From Radio Astronomy Interferometry to Table-top Networks for Ultralight Bosons

Yifan Chen, Niels Bohr Institute yifan.chen@nbi.ku.dk

17 August 2022, Mainz Searches for Wave-Like Dark Matter with Quantum Networks

Introduction to Ultralight Bosons

Supermassive Black Holes as Detectors for Ultralight Bosons

(ロ)、(型)、(E)、(E)、 E) の(の)

Dissecting Ultralight Bosons with Sensor Networks

Prospect

Ultralight Bosons: $\Psi = a, B^{\mu}$ and $H^{\mu\nu}$

$$-rac{1}{2}
abla^{\mu}$$
ə $abla_{\mu}$ ə $-rac{1}{4}B^{\mu
u}B_{\mu
u}+\mathcal{L}_{ ext{EH}}(\mathcal{H})-V(\Psi)$

- Extra dimensions predict a wide range of ultralight boson mass.
 Dimensional reduction from higher form fields:
 e.g. g^{MN}(5D) → g^{µν}(4D) + B^µ(4D), B^M(5D) → B^µ(4D) + a(4D).
- String axiverse/photiverse: logarithmic mass window. In 4D, $m_{\Psi} \propto e^{-\nu_{6D}}$.
- Ultralight m_{Ψ} as low as $\sim 10^{-22}$ eV can be naturally predicted.
- **Coherent waves** dark matter candidates when $m_{\Psi} < 1$ eV:

$$\Psi(\mathbf{x}^{\mu})\simeq \Psi_0(\mathbf{x})\cos\omega t; \qquad \Psi_0\simeq rac{\sqrt{
ho}}{m_\Psi}; \qquad \omega\simeq m_\Psi.$$

Supermassive Black Holes as Detectors for Ultralight Bosons

・ロト・日本・モト・モート ヨー うへで

Superradiance and Gravitational Atom

• Gravitational Atom between BH and axion cloud:

BL coordinate : $\Psi^{\text{GA}}(x^{\mu}) = e^{-i\omega t} e^{im\phi} S_{lm}(\theta) R_{lm}(r), \qquad \omega \simeq m_{\Phi} + i\Gamma.$

- Rotational and dissipational medium can amplify the wave around. [Zeldovich 72']
- Superradiance [Penrose, Zeldovichi, Starobinsky, Damour et al]: bosons' wave-functions are exponentially amplified from extracting BH rotation energy when

Compton wavelength $\lambda_c \simeq$ gravitational radius r_g .

Supermassive black holess as detectors for ultralight bosons:

$$M_{BH} \sim 10^9 M_{\odot} \leftrightarrow m_{\Phi} \sim 10^{-21} eV.$$

Event Horizon Telescope: an Earth-sized Telescope

- For single telescope with diameter D, the angular resolution for photon of wavelength λ is around ^λ/_D;
- VLBI: for multiple radio telescopes, the effective D becomes the maximum separation between the telescopes.

on the moon from the Earth. $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle$

As good as being able to see

Event Horizon Telescope: an Earth-sized Telescope

- For single telescope with diameter D, the angular resolution for photon of wavelength λ is around ^λ/_D;
- VLBI: for multiple radio telescopes, the effective D becomes the maximum separation between the telescopes.
- Stokes polarization basis:

$$\begin{pmatrix} I_{IJ} + V_{IJ} & Q_{IJ} + iU_{IJ} \\ Q_{IJ} - iU_{IJ} & I_{IJ} - V_{IJ} \end{pmatrix} \propto \begin{pmatrix} \langle \epsilon_R \epsilon_R^* \rangle_{IJ} & \langle \epsilon_R \epsilon_L^* \rangle_{IJ} \\ \langle \epsilon_L \epsilon_R^* \rangle_{IJ} & \langle \epsilon_L \epsilon_L^* \rangle_{IJ} \end{pmatrix}$$

Linear polarization Q, U

Total intensity *I*

Axion Cloud and Birefringence

• **Axion cloud** saturates f_a due to self-interactions:

- $a^{\mathrm{GA}}(x^{\mu}) \simeq R_{11}(\mathbf{x}) \cos [m_a t \phi] \sin \theta; \qquad a_{\mathrm{max}}^{\mathrm{GA}} \simeq \mathcal{O}(1) f_a; \qquad \omega \simeq m_a.$
- ▶ **Birefringence** induced from axion-photon couplings: $g_{a\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu} \rightarrow$ rotate linear polarization orientation $\chi \equiv \arg(Q + i \ U)/2$.
- Stringent constraints for $c \equiv 2\pi g_{a\gamma} f_a$ using 21' EHT data: [YC, Liu, Lu, Mizuno, Shu, Xue, Yuan, Zhao, Nature Astronomy 22]

Superradiant Evolution for Bosons [YC, Roy, Vagnozzi, Visinelli, PRD 22']

Superradiant evolution for scalar, vector or tensor:

Superradiant timescale $\propto M_{BH}$, and is shorter for vector or tensor due to l = 0 and j = m = 1 or 2 from intrinsic spin, $\sim O(10)$ yrs for SgrA^{*}.

• Center of the shadow contour drifts $\sim O(1)r_g$ once the spin decreases.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Massive Tensor Field (Preliminary)

- Massive bimetric tensor with minimal coupling $\sim H_{\mu\nu} T_{\rm EM}^{\mu\nu}$.
- Quadrature mode $H_{\mu\nu} = \operatorname{Re}[R(r)e^{-i\omega t + 2i\phi} \epsilon^{R}_{\mu\nu}]$ deflects photon geodesics.

(日) (同) (三) (三) (三) (○) (○)

Astrometry with photon ring autocorrelation: A strain $H \sim 10^{-2}$ leads to azimuthal lapse oscillation with $A_{\phi} \simeq 5^{\circ}$.

Dissecting Ultralight Bosons with Sensor Networks

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Dark Photon Dark Matter

A new U(1) vector couples in different portals with SM particles:

$$\epsilon F_{\mu\nu}B^{\mu\nu} + B_{\mu}\bar{\psi}\gamma^{\mu}(g_{V} + g_{A}\gamma_{5})\psi + B_{\mu\nu}\bar{\psi}\sigma^{\mu\nu}(g_{M} + g_{E}\gamma_{5})\psi.$$

- Cavity/circuits for kinetic mixing, optomechanics for hidden U(1), spin sensors for dipole couplings...
- Similar to axion: extra dimensions, misalignment production (or during inflation).
- Novel aspects: three polarization degrees of freedom:

Longitudinal mode: $\vec{\epsilon}_0(\vec{k}) \propto \vec{k}$.

Transverse modes: $\vec{\epsilon}_{R/L} \perp \vec{k}$.

Signals projected to the sensitive direction of a vector sensor: $\sim \vec{\epsilon} \cdot \hat{l}$.

Spin Precession from Axion Gradient

Dipole coupling:
$$H \propto \vec{\mathcal{O}} \cdot \vec{\sigma}_{\psi}$$
.

Effective 'magnetic field' \vec{O} causes precession of the fermions' spin $\vec{\sigma}_{\psi}$. [Graham, Rajendran, Budker et al]

E.g., NMR (Casper), spin-based amplifiers, comagnetometer, magnon ...

• Axion gradient: $\partial_{\mu}a\bar{\psi}\gamma^{\mu}\gamma^{5}\psi \rightarrow \vec{\mathcal{O}}_{a} = \vec{\nabla}a \propto \vec{\epsilon}_{0}$.

► Dark photon with dipole couplings:

$$B_{\mu\nu}\bar{\psi}\sigma^{\mu\nu}\psi \rightarrow \vec{\mathcal{O}}_{\mathrm{MDM}} = \vec{\nabla} \times \vec{B} \propto \vec{\epsilon}_{R/L};$$

 $B_{\mu\nu}\bar{\psi}\sigma^{\mu\nu}i\gamma^5\psi \rightarrow \vec{\mathcal{O}}_{\mathrm{EDM}} = \partial_0\vec{B} - \vec{\nabla}B^0 \propto \begin{cases} \vec{\epsilon}, & m \gg |p| \\ \vec{\epsilon}_{R/L}, & m \ll |p| \end{cases}$

Identification of the couplings?

,

Kinetic Mixing and Hidden U(1) Dark Photon

► Effective currents: $\hat{\epsilon} \rightarrow \vec{J}_{eff}$. Kinetic mixing U(1) ~ $F_{\mu\nu}B^{\mu\nu}$ shows up in circuit/cavity. [Chaudhuri et al 15'] or geomagnetic fields [Fedderke et al 21'];

• Force: $\hat{\epsilon} \to \vec{F}$.

U(1) B-L & B shows up in optomechanics [Graham et al 15', Pierce et al 18'] or astrometry [Graham et al 15', Xue et al 19' 21'].

General Axion & Dark Photon Stochastic Background

► Cosmological isotropic background [CaB, Dror et al 21']:

Thermal freeze out, Topological defect decay, Parametric resonance/tachyonic instability of inflaton, ...

Sources from a specific direction:

Cold stream of dark matter, Emissions from superradiant clouds. Dipole radiations from U(1)' charged binaries \dots

Microscopic nature: spin, interaction.

Macroscopic property: spectrum, anisotropy and macroscopic polarization.

Scalar Field Interferometry

Two point correlation function of the scalar field [Derevianko 18']:

$$\begin{array}{ll} \langle \mathsf{a}(\vec{0}\,)\mathsf{a}(\vec{d}\,)\rangle & = & \frac{\rho_{\mathsf{a}}}{\bar{\omega}} \int d^{3}\vec{v} \frac{f_{\mathrm{DM}}(\vec{v}\,)}{\omega} \cos\left[m_{\mathsf{a}}\vec{v}\cdot\vec{d}\,\right] \\ & \propto & \exp\left[-\frac{d^{2}}{2\lambda_{c}^{2}}\right] \cos\left[m_{\mathsf{a}}\vec{v}_{g}\cdot\vec{d}\,\right]. \end{array}$$

where $f_{\rm DM}(\vec{v}) \propto \exp[-\frac{(\vec{v}-\vec{v_g})^2}{2v_{\rm vir}^2}]$ and $\vec{v_g}$ is the Earth velocity in the halo.

- Velocity fluctuation ~ v_{vir} leads to decoherence at dB length scale.
- Negative correlation appears when $\vec{d}//\vec{v_g}$.
- Localization with σ_θ ∝ λ/d and Daily modulation due to the self-rotation of the Earth. [Foster, Kahn et al 20']

Vector Sensor Interferometry For Isotropic Backgrounds

A pair of vector sensors separated by a baseline \vec{d} : [YC, Jiang, Shu, Xue, Zeng, PRR 22'] $\mathcal{F}(\vec{d}, \vec{l}_{l}, \vec{l}_{J}) \propto \langle (\vec{\mathcal{O}}(t, \vec{x}_{l}) \cdot \hat{l}_{l}) (\vec{\mathcal{O}}(t, \vec{x}_{J}) \cdot \hat{l}_{J}) \rangle, \qquad \vec{d} \equiv \vec{x}_{l} - \vec{x}_{J}.$ For isotropic sources $f_{\rm iso}(p, \hat{\Omega}) = \frac{f_{\rm iso}(p)}{4\pi n^{2}}$:

• **Dipole correlation** for each mode of $\vec{\epsilon}$ at d = 0.

$$\mathcal{F} \propto \hat{l}_{l} \cdot \hat{l}_{J} = \cos \theta_{lJ}$$

Any deviation is a sign of **anisotropy**.

• Finite baseline **distinguishes** $\vec{\epsilon}_0$ from $\vec{\epsilon}_{R/L}$ at $\xi \equiv p_0 d \approx 4$.

SQC.

Vector Sensor Interferometry For Isotropic Backgrounds

A pair of vector sensors separated by a baseline \vec{d} : [YC, Jiang, Shu, Xue, Zeng, PRR 22'] $\mathcal{F}(\vec{d}, \vec{l}_l, \vec{l}_J) \propto \langle (\vec{\mathcal{O}}(t, \vec{x}_l) \cdot \hat{l}_l) (\vec{\mathcal{O}}(t, \vec{x}_J) \cdot \hat{l}_J) \rangle, \qquad \vec{d} \equiv \vec{x}_l - \vec{x}_J.$ For isotropic sources $f_{iso}(p, \hat{\Omega}) = \frac{f_{iso}(p)}{4\pi n^2}$:

• A twisted setup can identify the macroscopic circular polarization.

Right and left handed DP respond differently to such setup.

Localization [YC, Jiang, Shu, Xue, Zeng, PRR 22']

Sources from a specific direction $f_{\text{str}}(p, \hat{\Omega}) = \frac{f_{\text{str}}(p)}{p^2} \delta^2(\hat{\Omega} - \hat{\Omega}_0)$:

Short baseline limit with d = 0: The optimal arrangements of the sensors are the same for $\vec{\epsilon}_0$ and $\vec{\epsilon}_{R/L}$, reaching $\sigma_{\Omega} \approx 1/\text{SNR}$.

Long baseline limit:

The sensitive directions should overlap with the signals as much as possible with $\sigma_{\theta} \approx 1/(\text{SNR } p d)$.

Multi-messenger astronomy with GNOME [Dailey et al 21']!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Axion Gradient and MDM DP Dark Matter

3 × 3 matrix of vector correlation: $\mathscr{C}(\vec{d})_{IJ} \propto \langle (\vec{\mathcal{O}}(t, \vec{x}_I) \cdot \hat{l}_I) (\vec{\mathcal{O}}(t, \vec{x}_J) \cdot \hat{l}_J) \rangle$ with $f_{\rm DM}(\vec{v}) \propto \exp[-(\vec{v} - \vec{v}_g)^2/(2v_{\rm vir}^2)]$.

▶ 5 possibilities when two \hat{l}_i align: [YC, Jiang, Shu, Xue, Zeng, PRR 22']

Axion and MDM DP have totally different spatial correlations.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Dipole Angular Correlation [YC, Jiang, Shu, Xue, Zeng, PRR 22']

For $f_{\rm DM}(ec{v}) \propto \exp[-(ec{v}-ec{v_g})^2/(2v_{
m vir}^2)]$,

Tune $\vec{l_1}$ and $\vec{l_2}$ with certain directions at the same location:

T

$$\Gamma(\vec{h}_{1}, \vec{h}_{2}) = (\vec{h}_{1})^{1} \cdot \mathscr{C}(0) \cdot \vec{h}_{2}$$

$$= \begin{cases} \frac{v_{\text{vir}}^{2}}{2} \vec{h}_{1} \cdot \vec{h}_{2} + \frac{1}{2} (\vec{h}_{1} \cdot \vec{v}_{g}) (\vec{h}_{2} \cdot \vec{v}_{g}) & \text{Axion Gradient;} \\ \frac{v_{\text{vir}}^{2}}{2} \vec{h}_{1} \cdot \vec{h}_{2} - \frac{1}{6} (\vec{h}_{1} \cdot \vec{v}_{g}) (\vec{h}_{2} \cdot \vec{v}_{g}) & \text{MDM DP;} \\ \frac{1}{6} \vec{h}_{1} \cdot \vec{h}_{2} & \text{EDM DP.} \end{cases}$$

▶ Universal dipole angular correlation: $\vec{l_1} \cdot \vec{l_2} = \cos \theta$, in constrast with monopole or quadruple (H.D. curve) for stochastic GW searches.

• $\vec{v_g}$ brings in anisotropy, with different signs for axion gradient and MDM DP.

Correlations of vector sensors can identify the macroscopic property and the microscopic nature of the bosonic background:

Coupling type, macroscopic polarization and localization/anisotropy ...

 \rightarrow Multi-messenger astronomy/cosmology!

How to improve sensitivity based on those information?

Prospect: sensitivity of multi-mode systems, tensor-like correlations.

Simultaneous Resonant and Broadband Detection

Standard quantum limit for power law detection:

 ${\sf SNR}^2 \propto {\sf range \ where \ } {\sf S}_{
m int} \gg {\sf S}_{
m r}$. [Chaudhuri, Irwin, Graham, Mardon, 19']

Scan bandwidth can be significantly increased in a multi-mode system:

New quantum limit for multi-mode resonators.

[YC, Liu, Shu, Song, Yang, Zeng, 22'] [YC, Jiang, Ma, Shu, Yang, PRR 22']

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Quantum Limit for Multi-mode Resonators

LC circuit: ineffective at low frequency due to large n_{occ}.

• High Q_{int} and constant n_{occ} for SRF upconversion with multi-mode upgrade can cover $m_a > kHz$ QCD axion dark matter potentially.

Tensor-like Angular Correlations

 Pulsar timing array for stochastic GW background: Angular correlation shows Hellings-Downs curves.

Microscopic tensor nature shows up in macroscopic correlations.

 On-going: Hellings-Downs in table-top detectors? e.g., high frequency GW or massive tensor dark matter.

Thank you!

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Appendix

<□ > < @ > < E > < E > E のQ @

Property of Ultralight Dark Matter

Galaxy formation: virialization $\rightarrow \sim 10^{-3}c$ velocity fluctuation, thus kinetic energy $\sim 10^{-6}m_{\Psi}c^2$. Effectively coherent waves:

$$\Psi(ec{x},t) = rac{\sqrt{2
ho_{\Psi}}}{m_{\Psi}} \cos\left(\omega_{\Psi}t - ec{k}_{\Psi}\cdotec{x} + \delta_0
ight).$$

• Bandwidth:
$$\delta \omega_\Psi \simeq m_\Psi \left< v_{\rm DM}^2 \right> \simeq 10^{-6} m_\Psi$$
, $Q_\Psi \simeq 10^6$.

- Correlation time: τ_Ψ ≃ ms 10⁻⁶eV/m_Ψ.
 Power law detection is used to make integration time longer than τ_Ψ.
- ► Correlation length: $\lambda_d \simeq 200 \text{ m} \frac{10^{-6} \text{eV}}{m_{\Psi}} \gg \lambda_c = 1/m_{\Psi}$. Sensor array can be used within λ_d .

Axion Wave from Saturating Axion Cloud

 Self interaction saturating phase where a_{max} ~ f_a. [Yoshino, Kodama 12', Baryakhtar et al 20']

Two level state with 2, 1, 1 and 3, 2, 2. Annihilations between 3, 2, 2 lead to 'ionized' axion wave with velocity v ~ α/6:

$$B_a \simeq 3 imes 10^{-24} \,\, \mathrm{T} imes \mathcal{C}_N\left(rac{lpha}{0.1}
ight)^4 \left(rac{1 \mathrm{kpc}}{r}
ight), \qquad [\mathsf{Baryakhtar et al } 20']$$

► For BH $\sim 10 M_{\odot}$, superradiance happens for $m_a \sim 100$ Hz axion. Axion gradient/DP signals are expected!

Multi-messenger astronomy with GNOME, ngEHT and PTA!

Localization of the source ?

Azimuthal Lapse

At low inclination angles,

photon ring autocorrelation:

 $\mathcal{C}(T,\varphi) \equiv \iint \mathrm{d}r \mathrm{d}r' r \, r' \, \langle \Delta I(t,r,\phi) \Delta I(t+T,r',\phi+\varphi) \rangle$ peaks at $T = \tau_0$ and $\varphi = \delta_0$, where δ_0 is the azimuthal lapse.

• δ_0 is sensitive to spin evolution due to frame dragging.

[Chael Palumbo]

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Chiral Dark Photon Background [Audible Axions, Machado et al18']

Axion-DP coupling:

$$\frac{1}{2}\partial_{\mu}a\partial^{\mu}a - m_a^2 f_a^2 [1 - \cos\left(\frac{a}{f_a}\right)] - \frac{1}{4}B_{\mu\nu}B^{\mu\nu} - \frac{\alpha}{4f_a}aB_{\mu\nu}\tilde{B}^{\mu\nu}.$$

Rolling a leads to different dispersions between R/L-handed dark photon:

$$\omega_{L/R}^2 = p^2 \mp p \frac{\alpha}{f_a} a'.$$

- Tachyonic instability: exponential increase of mode with negative ω².
- Potential chiral spectrum. How to identify the macroscopic circular polarization?

Global Gravitational Wave Detector Network

- Localization due to long baseline $\sigma_{\theta} \propto \lambda_h/R_E$.
- Macroscopic polarization from correlation of detectors.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?