boldsymbol{J}_{\mathsf{eff}}$$

Earth Signal

Analysis of SuperMAG Data

Dark Photon Signal

• Uniform **A**' sources

$$m{J}_{
m eff} = -arepsilon m_{A'}^2 m{A}' \propto arepsilon m_{A'}^2 \sum_{m=-1}^1 A_m' \left(m{Y}_{1m} + m{\Psi}_{1m}
ight) e^{-im_{A'}t}$$

• Since cavity is sub-wavelength, *E* is generically small, so

$$abla imes \boldsymbol{B} - \partial_t \boldsymbol{\mathcal{E}} = \boldsymbol{J}_{\mathsf{eff}}$$

• Magnetic field at surface r = R is

$$m{B}\propto arepsilon m_{A'}^2 R\sum_{m=-1}^1 A_m' \Phi_{1m} e^{-im_{A'}t} + {
m curl-free}$$

Earth Signal

Analysis of SuperMAG Data

Dark Photon Signal

• Uniform **A**' sources

$$\boldsymbol{J}_{\rm eff} = -\varepsilon m_{A'}^2 \boldsymbol{A}' \propto \varepsilon m_{A'}^2 \sum_{m=-1}^1 A'_m \left(\boldsymbol{Y}_{1m} + \boldsymbol{\Psi}_{1m} \right) e^{-im_{A'}t}$$

• Since cavity is sub-wavelength, *E* is generically small, so

$$\nabla \times \boldsymbol{B} - \partial_t \boldsymbol{\mathcal{E}} = \boldsymbol{J}_{\text{eff}}$$

• Magnetic field at surface r = R is

$$m{B}\proptoarepsilon m_{A'}^2 R\sum_{m=-1}^1 A_m' \Phi_{1m} e^{-im_{A'}t}+ {
m curl-free}$$

- Curl-free part made of $oldsymbol{Y}_{\ell m}$'s and $oldsymbol{\Psi}_{\ell m}$'s
- Φ_{1m} part independent of boundary conditions (to leading order)!

Earth Signal

Analysis of SuperMAG Data

Dark Photon Signal

• Uniform **A**' sources

$$\boldsymbol{J}_{\rm eff} = -\varepsilon m_{A'}^2 \boldsymbol{A}' \propto \varepsilon m_{A'}^2 \sum_{m=-1}^1 A'_m \left(\boldsymbol{Y}_{1m} + \boldsymbol{\Psi}_{1m} \right) e^{-im_{A'}t}$$

Since cavity is sub-wavelength, *E* is generically small, so

$$\nabla \times \boldsymbol{B} - \partial_t \boldsymbol{\mathcal{E}} = \boldsymbol{J}_{\mathsf{eff}}$$

Magnetic field at surface r = R is (in corotating coordinates)

$$m{B}\propto arepsilon m_{A'}^2 R\sum_{m=-1}^1 A_m' \Phi_{1m} e^{-im_{A'}t+2\pi i f_d m t}+ {
m curl-free}$$

where $f_d = 1/(\text{sidereal day})$

- Curl-free part made of $oldsymbol{Y}_{\ell m}$'s and $oldsymbol{\Psi}_{\ell m}$'s
- Φ_{1m} part independent of boundary conditions (to leading order)!
Earth Signal

Analysis of SuperMAG Data

Axion Signal

• International Geomagnetic Reference Field model: $B_0 = -\nabla V_0$ with

$$V_0 = \sum_{\ell,m} C_{\ell m} \frac{R^{\ell+2}}{r^{\ell+1}} Y_{\ell}^m,$$

where $C_{\ell m}$ provided at 5-year intervals

Earth Signal

Analysis of SuperMAG Data

Axion Signal

• International Geomagnetic Reference Field model: $m{B}_0 = -
abla V_0$ with

$$V_0 = \sum_{\ell,m} C_{\ell m} \frac{R^{\ell+2}}{r^{\ell+1}} Y_{\ell}^m,$$

where $C_{\ell m}$ provided at 5-year intervals

• Effective current is

$$\boldsymbol{J}_{\text{eff}} = i \boldsymbol{g}_{a\gamma} \boldsymbol{m}_{a} \boldsymbol{a}_{0} \sum_{\ell,m} C_{\ell m} \left(\frac{R}{r}\right)^{\ell+2} \left[(\ell+1) \boldsymbol{Y}_{\ell m} - \boldsymbol{\Psi}_{\ell m} \right] \boldsymbol{e}^{-i \boldsymbol{m}_{a} t}$$

Earth Signal

Analysis of SuperMAG Data

Axion Signal

$$V_0 = \sum_{\ell,m} C_{\ell m} \frac{R^{\ell+2}}{r^{\ell+1}} Y_{\ell}^m,$$

where $C_{\ell m}$ provided at 5-year intervals

• Effective current is

$$\boldsymbol{J}_{\text{eff}} = i \boldsymbol{g}_{a\gamma} \boldsymbol{m}_{a} \boldsymbol{a}_{0} \sum_{\ell,m} C_{\ell m} \left(\frac{R}{r}\right)^{\ell+2} \left[(\ell+1) \boldsymbol{Y}_{\ell m} - \boldsymbol{\Psi}_{\ell m} \right] \boldsymbol{e}^{-i \boldsymbol{m}_{a} t}$$

Axion signal at surface is (in corotating coordinates)

$$m{B} = -i(g_{a\gamma}R)(m_aa_0)\sum_{\ell,m}rac{C_{\ell m}}{\ell}\Phi_{\ell m}e^{-im_at} + {
m curl-free}$$

Earth Signal

Analysis of SuperMAG Data

Signal Properties

• Observable magnetic field at Earth's surface

• Large: scales with R not h

• Spatially coherent: global spatial pattern $\Phi_{\ell m}$

• Temporally coherent: sharply peaked in frequency with $Q\sim 10^6$

• Robust: $\Phi_{\ell m}$ component of signal is unaffected to leading order by boundary conditions!

Earth Signal

Analysis of SuperMAG Data

Dark-Photon vs. Axion Signal

Dark Photon	Axion	
Only uses $\ell=1$ modes	Mostly (but not exactly) dipolar	
Sidebands at $f=m_{{\cal A}'}/2\pi\pm f_d$	Only at $f=m_a/2\pi$	
Amplitude, phase, and orientation change between coherence times	Only amplitude and phase change between coherence times	

Earth Signal

Analysis of SuperMAG Data •000000

SuperMAG

- Collaboration of over 500 ground-based magnetometers
- Data collected over 50 years
- 1-minute time resolution

Earth Signal

Analysis of SuperMAG Data

Analysis Difficulties

- What we'd like to do:
 - Project onto $\Phi_{\ell m}$ modes
 - Fourier transform
 - Look for single-frequency peak

Earth Signal

Analysis of SuperMAG Data

Analysis Difficulties

- What we'd like to do:
 - Project onto $\Phi_{\ell m}$ modes
 - Fourier transform
 - Look for single-frequency peak

Noise variations/correlations

Earth Signal

Analysis of SuperMAG Data

Analysis Difficulties

- What we'd like to do:
 - Project onto $\Phi_{\ell m}$ modes
 - Fourier transform
 - Look for single-frequency peak

Noise variations/correlations Active stations highly variable

Earth Signal

Analysis of SuperMAG Data

Analysis Difficulties

- What we'd like to do:
 - Project onto $\Phi_{\ell m}$ modes
 - Fourier transform
 - Look for single-frequency peak

Noise variations/correlations Active stations highly variable

Total time > coherence time

Earth Signal

Analysis of SuperMAG Data

Analysis Overview

- Combine data from active stations into a few time series
- Weight by $\mathbf{\Phi}_{\ell m}$ modes and inverse noise
- Do same to signal
- Divide temporally into chunks of duration equal to coherence time
- Search each chunk coherently, then combine incoherently
- Utilize Bayesian framework to derive posterior for ε or $g_{a\gamma}$

Earth Signal

Analysis of SuperMAG Data

Dark-Photon Constraint

Earth Signal

Analysis of SuperMAG Data

Axion Constraint

Earth Signal

Analysis of SuperMAG Data

Future Prospects

- Currently analyzing SuperMAG's 1-second resolution data
 - Will probe higher masses
 - If 1/f noise continues, then our bound scales better than others!

- SNIPE Hunt: Derek goes camping with a magnetometer
 - Take our own data to probe above 1 Hz
 - Won't have as much data, and may lose *m* scaling of signal
 - If noise is mostly man-made, may have much lower noise!

Earth Signal

Analysis of SuperMAG Data

Summary

- We demonstrated a novel mechanism to probe ultralight dark matter using the Earth as a transducer.
- It utilizes the natural conductivity environment near the Earth.
- Our signal is not suppressed by the height of the atmosphere!
- It is highly spatially and temporally coherent, and robust to environmental details.
- We set competitive bounds on DPDM and axion parameter space.
- Stay tuned for 1-second analyses and SNIPE Hunt!

Mixing in Medium

• Consider (transverse) modes of frequency ω

	In vacuum		In good conductor $(\sigma \gg m_{A'}^2/\omega)$	
State	$A - \varepsilon A'$	$A' + \varepsilon A$	A	A'
Propagation	Massless	Mass $m_{A'}$	Damped	Mass $m_{A'}$

$$\sigma \gg m_A^2/\omega$$

$$A \neq 0 \longrightarrow A = 0$$

$$A' \neq 0 \longrightarrow A' \neq 0$$

$$A' \neq 0$$

$$A \propto \varepsilon$$

$$A' \neq 0$$

Solving the wave equation with a current

$$(
abla^2 - \partial_t^2) \boldsymbol{E} = \partial_t \boldsymbol{J}_{ ext{eff}}$$

 $\textbf{\textit{E}} = \textbf{\textit{E}}_{\text{DM}} + \textbf{\textit{E}}_{\text{response}}$

E _{DM} (specific)	E _{response} (homogeneous)		
$(abla^2 - \partial_t^2) oldsymbol{\mathcal{E}}_{DM} = \partial_t oldsymbol{J}_{eff}$	$(abla^2 - \partial_t^2) oldsymbol{\mathcal{E}}_{response} = 0$		
Field "sourced by" DM	Cavity response to cancel \pmb{E}_{\parallel} at boundary		
Constant in space	(Slowly) varying with $k=m_{{\cal A}'}$		
$oldsymbol{B}_{DM}=0$	$oldsymbol{B}_{response} eq 0$		

Backup Slides

ADMX/DM Radio Solution

$$m{E}=m{E}_{
m DM}+m{E}_{
m response}\propto m_{A'}^2(R^2-r^2)$$

$$m{B}=-rac{i}{m_{A'}}
abla imesm{E}\propto m_{A'}r$$

Spherical Modes

Backup Slides

Full TM Modes

$$\boldsymbol{E}_{\mathsf{TM}} = \sum_{\ell m} \left(-\frac{\ell(\ell+1)g_{\ell m}(m_{A'}r)}{m_{A'}r} \boldsymbol{Y}_{\ell m} - \left(g_{\ell m}'(m_{A'}r) + \frac{g_{\ell m}(m_{A'}r)}{m_{A'}r} \right) \boldsymbol{\Psi}_{\ell m} \right) e^{-im_{A'}t}$$

$$m{B}_{\mathsf{TM}} = -i\sum_{\ell m} g_{\ell m}(m_{A'}r) \Phi_{\ell m} e^{-im_{A'}t}$$

Earth Field Oscillations

Backup Slides

Earth Signal

• *B* has particular Φ_{1m} spatial pattern that we can search for!

- If A' points in z-direction, then only Φ_{10} mode
- Note that *E*_{response} (almost) cancels *E*_{DM} everywhere!
- *E*_{response} correct (to leading order) regardless of boundary conditions
- Can show Φ_{1m} component of *B* correct (to LO) regardless of BCs!

• As long as geometry is sub-wavelength, our solution is the correct leading-order TM magnetic field, regardless of boundary conditions!

- As long as geometry is sub-wavelength, our solution is the correct leading-order TM magnetic field, regardless of boundary conditions!
- To LO (and NLO), $\textit{\textbf{E}}_{response} = -\textit{\textbf{E}}_{DM}$ regardless of boundaries

- As long as geometry is sub-wavelength, our solution is the correct leading-order TM magnetic field, regardless of boundary conditions!
- To LO (and NLO), $\textit{\textbf{E}}_{response} = -\textit{\textbf{E}}_{DM}$ regardless of boundaries

	E response, TE	E _{response,TM}	B _{TE}	B_{TM}
LO	X	\sim		
NLO	X	×		
NNLO	?	?		
NNNLO	?	?		

- As long as geometry is sub-wavelength, our solution is the correct leading-order TM magnetic field, regardless of boundary conditions!
- To LO (and NLO), $\textit{\textbf{E}}_{response} = -\textit{\textbf{E}}_{DM}$ regardless of boundaries

	E _{response,TE}	E _{response,TM}	B_{TE}	B_{TM}
LO	X	\sim		
NLO	X	X		
NNLO	?	?		
NNNLO	?	?		

• B_{TM} higher order than E_{TM} , but B_{TE} lower order than E_{TE}

- As long as geometry is sub-wavelength, our solution is the correct leading-order TM magnetic field, regardless of boundary conditions!
- To LO (and NLO), $\textit{\textbf{E}}_{response} = -\textit{\textbf{E}}_{DM}$ regardless of boundaries

	E response, TE	E response, TM	B _{TE}	B _{TM}
LO	X	\sim	X	X
NLO	X	X	?	\checkmark
NNLO	?	?	?	X
NNNLO	?	?	?	?

• B_{TM} higher order than E_{TM} , but B_{TE} lower order than E_{TE}

- As long as geometry is sub-wavelength, our solution is the correct leading-order TM magnetic field, regardless of boundary conditions!
- To LO (and NLO), $\textit{\textbf{E}}_{response} = -\textit{\textbf{E}}_{DM}$ regardless of boundaries

	E response, TE	E _{response,TM}	B _{TE}	B _{TM}
LO	X	\sim	X	X
NLO	X	X	?	\checkmark
NNLO	?	?	?	X
NNNLO	?	?	?	?

- **B**_{TM} higher order than **E**_{TM}, but **B**_{TE} lower order than **E**_{TE}
- As long as our search projects onto Φ_{1m} , we can just look for $m{B}_{\mathsf{TM}}!$

IGRF Model

• V_0 expansion described by $g_{\ell m}$ and $h_{\ell m}$ via

$$V_0 = \sum_{\ell=1}^{\infty} \sum_{m=0}^{\ell} \frac{R^{\ell+2}}{r^{\ell+1}} \left(g_{\ell m} \cos m\phi + h_{\ell m} \sin m\phi \right) P_{\ell}^m(\cos \theta),$$

where Schmidt-normalized associated Legendre polynomials are

$$P_{\ell}^{m}(x) = \sqrt{\left(2 - \delta_{0}^{m}\right) \frac{(\ell - m)!}{(\ell + m)!}} \left(1 - x^{2}\right)^{m/2} \frac{d^{m}}{dx^{m}} P_{\ell}(x)$$

• $C_{\ell m}$ related to $g_{\ell m}$ and $h_{\ell m}$ by

$$C_{\ell m} = (-1)^m \sqrt{\frac{4\pi(2-\delta_0^m)}{2\ell+1}} \frac{g_{\ell m} - ih_{\ell m}}{2}$$

- · Combine data from active stations into new time series
- Weight by inverse noise and Φ_{1m} (different *m*'s will be correlated)
- Do same for signal and just work with time series

- Combine data from active stations into new time series
- Weight by inverse noise and Φ_{1m} (different *m*'s will be correlated)
- Do same for signal and just work with time series

- · Combine data from active stations into new time series
- Weight by inverse noise and Φ_{1m} (different *m*'s will be correlated)
- Do same for signal and just work with time series

- · Combine data from active stations into new time series
- Weight by inverse noise and Φ_{1m} (different *m*'s will be correlated)
- Do same for signal and just work with time series

- Combine data from active stations into new time series
- Weight by inverse noise and Φ_{1m} (different *m*'s will be correlated)
- Do same for signal and just work with time series

Backup Slides

Time Series Partitioning

- Split time series into chunks of length $T_{\rm coh}$
- Find single-frequency signal size z_k in each chunk k separately
- Combine results incoherently, i.e. $\sum_{k} |z_k|^2$
- Utilize Bayesian framework to derive posterior for arepsilon

Backup Slides

Time Series Partitioning

- Split time series into chunks of length $T_{\rm coh}$
- Find single-frequency signal size z_k in each chunk k separately
- Combine results incoherently, i.e. $\sum_{k} |z_k|^2$
- Utilize Bayesian framework to derive posterior for arepsilon
Backup Slides

Bayesian Analysis

• Analysis variables:

$$z_{ik} \sim rac{\mathsf{Data}}{\sqrt{\mathsf{Noise}}} \qquad s_{ik} \sim rac{\mathsf{Signal}}{\sqrt{\mathsf{Noise}}}$$

• Likelihood of data z_{ik} given coupling ε

$$\mathcal{L}(\{z_{ik}\}|arepsilon) \propto \prod_{i,k} rac{1}{3 + arepsilon^2 s_{ik}^2} \exp\left(-rac{3|z_{ik}|^2}{3 + arepsilon^2 s_{ik}^2}
ight)$$

• Definition of bound $\hat{\varepsilon}$ (using Jeffreys prior $p(\varepsilon)$)

$$\int_0^{\hat{\varepsilon}} d\varepsilon \ \mathcal{L}(\{z_{ik}\}|\varepsilon) \cdot p(\varepsilon) = 0.95$$

Backup Slides

Coherence Time Approximation

Backup Slides

Candidate Rejection

- Identified 30 DPDM signal candidates and 27 axion signal candidates by comparing $\sum_{i,k} |z_{ik}|^2$ to χ^2 -distribution
- Tested candidates with resampling analysis
 - Reran analysis with 4 subsets of time and saw if z_{ik} consist with signal
 - Also with 4 subsets of stations
- All candidates in tension with tests \longrightarrow no robust DM candidates