Gravitational Waves from the Dark Side of the Universe

Laura Sagunski

Goethe University Frankfurt

DMGW

Dark Matter Modified Gravity Gravitational Waves

On Sep 14, 2015, a dramatic event has taken place...

[nature.com/articles/d41586-020-03047-0]

 \rightarrow GW150914: first ever direct detection of GWs!

= Target of GW detectors such as LIGO and Virgo

The GW era has just begun...

... and a whole new incredible Universe is waiting out there to be explored!

The GW era has just begun...

... and a whole new incredible Universe is waiting out there to be explored!

The GW era has just begun...

... and a whole new incredible Universe is waiting out there to be explored!

Modified gravity

Why f(R) gravity?

- Important role in cosmology:
 - \rightarrow Scalar field models of inflation

e.g., [Starobinsky, '80]

 \rightarrow Accelerated expansion of the Universe

[Boisseau et al., '00][Carroll et al., '04][Hu, Sawicki, '07]

 \rightarrow Viable dark matter candidate

e.g., [Cembranos, '08]

• One of the simplest extensions of GR

f(R) gravity

• Generalizes Einstein-Hilbert action of GR:

[Sotiriou, Faraoni, '08]

$$S \sim \int d^4x \sqrt{-g} f(R) + S^M$$

• Dynamically equivalent to GR + a scalar field φ :

 $\varphi \sim \ln f'(R)$

$$\rightarrow \tilde{S} \sim \int d^4x \sqrt{-\tilde{g}} \left[\tilde{R} - \frac{1}{2} \partial_\mu \varphi \, \partial^\mu \varphi - V(\varphi) \right] + \tilde{S}^M[\varphi]$$

9

R^2 gravity

Function in the generalized action:

$$f(R) = R + a_2 R^2$$

 \rightarrow Scalar potential:

R^2 gravity

Numerical simulations

Neutron star density ρ

Scalar field φ

 $M_1 = M_2 \equiv 1.2 M_{\odot}, a_2 = 1.09 \cdot 10^9 \,\mathrm{m}^2$

[LS, Zhang, Johnson, Lehner, Sakellariadou, Liebling, Palenzuela, Neilsen, '18] [www.had.liu.edu/][www.lorene.obspm.fr]

R^2 gravity

13

R^2 gravity

Scalar field induces a fifth force:

$$\boldsymbol{F}_{\varphi} = -\alpha M \nabla \varphi$$

 \rightarrow Scalar force accelerates merger

 \rightarrow Changes GW signal

[LS, Zhang, Johnson, Lehner, Sakellariadou, Liebling, Palenzuela, Neilsen, '18]

GW signal

GW signal

Signal-to-noise ratio:

$$\langle \text{SNR}^2 \rangle = 4 \int_0^\infty \frac{|h_{\text{char}}(f)|^2}{S_n(f)} df$$

[Allen et al., '14]

- → Clear deviations from GR in a wide range of parameter space!
- → Constrain with LIGO/Virgo data! [Becker, Diedrichs, Genoud-Prachex, Lyu, LS, Schaper, Schmitt, Zhang, in prep.]

= Powerful probes of new physics!

= Powerful probes of new physics!

Axions

- Hypothetical particles beyond SM+ promising dark matter candidates
- Scalar potential from axion coupling to gluons
- Axion-mediated dark fifth force
 - → Constrain axion parameters (mass m_a + decay constant f_a) with GWs!

[Huang, Johnson, LS, Sakellariadou, Zhang, '21]

[www.symmetrymagazine.org]

Constraining axions with gravitational waves

20

The GW era has just begun!

The Gravitational Wave Spectrum

[science.gsfc.nasa.gov/663/research/index.html]

Extreme mass-ratio inspirals (EMRIs)

stars

Merging black holes + neutron

[Eda et al., '13] [Becker, LS, Prinz, Rastgoo, '21]

Much to explore:

- Precise dynamics
- Particle nature of DM!

Extreme mass-ratio inspirals (EMRIs)

[Eda et al., '13] [Becker, LS, Prinz, Rastgoo, '21]

Much to explore:

- Precise dynamics
- Particle nature of DM!

[EHT Collaboration, '19]

DM density spikes

- "Dressed" black hole in dark matter halo
- Creates dark matter spike with extremely high density
 - \rightarrow Violent environment
 - \rightarrow Binary dynamics drastically affected

[Gondolo, Silk, '99][Eda et al., '13]

Extreme mass-ratio inspirals (EMRIs)

• Additional energy loss through dynamical friction:

 $-\frac{dE}{dt} = \frac{dE_{\rm GW}}{dt} + \frac{dE_{\rm friction}}{dt}$

- Accelerated dynamics: dephasing of GW signal
 - \rightarrow Depends on DM properties
 - \rightarrow Probe DM with GWs!
 - \rightarrow Much to explore!

[Becker, LS, Prinz, Rastgoo, '21]

 $h_{char}(t)$

GWs

New GW probes of dark matter

Dark fifth forces

- f(R) modified gravity
- Axions

. . .

Exotic objects:

- Boson stars
- NSs with DM

cores

Phase transitions:

- Hidden sectors
- Supercooling

Dark matter density spikes

- CDM
- Self-interacting dark matter

Primordial black holes

Conclusions

Conclusions

GWs are powerful probes of new physics:

- Extensions of general relativity, e.g., $f({\cal R})$ gravity
- Particle physics beyond SM = dark matter,
 - e.g. axions, self-interacting dark matter, ...

 \rightarrow Much to explore in the future!

D M G W Cark Matter Modified Gravity Gravitational Waves Web: <u>dmgw.space</u> Twitter: <u>@DMGW_Frankfurt</u>

Thank you for your attention!