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Form Factors

Review

o Hybrid of on-shell states and off-shell gauge invariant operators. Partial “off-shell”.
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Sudakov form factor gives the IR
divergence in gauge theories

[Mueller, Collins, Sen]

This was used to write the IR behavior of the planar
amplitudes in N=4 SYM

[Bern, Dixon, Smirnov]
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o Today we will focus on form factors in N=4 SYM



Examples of occurrence of form factor

electron-positron decay to
create hadronic state :

Form factor of hadronic EM
current

Pn

Higgs+multigluon amplitude in

n QCD:
P9 Form factor of T (F?)

SUSY relates to form factor of
half-BPS operator in N=4
pi‘.! SYM

A
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[MHV formula by Dixon, Glover and Khoze]
Brandhuber, Gurdogan, Mopney, Travaglini, Yang



Form Factors in N=4 SYM

o Studied for almost 30 years now . Studied by Van Neerven (1985)

o Recent perturbative studies shows similarities to scattering amplitudes

[Brandhuber, Spence, Travaglini,, Yang]

non-color ordered form factors color ordered form factors
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Scattering amplitudes are color-ordered but operator
Is color singlet : can be inserted at any position

[Van Neerven, Travaglini, Brandhuber, Spence, Yang, Gurdogan, Mooney, Wen, Penante, Bork, Kazakov, Vartanov, Zhiboedov,
Alday, Maldacena, Gao, Gehrmann, Henn, Huber, Korchemsky, Sokatchev, Belitsky, Hohenegger, Roiban, Engelund, Boels,

Tarasov, Kniehl, Moch, Naculich, Young...]

Mueller, Collins, Sen, Korchemsky, Radyushkin, Magnea, Sterman, Tejeda-Yeomans



Nair’s on-shell superspace in D=4
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S(p.n) = 9+(p)+n" Yap)+-5— ¢aB(p)+ ai P (p)+ntn* Pt g (p)

Packages all the fields of the theory into one super field. Get BPS in SU(4)
components by expanding in Grassmann parameters. SUSY packages Opps = tr(papdan)
operators in multiplets. We focus on half-BPS operator of stress-

BPS in SO(6)

tensor supermultiplet.
Ogpg = tr(¢(I¢J))

MHYV form factor for half-BPS operator
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[Brandhuber, Spence, Travaglini, Yang]

Similarity of amplitude and form factor @ tree level

Parke-Taylor formula for MHV amplituj‘
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[Parke, Taylor] Minimal form factor (n=2): just the delta function



Next Step: Form factors of non-protected operators

o Amplitudes and BPS Form factors are UV finite
o Konishi has UV divergence

o We will see new QCD-like features such as rational
terms and spurious poles.

Konishi: Form factors and anomalous dimension from unitarity

Konishi in SO(6) Konishi in SU(4)

K=36"tr(6r6s) *>  Ko= P ix(panscn)
I,J

The difference in SO(6) and the SU(4) representation will be significant later



Form factor using unitarity cuts

One-loop two point Konishi [Bern, Dixon, Dunbar, Kosower]
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one-loop and two-loop Konishi form factor
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o Form factors of different components are different

o Bubble integrals contain the UV divergences due to Konishi



More interesting features of one-loop three point Konishi
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o Rational terms from 4-D unitarity cut and PV reduction  3susalsis t 52) /l\<|\i
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olntegral coefficients have unphysical poles which cancel
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Features found in one-loop QCD amplitudes



Unitarity and Regularization for Konishi

Form factors computed using on-shell external fields in D=4.

Integrals are regulated by continuing to D = 4- 2e

N=1 SYMin D=10

eduction [Siegel]

N=4 SYMin D=4-—2¢
D+ Ny =10

—

Four-dimensional Helicity(FDH)

[Bern, Kosower]

Used in scattering

amplitudes and BPS form
factors

rd Also preser 1
\susy!

Internally Closed Index Loop

Operator not included in index loop

reserves SUSY

Ay M=1,...10

A, p=1..,D=4—-2€
¢], [: 1,...,N¢ :6—1—26

A,, p=1,...,D =4
¢r, I=1,...,Ny =06

Externally Closed Index Loop

. Ny = 6L =6+ 2¢

¢ for Konishi in SO(6)



General 2 point

p1 I K I K 7
multi-loop

diagram with - = +
contraction of - 3 L } I
the flavor index
N, (€) drsdkeL
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S R —— — Konishi

BPS contrlbutlon is
universal - can be
subtracted

This holds for our 3-point form factors and generally for n-points and I-loops

Modification to unitarity
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We can safely use unitarity with D=4 on shell fields.

Example: The one loop 3
point form factor only
receives a rational term as
a correction .



Cross-section in N=4 SYM

Can we define IR safe quantities in a CFT ?

o Scattering Amplitudes and Form factors are IR divergent

o We want to define IR safe “Cross-section” like quantity

ou(q) =Y (2m)*0W (g — kx)w(X)|(X]0(0)[0)

X

Energy-Energy Correlation function

[Belitsky, Hohenegger, Korchemsky, Sokatchev, Zhiboedov]

We study inclusive decay rate

o(q) = ZX: 5 (g - px) [(X]0(0)|0)|* w(X) =1



Imaginary part of two-point function by optical theorem
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How to read off anomalous dimension from cross-section
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Renormalization constant related to UV divergence
gives the anomalous dimensions of operators
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Strategy for computing cross-section

. zzf(ms,,_ DY

colors spins
helicities

oCompute Form factors
oSquared matrix element

olntegration over the Phase space of
particles across cut

Phase space dPS,, =



Cross-section for Konishi

IR safety by real and virtual cancelation
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Renormalization for canceling UV divergence
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Two-Loop Konishi
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Unitarity, dilation operator and remainder function

Integrability picture and its connection to
minimal form factors for general
operators in N=4 SYM were given
recently.

And the full one-loop dilation operators
were (re)derived using unitarity cuts of
form factors. [Wilkelm]

~orm factors and Unitarity provide new promising tools to compute
nigher-loop dilation operators (for which the Konishi form factor
orovides a two-loop example), remainder functions as well as new
insight to understand integrability in N=4 SYM.

[Koster, Mitev, Staudacher][Brandhuber, Penante, Travaglini, Young] [Zwiebel]



SU(2) unitarity and Leading transcendentality

Length of the operator is L
{X = ¢14,Y = pou} O:tr(XXYX---)

n=L is for Minimal form factor

Operators eigenstate under renormalization eg. BPS or Konishi primary yields ratio
of loop to tree. Otherwise, promote equation to operator.

Fo=(1+gTO 4473 4 ) FY

I-loop interactions maximally involve (I+1) neighboring fields.

@ 1-loop

L (XX > XX, XY - XY, XY > YX)}

ikl = Z (I(l))ZCZD c 9 _.p i {ZaZp — ZcZp}



XX XY Y X
XX XY XY

Renormalization and anomalous dimension
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UV divergence needs renormalization.
acts as operator . At 1-loop we get
UV renormalized interaction canceling
UV divergence of bubble integrals.
We also rewrite dilatation operator as
an operator acting on tree level form
factors.

Dy = 2(1-P)is



@ two loops - UV and IR entangled

The possible length of interactions
are 2 or 3. Also 2 disconnected one
loop interactions.
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We need double and triple cuts to
compute the loop corrections.
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Master Integrals are known




IR divergences have well defined

universal structure[BDS]. Subtract by 732 = 7@ L 7(1) z(1) 4 z(2)
BDS ansatz. We are only left with UV B

divergence which are renormalized.

Like in 1-loop we can write the
operator form of the renormalization
operator. This leads to the two-loop
dilatation operator in SU(2) sector.
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We can compute other interesting quantities !



Transcendentality of Remainder Function

Finite remainder function is obtained R® — 7@ (o) _ 1 (I(l)(g))2 @20 (20) + O
from the BDS ansatz of renormalized B 2 \" -

form factors. It was also computed
earlier for the BPS form factor at 2-

loops.
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At 2-loops interaction length is 3,
remainder function is also a density acting
simultaneously on 3 neighboring points.

Remainder is a function of:

For every triplet

Sii+1 _ Si41i42 b — Si424 _
Sii+1i+2 7 Sii+14+2 7 ¢ Siit1i+2 Of pOIntS these
are like cross-
ratio’s in

witvitws =1 o slitudes.



For scattering amplitudes and BPS form factors remainder function
was of uniform transcendentally of degree (2l).
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Relations exist between different component remainders as a
consequence of SU(2) symmetry. Only 3 independent ones.
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Leading transcendental degree is 3.
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1 1 7
(R§2)>§§§ =5 log (—si+1i+2) log (:}L ) Lis (1 — u;) — log (u;) log (v;) + 5 log® (v;) "‘10 _5+1i+2) - 210 (—1) t3

Rational terms of the remainder function are related to the
dilatation operator !

(2) (2)
@'L'L-I—l i+2 7 R’L’L—|—1 142 O



For non-protected operator we have mixed transcendentality for
minimal form factors.

Only 1 transcendental degree 4 function. It is same as in BPS
case, would be true for any operator which is an identity in flavor
space.

Leading degree of transcendentality t=4-s, is related to the
shuffling number s of the remainder function density.

Only one function of transcendental degree 3 and two of degree
2 and less.

Conjecture: Maximal transcendental part of all two loop minimal
form factors has same degree 4 part as for the BPS one.

Soft and collinear limit the remainder function of minimal form
factors are non-vanishing as in BPS case.



Conclusions & Outlook

&Study of form factor of non-protected operator.

&New interesting features for Konishi- UV divergence, rational terms.
&Modification of Unitarity prescription in D=4 for non-protected operators
¢Study Cross-section like quantity for CFT— IR safe.

¢ Anomalous Dimension @ 2 loops for Konishi.

$SU(2) operator 2 loop dilatation operator.

$SU(2) remainder function does not have uniform transcendentality.

$Three point functions from Unitarity — CFT data ?
€Cross -section for energy- energy Correlation function?
¢Higher-loop Cross-section for Konishi?

¢Dilatation operator for other operators at 2 loops?

&Other theories-ABJM?
&Bootstrap remainder function for all transcendentality and higher points?



