GW Signal of Inflation Triggered Phase transition

LianTao Wang Univ. of Chicago

Work in collaboration with Haipeng An, KunFeng Lyu, and Siyi Zhou, 2009.12381, 2201.05171

Probing NP with GW workshop. MITP. August 5, 2022

Why inflation triggered phase transition?

The excursion of the inflaton

 $\Delta \phi \sim N_{\rm efold} \sqrt{\epsilon} M_{\rm Planck}$

Large excursion of the inflaton field plausible, even if we restrict ourselves to the case where $\Delta \phi < M_{Planck}$

This is the case even for a small part of inflation with $N_{efold} \approx O(1)$

Any physics/observable effect?

Example: Inflaton + spectator

Inflaton sector Single field slow roll Approx. shift symmetry...

Spectator, less energy, not driving spacetime evolution

Suppose the coupling is weak, suppressed by some high scale M, such as M≈M_{Planck}

For example:

$$f\left(\frac{\phi}{M}\right)m_{\sigma}^{2}\sigma^{2}, \quad g\left(\frac{\phi}{M}\right)\lambda\sigma^{4}, \text{ etc.}$$

Field excursion of inflaton, $\Delta \phi \sim M$, can change the mass and couplings in the spectator sector, leading to interesting dynamics.

For example: 1st order PT

$$V(\phi, \sigma) = -\frac{1}{2}\mu_{\rm eff}^2 \sigma^2 + \frac{\lambda}{4}\sigma^4 + \frac{1}{8\Lambda^2}\sigma^6 + V_{\rm inf}(\phi), \quad \mu_{\rm eff}^2 = -(m_\sigma^2 - c^2\phi^2)$$

 $c^2 \sim \frac{m_\sigma^2}{M^2} \ll 1$

Rolling inflaton \rightarrow (1st order) phase transition in the spectator sector

1st order phase transition

Bubble nucleation rate:

$$\frac{\Gamma}{V} \simeq m_{\sigma}^4 e^{-S_4}$$

 m_{σ} : typical scale in the spectator sector

Efficient phase transition:

$$\int_{-\infty}^{t} dt' \frac{\Gamma}{V} \frac{1}{H^3} \simeq O(1) \rightarrow S_4 \sim \log\left(\frac{\phi H}{\dot{\phi}} \frac{m_{\sigma}^4}{H^4}\right) \sim \log\left(\frac{\phi}{\epsilon^{1/2} M_{\rm Pl}} \frac{m_{\sigma}^4}{H^4}\right)$$

Phase transition is 1st order (S₄ \gg 1). Also, assume spectator sector does not dominate energy density.

$$H^4 \ll m_\sigma^4 \ll 3M_{\rm Pl}^2 H^2$$

1st order phase transition

Phase transition completed with O(1) of Hubble volume in new phase (so that they will collide and produce GW)

Guth and Weinberg, 83'

$$S_4(t) \simeq S(t_*) + \beta(t_* - t) + \dots$$
$$r_{\text{bubble}}^{-1} \simeq \beta = \left| \frac{dS_4}{dt} \right|$$

 $\beta^4 \ll m_\sigma^4 \ll 3M_{\rm Pl}^2 H^2$ $\beta \sim (10 - 100) \times H$

For GW signal in the opposite limit: J. Barir, M. Geller, C. Sun, T. Volansky, 2203.00693

$$\frac{dS_{4}}{\log \mu_{eff}^{2}} \times \frac{\log 2\phi}{\phi \left(1 - \frac{\mu^{2}}{c^{2}\phi^{2}}\right)} \left| \begin{array}{c} \mu_{eff}^{2} = -(\mu^{2} - c^{2}\phi^{2}) \\ \mu_{eff}^{2} = -(\mu^{2} - c^{2}\phi^{2}) \\ = \left| \frac{dS_{4}^{\beta}}{d\log \mu_{eff}^{2}} \right| \left| \frac{dS_{4}}{d2g} \right|_{cff}^{1} \left| 2c\right|^{1/2} \times \frac{M_{pf}^{M_{p1}}}{\phi \left(1 - \frac{\mu^{2}}{c^{2}\phi^{2}}\right)} \right| \left| \frac{dS_{4}}{d\log \mu_{eff}^{2}} \right| \sim O(1) \\ \\ \frac{M_{H}^{\mu_{H}}}{\int d\log \mu_{eff}^{2}} \sigma \\ = \frac{M_{H}^{\mu_{H}}}{\int d\log \mu_{eff}^{2}} \left| \frac{dS_{4}}{d2g} \right|_{cff}^{1} \left| 2c\right|^{1/2} \times \frac{M_{pf}^{M_{p1}}}{\phi \left(1 - \frac{\mu^{2}}{c^{2}\phi^{2}}\right)} \right| \left| \frac{dS_{4}}{d\log \mu_{eff}^{2}} \right| \sim O(1) \\ \\ \frac{M_{H}^{\mu_{H}}}{\int d\log \mu_{eff}^{2}} \sigma \\ = \frac{M_{H}^{\mu_{H}}}{\int d\log \mu_{eff}^{2}} \left| \frac{dS_{4}}{d2g} \right|_{cff}^{1} \left| \frac{dS_{4}}{d2g} \right|$$

1st order phase transition

Phase transition is 1st order, and spectator sector does not dominate energy density:

 $S_4(t) \simeq S(t_*) + \beta(t_* - t) + \dots \qquad \beta^4 \ll m_\sigma^4 \ll 3M_{\rm Pl}^2 H^2$

$$\beta^{-1} \sim r_{\text{bubble}} \ll H^{-1}$$

 $t_{\rm bubble\ collision} \sim r_{\rm bubble} \ll H^{-1}$

An instantaneous source of GW.

Properties of GW signal

GW from instantaneous source

$$h'' + \frac{2a'}{a}h' + k^2h = 16\pi G_{\rm N}a^3T_{ij}$$

Instantaneous source: $T_{ij} \simeq Ta^{-3}(\tau_*)\delta(\tau - \tau_*)$

Before the end of inflation:

$$h = 16\pi G_{\rm N}(-H\tau) \left[\frac{\sin k(\tau - \tau_*)}{k} + \left(\frac{1}{k^2 \tau} - \frac{1}{k^2 \tau_*} \right) \cos k(\tau - \tau_*) + \frac{1}{k^3 \tau \tau_*} \sin k(\tau - \tau_*) \right]$$

Assume radiation domination after reheating (for now):

$$h \propto \frac{\sin k\tau}{k\tau}$$

During inflation:

Mode starts inside horizon, oscillates till horizon exit.

Amplitude depends on k.

Leads to oscillatory pattern in frequency.

 $h \propto \frac{\cos(k\tau_*)}{k^2}$

Oscillations

$\tau_*^{-1} < k < \Delta_\tau^{-1}$

Time scale of bubble collision $\approx \Delta_{\tau}$.

Oscillation pattern in frequency smeared out in this regime.

Spectrum depends on details of the source.

Mode outside horizon at the time of phase transition

No oscillation. Can treat the GW as if it is from a point source.

 $\frac{d\rho_{\rm GW}}{d\log k} \propto k^3 \langle (h')^2 \rangle$

 $\frac{d\rho_{\rm GW}}{d\log k} \propto k^3 \langle (h')^2 \rangle$

 $\frac{d\rho_{\rm GW}}{d\log k} \propto k^3 \langle (h')^2 \rangle$

 $\frac{d\rho_{\rm GW}}{d\log k} \propto k^3 \langle (h')^2 \rangle$

Details of source matters, determined by numerical simulation Huber, Konstantin, 0806.1828 Cutting, Hindmarsh, Wier, 1802.05712

More generally

Dependence on later evolution

 $\tilde{\mathcal{G}}_0^f(k)$ Depends on the evolution of the background spacetime during inflation

 $\tilde{\mathcal{E}}_0^i(k)$ Depends on the evolution of the background spacetime after inflation

Alternative scenarios can change the shape of the GW signal!

Can be sensitive to era after the CMB mode exit the horizon and before BBN

Scenarios of inflation and its aftermath

Scenarios of inflation

Parameterized by *p*

Quasi de Sitter:

 $a(\tau) = -\frac{1}{H\tau}$

Power law:

 $a(t) = a_0 (t/t_0)^p$

Lucchin and Matarrese, 1985

p→∞, quasi de Sitter

Scenarios after inflation: Parameterized by \tilde{p}

 $a(t) \sim t^{\tilde{p}}$

	w	$\rho(a)$	\tilde{p}	$\tilde{\alpha}$
MD	0	a^{-3}	2/3	-3/2
RD	1/3	a^{-4}	1/2	-1/2
Λ	-1	a^0	∞	3/2
Cosmic string	-1/3	a^{-2}	1	∞
Domain wall	-2/3	a^{-1}	2	5/2
kination	1	a^{-6}	1/3	0

Impact on spectrum

	Scena	rios after inflatior	•	
UV		RD	MD	$t^{ ilde{p}}$
	dS	k^{-5}	k^{-7}	$k^{-3+2\frac{\tilde{p}}{\tilde{p}-1}}$
Inflationary scenarios	t^p	$k^{-3+2\frac{p}{1-p}}$	$k^{-5+2\frac{p}{1-p}}$	$k^{-1+2\left(\frac{p}{1-p}+\frac{\tilde{p}}{\tilde{p}-1}\right)}$

Impact on spectrum

			rios after inflatior	Scena		
i	$t^{ ilde{p}}$	MD	RD		UV	
$2\frac{\tilde{p}}{\tilde{p}-1}$	$k^{-3+2\frac{\tilde{p}}{\tilde{p}-1}}$	k^{-7}	k^{-5}	dS		
$\left(\frac{\tilde{p}}{p} + \frac{\tilde{p}}{\tilde{p}-1}\right)$	$k^{-1+2\left(\frac{p}{1-p}+\frac{\tilde{p}}{\tilde{p}-1}\right)}$	$k^{-5+2\frac{p}{1-p}}$	$k^{-3+2\frac{p}{1-p}}$	t^p	Inflationary scenarios	
1	$\frac{k^{-3+2}}{k^{-1+2\left(\frac{p}{1-2}\right)}}$	k^{-7} $k^{-5+2rac{p}{1-p}}$	$\frac{k^{-5}}{k^{-3+2\frac{p}{1-p}}}$	$\frac{\mathrm{dS}}{t^p}$	Inflationary scenarios	

Intermediate

In

Scenarios after inflation

	S.C.			
1		RD	MD	$t^{ ilde{p}}$
	dS	k^{-1}	k^{-3}	$k^{1+2\frac{\tilde{p}}{\tilde{p}-1}}$
flationary cenarios	t^p	$k^{1+2\frac{p}{1-p}}$	$k^{-1+2\frac{p}{1-p}}$	$k^{3+2\left(\frac{p}{1-p}+\frac{\tilde{p}}{\tilde{p}-1}\right)}$
cenarios		h 1-p	h ^{1-p}	\hbar (1- p p -1

Impact on spectrum

Intermediate

	Scena	rios after inflatior	1	
UV		RD	MD	$t^{ ilde{p}}$
	dS	k^{-5}	k^{-7}	$k^{-3+2\frac{\tilde{p}}{\tilde{p}-1}}$
Inflationary scenarios	t^p	$k^{-3+2\frac{p}{1-p}}$	$k^{-5+2\frac{p}{1-p}}$	$k^{-1+2\left(\frac{p}{1-p}+\frac{\tilde{p}}{\tilde{p}-1}\right)}$

Intermediate

In

Scenarios after inflation

	A. Research			
		RD	MD	$t^{ ilde{p}}$
	dS	k^{-1}	k^{-3}	$k^{1+2\frac{\tilde{p}}{\tilde{p}-1}}$
flationary cenarios	t^p	$k^{1+2\frac{p}{1-p}}$	$k^{-1+2\frac{p}{1-p}}$	$k^{3+2\left(\frac{p}{1-p}+\frac{\tilde{p}}{\tilde{p}-1}\right)}$

Scenarios after inflation

			\rightarrow	
IR		RD	MD	$t^{ ilde{p}}$
nflationary	dS	k^3	k^1	$k^{5+2\frac{\tilde{p}}{\tilde{p}-1}}$
	t^p	k^3	k^1	$k^{5+2\frac{\tilde{p}}{\tilde{p}-1}}$

1.11.7	Scena	rios after inflatior		
UV		RD	MD	$t^{ ilde{p}}$
	dS	k^{-5}	k^{-7}	$k^{-3+2\frac{\tilde{p}}{\tilde{p}-1}}$
Inflationary scenarios	t^p	$k^{-3+2\frac{p}{1-p}}$	$k^{-5+2\frac{p}{1-p}}$	$k^{-1+2\left(\frac{p}{1-p}+\frac{\tilde{p}}{\tilde{p}-1}\right)}$
+				

Intermediate

	-		\rightarrow	
IK		RD	MD	$t^{ ilde{p}}$
Inflationary	dS	k^3	k^1	$k^{5+2\frac{\tilde{p}}{\tilde{p}-1}}$
SCENARIOS	t^p	k^3	k^1	$k^{5+2\frac{\tilde{p}}{\tilde{p}-1}}$

Ideally, we will

- 1. Observe GW.
- 2. Observe Oscillation → Instantaneous source during inflation (1st order PT)
- 3. The spectral shape can tell us the evolution after PT.

Comparing scenarios

Scenarios after reheating.

 $\tau_{\rm MR}$ = MD-RD transition

Comparing scenarios

→ different slope in UV part.

$$\Omega_{\rm GW}^{\rm max} \sim \Omega_R \times \left(\frac{\Delta \rho_{\rm vac}}{\rho_{\rm inf\star}}\right)^2 \times \left(\frac{H_\star}{\beta}\right)^5 \tilde{\Delta} \times F(H_\star/H_r, a_\star/a_r, \cdots)$$
$$\approx 10^{-13} \times \left(\frac{\Delta \rho_{\rm vac}/\rho_{\rm inf\star}}{0.1}\right)^2 \times \left(\frac{H_\star/\beta}{0.1}\right)^5$$

Conclusions

- Cosmological observations can reveal new dynamics in the inflationary era.
- Potentially large inflaton excursion can trigger new dynamics in a spectator sector.
 - * Can trigger 1st order phase transition \rightarrow GW.
 - * GW Can probe an era invisible from other observables, such as CMB/LSS or BBN.