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Pulsar timing arrays (PTAs)

Array of pulsars across the Milky Way → construct galaxy-sized GW detector!

[B. Saxton for nrao.edu]

Pulsars: Highly magnetized rotating neutron stars, ultra-precise stellar clocks

• Periods of 10−3···1 s. Accretion in close-binary systems → ms pulsars
• Beamed radio pulses emitted from magnetic poles → cosmic lighthouses

Look for tiny distortions in pulse travel times caused by nanohertz GWs

2



Pulsar timing arrays (PTAs)

Array of pulsars across the Milky Way → construct galaxy-sized GW detector!

[B. Saxton for nrao.edu]

Pulsars: Highly magnetized rotating neutron stars, ultra-precise stellar clocks

• Periods of 10−3···1 s. Accretion in close-binary systems → ms pulsars
• Beamed radio pulses emitted from magnetic poles → cosmic lighthouses

Look for tiny distortions in pulse travel times caused by nanohertz GWs

2



Pulsar timing arrays (PTAs) PSR J0437–4715 (173.7 rotations per second)

Array of pulsars across the Milky Way → construct galaxy-sized GW detector!

[B. Saxton for nrao.edu]

Pulsars: Highly magnetized rotating neutron stars, ultra-precise stellar clocks

• Periods of 10−3···1 s. Accretion in close-binary systems → ms pulsars

• Beamed radio pulses emitted from magnetic poles → cosmic lighthouses

Look for tiny distortions in pulse travel times caused by nanohertz GWs

2



Pulsar timing arrays (PTAs) PSR J0437–4715 (173.7 rotations per second)

Array of pulsars across the Milky Way → construct galaxy-sized GW detector!

[B. Saxton for nrao.edu]

Pulsars: Highly magnetized rotating neutron stars, ultra-precise stellar clocks

• Periods of 10−3···1 s. Accretion in close-binary systems → ms pulsars
• Beamed radio pulses emitted from magnetic poles → cosmic lighthouses

Look for tiny distortions in pulse travel times caused by nanohertz GWs

2



Pulsar timing arrays (PTAs) PSR J0437–4715 (173.7 rotations per second)

Array of pulsars across the Milky Way → construct galaxy-sized GW detector!

[B. Saxton for nrao.edu]

Pulsars: Highly magnetized rotating neutron stars, ultra-precise stellar clocks

• Periods of 10−3···1 s. Accretion in close-binary systems → ms pulsars
• Beamed radio pulses emitted from magnetic poles → cosmic lighthouses

Look for tiny distortions in pulse travel times caused by nanohertz GWs

2



Residuals in pulse times of arrival (TOAs)

[IPTA Collaboration: 1602.03640]

R(i) = TOA(i)
SSB − TOA(i)

Model
• Measure TOAs and convert to TOAs at the solar-system barycenter (SSB)
• Compare to detailed timing model for each pulsar: pulsation frequency and

derivatives, position, proper motion, binary dynamics, relativistic effects, ...
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Hellings–Downs correlations

[physicsworld.com]

Hallmark signature of a stochastic gravitational-wave background signal:
Quadrupolar correlations described by Hellings–Downs (HD) curve Γij (ψ)
[Hellings, Downs: Astrophys. J. 265 (1983) L39]
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First glimpse of a SGWB signal?

Strong evidence for a new stochastic red process in latest pulsar timing data

NANOGrav [2009.04496]

PPTA [2107.12112]

EPTA [2110.13184] IPTA [2201.03980]

Not yet a detection, but consistent with interpretation in terms of GWs!
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Astrophysical interpretation

[hubblesite.org]

Mergers of supermassive black-hole binaries (SMBHBs) after galaxy mergers
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SMBHB models and simulations

SMBHB population model based
on empirical quasar population

[Casey-Clyde et al.: 2107.11390]

Simulation based on SHARK galaxy
evolution model (delay: 1 Gyr)

[Cury lo, Bulik: 2108.11232]

• Left: ΦBHB,0 O (10) times larger than previous estimates, e.g., 1708.03491
• Right: Time delays of 100 Myr to 1 Gyr not enough to explain amplitude

Might tell us something about our models, simulations ... or about the signal
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Cosmological gravitational waves

[National Astronomical Observatory of Japan, gwpo.nao.ac.jp]

Viable possibility: Signal receives contributions from SMBHBs + X (or X only?)
→ Probe cosmology of the early Universe and particle physics at high energies
Cosmic strings [2009.06555, 2009.06607, 2009.10649, 2009.13452, 2102.08923] Primordial black holes [2009.07832, 2009.08268,
2009.11853, 2010.03976, 2101.11244] Phase transitions [2009.09754, 2009.10327, 2009.14174, 2009.14663, 2101.08012 ] Audible axions
and axion strings [2009.11875, 2012.06882] Inflation [2009.13432, 2010.05071, 2011.03323] Domain walls [2009.13893, 2012.14071]
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Overwhelming reaction in the particle physics community

NANOGrav 2009.04496: 423 citations and dozens of possible interpretations
9



Gravitational waves from stable cosmic strings

[Ringeval: 1005.4842]

Cosmic strings:

• Topological defects after U(1)
breaking in the early Universe

• Network of long strings and
closed loops in scaling regime

• Parameters: string tension Gµ
and loop size at production α

Gravitational waves (GWs):

• Loop oscillations + GW bursts
from cusps and kinks on loops

Assumption: Energy loss via particle emission off closed loops is negligible
[Matsunami, Pogosian, Saurabh, Vachaspati: 1903.05102] [Hindmarsh, Lizarraga, Urio, Urrestilla: 2103.16248]
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Stable cosmic strings and NANOGrav

[Blasi, Brdar, KS: 2009.06607]
[See also Ellis, Lewicki: 2009.06555]
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Cosmic strings and grand unification

[Dror, Hiramatsu, Kohri, Murayama, White: 1908.03227]
[See also King, Pascoli, Turner, Zhou: 2005.13549, 2106.15634]

UV embedding of the seesaw mechanism in GUT models:
Neutrino mass, leptogenesis, cosmic strings, GWs, proton decay

Example: GSM × U(1)B−L → GSM results in metastable cosmic strings:
quantum tunneling events lead to SO(10) monopole pair production

Assumption: Inflation dilutes monopoles; otherwise string–monopole gas
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Monopole pair production

Decay rate per string length:
[Vilenkin: Nucl. Phys. B 196 (1982) 240]
[Preskill, Vilenkin: hep-ph/9209210]
[Monin, Voloshin: 0808.1693]

Γd = d#
dtdℓ = µ

2π e−π κ , κ = m2

µ
(1)

• String tension µ, monopole mass m

• Strings are not topologically stable, decay on cosmological times scales
• Dynamics around the GUT scale →

√
κ ∼ 1 · · · 10, metastable strings

• Dynamics around intermediate scale →
√
κ ≫ 10, quasistable strings

Monopoles with and without unconfined magnetic flux:
• Unconfined flux: MM̄ annihilation, emission of massless gauge bosons
• No unconfined flux: energy loss only via emission of gravitational waves

13
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Possible scenarios

WB−L = λT
(

SS̄ − 1
2 v 2

B−L

)
+ hi

M∗
S2N2

i (2)

[Buchmüller, Domcke, Murayama, KS: 1912.03695]
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B−L phase transition after
supersymmetric hybrid inflation:

• T: inflaton, S, S̄: Higgs / waterfall
fields, Ni : right-handed neutrinos

• [S]B−L = −1 → no matter parity at
low energies → metastable strings

vB−L ∼ (3 · · · 6) × 1015 GeV

[Buchmüller, KS, Vertongen: 1008.2355, 1104.2750]
[Buchmüller, Domcke, KS: 1111.3872, 1202.6679, 1203.0285]
[Buchmüller, Domcke, Kamada, KS: 1305.3392, 1309.7788]

Minimal alternative: SU(2) × U(1) triplet−→ U(1) × U(1) doublets−→ U(1)
[Buchmüller: 2102.08923]
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Possible scenarios

WB−L = λT
(

SS̄ − 1
2 v 2

B−L
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+ hi

M∗
S2N2

i (2)

[Buchmüller, Domcke, Murayama, KS: 1912.03695]
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Strategy

End of scaling when long string segments begin to enter the horizon:
[Leblond, Shlaer, Siemens: 0903.4686]

Γd ℓ ts ∼ ΓdH−1 ts ∼ Γd t2
s ∼ 1 ⇒ ts ∼ 1√

Γd
(3)

Scaling regime, t < ts

• Loops: emit GWs, decay into segments negligible
• Long strings: decay into segments on superhorizon
scales, chop off closed loops, GW emission negligible

Decay regime, t > ts

• Loops: emit GWs and decay into segments
• Segments from loops and long strings: emit GWs and
decay into segments; no production of new loops
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Formal description

Kinetic equation for the number densities of loops and segments, ◦n and ñ:
∂t n (ℓ, t) = S (ℓ, t) − ∂ℓ [u (ℓ, t) n (ℓ, t)] − [3H (t) + Γd ℓ] n (ℓ, t) (4)

Source term S:
• Loops from long strings (loop production function): S ∝ t−4 δ (ℓ− αt)
• Loops during the decay regime: S = 0
• Segments from loops: S = Γd ℓ

◦n (ℓ, t)
• Segments from segments: S = 2 Γd

∫ ∞
ℓ

dℓ′ ñ (ℓ′, t)

Time derivative of the string length u = ℓ̇:
• Long strings during scaling: u = 3H (t) ℓ− 2ℓ/t
• Loops and segments when radiating off GWs: u = −ΓGµ, −Γ̃Gµ

Challenge: Solve set of partial integro-differential equations in both the scaling
and decay regimes, match solutions at t = ts . (Plus, RD / MD.)
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Number densities

Loop number density during the decay regime in the radiation era:
[Cf. Blanco-Pillado, Olum, Shlaer: 1309.6637] [Cf. Blanco-Pillado, Olum: 1709.02693]

◦n
rr
> (ℓ, t) = B e−Γd [ℓ(t−ts )+1/2 ΓGµ(t−ts )2]

t3/2 (ℓ+ ΓGµt)5/2 Θ
(
αts − ℓ̄ (ts)

)
Θ (teq − t) (5)

• Exponential suppression at ℓt > 1/Γd = t2
s or t2 > 2/ (Γd ΓGµ) = t2

e

because of new exponential suppression factor:

Γd

∫ t

ts

dt ′ [
ℓ+ ΓGµ

(
t ′ − ts

)]
= Γd ⟨ℓ⟩ (t − ts) (6)

• Time-resolved picture of loop decay in dependence of ℓ and t

Similar results for ◦n
rr
<, ◦n

rm
< , ◦n

mm
< , ◦n

rm
> , ◦n

mm
> , ñ(s) rr

< , ñ(s) mm
< , ñ(s) rr

> , ñ(s) rm
> ,

ñ(s) mm
> , ñ(l) rr

> , ñ(l) rm
> , ñ(l) mm

> . The integro-differential equation for ñ(l)
> is solved

by an infinite series that needs be evaluated order by order.
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ñ(s) mm
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Spectrum

Compute GW spectrum following the standard procedure:

Ωgw (f ) = Gµ2

ρcrit

∑
k

Pk
2k
f

∫ t0

tini

dt
[

a (t)
a (t0)

]5

n
(

a (t)
a (t0)

2k
f , t

)
(7)
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• Loop contribution almost always dominant [Cf. Leblond, Shlaer, Siemens: 0903.4686]

• Loop contributions scales like f 2 at low f [Cf. Buchmüller, Domcke, Murayama, KS: 1912.03695]

• Suppress spectrum in nHz range, explain NANOGrav for larger Gµ

18



Spectrum

Compute GW spectrum following the standard procedure:

Ωgw (f ) = Gµ2

ρcrit

∑
k

Pk
2k
f

∫ t0

tini

dt
[

a (t)
a (t0)

]5

n
(

a (t)
a (t0)

2k
f , t

)
(7)

PTA LISA LIGO

ET

Gμ = 10-7

10-8

10-9

10-10

10-11loops + segments

κ = 8 κ = 7

10-10 10-8 10-6 10-4 0.01 1 100
10-14

10-12

10-10

10-8

f [Hz]

h
2
Ω
g
w

loops and segments

κ = 8.3

8.2

8.1

9.2
PTA bound (2015)

NANOGrav

PPTA

Gμ = 10-7

10-8

10-9

10-10

10-11

0.0 0.5 1.0 1.5 2.0
10-12

10-11

10-10

10-9

10-8

10-7

nt(3 nHz)
h
2
Ω
g
w
(3
n
H
z
)

• Loop contribution almost always dominant [Cf. Leblond, Shlaer, Siemens: 0903.4686]

• Loop contributions scales like f 2 at low f [Cf. Buchmüller, Domcke, Murayama, KS: 1912.03695]

• Suppress spectrum in nHz range, explain NANOGrav for larger Gµ

18



Spectrum

Compute GW spectrum following the standard procedure:

Ωgw (f ) = Gµ2

ρcrit

∑
k

Pk
2k
f

∫ t0

tini

dt
[

a (t)
a (t0)

]5

n
(

a (t)
a (t0)

2k
f , t

)
(7)

PTA LISA LIGO

ET

Gμ = 10-7

10-8

10-9

10-10

10-11loops + segments

κ = 8 κ = 7

10-10 10-8 10-6 10-4 0.01 1 100
10-14

10-12

10-10

10-8

f [Hz]

h
2
Ω
g
w

loops and segments

κ = 8.3

8.2

8.1

9.2
PTA bound (2015)

NANOGrav

PPTA

Gμ = 10-7

10-8

10-9

10-10

10-11

0.0 0.5 1.0 1.5 2.0
10-12

10-11

10-10

10-9

10-8

10-7

nt(3 nHz)
h
2
Ω
g
w
(3
n
H
z
)

• Loop contribution almost always dominant [Cf. Leblond, Shlaer, Siemens: 0903.4686]

• Loop contributions scales like f 2 at low f [Cf. Buchmüller, Domcke, Murayama, KS: 1912.03695]

• Suppress spectrum in nHz range, explain NANOGrav for larger Gµ

18



Spectrum

Compute GW spectrum following the standard procedure:

Ωgw (f ) = Gµ2

ρcrit

∑
k

Pk
2k
f

∫ t0

tini

dt
[

a (t)
a (t0)

]5

n
(

a (t)
a (t0)

2k
f , t

)
(7)

PTA LISA LIGO

ET

Gμ = 10-7

10-8

10-9

10-10

10-11loops + segments

κ = 8 κ = 7

10-10 10-8 10-6 10-4 0.01 1 100
10-14

10-12

10-10

10-8

f [Hz]

h
2
Ω
g
w

loops and segments

κ = 8.3

8.2

8.1

9.2
PTA bound (2015)

NANOGrav

PPTA

Gμ = 10-7

10-8

10-9

10-10

10-11

0.0 0.5 1.0 1.5 2.0
10-12

10-11

10-10

10-9

10-8

10-7

nt(3 nHz)
h
2
Ω
g
w
(3
n
H
z
)

• Loop contribution almost always dominant [Cf. Leblond, Shlaer, Siemens: 0903.4686]

• Loop contributions scales like f 2 at low f [Cf. Buchmüller, Domcke, Murayama, KS: 1912.03695]

• Suppress spectrum in nHz range, explain NANOGrav for larger Gµ

18



Spectrum

Compute GW spectrum following the standard procedure:

Ωgw (f ) = Gµ2

ρcrit

∑
k

Pk
2k
f

∫ t0

tini

dt
[

a (t)
a (t0)

]5

n
(

a (t)
a (t0)

2k
f , t

)
(7)

PTA LISA LIGO

ET

Gμ = 10-7

10-8

10-9

10-10

10-11loops + segments

κ = 8 κ = 7

10-10 10-8 10-6 10-4 0.01 1 100
10-14

10-12

10-10

10-8

f [Hz]

h
2
Ω
g
w

loops and segments

κ = 8.3

8.2

8.1

9.2
PTA bound (2015)

NANOGrav

PPTA

Gμ = 10-7

10-8

10-9

10-10

10-11

0.0 0.5 1.0 1.5 2.0
10-12

10-11

10-10

10-9

10-8

10-7

nt(3 nHz)
h
2
Ω
g
w
(3
n
H
z
)

• Loop contribution almost always dominant [Cf. Leblond, Shlaer, Siemens: 0903.4686]

• Loop contributions scales like f 2 at low f [Cf. Buchmüller, Domcke, Murayama, KS: 1912.03695]

• Suppress spectrum in nHz range, explain NANOGrav for larger Gµ

18



Observational prospects

Extrapolate spectrum to large f and compare with LIGO, Virgo, KAGRA:
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• Current LIGO bound depends on prior assumptions [LVK Collaboration: 2101.12130]

• Close to prediction of supersymmetric B−L model (Gµ ≳ 10−7)

• Tilt at PTA frequencies correlated with amplitude at LVK frequencies
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Outlook

Preliminary results!!! IPTA DR2 search for metastable strings
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Conclusions

Metastable cosmic strings:

• Prediction in many GUT models when combined
with inflation to solve the monopole problem

• Exciting predictions for future PTA and
interferometer experiments

Next steps:

• Explore other directions in parameter space: α, Γ, Γ̃, ...

• Numerically simulate the dynamics of a metastable string network

• Other observables: MM̄ annihilation, CMB spectral distortions, etc.?

Thank you very much for your attention!
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Workshop on Sustainable HEP

https://indico.cern.ch/event/1160140/

Remaining carbon budget for 1.5 degrees: O (2) tons per person per year

• How can HEP transition to a sustainable future?
• Lead by example, demonstrate best practices, amplify the voice of science
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