PTA Searches for Gravitational Waves from Cosmic Strings

Kai Schmitz
Junior professor at the University of Miinster, Germany

MITP Scientific Program “Probing New Physics with Gravitational Waves”
MITP, Johannes Gutenberg University, Mainz | August 11, 2022



10-minute video abstracts on YouTube

' Particle Cosmology Muinster
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78 views + 3 weeks ago 173 views + 1 month ago

https://www.youtube.com/channel/UCanlXI7UvQsH77yDyj3-1ulA
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Residuals in pulse times of arrival (TOAs)

[IPTA Collaboration: 1602.03640]
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= Measure TOAs and convert to TOAs at the solar-system barycenter (SSB)

= Compare to detailed timing model for each pulsar: pulsation frequency and
derivatives, position, proper motion, binary dynamics, relativistic effects,



Hellings—Downs correlations

[physicsworld.com]

correlation between arrival times

| 1 1 1 | 1 1 |
0 20 40 60 8 100 120 140 160 180
angle between pulsars (degrees)

Quadrupolar correlations described by Hellings—Downs (HD) curve ' (¢)

[Hellings, Downs: Astrophys. J. 265 (1983) L39]



First glimpse of a SGWB signal?

Strong evidence for a new stochastic red process in latest pulsar timing data

NANOGrav [2009.04496]
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First glimpse of a SGWB signal?

Strong evidence for a new stochastic red process in latest pulsar timing data

NANOGrav [2009.04496] PPTA [2107.12112]
: N
EPTA [2110.13184] IPTA [2201.03980]
: S %iz TR ;.:—
ST e
s L —1p

Not yet a detection, but consistent with interpretation in terms of GWs!



Astrophysical interpretation

[hubblesite.org]

CGCG341-006 i 2MASSX)01392400+2924067



SMBHB models and simulations

Simulation based on SHARK galaxy

SMBHB population model based
evolution model (delay: 1 Gyr)

on empirical quasar population
R PPTA
(CN
0 —4.0
°
—45 2
&
~5.0 &p
<
—5.5
—6.0
95
9.0 8
85 10
IOgMBH, ) >3 10°° 10 1077
»Lmin Frequency [Hz]

[Casey-Clyde et al.: 2107.11390] [Curyto, Bulik: 2108.11232]

» Left: ®gup,o O (10) times larger than previous estimates, e.g., 1708.03491
= Right: Time delays of 100 Myr to 1 Gyr not enough to explain amplitude



SMBHB models and simulations

Simulation based on SHARK galaxy

SMBHB population model based
evolution model (delay: 1 Gyr)

on empirical quasar population
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[Casey-Clyde et al.: 2107.11390] [Curyto, Bulik: 2108.11232]

» Left: ®gup,o O (10) times larger than previous estimates, e.g., 1708.03491
= Right: Time delays of 100 Myr to 1 Gyr not enough to explain amplitude

Might tell us something about our models, simulations ... or about the signal



Cosmological gravitational waves

[National Astronomical Observatory of Japan, gwpo.nao.ac.jp]

1

Birth of
th

Darkage Formation of galaxies

Signal receives contributions from SMBHBs + X (or X only?)
— Probe cosmology of the early Universe and particle physics at high energies
Cosmic strings [2009.06555, 2009.06607, 2009.10649, 2009.13452, 2102.08923] Primordial black holes [2009.07832, 2009.08268,

2009.11853, 2010.03976, 2101.11244] Phase transitions [2009.09754, 2009.10327, 2009.14174, 2009.14663, 2101.08012 | Audible axions
and axion strings [2009.11875, 2012.06882] Inflation [2009.13432, 2010.05071, 2011.03323] Domain walls [2009.13893, 2012.14071]



Overwhelming reaction in the particle physics community
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Gravitational waves from stable cosmic strings

Cosmic strings:

D =ne

0 = Topological defects after U(1)
®[=0
@ . breaking in the early Universe

[Ringeval: 1005.4842]
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Gravitational waves from stable cosmic strings

Cosmic strings:

= Topological defects after U(1)
breaking in the early Universe

= Network of long strings and
closed loops in scaling regime

[Allen, Martins, Shellard: ctc.cam.ac.uk/outreach]
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Gravitational waves from stable cosmic strings

[Allen, Martins, Shellard: ctc.cam.ac.uk/outreach]

Cosmic strings:

= Topological defects after U(1)
breaking in the early Universe

= Network of long strings and
closed loops in scaling regime

= Parameters: string tension Gp
and loop size at production «
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Gravitational waves from stable cosmic strings

[CERN]

= Topological defects after U(1)
breaking in the early Universe

= Network of long strings and
closed loops in scaling regime

= Parameters: string tension Gp
and loop size at production «

= Loop oscillations + GW bursts

from cusps and kinks on loops
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= Topological defects after U(1)
breaking in the early Universe

= Network of long strings and
closed loops in scaling regime

= Parameters: string tension Gp
and loop size at production «

= Loop oscillations + GW bursts
from cusps and kinks on loops

[CERN]

Energy loss via particle emission off closed loops is negligible
[Matsunami, Pogosian, Saurabh, Vachaspati: 1903.05102] [Hindmarsh, Lizarraga, Urio, Urrestilla: 2103.16248]
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Stable cosmic strings and NANOGrav

gBlasi, Brdar, KS: 2009.06607
[See also Ellis, Lewicki: 2009.06555
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Stable cosmic strings and NANOGrav

gBlasi, Brdar, KS: 2009.06607
[See also Ellis, Lewicki: 2009.06555
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Stable cosmic strings and NANOGrav

gBlasi, Brdar, KS: 2009.06607
[See also Ellis, Lewicki: 2009.06555
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©  Explain NANOGrav signal for G ~ 10711 and o ~ 0.1
©  GUT scale A ~ 10" 1% GeV points to Gu ~ 10778 (smaller a?)
©  Signal at higher frequencies too small for LIGO, Virgo, KAGRA
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Cosmic strings and grand unification

Dror, Hiramatsu, Kohri, Murayama, White: 1908 03229
See also King, Pascoli, Turner, Zhou: 2005.13549, 2106.15634]

Semi-simple unified groups

P
Inflation that wipes out magnetic monopoles

at forbid right-hand

UV embedding of the seesaw mechanism in GUT models:
Neutrino mass, leptogenesis, cosmic strings, GWs, proton decay
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Cosmic strings and grand unification

Dror, Hiramatsu, Kohri, Murayama, White: 1908 03229
See also King, Pascoli, Turner, Zhou: 2005.13549, 2106.15634]

SU(4)PsxSU(2)LXSU(2
B =

— —
Inflation that wipes out magnetic monopoles

UV embedding of the seesaw mechanism in GUT models:
Neutrino mass, leptogenesis, cosmic strings, GWs, proton decay

Example: Gsm x U(1)g—r — Gsw results in metastable cosmic strings:
quantum tunneling events lead to SO(10) monopole pair production
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Cosmic strings and grand unification

Dror, Hiramatsu, Kohri, Murayama, White: 1908 03229
See also King, Pascoli, Turner, Zhou: 2005.13549, 2106.15634]

SU(4)PsxSU(2)LXSU(2
B =

— —
Inflation that wipes out magnetic monopoles

UV embedding of the seesaw mechanism in GUT models:
Neutrino mass, leptogenesis, cosmic strings, GWs, proton decay

Example: Gsm x U(1)g—r — Gsw results in metastable cosmic strings:
quantum tunneling events lead to SO(10) monopole pair production

Assumption: Inflation dilutes monopoles; otherwise string—monopole gas

12



Monopole pair production

Decay rate per string length:

Vilenkin: Nucl. Phys. B 196 (1982) 240]
Preskill, Vilenkin: hep-ph/9209210
Monin, Voloshin: 0808.1693]

/ 2
K Fy= 9% _ B s k=" (1)

Tddt T2 7

= String tension 1, monopole mass m

13



Monopole pair production

Decay rate per string length:

Vilenkin: Nucl. Phys. B 196 (1982) 240]
Preskill, Vilenkin: hep-ph/9209210
Monin, Voloshin: 0808.1693]

/ 2
K Fy= 9% _ B s k=" (1)

Tddt T2 7

= String tension 1, monopole mass m
= Strings are not topologically stable, decay on cosmological times scales
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Monopole pair production

Decay rate per string length:
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/K rd_di_u e il
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= String tension 1, monopole mass m
= Strings are not topologically stable, decay on cosmological times scales
= Dynamics around the GUT scale — \/k ~ 1---10, metastable strings
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Monopole pair production

Decay rate per string length:
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= String tension 1, monopole mass m

= Strings are not topologically stable, decay on cosmological times scales
= Dynamics around the GUT scale — \/k ~ 1---10, metastable strings
= Dynamics around intermediate scale — /k > 10, quasistable strings

Monopoles with and without unconfined magnetic flux:

= Unconfined flux: MM annihilation, emission of massless gauge bosons

13



Monopole pair production

Decay rate per string length:

Vilenkin: Nucl. Phys. B 196 (1982) 240]
Preskill, Vilenkin: hep-ph/9209210
Monin, Voloshin: 0808.1693]

/K rd_di_u e il

Tat T 2n ¢ 0 T (1)

= String tension 1, monopole mass m

= Strings are not topologically stable, decay on cosmological times scales
= Dynamics around the GUT scale — \/k ~ 1---10, metastable strings
= Dynamics around intermediate scale — /k > 10, quasistable strings

Monopoles with and without unconfined magnetic flux:
= Unconfined flux: MM annihilation, emission of massless gauge bosons
= No unconfined flux: energy loss only via emission of gravitational waves

13



Possible scenarios

i

SN (2)

We_r = AT (53 = % vg_L) a8

B—L phase transition after
supersymmetric hybrid inflation:

= T:inflaton, S, S: Higgs / waterfall
fields, N;: right-handed neutrinos
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Possible scenarios

i

SN (2)

We_r = AT (53 = % vg_L) a8

B—L phase transition after
supersymmetric hybrid inflation:

= T:inflaton, S, S: Higgs / waterfall
fields, N;: right-handed neutrinos

= [S];_, = —1 — no matter parity at
low energies — metastable strings

14



Possible scenarios

Reheating temperature Ty, [GeV]

1012

101

1010

WB—LZ)\T(SS* Vi L)+

[Buchmiiller, Domcke, Murayama, KS: 1912.03695]

Minimal dark
matter mass

Mise

Maximal dark
matter mass

0 1x10'

2x10" 3x10"° 4x10"° 5x10'° 6x10'°

Symmetry-breaking scale vg_; [GeV]

N? (2)

B—L phase transition after
supersymmetric hybrid inflation:

= T:inflaton, S, S: Higgs / waterfall
fields, NV;:

[S]B—L =

low energies — metastable strings

right-handed neutrinos

—1 — no matter parity at

vg—1 ~ (3---6) x 10" GeV

Buchmiiller, KS, Vertongen: 1008.2355, 1104.2750]
Buchmiiller, Domcke, KS: 1111.3872, 1202.6679, 1203. 0285]
Buchmiiller, Domcke, Kamada, KS: 1305.3392, 1309.7788]
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Possible scenarios

Reheating temperature Ty, [GeV]

WB—LZ)\T(SS* Vi L)+

[Buchmiiller, Domcke, Murayama, KS: 1912.03695]

1012
00 PeV
Minimal dark
10
matter mass
misp
1010 IR

109F  Maximal dark

matter mass

0 1x10'% 2x10' 3x10° 4x10"® 5x10'° 6x10'°
Symmetry-breaking scale vg_; [GeV]

N? (2)

B—L phase transition after
supersymmetric hybrid inflation:

= T:inflaton, S, S: Higgs / waterfall

fields, N;: right-handed neutrinos

[S]B—L =

low energies — metastable strings

—1 — no matter parity at

vg—1 ~ (3---6) x 10" GeV

Buchmiiller, KS, Vertongen: 1008.2355, 1104.2750]
Buchmiiller, Domcke, KS: 1111.3872, 1202.6679, 1203. 0285]
Buchmiiller, Domcke, Kamada, KS: 1305.3392, 1309.7788]

Minimal alternative: SU(2) x U(1) — briplee U(1) x U(1) doublgts U(1)

[Buchmiiller: 2102.08923]

14



End of scaling when long string segments begin to enter the horizon:
[Leblond, Shlaer, Siemens: 0903.4686]

Fglts ~TgH T te ~Tyt2 ~ 1 =t~

%‘H
Q
—~
w
~

Scaling regime, t < t;

= Loops: emit GWs, decay into segments negligible
= Long strings: decay into segments on superhorizon
scales, chop off closed loops, GW emission negligible
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Strategy
[Leblond, Shlaer, Siemens: 0903.4686]

End of scaling when long string segments begin to enter the horizon:
Falts ~TyH  t ~ Tgt? ~ 1

= o~

%‘H
Q

Scaling regime, t < t;

= Loops: emit GWs, decay into segments negligible
= Long strings: decay into segments on superhorizon

scales, chop off closed loops, GW emission negligible

Decay regime, t >

> ts

\
Y
Y
[
1
]
]
’

= Loops: emit GWs and decay into segments

= Segments from loops and long strings: emit GWSs and

decay into segments; no production of new loops
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Formal description

Kinetic equation for the number densities of loops and segments, n and 7:

Oen(l,t) =Sl t)—Oc[u(l,t)n(l,t)] —[BH(t) +Talln(L,t) (4)
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Source term S:
= Loops from long strings (loop production function): S oc t™*6 (¢ — at)
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= Segments from loops: S =g/ n(l,t)
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Oen(l,t) =S t)—Oc[u(l,t)n(l,t)] —[BH(t)+Tal]ln(¢,t) (4)
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= Loops from long strings (loop production function): S oc t™*6 (¢ — at)

= Loops during the decay regime: S =10

= Segments from loops: S =g/ n(l,t)

= Segments from segments: S = 2T f;o dt'n(l,t)

Time derivative of the string length u = ¢:

= Long strings during scaling: u=3H (t){ —2¢/t
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Formal description

Kinetic equation for the number densities of loops and segments, n and 7:
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= Loops from long strings (loop production function): S oc t™*6 (¢ — at)

= Loops during the decay regime: S =10

= Segments from loops: S =g/ n(l,t)

= Segments from segments: S = 2T f;o dt'n(l,t)

Time derivative of the string length u = ¢:
= Long strings during scaling: u=3H (t){ —2¢/t
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Formal description

Kinetic equation for the number densities of loops and segments, n and 7:

Oen(l,t) =Sl t)—Oc[u(l,t)n(l,t)] —[BH(t) +Talln(L,t) (4)

Source term S:

= Loops from long strings (loop production function): S oc t™*6 (¢ — at)
= Loops during the decay regime: S =10

= Segments from loops: S =g/ n(l,t)

= Segments from segments: S = 2T f;o dt'n(l,t)

Time derivative of the string length u = ¢:
= Long strings during scaling: u=3H (t){ —2¢/t
= Loops and segments when radiating off GWs: u = —TGu, —[ Gu

Challenge: Solve set of partial integro-differential equations in both the scaling
and decay regimes, match solutions at t = t;. (Plus, RD /MD.)
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Number densities

Loop number density during the decay regime in the radiation era:
[Cf. Blanco-Pillado, Olum, Shlaer: 1309.6637] [Cf. Blanco-Pillado, Olum: 1709.02693]

orr Be—rd[é(t—t5)+1/z TGu(t—ts)°]

n- (0= "7 (0 + T Gut)>? Sler=1E) =) ©
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Number densities

Loop number density during the decay regime in the radiation era:
[Cf. Blanco-Pillado, Olum, Shlaer: 1309.6637] [Cf. Blanco-Pillado, Olum: 1709.02693]

orr Be—rd[é(t—t5)+1/z TGu(t—ts)°]

4,t) =
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6 (at.— () ©(t—1)  (5)

= Exponential suppression at £t > 1/Ty = t? or t* > 2/ (FyTGu) = t2
because of new exponential suppression factor:

rd/tdtl [6+TGu(t' —t)] =Ta(O) (t — &) (6)
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Number densities

Loop number density during the decay regime in the radiation era:
[Cf. Blanco-Pillado, Olum, Shlaer: 1309.6637] [Cf. Blanco-Pillado, Olum: 1709.02693]
O (ats — £(ts)) O (teq —t)  (5)

orr Be—rd[é(t—t5)+1/z TGu(t—ts)°]

4,t) =
ns (£, t) t3/2(E+FGut)5/2

= Exponential suppression at £t > 1/Ty = t? or t* > 2/ (FyTGu) = t2

because of new exponential suppression factor:

rd/tdt/ [6+TGu(t' —t)] =Ta(O) (t — &) (6)

s

= Time-resolved picture of loop decay in dependence of ¢ and t

T @U@ e LI ~(s)rr ~(s)mm ~(s)rr ~(s)rm
I n '

o
Similar results for n., n. , n. ,n~ ,ns , 0., h . n )
)

(s “()rr =()rm (] . . . . =)
ply gl e SR The integro-differential equation for n(> is solved

by an infinite series that needs be evaluated order by order.
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Compute GW spectrum following the standard procedure:

G 2 [© Ta(®)]" [a(r)2
ng(f)pcritZk:Pkf/ dt{a(to)} n(a(to)f,t> (7)

tini
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Spectrum

Compute GW spectrum following the standard procedure:

_Gu? 2k [*  [a)]” [ a(t) 2k
ng(f)f—zpkT d | S| e T )

tini
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Spectrum

Compute GW spectrum following the standard procedure:

7 5}
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= Loop contribution almost always dominant (cs. Leblond, Shiaer, Siemens: 0903.4686]
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= Loop contribution almost always dominant (cs. Leblond, Shiaer, Siemens: 0903.4686]
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Spectrum

Compute GW spectrum following the standard procedure:

7 5}
Gu? 2k [T a(t) a(t) 2k
Qo () = 2> P | dt | 05| n Sy 7ot (")
Perit P tini g g
107¢
10° L &
)
:E -9
c 0
e
S 1o0p
R
(Ve-g) 10711}
=8
loops + s/eg‘mrﬁ 0 loops and segments
101 : ; L 1012
107 0% 10°  10¢ 001 1 100 0.0 05 10 15 20
f[Hz] ny(3 nHz)

= Loop contribution almost always dominant (cs. Leblond, Shiaer, Siemens: 0903.4686]
= Loop contributions scales like 2 at low f (cf. Buchmiller, Domcke, Murayama, KS: 1912.03695]
= Suppress spectrum in nHz range, explain NANOGrav for larger Gu
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Observational prospects
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= Current LIGO bound depends on prior assumptions [Lvk coliaboration: 2101.12130]

= Close to prediction of supersymmetric B—L model (Gu > 1077)

Tilt at PTA frequencies correlated with amplitude at LVK frequencies

LISA will probe the entire parameter space consistent with NANOGrav
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Preliminary results!!! IPTA DR2 search for metastable strings
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Conclusions

Metastable cosmic strings:

= Prediction in many GUT models when combined
with inflation to solve the monopole problem
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Conclusions

Metastable cosmic strings:

= Prediction in many GUT models when combined

/K with inflation to solve the monopole problem

= Exciting predictions for future PTA and
interferometer experiments

Next steps:
= Explore other directions in parameter space: o, T, T, ...

= Numerically simulate the dynamics of a metastable string network

= Other observables: MM annihilation, CMB spectral distortions, etc.?

Thank you very much for your attention!
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Workshop on Sustainable HEP

Sustainable HEP - 2nd edition

Sep5-7,2022
CERN

Registration and abstract submissi

Call for contributions: If to contribute o the workshop, we nvite you to submit an abstract for

https://indico.cern.ch/event/1160140/

Remaining carbon budget for 1.5 degrees: O (2) tons per person per year

= How can HEP transition to a sustainable future?

= Lead by example, demonstrate best practices, amplify the voice of science
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