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SUMMARY
➤ Density (curvature) perturbations

- Constrained to                              at CMB scalesζ ∼
δT
T

∼ 10−4

- Almost unconstrained at smaller scales (large    )k

~ ~ k

10−4

𝒫ζ ∼
δT
T

CMB scales Horizon scale
@ new physics

？
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DEFORMATION OF THE GW SPECTRUM

➤ Sachs-Wolfe effect (in CMB context) [ Sachs & Wolfe '67 ] [ Hu & White '97 ]

ds2 = − a2(1 + 2Φ) dτ2 + a2δij (1 − 2Ψ) dxidxj (conformal Newtonian gauge)

Φ = Ψ (absence of anisotropic stress)
where 

ΔT
T

= Φs −
2
3

Φs

Newtonian potential Φ = Ψ

time

To =
as

ao
(1 + Φs) Ts

(in conformal Newtonian gauge)
time of

last scattering
time when

Ts = TLS

Ts = (1 −
2
3

Φs) TLS

slightly colder
than average

Φs ( > 0)"observer"

"source"
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DEFORMATION OF THE GW SPECTRUM

➤ Integrated Sachs-Wolfe effect (in CMB context) [ Rees & Sciama '68 ]

Newtonian potential Φ = Ψ

time ∼ ∼

last
scattering

potential  decays

！？

However, in reality...

photon climbs up
Newtonian potential Φ = Ψ

time

time-independent
potential

∼ ∼

last
scattering

05

net effect remains
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QUICK "DERIVATION"

➤ We average the random walk of the frequency and amplitude

Δ2,(o)
h (ln f ) ≃ ⟨(1 + 2Δ ln A) Δ2,(s)

h (ln f − Δ ln f )⟩scalar ens. ave.

Δ ln A = − Ψs −
1
2

Φs

Δ ln f = Φs −
1
2

Φs

amplitude

frequency

SW ISW

+ lensing (neglected)

+∫
λo

λs

dλ ∂τ(Φ + Ψ)

Δ2,(o)
h (ln f ) ≃ ∫ d ln f′ Δ2,(s)

h (ln f′ ) K( f, f′ ) K( f, f′ ) =
1

2πσ2
[1 + b(ln f − ln f′ )]e− (ln f − ln f′ )2

2σ2

caused by the curvature perturbations

...using linear-order results from geometric optics [ Laguna, Larson, Spergel, Yunes '10 ]

➤ Then the scalar average is calculable

linearly biased
Gaussian variance σ2 ∼ ∫ d ln k Δ2

ζ

b ≃ − 0.52bias
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RESULTS

➤ If the GW spectrum is spiky at the sourcing time...

blue = original (= source)   /   red = deformed (= observed)

= 10−3, 10−2, 10−1

∫ d ln k Δ2
ζ

07
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RESULTS

blue = original (= source)   /   red = deformed (= observed)

= 0.01, 0.05, 0.1

∫ d ln k Δ2
ζ

∝ f3 ∝ f −1

This result should be taken as
order-of-magnitude estimate at best

(→ discussion 2)

07

➤ If the GW spectrum is smooth at the sourcing time...
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➤ In field space:  discontinuous transition in the order parameter field

∼ ρvac

ϕ

V

true vacuumfalse vacuum

tunneling
e−S4 or e−S3/T

⃗x

(1) nucleation

false

true

true

true true

true

true

(2) expansion

true

□ hij ∼ GTij

Gravitational waves
true

true

(3) collision

➤ In position space:  bubble nucleation, expansion, and collision, invloving fluid

time

ϕ

⃗x

microphysics macrophysics

[ Kosowsky, Turner, Watkins '92 ]
[ Kosowsky, Turner '92 ]
[ Kamionkowski, Kosowsky, Turner '93 ]

GW ENHANCEMENT IN FIRST-ORDER PHASE TRANSITIONS
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THE INTERMEDIATE STAGE: BUBBLE EXPANSION

(1) Pressure: released energy pushes the wall outwards

Parametrized by α ≡
ρvac

ρplasma

(2) Friction: plasma particles push back the wall

Parametrized by coupling    η

∼ ρvac

between the scalar field & plasma particles (that exist everywhere)

➤ In the next slide we see how bubbles behave for different α (with fixed    )η

➤ "Pressure vs. Friction" determines the behavior of bubble walls

cosmological scale

wall

true

pressure

friction

false

scalar+plasma 
dynamics

09

[ Espinosa et al. '10, Hindmarsh et al. '15, Giese et al. '20 ]
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(1) Pressure: released energy pushes the wall outwards

Parametrized by α ≡
ρvac

ρplasma

(2) Friction: plasma particles push back the wall

Parametrized by coupling    η

➤ In the next slide we see how bubbles behave for different α (with fixed    )η

➤ "Pressure vs. Friction" determines the behavior of bubble walls

cosmological scale

wall

true

pressure

friction

false

scalar+plasma 
dynamics

09

between the scalar field & plasma particles (that exist everywhere)

ϕ
massless

ϕ
massive

particle scale

∼ ρvac

[ Espinosa et al. '10, Hindmarsh et al. '15, Giese et al. '20 ]
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THE INTERMEDIATE STAGE: BUBBLE EXPANSION

α
∼ 1 ≫ 1

deflagration detonation relativistic detonation runaway
① ② ③ ④

Walls reach terminal velocity

because of the balance btwn. pressure & friction

Walls runaway

without caring about the plasma

Main energy carrier: fluid Main energy carrier: wall (scalar field)

➤ Classification of bubble expansion

Every detail of these bubbles contain the information on particle physics
10
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THE INTERMEDIATE STAGE: BUBBLE EXPANSION

α
∼ 1 ≫ 1

deflagration detonation relativistic detonation runaway
① ② ③ ④

Walls reach terminal velocity

because of the balance btwn. pressure & friction

Walls runaway

without caring about the plasma

Main energy carrier: fluid Main energy carrier: wall (scalar field)

➤ Classification of bubble expansion
walls continue to accelerate until they collide with others

Plasma particles cannot stop the acceleration of the walls:

Every detail of these bubbles contain the information on particle physics
10
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FIRST-ORDER PHASE TRANSITIONS: A QUICK OVERVIEW
➤ In field space:  discontinuous transition in the order parameter field

∼ ρvac

ϕ

V

true vacuumfalse vacuum

tunneling
e−S4 or e−S3/T
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(1) nucleation

false
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true true
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Gravitational waves
true

true

(3) collision

➤ In position space:  bubble nucleation, expansion, and collision, invloving fluid

time

ϕ

⃗x
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THE MACROPHYSICS SIDE:  GW PRODUCTION

[ Jinno, Konstandin, Rubira '20 ]

②①

11

(typical bubble size)

(typical fluid shell)

β−1

➤ In weak~moderate transitions (         ), bubble walls drive sound waves,α ≲ 1

efficiently producing GWs [ Hindmarsh, Huber, Rummukainen, Weir, '14 ] [ Hindmarsh '17 ]
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GW SPECTRUM (WITHOUT DENSITY PERTURBATIONS)

α = 0.0046, vwall = 0.52

GW spectrum at

(typical fluid shell)-1(typical bubble size)-1

GW spectrum

wavenumber

different time slices
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GW PRODUCTION FROM BUBBLES: INTUITIVE EXPLANATION

- Integrate the GW equation of motion over the coherence time       of the source

➤ BIG & RELATIVISTIC objects radiate more GWs

13

□ hij ∼ GTij
·hij ∼ GTijΔt

integration over

coherence time Δt
oscillator

kicked oscillator

ρGW ∼ G−1 ·h2
ij ∝ T2

ijΔt2

Tij1. Relativistic objects have larger 

Δt

- GW energy density

2. Big bubbles (size    ) typically have longer coherent time (            )R Δt ∼ R
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Without density perturbations With density perturbations

formation of "effective big bubbles"
around the cold spots

14

HOW DENSITY PERTURBATIONS AFFECT THE TRANSITION
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GW ENHANCEMENT FROM DENSITY PERTURBATIONS

➤ Density perturbations with                     enhance the GW signal

0.5 1 5 10

10-7

10-6

10-5

10-4

q/�

Q
'

GW wavenumber

Growth rate of the GW spectrum

IR perturbations

UV perturbations

no perturbations

enhancement
GW signal

15

H* < k* < β
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SUMMARY

➤ Nontrivial interplay between density perturbations and GWs:

- Density perturbations deform GW isotropic spectrum

16

- Density perturbations affect GW production from bubbles


