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FIG. 5: Infrared structure of leading-color scattering amplitudes for particles in the adjoint rep-

resentation. The straight lines represent hard external states, while the curly lines carry soft or

collinear virtual momenta. At leading color, soft exchanges are confined to wedges between the

hard lines.

constant everywhere. Thus the leading-color IR structure of n-point amplitudes in MSYM

may be rewritten as,

Mn =
n
∏

i=1

[

M[gg→1]

(

si,i+1

µ2
,αs, ϵ

)]1/2

× hn (ki, µ,αs, ϵ) , (4.21)

where hn is no longer a color-space vector.

For a general theory, the Sudakov form factor at scale Q2 can be written as [30]

M[gg→1]
(Q2

µ2
,αs(µ), ϵ

)

= exp

{

1

2

∫ −Q2

0

dξ2

ξ2

[

K[g](αs(µ), ϵ) + G[g]
(

−1, ᾱs

(µ2

ξ2
,αs(µ), ϵ

)

, ϵ
)

+
1

2

∫ µ2

ξ2

dµ̃2

µ̃2
γ[g]

K

(

ᾱs

(µ2

µ̃2
,αs(µ), ϵ

))]

}

, (4.22)

where γ[g]
K denotes the soft or (Wilson line) cusp anomalous dimension, which will produce

a 1/ϵ2 pole after integration. The function K[g] is a series of counterterms (pure poles in ϵ),

while G[g] includes non-singular dependence on ϵ before integration, and produces a 1/ϵ pole

after integration.

In MSYM, αs(µ) is a constant, and the running coupling ᾱs(µ2/µ̃2,αs, ϵ) in 4 − 2ϵ di-

mensions has only trivial (engineering) dependence on the scale,

ᾱs

(µ2

µ̃2
,αs(µ), ϵ

)

= αs ×
(µ2

µ̃2

)ϵ(

4πe−γ
)ϵ

. (4.23)

This simple dependence makes it very easy to perform the integrals over ξ and µ̃.
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Following refs. [26, 30], we expand K[g], γ[g]
K , and G[g] in powers of αs,

K[g](αs, ϵ) =
∞
∑

l=1

1

2lϵ
al γ̂(l)

K , (4.24)

γ[g]
K

(

ᾱs

(µ2

µ̃2
,αs, ϵ

))

=
∞
∑

l=1

al
(µ2

µ̃2

)lϵ

γ̂(l)
K , (4.25)

G[g]
(

−1, ᾱs

(µ2

ξ2
,αs, ϵ

)

, ϵ
)

=
∞
∑

l=1

al
(µ2

ξ2

)lϵ

Ĝ(l)
0 , (4.26)

where a is defined in eq. (4.8) and the hats are a reminder that the leading-Nc dependence

has also been removed in eqs. (4.24), (4.25) and (4.26). That is, the perturbative coefficients

(defined with expansion parameter αs/(2π)) have a leading-color dependence on Nc of,

γ(l)
K = γ̂(l)

K N l
c , G(l)

0 = Ĝ(l)
0 N l

c . (4.27)

We can suppress the [g] label because the N = 4 MHV amplitudes are all related by

supersymmetry Ward identities [57], so that the corresponding functions for external gluinos,

etc., are the same as for gluons. Equation (4.24) follows from solving eqs. (2.12) and (2.13)

of ref. [30] in the conformal case (β ≡ 0). In this case, K[g] contains only single poles in ϵ,

which are simply related to γ[g]
K .

The integral over G is very simple,

∫ −Q2

0

dξ2

ξ2
G[g] = −

∞
∑

l=1

al

lϵ

( µ2

−Q2

)lϵ
Ĝ(l)

0 . (4.28)

The first integral over γK gives,

∫ µ2

ξ2

dµ̃2

µ̃2
γ[g]

K =
∞
∑

l=1

al

lϵ

[(µ2

ξ2

)lϵ
− 1
]

γ̂(l)
K . (4.29)

Adding the K[g] term to 1/2 of eq. (4.29), using eq. (4.24), we see that the “−1” is

cancelled. Then the integral over ξ is properly regulated, and evaluates to

−
1

2

∞
∑

l=1

al

(lϵ)2

( µ2

−Q2

)lϵ
γ̂(l)

K . (4.30)

Combining this result with eq. (4.28) gives

M[gg→1]
(Q2

µ2
,αs(µ), ϵ

)

= exp

[

−
1

4

∞
∑

l=1

al
( µ2

−Q2

)lϵ( γ̂(l)
K

(lϵ)2
+

2Ĝ(l)
0

lϵ

)

]

. (4.31)

26

Sudakov form factor gives the IR 
divergence in gauge theories

[Mueller, Collins, Sen]

This was used to write the IR behavior of the planar 
amplitudes in N=4 SYM

[Bern, Dixon, Smirnov]

Today we will focus on form factors in N=4 SYM



Examples of occurrence of form factor

[MHV formula by Dixon, Glover and Khoze]

electron-positron decay to 
create hadronic state : 	


Form factor of hadronic EM 
current

Higgs+multigluon amplitude in 
QCD:	


Form factor of	


SUSY relates to form factor of  
half-BPS operator in N=4 
SYM	


Tr(F 2)

Brandhuber, Gurdogan, Mopney, Travaglini, Yang



Studied for almost 30 years now . Studied by Van Neerven (1985)!
!

Form Factors in N=4 SYM

!
Recent perturbative studies shows similarities to scattering amplitudes !

[Brandhuber, Spence, Travaglini,,Yang] 

Scattering amplitudes are color-ordered but operator 
is color singlet : can be inserted at any position

[Van Neerven, Travaglini, Brandhuber, Spence, Yang, Gurdogan, Mooney, Wen, Penante, Bork, Kazakov, Vartanov, Zhiboedov, 
Alday, Maldacena, Gao, Gehrmann, Henn, Huber, Korchemsky, Sokatchev, Belitsky, Hohenegger, Roiban, Engelund, Boels, 
Tarasov, Kniehl, Moch, Naculich, Young…]

Mueller, Collins, Sen, Korchemsky, Radyushkin, Magnea, Sterman, Tejeda-Yeomans 

non-color ordered form factors color ordered form factors



FMHV
n (1+, .., i�, .., j�, .., n+; tr(�2)) = �4(

nX

i=1

pi � q)
hiji2

h12i · · · hn1i

MHV form factor for  half-BPS operator

Parke-Taylor formula for MHV amplitude

AMHV
n (1+, .., i�, .., j�, .., n+) = �4(

nX

i=1

pi)
hiji4

h12i · · · hn1i

Similarity of amplitude and form factor @ tree level

Nair’s on-shell superspace in D=4

Minimal form factor (n=2): just the delta function 

BPS in SU(4) 

⟨1 2 · · · n|0⟩
= ⟨0|O(x1)O(x2)...O(xn)|0⟩

(1.2)

where the particles labeled by i = 1, . . . , n carry individual on-shell momenta pi and the

operator O carries momentum q. If the number n and type of the external fields exactly

match those contained in O, the form factor is called minimal form factor. Minimal form

factors with n = 2 points are denoted as Sudakov form factors.

In the N = 4 SYM theory, the most intensively studied form factors are the ones of

the half-BPS operator

OBPS = tr(φ(IφJ)) K =
∑

I,J

δIJ tr(φIφJ) (1.3)

where the parenthesis denote traceless-symmetrization of the flavor indices I, J = 1, . . . , Nφ

of the Nφ scalar field flavors. This operator belongs to the stress tensor supermultiplet. Its

Sudakov form factor was first studied by van Neerven [14] and analyzed up to four loops

[15, 16] in the recent past. The Sudakov form factor exhibits exponentiation [17–19], a

feature which was seen to be the key for predicting the all-loop IR behavior of scattering

amplitudes [20].

The form factors of the stress tensor multiplet with general n external legs can be

analyzed in analogy to the scattering amplitudes with modern on-shell techniques. The

n-point form factor with the bosonic operator (1.3) was first studied in [21, 22], and later

generalized to the full stress tensor multiplet in [23, 24]. Up to one loop order, compact

expressions for general n-point MHV as well as some NMHV form factors have been com-

puted in [21, 23–26, 33]. The two-loop three-point form factor was computed in [27]. The

form factors of half-BPS operators with k scalar fields (as well as the supermultiplet) have

been studied in [22, 28, 29], where n-point tree and one-loop MHV results are presented

in [28] and the mininal form factors (for n = k) were computed at two-loop [29]. Form

factors have also been studied at strong coupling via the AdS/CFT correspondence [30],

and a Y-system formulation was given in [31] for AdS3 and in [32] for AdS5.

The aforementioned studies have shown that form factors share very similar recursive

and analytic properties with scattering amplitudes, at least for the protected operators.

Moreover, the robust set of on-shell techniques for computing on-shell objects is also ap-

plicable here. This rises the hope that also fully off-shell quantities can be studied using

on-shell methods, and that such an enhancement of the toolkit allows to detect new features

of the theory. Indeed, it was found that certain correlation functions can be constructed

via generalized unitarity from amplitudes, form factors and their generalizations involving

several operator insertions [33]. In the recent parallel work [34], one of us has determined

at tree level the minimal form factors of a generic operator and at one-loop order their cut-

constructible parts. The one-loop results yield the complete one-loop dilatation operator

of the theory.

Scattering amplitudes as well as form factors are themselves not physical observables,

since they contain infrared (IR) divergences from the integration of loop momenta. Adding

– 3 –

(1.3) can be packed into super form factors if the BPS operator is expressed in terms of

the scalar fields φAB

OBPS = tr(φABφCD)−
1

12
εABCD tr(φEFφEF ) , (1.9)

where the last term subtracts the trace in the space of scalar flavors. Without loss of

generality we will focus in the rest of this paper on its particular component

OBPS = tr(φABφAB) , (1.10)

where doubled indices are not summed. Expressing also the Konishi operator in terms of

the scalar fields φAB yields

K6 =
1

8
εABCD tr(φABφCD) = tr(φ12φ34)− tr(φ13φ24) + tr(φ14φ23) , (1.11)

where the subscript 6 reminds us that the operator is identical to the Konishi primary (1.5)

only for Nφ = 6, i.e. only in strictly D = 4 dimensions.

There is a subtlety originating from the fact that in D ̸= 4 dimensions the Konishi

operator K in (1.5) cannot be identified with K6 in (1.11). The four-dimensional unitarity

method applies to the operator K6. In this formulation, the operator stays the same if the

encountered IR- and UV-divergences are regularized by changing the spacetime dimension

from D = 4 to D = 4 − 2ϵ. But in D = 4 − 2ϵ dimensions the Konishi operator K is

not identical to the operator K6. Hence, the unitarity-based results for K6 do not directly

yield those for the Konishi operator K. Instead, modifications have to be made which take

into account that one should have used K and not K6 in order to obtain the results for the

Konishi operator regularized in D = 4− 2ϵ dimensions.

In the main part of the paper we elaborate on the ideas mentioned above. In section 2

we discuss two-point correlation functions of gauge-invariant local operators, their renor-

malization and the transformation to momentum space. We identify the imaginary part of

such a correlation function with the cross section defined in (1.4). Finally, we present the

general strategy of computing the total cross section for a given operator using its form

factors as the building blocks.

In section 3, we present our computation of the form factors for K6 at the one- and

two-loop orders, which are based on the unitarity method and on-shell superspace. Since

the Konishi operator is not protected, several new interesting features appear in the results,

such as the UV divergences and rational terms.

In section 4, we discuss in detail the aforementioned subtleties arising from the fact

that in D = 4 − 2ϵ dimensions the Konishi operator K cannot be identified with K6. We

derive a rigorous prescription of how to implement the substitution of K6 by K in the

results of the previous section.

In section 6, we present the computation of the cross section starting with the BPS

operator up to one-loop order as a simple example to make the reader become familiar with

our strategy. We find the expected non-trivial cancelation of the IR divergences between

real and virtual channels. Then, we compute the cross section for the Konishi operator

– 6 –

BPS in SO(6) 

Packages all the fields of the theory into one super field. Get 
components by expanding in Grassmann parameters. SUSY packages 
operators in multiplets.  We focus on half-BPS operator of stress-
tensor supermultiplet.

[Brandhuber, Spence, Travaglini, Yang]

[Parke, Taylor]



Amplitudes and BPS Form factors are UV finite!

Konishi has UV divergence!

We will see new QCD-like features such as rational 
terms and spurious poles.

Konishi in SU(4)

Konishi: Form factors and anomalous dimension from unitarity

Next Step: Form factors of non-protected operators

where the one- and two-loop contributions, which we reproduce as a check in this paper,

were obtained by explicit Feynman diagram calculations in [43, 44] and [45–47].2

The operator given in (1.4) is the so-called primary operator of the Konishi supermul-

tiplet. Its anomalous dimension given in (1.6) was mainly obtained by considering certain

descendent operators within the Konishi multiplet rather than the Konishi primary opera-

tor (1.4). This is possible, since all members of a supermultiplet have the same anomalous

dimension.3 In fact, we will see that the Konishi primary defined in (1.4) and involving a

sum over the Nφ scalar field flavors depends on the dimension D as Nφ = 10 − D is re-

quired to ensure supersymmetry. This becomes important when regulating the divergences

by continuing the theory from D = 4 to D = 4− 2ϵ dimensions.

We will apply four-dimensional unitarity in order to compute the form factors. Within

this framework, all on-shell component fields can be conveniently combined into Nair’s

N = 4 on-shell superfield [63]. The on-shell superfield reads

Φ(p, η) = g+(p)+η
A ψA(p)+

ηAηB

2!
φAB(p)+

εABCDηAηBηC

3!
ψ̃D(p)+η1η2η3η4g−(p) , (1.7)

where ηA are Grassmann variables that encode the flavor and helicity of the component

fields, and A = 1, . . . , 4 is the SU(4) R-symmetry index. In the above superfield, the six real

on-shell scalars φI transforming in the fundamental representation of SO(6) are represented

as the anti-symmetric product representation of two fundamental SU(4) representations,

φAB = −φBA, employing the isomorphism of the Lie-algebras so(6) and su(4).

Using (1.7), each n-point scattering amplitude with fixed total helicity can be efficiently

packed into a single superamplitude. In analogy, also the form factors for the BPS operator

(1.2) can be packed into super form factors if the BPS operator is expressed in terms of

the scalar fields φAB

OBPS = tr(φABφCD)−
1

12
εABCD tr(φEFφEF ) , (1.8)

where the last term subtracts the trace in the space of scalar flavors. Without loss of

generality we will focus in the rest of this paper on its particular component

OBPS = tr(φABφAB) , (1.9)

where doubled indices are not summed. Expressing also the Konishi operator in terms of

the scalar fields φAB yields

K6 =
1

8
εABCD tr(φABφCD) = tr(φ12φ34)− tr(φ13φ24) + tr(φ14φ23) , (1.10)

2The Konishi anomalous dimension γK is currently known up to five loops from field theory calculations

and up to nine loops from the conjectured integrability. The three-loop result was conjectured in [48] and

confirmed in [49, 50]. The four-loop result was determined by calculating the wrapping corrections to the

integrability-based asymptotic dilatation operator in [51, 52] and by a computer-based direct calculation

in [53]. The integrability-based four-loop expression of [54] matches this result. The five-loop result was

predicted from integrability in [55–57], and confirmed in [58] from an OPE analysis of the four-point

correlation function of stress-tensor multiplets. The results at six [59], seven [60], eight [61] and nine loops

[62] are so far only based on the conjectured integrability.
3Working with certain descendants which are non-singlet states of the SU(4) R-symmetry instead of the

primary operator (1.4), which is an SU(4) singlet, simplifies the calculations in both, the field theory and

integrability-based approach.
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⟨1 2 · · · n|0⟩
= ⟨0|O(x1)O(x2)...O(xn)|0⟩

(1.2)

where the particles labeled by i = 1, . . . , n carry individual on-shell momenta pi and the

operator O carries momentum q. If the number n and type of the external fields exactly

match those contained in O, the form factor is called minimal form factor. Minimal form

factors with n = 2 points are denoted as Sudakov form factors.

In the N = 4 SYM theory, the most intensively studied form factors are the ones of

the half-BPS operator

OBPS = tr(φ(IφJ)) K =
∑

I,J

δIJ tr(φIφJ) (1.3)

where the parenthesis denote traceless-symmetrization of the flavor indices I, J = 1, . . . , Nφ

of the Nφ scalar field flavors. This operator belongs to the stress tensor supermultiplet. Its

Sudakov form factor was first studied by van Neerven [14] and analyzed up to four loops

[15, 16] in the recent past. The Sudakov form factor exhibits exponentiation [17–19], a

feature which was seen to be the key for predicting the all-loop IR behavior of scattering

amplitudes [20].

The form factors of the stress tensor multiplet with general n external legs can be

analyzed in analogy to the scattering amplitudes with modern on-shell techniques. The

n-point form factor with the bosonic operator (1.3) was first studied in [21, 22], and later

generalized to the full stress tensor multiplet in [23, 24]. Up to one loop order, compact

expressions for general n-point MHV as well as some NMHV form factors have been com-

puted in [21, 23–26, 33]. The two-loop three-point form factor was computed in [27]. The

form factors of half-BPS operators with k scalar fields (as well as the supermultiplet) have

been studied in [22, 28, 29], where n-point tree and one-loop MHV results are presented

in [28] and the mininal form factors (for n = k) were computed at two-loop [29]. Form

factors have also been studied at strong coupling via the AdS/CFT correspondence [30],

and a Y-system formulation was given in [31] for AdS3 and in [32] for AdS5.

The aforementioned studies have shown that form factors share very similar recursive

and analytic properties with scattering amplitudes, at least for the protected operators.

Moreover, the robust set of on-shell techniques for computing on-shell objects is also ap-

plicable here. This rises the hope that also fully off-shell quantities can be studied using

on-shell methods, and that such an enhancement of the toolkit allows to detect new features

of the theory. Indeed, it was found that certain correlation functions can be constructed

via generalized unitarity from amplitudes, form factors and their generalizations involving

several operator insertions [33]. In the recent parallel work [34], one of us has determined

at tree level the minimal form factors of a generic operator and at one-loop order their cut-

constructible parts. The one-loop results yield the complete one-loop dilatation operator

of the theory.

Scattering amplitudes as well as form factors are themselves not physical observables,

since they contain infrared (IR) divergences from the integration of loop momenta. Adding

– 3 –

Konishi in SO(6)

The difference in SO(6) and the SU(4) representation will be significant later 



One-loop two point Konishi

Form factor using unitarity cuts

integrate over all particle species

IR UV

q

p1

p2l2

l1

FO A4,tree

Figure 2: The simple (p1 + p2)2 double cut.

In the following, we apply this technique to the form factor of K6 and start with the

computation of the one-loop two-point form factor. For the sake of explicitness, we choose

a fixed combination of external scalar states, namely {φ12,φ34}. As in the tree-level case,

the other two choices of external scalars {φ13,φ24} and {φ14,φ23} lead to the same result.

We abbreviate F (ℓ)
K6

(1φ12 , 2φ34) as F
(ℓ)
K6,(φ,φ)

.

Only one cut needs to be considered: the two-particle cut in the channel (p1 + p2)2 =

q2.11 It cuts the internal propagators carrying momenta l1 and l2 as shown in figure 2.

The building blocks on the two sides of the cut are the color-ordered two-point form factor

(3.8) and the color-ordered four-point MHV amplitude given in the standard MHV form

[69] as12

A(0)
n = i

δ(8)(
∑n

i=1 λiηi)

⟨1 2⟩⟨2 3⟩ . . . ⟨n 1⟩ . (3.13)

The sum over all possible particles exchanged along the cut is considered by integrating

over the fermionic coordinates of the exchanged particles as
∫

d8ηl1,2 =
∫

d4ηl1 d
4ηl2 while

keeping the external state fixed.

The q2-cut integral reads13

F (1)
K6

(1φ12 , 2φ34)
∣
∣
∣
q2-cut

=

∫

dLIPS(l1, l2)d
4ηl1d

4ηl2F
(0)
K6,2

(−l1,−l2)×A(0)
4 (p1, p2, l2, l1)

∣
∣
∣
(η11η

2
1)(η

3
2η

4
2)

= F (0)
K6

(1φ12 , 2φ34) i

∫

dLIPS(l1, l2)

(
⟨l1 l2⟩⟨1 2⟩
⟨l1 1⟩⟨2 l2⟩

− 6
⟨l1 2⟩⟨l2 1⟩
⟨1 2⟩⟨l1 l2⟩

)

Since the external states are fixed to be {φ12,φ34}, we take the (η11η
2
1)(η

3
2η

4
2) component

of the cut integrand. The phase-space integration measure, dPS2,{l}, is defined according

to (2.21), with the integration variables being the momenta of the cut propagators {l1, l2};
hence the subscript in the notation for dPS2,{l}.

11The other two two-particle cuts occur in the p21 and p22 channels. Since these legs have p21 = p22 = 0,

massless bubble integrals in these channels vanish identically in dimensional regularization. Hence, all

integrals can be detected by the q2 cut.
12Recall that we are always suppressing the momentum-conserving delta function in the notation.
13For the reversing of momentum l → −l, such as in F(0)

K6,2
(−l1,−l2), we follow the convention λl → −λl

and λ̃l → λ̃l in the spinor helicity formalism.
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The cut integral can be simplified at the integrand level as14

C(φ,φ) =
∫

dPS2,{l}

(
⟨l1 l2⟩⟨1 2⟩
⟨l1 1⟩⟨2 l2⟩

− 6
⟨l1 2⟩⟨l2 1⟩
⟨1 2⟩⟨l1 l2⟩

)

=

∫

dPS2,{l}

(
−s12

(l1 + p1)2
+ 6

(l1 + p2)2

s12

)

= F (0)
K6

(1φ12 , 2φ34) i

⎛

⎝− s12

p1

p2

l1

l2

+ 6
(l1 + p2)2

s12

p1

p2

l1

l2

⎞

⎠ ,

(3.14)

where the flow of the momenta is as specified in figure 2. In the above equation, the

integral over the two-particle phase space is shown by the dashed cut line of the triangle

and bubble graph. For the triangle graph, the denominator in the integrand is the uncut

propagator 1
(l1+p1)2

and the numerator coefficient is −s12. The shown bubble graph has

no uncut propagator, but is has a loop-momentum-dependent numerator factor, which is

written in front of the graph.

As described in appendix B, the cut integrals (3.14) can be lifted to the full integrals.

The full normalized form factor as defined in (3.1) then becomes15

f (1)
K6,(φ,φ)

= 2

⎛

⎝−s12

p1

p2

+ 6
s2l
s12

p1

p2

l
⎞

⎠ , (3.15)

where the factor of 2 is due to the permutation of the two external legs, and we use the short

notation silj = (pi+ lj)2. Note that the prefactors that depend on the loop momentum are

understood to appear in the integrand of the integral represented by the respective graph

it multiplies.

The bubble integral with loop momentum in the numerator can be reduced to the

scalar bubble integral via Passarino-Veltman (PV) reduction, see appendix C for details.

Thus, we obtain the form factor16

F (1)
K6

(1φ12 , 2φ34)

F (0)
K6

(1φ12 , 2φ34)
= f (1)

K6
(1φ12 , 2φ34) = −2s12

p1

p2
︸ ︷︷ ︸

f(1)
BPS,2

− 6

p1

p2

.
(3.16)

Note that the contribution to the form factor involving the triangle integral is the same as

the BPS form factor f (1)
BPS,2 in (3.4). The integrals corresponding to the graphs are given in

appendix B. An independent computation of this result via Feynman diagrams is shown in

appendix H.

From the above calculation at one-loop, we see that the IR-divergent part of the form

factor of K6 is the same as the one of the BPS operator. The extra contribution coming

from the UV divergent bubble integral yields a non-vanishing anomalous dimension unlike

14The first line can be obtained via the Schouten identity ⟨a b⟩⟨c d⟩ = ⟨a c⟩⟨b d⟩+ ⟨a d⟩⟨c b⟩ for ⟨l1 2⟩⟨l2 1⟩

in (3.14).
15The coupling dependence can be recovered as shown in appendix B.
16For convenience, we will from now on refer to the normalized form factor as form factor too.
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The cut integral can be simplified at the integrand level as14

C(φ,φ) =
∫

dPS2,{l}

(
⟨l1 l2⟩⟨1 2⟩
⟨l1 1⟩⟨2 l2⟩

− 6
⟨l1 2⟩⟨l2 1⟩
⟨1 2⟩⟨l1 l2⟩

)

=

∫

dPS2,{l}

(
−s12

(l1 + p1)2
+ 6

(l1 + p2)2

s12

)

= − s12

p1

p2

l1

l2

+ 6
(l1 + p2)2

s12

p1

p2

l1

l2

,

(3.14)

where the flow of the momenta is as specified in figure 2. In the above equation, the

integral over the two-particle phase space is shown by the dashed cut line of the triangle

and bubble graph. For the triangle graph, the denominator in the integrand is the uncut

propagator 1
(l1+p1)2

and the numerator coefficient is −s12. The shown bubble graph has

no uncut propagator, but is has a loop-momentum-dependent numerator factor, which is

written in front of the graph.

As described in appendix B, the cut integrals (3.14) can be lifted to the full integrals.

The full normalized form factor as defined in (3.1) then becomes15

f (1)
K6,(φ,φ)

= 2

⎛

⎝−s12

p1

p2

+ 6
s2l
s12

p1

p2

l
⎞

⎠ , (3.15)

where the factor of 2 is due to the permutation of the two external legs, and we use the short

notation silj = (pi+ lj)2. Note that the prefactors that depend on the loop momentum are

understood to appear in the integrand of the integral represented by the respective graph

it multiplies.

The bubble integral with loop momentum in the numerator can be reduced to the

scalar bubble integral via Passarino-Veltman (PV) reduction, see appendix C for details.

Thus, we obtain the form factor16

F (1)
K6

(1φ12 , 2φ34)

F (0)
K6

(1φ12 , 2φ34)
= f (1)

K6
(1φ12 , 2φ34) = −2s12

p1

p2
︸ ︷︷ ︸

f(1)
BPS,2

− 6

p1

p2

.
(3.16)

Note that the contribution to the form factor involving the triangle integral is the same as

the BPS form factor f (1)
BPS,2 in (3.4). The integrals corresponding to the graphs are given in

appendix B. An independent computation of this result via Feynman diagrams is shown in

appendix H.

From the above calculation at one-loop, we see that the IR-divergent part of the form

factor of K6 is the same as the one of the BPS operator. The extra contribution coming

from the UV divergent bubble integral yields a non-vanishing anomalous dimension unlike

in the BPS case. We will equally organize all subsequent results for the form factor in terms

of part identical to the BPS form factor and an additional contribution that is unique to

the form factor of K6.
14The first line can be obtained via the Schouten identity ⟨a b⟩⟨c d⟩ = ⟨a c⟩⟨b d⟩+ ⟨a d⟩⟨c b⟩ for ⟨l1 2⟩⟨l2 1⟩

in (3.14).
15The coupling dependence can be recovered as shown in appendix B.
16For convenience, we will from now on refer to the normalized form factor as form factor too.
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one-loop and two-loop Konishi form factor

Form factors of different components are different!

Bubble integrals contain the UV divergences due to Konishi!

These above three cut integrals can be lifted to full integrals, which can be simplified

further at the integral level to give a single scalar integral:

f (2),III
K6,(φ,φ)

=
18

s12

p1

p2

. (3.31)

Complete two-loop result

Now, we combine the results from all the cuts, (3.27) and (3.31), and obtain the two-loop

two-point form factor,24

f (2)
K6

(1φ12 , 2φ34) = −6(l + p1)
2(l + p2)

2

(

4

p1

p2

l

+

p1

p2

l )

+ 36

p1

p2

+ s212

(

4

p1

p2

+

p1

p2

)

︸ ︷︷ ︸

f(2)
BPS,2

(3.32)

where the integrals corresponding to the graphs are given in appendix B. Note that we have

multiplied f (2),III
K6,(φ,φ)

by 2 to include the contribution from the permutation of the external

legs p1 ↔ p2. As in the one-loop case, we have presented the result by separating a part

that is identical to the BPS form factor f (2)
BPS,2 given in (3.5).

The double and triple cuts we have considered should be able to detect all possible basis

integrals up to potential rational terms that might be missing when using four dimensional

unitarity. Comparing our result (3.32) with the one which we obtained from the Feynman

diagrams of appendix H, we have confirmed that such rational terms are absent.

As will be explained in section 4, the result given by (3.32) is, however, only for the

operator K6 defined in (1.12), but not for the Konishi operator K defined in (1.5). This

subtlety will be discussed in details in section 4. We will see that by a rigorous prescription

we can modify the above result in order to obtain the Konishi form factor.

3.5 One-loop three-point form factor

In this subsection, we compute the one-loop three-point form factor of K6. The computation

is similar to what we have done for the previous two-point case. We need to consider cuts

in all possible kinematic channels, which, apart from the q2-cut employed earlier for the

two-point form factors, contain also the sab-cut, as shown in figure 7. Combining the results

from both cuts ensures that no contribution to the ansatz is missed.

Unlike for the BPS form factor, the loop corrections to the tree-level form factor of K6

are in general different for different configurations of external particles. Therefore, we need

to consider the form factors with specific configurations of the external states individually.

24The above result matches the one in the unpublished notes of Boucher-Veronneau, Dixon and Penning-

ton [72].
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More interesting features of one-loop three point Konishi 

Rational terms!

Rational terms from 4-D unitarity cut and PV reduction!

C Passarino-Veltman reductions

In this appendix, we summarize some results on Passarino-Veltman (PV) reduction [89],

which we need in section 3.

We use the four-dimensional helicity (FDH) scheme of [67, 68], and decompose the

D-dimensional loop momentum l into a four-dimensional part l(4) and a (D − 4) = −2ϵ

dimensional part lϵ, where we assume that ϵ < 0. This yields for the decomposition of the

scalar product

ηµν l
µlν = l2(4) = l2 + l2ϵ , (C.1)

where ηµν is the four-dimensional metric.38 Arbitrary four-dimensional external reference

momenta are denoted as ki.

Bubble. The D-dimensional bubble integral with external momentum q defined in (B.6)

may include a non-trivial polynomial f(l) of the loop momentum l and the reference mo-

menta ki in its numerator. Denoting this as ID2 [f(l)](q2), we find the relations

ID2 [(l · k1)](q2) = −(q · k1)
2

ID2 (q2) , (C.2)

ID2 [(l · k1)(l · k2)](q2) =
(
(q · k1) (q · k2)

3
− q2 (k1 · k2)

12

)

ID2 (q2)

−
(
(q · k1) (q · k2)

3q2
− (k1 · k2)

3

)

ID2 [l2ϵ ](q
2) . (C.3)

Triangle. Next, we consider the D-dimensional triangle integral with numerator f(l),

which depends on two arbitrary momenta q1 and q2. It is defined as

ID3 [f(l)](q1, q2) = (eγE µ2)ϵ
∫

dDl

iπ
D
2

f(l)

l2(l + q1)2(l + q2)2
. (C.4)

We find

ID3 [(l · k1)](q1, q2) =
2

∑

i=0

ai
2
ID,(i)
2 −

2
∑

i=1

ai q2i
2

ID3 ,

ID3 [(l · k1)(l · k2)](q1, q2) =
2

∑

i=0

C(i)
2 ID,(i)

2 +C3,0I
D
3 + C3,ϵI

D
3 [l2ϵ ](q1, q2) ,

(C.5)

where ID,(0)
2 = ID2 ((q1 − q2)2), I

D,(1)
2 = ID2 (q22), I

D,(2)
2 = ID2 (q21),

38The sign in front of lϵ results from the mostly-minus metric.
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in the BPS case. We will equally organize all subsequent results for the form factor in terms

of part identical to the BPS form factor and an additional contribution that is unique to

the form factor of K6.

Vanishing one-loop form factors

Before proceeding to two-loops, we briefly discuss two other possible form factors with gluon

or fermion external states, namely the form factors F (1)
K6

(1g− , 2g+) and F (1)
K6

(1ψ1 , 2ψ234). At

tree level, they are zero since no Feynman diagram for this configuration exists. At higher

loops this is not obvious. Here, we use unitarity to show explicitly that they are zero

at least at one-loop order. Consider the q2-cut as in (3.14), but to obtain F (1)
K6

(1g− , 2g+)

and F (1)
K6

(1ψ1 , 2ψ234) take the components η11η
2
1η

3
1η

4
1 and η11(η

2
2η

3
2η

4
2) of the cut integrand,

respectively. This yields for the two cases

F (1)
K6,(g−,g+)

∣
∣
∣
q2

= i

∫

dPS2,{l}
6⟨l1 1⟩⟨l2 1⟩2

⟨1 2⟩⟨l1 l2⟩⟨l2 2⟩
= −i 6

⟨1|l1|2]2

s12

p1

p2

l1

l2

, (3.17)

F (1)
K6,(ψ1,ψ234)

∣
∣
∣
q2

= i

∫

dPS2,{l}
3⟨l1 1⟩⟨l1 2⟩⟨l2 1⟩2 + 3⟨l1 1⟩2⟨l2 1⟩⟨l2 2⟩

⟨1 2⟩⟨l1 l2⟩⟨l1 1⟩⟨l2 2⟩

= i 3⟨1|l1|2]
p1

p2

l1

l2

+ i 6
⟨1|l1|2]
s12

p1

p2

l1

l2

. (3.18)

When we lift these expressions to the full triangle and bubble integrals and perform the

PV reduction, we obtain zero. Since we use four-dimensional unitarity, we also have to

check that there is no contribution from potential rational terms. A similar (but simpler)

study as in appendix D shows that rational terms are indeed absent.

Finally, there is an easy way to see that FK6(1g− , 2g+) = 0 to all loop orders. Using

the gauge freedom, we can choose the polarization vectors of the outgoing gluons as ε−1 =

ε+2 ∝ λ1λ̃2. It is then obvious that the form factor must be zero, since it is proportional to

εi · pj or ε1 · ε2.
One can also compute F (1)

K,(g,g) directly by using Feynman diagrams. A simple compu-

tation gives

F (1)
K6,(g,g)

=

[

2(ε1 · ε2)−
(ε1 · p2)(ε2 · p1)

s12

]

ID3 [ℓ2ϵ ] , (3.19)

where the integral ID3 [ℓ2ϵ ] =
1
2+O(ϵ) is given in (B.7) for p2 → 0 and the relabeling p3 → p2.

This result applies for the polarization vectors ε±1,2 taken to be in general 4−2ϵ dimensions.

Since I3[ℓ2ϵ ] is finite and its prefactor is of order O(ϵ) (as it vanishes when D = 4), the

form factor itself F (1)
K6,(g,g)

is of order O(ϵ). This is consistent with the unitarity-based

calculation.

3.4 Two-loop two-point form factor

Next, we compute the two-loop two-point form factor of K6. As in the one-loop case, we

specify the external states to be {φ12,φ34}.
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the full form factor26

f (1)
K6,(φ,φ,g)

=

{

3

[
(s123 − 2s13) (s13 + s1l)

s212
− s13 (s13s3l − s12s2l)

s212s123
− 1

2

] p1

p2

p3

l

+
3s1ls2l(s13 + s23)

s212

p1

p2

p3

l

+ {p1 ↔ p2}
}

+ f (1)
BPS,3 ,

(3.42)

where f (1)
BPS,3 denotes the BPS part that is given in (3.5). We point out that the above

result applies to form factors with any other non-zero scalar-scalar-gluon configuration

F (1)
K6

(1φAB
, 2φCD

, 3g±).

F
(1)
K6

(1ψ1, 2ψ2, 3φ34)

For the form factor with fermion-fermion-scalar external states like F (1)
K6

(1ψ1 , 2ψ2 , 3φ34), one

can proceed in the above steps for computing the cut integrand in all possible channels

and lifting the cut result to the full answer. Without giving details, we present the final

result, denoted by f (1)
K6,(ψ,ψ,φ)

,

f (1)
K6,(ψ,ψ,φ)

=

{

− 3s23
2

p2

p3p1

− 3

(

1− s12 − s13
s23

) p2

p3p1

+ 3

(
s12s2l − s13s3l

s23s123
− s2l − s3l

s23

) p1

p2

p3

l

+ 3

(
s12 + s13

2
+

s12s3l − s13s2l
s23

) p1

p2

p3

l

+ {p1 ↔ p2}
}

+
3s23s31

2

p2

p3

p1

+ f (1)
BPS,3 .

(3.43)

Note that in the above result not all the contribution from box graphs are incorporated in

the analogous BPS part given in (3.5), unlike in the expression for the scalar-scalar-gluon

form factor (3.42). Also, in the first line of the equation there are new one-mass triangles

which do not exist in (3.42).

PV reduction and some interesting features of the results

We have obtained the full integral expressions for the form factors (3.42) and (3.43) of

K6. The results are obtained by using unitarity method fully at the integrand level. As

a result, the integrals still contain loop-momentum-dependent numerators. Such integrals

can be reduced further via PV reduction, see appendix C for details.

26 Recall that the prefactors that depend on the loop momenta are understood to appear in the integrand

of the integral represented by the respective graph each prefactor multiplies.
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Integral coefficients have unphysical poles which cancel!
• The integral coefficients of the form factors in (??) and (??) appear to contain un-

physical poles, such as 1
s13+s23

= 1
s123−s12

. These are, however, just spurious poles

which cancel when all contributions are taken into account. We demonstrate this in

details in appendix D.

Finally, we would like to mention that most of the above features (except the IR divergence)

do not occur for the one-loop scattering amplitudes and BPS form factors of the N = 4

SYM theory. In QCD they are, however, common as e.g. for the one-loop amplitudes [6].

Last but not least, recall that the above results for K6 still need to be modified to get

the correct ones for the Konishi form factor, as will be described in the next section. This

does not affect any of the above listed properties.

4 Konishi vs. K6

In this section, we discuss some important subtleties that arise when regulating the theory

by continuing the spacetime dimension from D = 4 to D = 4 − 2ϵ. Our unitarity-based

calculation made use of the on-shell superfield (1.8) that only captures all degrees of freedom

in strictly D = 4 dimensions. Hence, we had to keep the external states in the intermediate

steps in strictly D = 4. The on-shell superspace formulation has been so far successfully

used in computing scattering amplitudes and form factors of BPS operators. However, in

general this is not enough and the final result has to be lifted to D = 4−2ϵ dimensions. We

explain this in details below, taking the Konishi form factor as a concrete (counter)example.

In this section, the dimension always refers to the dimension of physical states rather than

the loop momenta. The loop momenta are lifted to D = 4− 2ϵ dimensions.

4.1 A subtlety in the dimension of intermediate states

When regulating the theory by continuing the spacetime dimension toD = 4−2ϵ, one has to

also specify how the various fields are continued. In conventional dimensional regularization

(CDR) [75] and the ’t Hooft Veltman (HV) scheme [76], the number of fermion flavors Nψ

and also the number of scalar flavors Nφ remain as in four dimensions and are hence kept

as Nψ = 4 and Nφ = 6, respectively. This does, however, break supersymmetry, since the

polarization vector ϵµ is taken in D = 4− ϵ dimension.

A scheme that preserves supersymmetry is dimensional reduction (DR) [77].27 In this

scheme, the number of scalar fields is changed to Nφ = 6 + 2ϵ, such that D + Nφ = 10

is independent of ϵ. It exploits the fact that four-dimensional N = 4 SYM theory can be

obtained by dimensional reduction of ten-dimensional N = 1 SYM theory. Performing the

dimensional reduction to D = 4 − 2ϵ dimensions instead, one obtains a regulated theory

that preserves N = 4 supersymmetry. The ten-dimensional gauge field AM , M = 1, . . . , 10,

then reduces to the D-dimensional gauge field Aµ and to Nφ = 10 − D = 6 + 2ϵ scalar

fields φI . Similarly, the ten-dimensional metric gMN reduces to the D-dimensional metric

gµν and δIJ .

27Supersymmetry is also preserved in the four-dimensional helicity (FDH) scheme [67, 68], although in a

different way.
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the pole, and at finite order we find

− 3
s12s13

s12 + s13
log

(s123
s23

)

. (D.6)

This is indeed finite when s12 + s13 → 0, as can be seen from the expansion

log x

x− 1
= 1− x− 1

2
+

(x− 1)2

3
+O((x− 1)3) . (D.7)

The F (1)
K (1φ, 2φ, 3g) case is a little more complicated. In this case, both bubble and triangle

integral contain the pole 1
s13+s23

in its coefficients. Expanding to finite order and extracting

the terms that contain this pole, we find

− 6
s13s23

(s13 + s23)2
log

(s123
s12

)

+ 6
s13s23

s12(s13 + s23)
, (D.8)

where there first term stems from the sum of bubble integrals and the second term is the

rational term. Each term itself is divergent when taking the limit s13 + s23 → 0; however,

the sum of the two terms is finite in the limit.

E Phase-space parametrization

In this appendix, we provide formulae for the parametrization of the phase-space inte-

grals. Furthermore, we give details on a non-trivial three-particle phase-space integration

encountered in section 6.

The n-particle phase space integral is defined as
∫

dPSn (•) =
∫ ( n

∏

j=1

dDpj
(2π)D

2π δ+(p
2
j )

)

(2π)DδD
(

q −
n
∑

j=1

pj
)

(•) , (E.1)

where (•) denotes the integrand, i.e. the squared matrix element.

When n = 2, the squared matrix element depends only on q2, and we can evaluate the

two-particle phase space integral independently:
∫

dPS2 (•) = fPS2 (•) , fPS2 =
(q2)−ϵ

4(16π)
1
2−ϵ Γ(32 − ϵ)

. (E.2)

The three-particle phase space can be parametrized as
∫

dPS3 (•) = fPS3

∫ 1

0
dxx1−2ϵ(1− x)−ϵ

∫ 1

0
dy [y(1 − y)]−ϵ (•) , (E.3)

with

fPS3 =
(q2)1−2ϵ

2(4π)3−2ϵΓ(2− 2ϵ)
. (E.4)

The ratios of Mandelstam variables occurring in the squared matrix element are parametrized

as {sij
q2

,
sjk
q2

,
ski
q2

}

=
{

x(1− y) , 1− x , xy
}

, (E.5)

in which (i, j, k) can be any permutation of (1, 2, 3), since the phase space measure is totally

symmetric for p1, p2, p3.
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 but it is regular for

the pole, and at finite order we find

− 3
s12s13

s12 + s13
log

(s123
s23

)

. (D.6)
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∏
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where (•) denotes the integrand, i.e. the squared matrix element.

When n = 2, the squared matrix element depends only on q2, and we can evaluate the

two-particle phase space integral independently:
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sjk
q2

,
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q2

}
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x(1− y) , 1− x , xy
}

, (E.5)

in which (i, j, k) can be any permutation of (1, 2, 3), since the phase space measure is totally

symmetric for p1, p2, p3.
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Features found in one-loop QCD amplitudes



Form factors computed using on-shell external fields in D=4. !
Integrals are regulated by continuing to D = 4- 2e

Internally Closed Index Loop
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Operator not included in index loop

Externally Closed Index Loop

previous decomposition 

Unitarity and Regularization for Konishi

Dimensional Reduction

N = 1 SYM in D = 10
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Preserves SUSY !
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General 2 point 
multi-loop 
diagram with 
contraction of 
the flavor index

BPS contribution is 
universal - can be 
subtracted

Konishi 

This holds for our 3-point form factors and generally for n-points and l-loops	


diagram of the latter type, which has incoming operator tr(φIφJ) and outgoing fields φK ,

ψA and ψB , can only have one of the three possible R-charge flows show in figure 11. An

q

p1

p2

p3

=

I

J

K

A

B

(a) δIK(σJ )AB

+

I

J

K

A

B

(b) (σI)ABδJK

+

I

J

K

A

B

(c) δIJ(σK)AB

Figure 11: According to R-charge conservation, only three different contractions of the

scalar flavors can exist in a generic multi-loop diagram with incoming operator tr(φIφJ ),

outgoing scalar fields φK and outgoing fermion fields ψA and ψB: a) δIK(σJ)AB (blue), b)

(σI)ABδJK (green) and c) δIJ(σK)AB (red).

externally closed scalar index loop exists only in the case (c). In analogy to the case of

the two-point form factor, we can isolate this case by subtracting the result for the BPS

operator from the result for the Konishi operator. Then, we correct the number of scalars

by multiplying this difference by rφ.

In fact, these arguments can be generalized to any number n of points. Note that we

have performed the analysis for the Konishi form factor using real scalars φI . The results

of our analysis, however, are formulated in terms of a part identical to the form factor of

the BPS operator and a part unique for the Konishi operator, where the former stems from

the contribution of (a)–(b) and the latter from the contribution of (c). In particular, this

formulation of the results of our analysis makes no reference to the kind of scalars we are

using to express these operators. This allows us to perform the calculations using scalars

transforming in the antisymmetric representation of SU(4), and hence N = 4 on-shell

super space – as done in the previous section.

In all form factor ratios in the previous section, we have to introduce rφ by replacing

f (ℓ)
K6,n

= f (ℓ)
BPS,n + f̃ (ℓ)

K6,n

rφ−→ f (ℓ)
BPS,n + rφf̃

(ℓ)
K6,n

= f (ℓ)
BPS,n + f̃ (ℓ)

K,n = f (ℓ)
K,n , (4.2)

where fBPS,n is the part identical to the BPS form factor and

f̃K6,n = f (ℓ)
K6,n

− f (ℓ)
BPS,n , f̃K,n = f (ℓ)

K,n − f (ℓ)
BPS,n , (4.3)

are the parts unique for the operators (1.10) and (1.4), respectively. More explicitly, the

replacement rule reads

f̃ (ℓ)
K6,n

rφ−→ rφf̃
(ℓ)
K6,n

= f̃ (ℓ)
K,n . (4.4)

f̃ (ℓ)
K6,n

→ 6 + 2ϵ

6
· f̃ (ℓ)

K6,n
= f̃ (ℓ)

K,n . (4.5)

f (ℓ)
K6,n

= f (ℓ)
BPS,n + f̃ (ℓ)

K6,n
→ f (ℓ)

BPS,n +
6 + 2ϵ

6
f̃ (ℓ)
K6,n

= f (ℓ)
K,n , (4.6)
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Modification to unitarity

We can safely use unitarity with D=4 on shell fields.

Example:  The one loop 3 
point form factor only 

receives a rational term as 
a correction .	




Cross-section in N=4 SYM

Scattering Amplitudes and Form factors are IR divergent!

We want to define IR safe  “Cross-section”  like quantity!

Can we define IR safe quantities in a CFT ?

We study inclusive decay rate

E(✓i)

1 Introduction

In this paper we study a class of observables in conformal field theories (CFT) that is familiar
from collider physics and is known as event shapes or, more specifically, charge flow correlations.
The physical picture behind these observables is very general and simple: we excite the vacuum
with a probe and study the produced state with calorimeters that measure the flow of conserved
charges, be it energy or any global symmetry charge, in a given direction at spatial infinity.

These observables were first introduced in the analysis of e+e− annihilation into hadrons in the
context of QCD (for a review see, e.g., [1, 2]). In this process, the electron and positron annihilate
to produce a virtual photon γ∗(q) with large invariant mass q2. It excites the QCD vacuum and
produces quarks and gluons, which then propagate into the final state and undergo a transition
into hadrons. Investigating the distribution of the particles and their quantum numbers (charges,
energy, etc.) in the final states, we can obtain detailed knowledge about the underlying QCD
dynamics [3, 4]. The most prominent and best understood observables in this context are the
so-called event shapes or weighted cross-sections [2]. They are given by (an infinite) sum over
the final hadronic states,

σw(q) =
∑

X

(2π)4δ(4)(q − kX)w(X)|⟨X|O(0)|0⟩|2 , (1.1)

where ⟨X|O(0)|0⟩ describes the creation out of the vacuum of a state |X⟩ with total momentum
kX by a local operator O(0) (here, the electromagnetic QCD current). The weight factor w(X)
depends on the quantum numbers of the final states that one selects in the detector apparatus.
Various event shapes (e.g., thrust, heavy mass, energy-energy correlations) correspond to different
choices of w(X). In the simplest case w(X) = 1 we obtain the total cross-section σtot(q).

Making use of the completeness condition for the hadronic states,
∑

X |X⟩⟨X| = 1, we can re-
express the total cross-section as the Fourier transform of the non-ordered (Wightman) two-point
correlation function1 of the O’s. An analogous representation in terms of correlation functions
[5, 6, 7, 8, 9] also exists for the charge flow correlations [4]. The very fact that such a reformulation
exists follows from the basic properties of quantum field theory, independently of any dynamical
details. Indeed, in any quantum field theory the energy or charge of a state can be measured by
integrating the corresponding conserved currents over space. Analogously, to measure the flow
of a charge at infinity, we insert the conserved current at spatial infinity and integrate it over
the time interval during which the measurement is performed [6]. In particular, this definition is
applicable to CFTs [9] where the notion of asymptotic states is ill defined and formulas like Eq.
(1.1) should be interpreted with great care.2

The main subject of this paper is a particular class of event shape distributions, the so-called
charge flow correlations, that can be reformulated in terms of correlation functions [5, 6, 7, 8, 9],

σw(q) =

∫
d4x eiqx⟨0|O†(x)D[w]O(0)|0⟩ , (1.2)

where O†(x) stands for the Hermitian conjugate of O(x). A few comments are in order concerning
this expression. Here the operator O(x) (called ‘source’) creates the state that we are probing.

1Using the optical theorem, the total cross-section can also be rewritten as the imaginary part of the Fourier
transformed time-ordered two-point correlation function of the O’s.

2Notice that in perturbation theory one can define scattering amplitudes within a given infrared regularization
scheme.

2

Energy-Energy Correlation function

w(X) = 1

[Belitsky, Hohenegger, Korchemsky, Sokatchev, Zhiboedov]



Imaginary part of two-point function by optical theorem

How to read off anomalous dimension from cross-section
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2 Cross sections for two-point correlation functions in a nutshell

In this section, we review some facts about the form of the two-point correlation function of

a renormalized composite operator in spacetime and in momentum space. Via the optical

theorem, its imaginary part yields a cross-section-type quantity. It can be directly obtained

from the form factors of the respective operator.

2.1 Renormalization of composite operators and their two-point functions

Gauge-invariant local composite operators can be regarded as external states of the N = 4

SYM theory, and they can occur in correlation functions in the same way as the elementary

fields. Such correlation functions in general contain UV divergences, which are associated

with the presence of these operators, requiring their renormalization in analogy to that of

the elementary fields and vertices of the theory. In this paper, we only consider composite

operators that are eigenstates under renormalization. Such a renormalized operator is

given in terms of the bare operator as

OR = ZOOB =
[

1 + g2Z(1) + g4Z(2) +O(g6)
]

OB , (2.1)

where ZO is the renormalization constant. It depends on the coupling constant g and

absorbs the UV divergences, which appear as poles in ϵ when the theory is regularized

by changing the spacetime dimension from D = 4 to D = 4 − 2ϵ. The renormalization

constant determines the anomalous dimension

γO =
∞
∑

ℓ=1

g2ℓγ(ℓ)O = lim
ϵ→0

ϵg
∂

∂g
logZO , (2.2)

which is added to the bare scaling dimension ∆(0)
O in order to obtain the conformal dimen-

sion ∆O. Since γO is finite when the limit ϵ → 0 is taken in the above equation, the form

of ZO as a power series in g is fixed to

ZO = exp

( ∞
∑

ℓ=1

g2ℓ

2ℓϵ
γ(ℓ)O

)

= 1 + g2
γ(1)O
2ϵ

+ g4
(
(γ(1)O )2

8ϵ2
+
γ(2)O
4ϵ

)

+O(g6) . (2.3)

Conformal symmetry also completely fixes the form of the two-point function of the

operator OR. In Minkowski spacetime, it reads

G2,R(x) = ⟨0|ŌR(x)OR(0)|0⟩ =
M

(−x2 + i0)∆Oµ2γO
, ∆O = ∆(0)

O + γO , (2.4)

where our conventions for the i0 description are given in appendix A. The parameter µ has

the dimension of mass and is introduced in order to fix the mass dimension to ∆(0)
O . The

coupling-dependent dimensionless factor M has a perturbative expansion as

M =
∑

ℓ=0

g2ℓM (ℓ) , (2.5)

and it can be absorbed into the normalization of OR.
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Renormalization constant  related to UV divergence 
gives the anomalous dimensions of operators
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Cross-section for Konishi

Figure 12: Tree-level squared matrix element.

+ +

Figure 13: One-loop squared matrix elements.

in which we have defined the finite part of the one-mass box integral as

FB(p1, p2, p3,−q) = −cΓ
ϵ2

[
( µ2

−s12

)ϵ
h
(

− s31
s23

)

+
( µ2

−s23

)ϵ
h
(

− s31
s12

)

−
( µ2

−q2

)ϵ
h
(

− s31q2

s12s23

)
]

,

(4.8)

where h(x) = 2F1(1,−ϵ, 1 − ϵ, x)− 1 and q2 = s12 + s23 + s31.

5 BPS and Konishi cross sections

In this section, we compute the cross section discussed in section 2. We first discuss in

detail the case of the BPS operator (1.2) as a warmup example. Then, we compute one of

our main results: the Konishi cross section to two-loop order. We will use the Konishi form

factors given in subsection 4.3 that were obtained from the form factors of K6 computed in

section 3 by applying the prescription of section 4. All form factors f (ℓ)
K,n and f̃ (ℓ)

K,n appearing

in this section are hence those for the Konishi operator (1.4) which are explicitly given in

subsection 4.3.

5.1 BPS cross section up to one-loop

As a warmup, we first consider in details the cross section corresponding to the imaginary

part of the two-point correlation function of BPS operators, ⟨0| tr(φ212)(x) tr(φ234)(0)|0⟩.
Since the operators are protected, the cross section has no loop corrections, i.e.

σBPS = σ(0)BPS +O(ϵ) . (5.1)

We check this explicitly up to one-loop level.

Tree level

Let us start with the tree-level cross section. The squared matrix element, as shown in

figure 12, is the product of two two-point tree-level BPS form factors, one for tr(φ212) and

one for its conjugate tr(φ234). The tree-level BPS non color-ordered super form factor can

be obtained from (2.11) and (3.2). It is easy to perform the color factor summation and

the fermionic integration. This yields the squared matrix element

M(0)
BPS,2 =

1

2!

∑

a1,a2

∫

d4η1 d
4η2 F̂ (0)

BPS(1, 2) F̂
∗(0)
BPS (1, 2) =

N2
c − 1

2
. (5.2)
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(1.3) can be packed into super form factors if the BPS operator is expressed in terms of

the scalar fields φAB

OBPS = tr(φABφCD)−
1

12
εABCD tr(φEFφEF ) , (1.9)

where the last term subtracts the trace in the space of scalar flavors. Without loss of

generality we will focus in the rest of this paper on its particular component

OBPS = tr(φABφAB) ϵ · 1
ϵ

∫

dPS2

∫

dPS3 , (1.10)

where doubled indices are not summed. Expressing also the Konishi operator in terms of

the scalar fields φAB yields

K6 =
1

8
εABCD tr(φABφCD) = tr(φ12φ34)− tr(φ13φ24) + tr(φ14φ23) , (1.11)

FK ̸= FK6 (4− 2ϵ) + (6 + 2ϵ) = 10 = 4 + 6 δIJδIJ = Nφ , (1.12)

where the subscript 6 reminds us that the operator is identical to the Konishi primary (1.5)

only for Nφ = 6, i.e. only in strictly D = 4 dimensions.

There is a subtlety originating from the fact that in D ̸= 4 dimensions the Konishi

operator K in (1.5) cannot be identified with K6 in (1.12). The four-dimensional unitarity

method applies to the operator K6. In this formulation, the operator stays the same if the

encountered IR- and UV-divergences are regularized by changing the spacetime dimension

from D = 4 to D = 4 − 2ϵ. But in D = 4 − 2ϵ dimensions the Konishi operator K is

not identical to the operator K6. Hence, the unitarity-based results for K6 do not directly

yield those for the Konishi operator K. Instead, modifications have to be made which take

into account that one should have used K and not K6 in order to obtain the results for the

Konishi operator regularized in D = 4− 2ϵ dimensions.

In the main part of the paper we elaborate on the ideas mentioned above. In section 2

we discuss two-point correlation functions of gauge-invariant local operators, their renor-

malization and the transformation to momentum space. We identify the imaginary part of

such a correlation function with the cross section defined in (1.4). Finally, we present the

general strategy of computing the total cross section for a given operator using its form

factors as the building blocks.

In section 3, we present our computation of the form factors for K6 at the one- and

two-loop orders, which are based on the unitarity method and on-shell superspace. Since

the Konishi operator is not protected, several new interesting features appear in the results,

such as the UV divergences and rational terms.

In section 4, we discuss in detail the aforementioned subtleties arising from the fact

that in D = 4 − 2ϵ dimensions the Konishi operator K cannot be identified with K6. We

derive a rigorous prescription of how to implement the substitution of K6 by K in the

results of the previous section.

In section 6, we present the computation of the cross section starting with the BPS

operator up to one-loop order as a simple example to make the reader become familiar with
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Two-particle channel

The squared matrix element of the two-particle channel corresponds to the first two graphs

of figure 15. As an equation, it reads

M(1)
BPS,2 =

1

2!

∑

a1,a2

∫

d4η1 d
4η2

[

F̂ (1)
BPS,2 F̂

∗(0)
BPS,2 + F̂ (0)

BPS,2 F̂
∗(1)
BPS,2

]

= 2M(0)
BPS,2 ℜ

(

f (1)
BPS,2

)

,

(6.5)

where ℜ denotes the real part, and f (ℓ)
O,n is the ratio between the ℓ-loop and tree-level

n-point form factor of the operator O as defined in (3.1). The tree-level form factor is

absorbed into M(0)
BPS,2. For short notation, we denote F̂O(1, .., n) as F̂O,n.

There is an important point related to the i0-prescription to be explained here. Two-

point form factors acquire a factor of (−q2± i0)−ϵ for each loop. The function f∗(1)
BPS,2 is the

complex conjugate of f (1)
BPS,2 and can be obtained from the latter by replacing (−q2 − i0)−ϵ

with (−q2 + i0)−ϵ. The sum of them amounts to taking the real part of f (1)
BPS,2. Hence, we

need the real part of (−q2 ± i0)−ϵ, which is given by (see e.g. [79])

ℜ(−q2 ± i0)x =
Γ(1 + x)Γ(1− x)

Γ(1 + 2x)Γ(1− 2x)
(q2)x . (6.6)

Using this result to determine the real part of the form factor (4.7) and then inserting

it into (6.5) together with the tree-level result (6.2) and performing the two-particle phase

space integral (E.3), we obtain for the first term in (6.4)

σ(1)BPS,2 =

∫

dPS2 M(1)
BPS,2 = σ(0)BPS

(µ2

q2

)ϵ
(

− 4

ϵ2
+

7π2

3

)

+O(ϵ) . (6.7)

σ(1)BPS,2 = −σ(1)BPS,3 =

∫

dPS2 M(1)
BPS,2 = σ(0)BPS

(µ2

q2

)ϵ
(

− 4

ϵ2
+

7π2

3

)

+O(ϵ) . (6.8)

Three-particle channel

The squared matrix element of the three-particle channel is given by the last graph of

figure 15. The MHV and NMHV non-color-ordered three-point form factor (2.11) can be

obtained using (3.2) and (3.7). Performing the color summation and fermionic integration,

we find the squared matrix element

M(0)
BPS,3 =

1

3!

∑

a1,a2,a3

∫

d4η1 d
4η2 d

4η3
[

F̂MHV,(0)
BPS,3 F̂∗NMHV,(0)

BPS,3 + F̂NMHV,(0)
BPS,3 F̂∗MHV,(0)

BPS,3

]

=
2

3
g2YMNc (N

2
c − 1)

(q2)2

s12s23s31
.

(6.9)

Performing the three-particle phase space integral by using (E.6), we obtain for the second

term in (6.4)

σ(1)BPS,3 =
1

g2

∫

dPS3 M(0)
BPS,3 = σ(0)BPS

(µ2

q2

)ϵ
(

4

ϵ2
− 7π2

3

)

+O(ϵ) . (6.10)

Summing (6.7) and (6.9) together as prescribed by (6.4), we see that both contributions

cancel and hence that (6.1) exactly holds at one-loop level.

– 39 –

Figure 12: Tree-level squared matrix element.

+ +

Figure 13: One-loop squared matrix elements.
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where h(x) = 2F1(1,−ϵ, 1 − ϵ, x)− 1 and q2 = s12 + s23 + s31.
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Since the operators are protected, the cross section has no loop corrections, i.e.
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We check this explicitly up to one-loop level.
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Let us start with the tree-level cross section. The squared matrix element, as shown in

figure 12, is the product of two two-point tree-level BPS form factors, one for tr(φ212) and

one for its conjugate tr(φ234). The tree-level BPS non color-ordered super form factor can

be obtained from (2.11) and (3.2). It is easy to perform the color factor summation and

the fermionic integration. This yields the squared matrix element
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12
εABCD tr(φEFφEF ) , (1.9)

where the last term subtracts the trace in the space of scalar flavors. Without loss of
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OBPS = tr(φABφAB) ϵ · 1
ϵ

∫
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where doubled indices are not summed. Expressing also the Konishi operator in terms of

the scalar fields φAB yields
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εABCD tr(φABφCD) = tr(φ12φ34)− tr(φ13φ24) + tr(φ14φ23) , (1.11)

FK ̸= FK6 (4− 2ϵ) + (6 + 2ϵ) = 10 = 4 + 6 δIJδIJ = Nφ , (1.12)

where the subscript 6 reminds us that the operator is identical to the Konishi primary (1.5)

only for Nφ = 6, i.e. only in strictly D = 4 dimensions.
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There is an important point related to the i0-prescription to be explained here. Two-

point form factors acquire a factor of (−q2± i0)−ϵ for each loop. The function f∗(1)
BPS,2 is the

complex conjugate of f (1)
BPS,2 and can be obtained from the latter by replacing (−q2 − i0)−ϵ

with (−q2 + i0)−ϵ. The sum of them amounts to taking the real part of f (1)
BPS,2. Hence, we

need the real part of (−q2 ± i0)−ϵ, which is given by (see e.g. [79])

ℜ(−q2 ± i0)x =
Γ(1 + x)Γ(1− x)

Γ(1 + 2x)Γ(1− 2x)
(q2)x . (6.6)

Using this result to determine the real part of the form factor (4.7) and then inserting

it into (6.5) together with the tree-level result (6.2) and performing the two-particle phase

space integral (E.3), we obtain for the first term in (6.4)

σ(1)BPS,2 =

∫

dPS2 M(1)
BPS,2 = σ(0)BPS

(µ2

q2

)ϵ
(

− 4

ϵ2
+

7π2

3

)

+O(ϵ) . (6.7)

σ(1)BPS,2 = −σ(1)BPS,3 =

∫

dPS2 M(1)
BPS,2 = σ(0)BPS

(µ2

q2

)ϵ
(

− 4

ϵ2
+

7π2

3

)

+O(ϵ) . (6.8)

Three-particle channel

The squared matrix element of the three-particle channel is given by the last graph of

figure 15. The MHV and NMHV non-color-ordered three-point form factor (2.11) can be

obtained using (3.2) and (3.7). Performing the color summation and fermionic integration,

we find the squared matrix element

M(0)
BPS,3 =

1

3!

∑

a1,a2,a3

∫

d4η1 d
4η2 d

4η3
[

F̂MHV,(0)
BPS,3 F̂∗NMHV,(0)

BPS,3 + F̂NMHV,(0)
BPS,3 F̂∗MHV,(0)

BPS,3

]

=
2

3
g2YMNc (N

2
c − 1)

(q2)2

s12s23s31
.

(6.9)

Performing the three-particle phase space integral by using (E.6), we obtain for the second

term in (6.4)

σ(1)BPS,3 =

∫

dPS3 M(0)
BPS,3 = σ(0)BPS

(µ2

q2

)ϵ
(

4

ϵ2
− 7π2

3

)

+O(ϵ) . (6.10)

Summing (6.8) and (6.10) together as prescribed by (6.4), we see that both contribu-

tions cancel and hence that (6.1) exactly holds at one-loop level.
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in which we have defined the finite part of the one-mass box integral as

FB(p1, p2, p3,−q) = −cΓ
ϵ2

[
( µ2

−s12

)ϵ
h
(

− s31
s23

)

+
( µ2

−s23

)ϵ
h
(

− s31
s12

)

−
( µ2

−q2

)ϵ
h
(

− s31q2

s12s23

)
]

,

(4.8)

where h(x) = 2F1(1,−ϵ, 1 − ϵ, x)− 1 and q2 = s12 + s23 + s31.

5 BPS and Konishi cross sections

In this section, we compute the cross section discussed in section 2. We first discuss in

detail the case of the BPS operator (1.2) as a warmup example. Then, we compute one of

our main results: the Konishi cross section to two-loop order. We will use the Konishi form

factors given in subsection 4.3 that were obtained from the form factors of K6 computed in

section 3 by applying the prescription of section 4. All form factors f (ℓ)
K,n and f̃ (ℓ)

K,n appearing

in this section are hence those for the Konishi operator (1.4) which are explicitly given in

subsection 4.3.

5.1 BPS cross section up to one-loop

As a warmup, we first consider in details the cross section corresponding to the imaginary

part of the two-point correlation function of BPS operators, ⟨0| tr(φ212)(x) tr(φ234)(0)|0⟩.
Since the operators are protected, the cross section has no loop corrections, i.e.

σBPS = σ(0)BPS +O(ϵ) . (5.1)

We check this explicitly up to one-loop level.

Tree level

Let us start with the tree-level cross section. The squared matrix element, as shown in

figure 12, is the product of two two-point tree-level BPS form factors, one for tr(φ212) and

one for its conjugate tr(φ234). The tree-level BPS non color-ordered super form factor can

be obtained from (2.11) and (3.2). It is easy to perform the color factor summation and

the fermionic integration. This yields the squared matrix element

M(0)
BPS,2 =

1

2!

∑

a1,a2

∫

d4η1 d
4η2 F̂ (0)

BPS(1, 2) F̂
∗(0)
BPS (1, 2) =

N2
c − 1

2
. (5.2)
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Let us start with the tree-level cross section. The squared matrix element, as shown in

figure 12, is the product of two two-point tree-level BPS form factors, one for tr(φ212) and

one for its conjugate tr(φ234). The tree-level BPS non color-ordered super form factor can

be obtained from (2.11) and (3.2). It is easy to perform the color factor summation and

the fermionic integration. This yields the squared matrix element
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(1.3) can be packed into super form factors if the BPS operator is expressed in terms of

the scalar fields φAB

OBPS = tr(φABφCD)−
1

12
εABCD tr(φEFφEF ) , (1.9)

where the last term subtracts the trace in the space of scalar flavors. Without loss of

generality we will focus in the rest of this paper on its particular component

OBPS = tr(φABφAB) ϵ · 1
ϵ

∫

dPS2

∫

dPS3 , (1.10)

where doubled indices are not summed. Expressing also the Konishi operator in terms of

the scalar fields φAB yields

K6 =
1

8
εABCD tr(φABφCD) = tr(φ12φ34)− tr(φ13φ24) + tr(φ14φ23) , (1.11)

FK ̸= FK6 (4− 2ϵ) + (6 + 2ϵ) = 10 = 4 + 6 δIJδIJ = Nφ , (1.12)

where the subscript 6 reminds us that the operator is identical to the Konishi primary (1.5)

only for Nφ = 6, i.e. only in strictly D = 4 dimensions.

There is a subtlety originating from the fact that in D ̸= 4 dimensions the Konishi

operator K in (1.5) cannot be identified with K6 in (1.12). The four-dimensional unitarity

method applies to the operator K6. In this formulation, the operator stays the same if the

encountered IR- and UV-divergences are regularized by changing the spacetime dimension

from D = 4 to D = 4 − 2ϵ. But in D = 4 − 2ϵ dimensions the Konishi operator K is

not identical to the operator K6. Hence, the unitarity-based results for K6 do not directly

yield those for the Konishi operator K. Instead, modifications have to be made which take

into account that one should have used K and not K6 in order to obtain the results for the

Konishi operator regularized in D = 4− 2ϵ dimensions.

In the main part of the paper we elaborate on the ideas mentioned above. In section 2

we discuss two-point correlation functions of gauge-invariant local operators, their renor-

malization and the transformation to momentum space. We identify the imaginary part of

such a correlation function with the cross section defined in (1.4). Finally, we present the

general strategy of computing the total cross section for a given operator using its form

factors as the building blocks.

In section 3, we present our computation of the form factors for K6 at the one- and

two-loop orders, which are based on the unitarity method and on-shell superspace. Since

the Konishi operator is not protected, several new interesting features appear in the results,

such as the UV divergences and rational terms.

In section 4, we discuss in detail the aforementioned subtleties arising from the fact

that in D = 4 − 2ϵ dimensions the Konishi operator K cannot be identified with K6. We

derive a rigorous prescription of how to implement the substitution of K6 by K in the

results of the previous section.

In section 6, we present the computation of the cross section starting with the BPS

operator up to one-loop order as a simple example to make the reader become familiar with
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Figure 16: One-loop correction from one-loop renormalization constant.

6.2.1 One-loop result

The bare one-loop Konishi cross section receives contributions from products of tree-level

and one-loop two-point form factors and of tree-level three-point form factors as shown in

figure 15. The squared matrix element of the two-particle channel is given by

M(1)
K,2 =

1

2!

∑

a1,a2

∫

d4η1 d
4η2

(

F̂ (1)
K,2 F̂

∗(0)
K,2 + F̂ (0)

K,2 F̂
∗(1)
K,2

)

= 2M(0)
K,2 ℜ

(

f (1)
K,(φ,φ)

)

, (6.14)

where we use the abbreviation f (1)
K,(φ,φ) = f (1)

K,2(1φ12 , 2φ34).
32

As discussed above, the result for the three-particle channel cancels with the BPS part

in the two-particle channel. Therefore, we can subtract the BPS part from (6.14), as in

(6.11) This gives

M̃(1)
K,2 = 2M(0)

K,2 ℜ
(

f̃ (1)
K,(φ,φ)

)

, (6.15)

where f̃ (1)
K,(φ,φ) is given in (4.5). Performing the two-particle phase space integral (E.2), the

one-loop bare cross section reads

σ(1)K =

∫

dPS2 M̃(1)
K,2 = σ(0)K

(µ2

q2

)ϵ
(

−12

ϵ
− 28

)

+O(ϵ) . (6.16)

The divergence in (6.16) should be canceled by the one-loop correction of the Konishi

operator obtained from the one-loop term Z(1)
K in the operator renormalization constant

ZK, as shown in figure 16, which is imply given by

σ(1)Z(1)K = 2Z(1)σ(0)K . (6.17)

Since this contribution has to cancel the overall UV divergence of (6.16), we immediately

find

Z(1)
K =

6

ϵ
. (6.18)

Comparing this result with the one-loop term of the expansion (2.3) reproduces the one-

loop Konishi anomalous dimension γ(1) = 12 first obtained in [43, 44].

The renormalized one-loop cross section is hence given by

σ(1)K,R = σ(1)K + σ(1)Z(1)K = σ(0)K

(

12 log
q2

µ2
− 28

)

+O(ϵ) . (6.19)

As predicted in (2.16), the coefficient of log q2

µ2 also reproduces the correct one-loop anoma-

lous dimension.
32The non-zero two-point tree-level form factor must contain two external scalar legs. Therefore, it is

not necessary to consider other external states such as f
(1)
K,2(1g+ , 2g− ), which are anyway zero as shown in

section 3. A similar argument applies also to the following two-loop computation.
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The divergence in (6.18) should be canceled by the one-loop correction of the Konishi

operator obtained from the one-loop term Z(1)
K in the operator renormalization constant

ZK, as shown in figure 16, which is imply given by

σ(1)Z(1)K = 2Z(1)σ(0)K . (6.19)

Since this contribution has to cancel the overall UV divergence of (6.18), we immediately

find

Z(1)
K =

6

ϵ
. (6.20)

Comparing this result with the one-loop term of the expansion (2.3) reproduces the one-

loop Konishi anomalous dimension γ(1) = 12 first obtained in [43, 44].

The renormalized one-loop cross section is hence given by

σ(1)K,R = σ(1)K + σ(1)Z(1)K = σ(0)K

(

12 log
q2

µ2
− 28

)

+O(ϵ) . (6.21)

As predicted in (2.16), the coefficient of log q2

µ2 also reproduces the correct one-loop anoma-

lous dimension.
32The non-zero two-point tree-level form factor must contain two external scalar legs. Therefore, it is

not necessary to consider other external states such as f
(1)
K,2(1g+ , 2g− ), which are anyway zero as shown in

section 3. A similar argument applies also to the following two-loop computation.

– 41 –

Two-loop renormalization constant

So far we have not included the third contribution of (6.20) involving the two-loop renor-

malization constant. In analogy to (6.17), it reads

σ(2)Z(2)K = 2σ(0)K Z(2)
K . (6.33)

Since this contribution has to cancel the overall UV divergence of (6.32), we immediately

find

Z(2)
K =

18

ϵ2
− 12

ϵ
. (6.34)

Comparing this with the expansion of (2.3) in terms of the anomalous dimension to two-

loop order yields the known one- and two-loop Konishi anomalous dimension first obtained

in [43, 44]

γ(1)K = 12 , γ(2)K = −48 . (6.35)

Adding (6.33) to (6.32) yields the renormalized two-loop cross section

σ(2)K,R = σ(0)K

[

72 log2
q2

µ2
− 384 log

q2

µ2
+ 508 + 72π2 + 336ζ3

]

+O(ϵ) , (6.36)

Finally, we compute the second order term in the expansion of the logarithm

[

log

(
σK,R

σ(0)K

)
](2)

=
σ(2)K,R

σ(0)K

− 1

2

(
σ(1)K,R

σ(0)K

)2

= −48 log
q2

µ2
+116 + 72π2 + 336ζ3+O(ϵ) , (6.37)

We find that the coefficient of log q2

µ2 gives the correct two-loop anomalous dimension, as

expected from (2.16).

Including also the one-loop result (6.19), the Konishi cross section is given by

log

(
σK,R

σ(0)K

)

= g2
(

12 log
q2

µ2 − 28

)

+ g4
(

−48 log
q2

µ2 + 116 + 72π2 + 336ζ3

)

+O(g6, ϵ) .

(6.38)

Indeed, this result is in accord with (2.16) since the prefactor of the logarithm is the Konishi-

anomalous dimension to two-loop order given e.g. in (6.34). Moreover, the remaining finite

terms yield the constant C, and by a comparison with (2.17) they determine the one- and

two-loop terms of the constant M in (2.4). It would be nice to have an independent check

of the two-loop contribution to C.

Some discussion

There are different routes one can pursue to compute the renormalized cross section. In

the above presentation, we have treated the bare contribution and the terms involving the

renormalization constant separately at the cross section level. One may also perform the

renormalization of the form factors first, as described in appendix F, and then compute

the renormalized cross section directly with them. Furthermore, the terms involving the

renormalization constant can be obtained directly by expanding the relation (G.1). For
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Unitarity, dilation operator and remainder function

Form factors and Unitarity provide new promising tools to compute 
higher-loop dilation operators (for which the Konishi form factor 
provides a two-loop example), remainder functions as well as new 
insight to understand integrability in N=4 SYM.

Integrability picture and its connection to 
minimal form factors for general 
operators in N=4 SYM were given 
recently. !
And the full one-loop dilation operators 
were (re)derived using unitarity cuts of 
form factors.

O

derived from symmetry in [22].1 In [17], it was demonstrated that form factors can also

be used to calculate anomalous dimensions at two-loop order by investigating the Konishi

primary operator. In these studies, on-shell amplitude techniques have played a major

role, in particular the (generalised) unitarity method [23–25]. In order to treat general

operators, however, an extension of this method is required [17].

Interesting on-shell approaches towards the computation of correlation functions and

the dilatation operator were also applied in the following works: see [10, 26] for the ap-

plication of generalised unitarity, [27] for a spacetime version thereof, [28, 29] for twistor

techniques and [30] for the application of MHV diagrams.

Computing form factors and correlators of non-protected local gauge-invariant oper-

ators requires renormalisation, which in general implies the mixing of these operators.

This procedure singles out certain subsectors, which are closed under renormalisation and

which transform under subalgebras of the full PSU(2, 2|4) symmetry [21]. The simplest

toy model for studying the full renormalisation problem of N = 4 SYM theory is given

by the so-called SU(2) sector. This sector is built out of two complex scalar fields X and

Y transforming in the fundamental representation of SU(2), e.g. X = φ14 and Y = φ24.

Single-trace operators in this sector are of the general form Obare = tr(Xk1Y k2Xk3Y k4 · · · ),

with kj ∈ {0, 1, 2, . . . } . The mixing matrix Z defining the renormalised operator

Oren = ZObare , Z = 1+g2Z(1) + g4Z(2) +O(g6) , (1.2)

can then be studied within this simpler subsector, which has been of great importance for

capturing the novel integrable structures appearing in planar N = 4 SYM theory at higher

loop orders [31]. At one-loop order, the crucial observation introducing integrability to

planar N = 4 SYM theory was that the anomalous dilatation operator defined as

δD =
d

dµ
logZ = 2εg2

∂

∂g2
logZ =

∞
∑

ℓ=1

g2ℓD(ℓ) (1.3)

takes the form of the integrable Heisenberg spin-chain Hamiltonian within the SU(2) sector

[32].2 The central role of the dilatation operator and its interpretation as an (asymptotic)

spin-chain Hamiltonian was further emphasized in [33], where the two-loop dilatation op-

erator with SU(2) symmetry was computed from Feynman diagrams and its three-loop

correction was derived under the assumption of integrability. A field-theoretic computa-

tion of the latter was later performed in [34]. Making use of integrability, a recursive

construction for the asymptotic dilatation operator in the SU(2) sector is available by

now, which allows to compute its operatorial form to high orders in the ’t Hooft coupling

constant [35, 36].

In this paper, we continue the program of [16, 17] and study form factors and the

dilatation operator at two-loop order in the full SU(2) sector. We employ the unitarity

1Moreover, in [22] symmetry was used to show that all tree-level scattering amplitudes are related to

certain contributions to the dilatation operator. The picture of [22] is equivalent to taking cuts of form

factors.
2In [32], the larger SO(6) sector was actually considered.

3
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In general, the colour-ordered minimal tree-level super form factors of any operator can be

obtained from the operator’s oscillator representation by replacing the oscillators by spinor

helicity variables and multiplying the result by the momentum-conserving delta function

[16].

We also need the next-to-minimal tree-level form factors in the two-loop unitarity

computation below, which contain one more external field than the minimal ones. They

may be computed easily by Feynman diagrams, or obtained from the BPS form factor

component expressions, see e.g. [13]. For convenience, we provide some explicit rules that

are useful in practice. There are four different cases that can occur. In the first case, a g+
can be inserted between two neighbouring positions i and i+1. This leads to the following

replacement in the colour-ordered minimal tree-level form factor:

· · · ηAi η
B
i η

C
i+1η

D
i+1 · · · −→ · · · ηAi η

B
i

⟨i i+2⟩

⟨i i+1⟩⟨i+1 i+2⟩
ηCi+2η

D
i+2 · · · . (2.4)

In the second case, a g− can be inserted at the same position, leading to

· · · ηAi η
B
i η

C
i+1η

D
i+1 · · · −→ · · · ηAi η

B
i

[i i+2]

[i i+1][i+1 i+2]
η1i+1η

2
i+1η

3
i+1η

4
i+1η

C
i+2η

D
i+2 · · · . (2.5)

In the third case, a φCD at position i is split into two anti-fermions ψ̄C and ψ̄D. This leads

to

· · · ηAi−1η
B
i−1η

C
i η

D
i η

E
i+1η

F
i+1 · · · −→ · · · ηAi−1η

B
i−1

1

⟨i i+1⟩
(ηCi η

D
i+1 − ηDi η

C
i+1)η

E
i+2η

F
i+2 · · · . (2.6)

In the fourth case, the φCD is split into two fermions ψC′

and ψD′

with ϵCDC′D′ = 1,

leading to

· · · ηAi−1η
B
i−1η

C
i η

D
i η

E
i+1η

F
i+1 · · · −→ · · · ηAi−1η

B
i−1

−1

[i i+1]
(η̄i,C′ η̄i+1,D′− η̄i,D′ η̄i+1,C′)ηEi+2η

F
i+2 · · · ,

(2.7)

where η̄i,A = 1
3!ϵABCDηBi η

C
i η

D
i and the minus sign is related to the order of the η’s. The

complete next-to-minimal form factor is obtained by summing over all four replacements

and all insertion points.

2.2 One-loop form factors

In this subsection, we consider the one-loop minimal form factors in the SU(2) sector and

show how to obtain the one-loop dilatation operator from them. This also allows us to

introduce our notation and some important concepts that are required for the two-loop

case. The results for the one-loop form factors, as well as the recipe to obtain the one-loop

dilatation operator, were already given in [16]. Here, a useful new formulation, given in

(2.11), is developed, which will be convenient to study the symmetry properties of form

factors.

Form factors in the loop expansion can be written in the following form

FO =
(

1 + g2I(1) + g4I(2) + . . .
)

F (0)
O

. (2.8)
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Figure 1: The one-loop (p1 + p2)2 double cut.

For operators that are eigenstates under renormalisation, such as BPS operators or the

Konishi primary, I(ℓ) is simply the ratio of the ℓ-loop and tree-level form factor. However,

for form factors of operators that renormalise non-diagonally, this is no longer the case,

because the loop corrections to vanishing tree-level form factors can be non-vanishing. To

overcome this problem, it is necessary to promote I(ℓ) to an operator that acts on the

tree-level form factor F (0)
O

and creates a different tree-level form factor from it.

In the planar limit, connected ℓ-loop interactions can maximally involve ℓ + 1 neigh-

bouring fields in the colour-ordered form factor at a time. Hence, I(ℓ) can be written as

an interaction density that is summed over all insertion points. At one-loop order, the

maximal interaction range is two, and we can write

I(1) =
L
∑

i=1

I(1)i i+1. (2.9)

Here, L denotes the length of the operator O, I(1)i i+1 acts on the external fields i and i+ 1

and cyclic identification i+ L ∼ i is understood. We depict I(1)i i+1 as

I(1)i i+1 = I(1)i , (2.10)

where we in general specify only the first field i that is acted on when the range is explicitly

specified by the number of occurring legs.

In the SU(2) sector, the following six range-two interactions are allowed by R-charge

conservation: XX → XX, XY → XY , XY → Y X, Y Y → Y Y , Y X → Y X and

Y X → XY . It is sufficient to consider the first three, as the last three can be obtained from

them by replacing X ↔ Y , which is a symmetry of the theory. We denote the contribution

to a given combination of external fields ZAZB → ZCZD by (I(1)i )ZCZD
ZAZB

, where Z1 = X,

Z2 = Y and A,B,C,D = 1, 2. In terms of these matrix elements, the operator I(1)i i+1 is

explicitly given by

I(1)i i+1 =
2

∑

A,B,C,D=1

(I(1)i )ZCZD
ZAZB

ηCi
∂

∂ηAi
ηDi+1

∂

∂ηBi+1

. (2.11)
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Figure 1: The one-loop (p1 + p2)2 double cut.

For operators that are eigenstates under renormalisation, such as BPS operators or the

Konishi primary, I(ℓ) is simply the ratio of the ℓ-loop and tree-level form factor. However,

for form factors of operators that renormalise non-diagonally, this is no longer the case,

because the loop corrections to vanishing tree-level form factors can be non-vanishing. To

overcome this problem, it is necessary to promote I(ℓ) to an operator that acts on the

tree-level form factor F (0)
O

and creates a different tree-level form factor from it.

In the planar limit, connected ℓ-loop interactions can maximally involve ℓ + 1 neigh-

bouring fields in the colour-ordered form factor at a time. Hence, I(ℓ) can be written as

an interaction density that is summed over all insertion points. At one-loop order, the

maximal interaction range is two, and we can write

I(1) =
L
∑

i=1

I(1)i i+1. (2.9)

Here, L denotes the length of the operator O, I(1)i i+1 acts on the external fields i and i+ 1

and cyclic identification i+ L ∼ i is understood. We depict I(1)i i+1 as

I(1)i i+1 = I(1)i , (2.10)

where we in general specify only the first field i that is acted on when the range is explicitly

specified by the number of occurring legs.

In the SU(2) sector, the following six range-two interactions are allowed by R-charge

conservation: XX → XX, XY → XY , XY → Y X, Y Y → Y Y , Y X → Y X and

Y X → XY . It is sufficient to consider the first three, as the last three can be obtained from

them by replacing X ↔ Y , which is a symmetry of the theory. We denote the contribution

to a given combination of external fields ZAZB → ZCZD by (I(1)i )ZCZD
ZAZB

, where Z1 = X,

Z2 = Y and A,B,C,D = 1, 2. In terms of these matrix elements, the operator I(1)i i+1 is

explicitly given by

I(1)i i+1 =
2

∑

A,B,C,D=1

(I(1)i )ZCZD
ZAZB

ηCi
∂

∂ηAi
ηDi+1

∂

∂ηBi+1

. (2.11)
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SU(2) unitarity and Leading transcendentality 

Operators eigenstate under renormalization eg. BPS or Konishi primary yields ratio 
of loop to tree. Otherwise, promote equation to operator. !

l-loop interactions maximally involve (l+1) neighboring fields.

universality properties regarding their transcendentality. Since the considered operators

break supersymmetry, the remainder functions are expected not to have the property of

uniform transcendentality. However, we find that all contributions of maximal transcen-

dentality are identical to the corresponding results of BPS form factors. This provides

further evidence for the universality of the leading transcendental part, which furthermore

has a non-trivial kinematic dependence.

This paper is organised as follows. In section 2, we present results for tree-level and

one-loop form factors in the SU(2) sector. This also serves to introduce our conventions

and notation. Moreover, we calculate the minimal two-loop form factors of such operators.

In section 3, we extract the two-loop dilatation operator and two-loop remainder function

from these results. Section 4 contains our conclusions and outlook. We provide simplified

expressions for six-point amplitudes appearing in the unitarity calculation in appendix A.

2 Minimal form factors in the SU(2) sector

2.1 Tree-level form factors

In this subsection, we summarise some general facts about form factors and give explicit

tree-level expressions that are required in the unitarity calculations of the subsequent sub-

sections.

In analogy to amplitudes, we can strip off the gauge-group dependence of the form

factors by introducing colour-ordered form factors FO:

F̂O(1, . . . , n; q) =
∑

σ∈Sn/Zn

tr[Taσ(1) · · ·Taσ(n) ]FO(σ(1), . . . ,σ(n); q) + multi-trace terms ,

(2.1)

where Ta with a = 1, . . . , N2
c − 1 are the generators of the gauge group SU(Nc) and the

sum is over all non-cyclic permutations. The multi-trace terms in (2.1) can start to appear

at one-loop order but are suppressed in the planar limit, and will not be considered in this

paper.

We describe the external on-shell states using Nair’s N = 4 on-shell superfield [57]:

Φ(p, η) = g+(p)+η
A ψ̄A(p)+

ηAηB

2!
φAB(p)+

ϵABCDηAηBηC

3!
ψD(p)+η1η2η3η4 g−(p) , (2.2)

where ηA are Graßmann variables that encode the flavour and helicity of the component

particles, and A = 1, . . . , 4 is the SU(4) R-symmetry index. In this formalism, we can

combine form factors with different external fields into one super form factor. As we will

see later, this also makes it easier to study the supersymmetry properties of the form

factors.

In this paper, we focus on form factors in the SU(2) sector. The corresponding single-

trace operators involve two complex scalar fields with a common SU(4) index, which are

chosen explicitly as X = φ14 and Y = φ24. The tree-level minimal super form factor for

the operator O = tr(XXY X · · · ) with L = n fields, for instance, is simply given by

F (0)
O

(1, . . . , L; q) = δ4(q −
L
∑

i=1

λiλ̃i)
(

η11η
4
1η

1
2η

4
2η

2
3η

4
3η

1
4η

4
4 · · ·+ cyclic permutations

)

. (2.3)
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Length of the operator is L!
!
n=L is for Minimal form factor{X = �14, Y = �24}

@ 1-loop
{XX ! XX,XY ! XY,XY ! Y X}

{ZAZB ! ZCZD}
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For operators that are eigenstates under renormalisation, such as BPS operators or the

Konishi primary, I(ℓ) is simply the ratio of the ℓ-loop and tree-level form factor. However,

for form factors of operators that renormalise non-diagonally, this is no longer the case,

because the loop corrections to vanishing tree-level form factors can be non-vanishing. To

overcome this problem, it is necessary to promote I(ℓ) to an operator that acts on the

tree-level form factor F (0)
O

and creates a different tree-level form factor from it.

In the planar limit, connected ℓ-loop interactions can maximally involve ℓ + 1 neigh-

bouring fields in the colour-ordered form factor at a time. Hence, I(ℓ) can be written as

an interaction density that is summed over all insertion points. At one-loop order, the

maximal interaction range is two, and we can write

I(1) =
L
∑

i=1

I(1)i i+1. (2.9)

Here, L denotes the length of the operator O, I(1)i i+1 acts on the external fields i and i+ 1

and cyclic identification i+ L ∼ i is understood. We depict I(1)i i+1 as

I(1)i i+1 = I(1)i , (2.10)

where we in general specify only the first field i that is acted on when the range is explicitly

specified by the number of occurring legs.

In the SU(2) sector, the following six range-two interactions are allowed by R-charge

conservation: XX → XX, XY → XY , XY → Y X, Y Y → Y Y , Y X → Y X and

Y X → XY . It is sufficient to consider the first three, as the last three can be obtained from

them by replacing X ↔ Y , which is a symmetry of the theory. We denote the contribution

to a given combination of external fields ZAZB → ZCZD by (I(1)i )ZCZD
ZAZB

, where Z1 = X,

Z2 = Y and A,B,C,D = 1, 2. In terms of these matrix elements, the operator I(1)i i+1 is

explicitly given by

I(1)i i+1 =
2

∑

A,B,C,D=1

(I(1)i )ZCZD
ZAZB

ηCi
∂

∂ηAi
ηDi+1

∂

∂ηBi+1

. (2.11)
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(I(1)i ) XX
XX

XY
XY

Y X
XY

i

i+1

si i+1 -1 -1 0

i

i+1

0 -1 +1

Table 1: Linear combinations of diagrams contributing to the one-loop form factors in

the SU(2) sector.

The matrix elements (I(1)i )
ZCZD
ZAZB

can be computed via unitarity. In the one-loop case,

we only need to consider the double cut shown in figure 1. Let us briefly consider the

(I(1)1 )Y X
XY case. The cut integrand is given by

∫

dLIPS(l1, l2) d
4ηl1 d

4ηl2F
(0)
O

(lX1 , lY2 , p3, . . . , pL; q)A
(0)
4 (−l2,−l1, p

Y
1 , p

X
2 ) , (2.12)

where the tree-level form factor is given in (2.3) and the four-point amplitude is given by

the standard MHV expression. The labelling of the external legs with X,Y in the tree-level

amplitude and form factor means to take the corresponding η components; for example,

A4(−l2,−l1, pY1 , p
X
2 ) means to take the component of A4(−l2,−l1, p1, p2) containing the

(η21η
4
1)(η

1
2η

4
2) factor. Integrating out the ηli variables, the cut integrand is given by

F (0)
O (pX1 , pY2 , . . . , pL; q)

∣

∣

ηA1 =ηA2 =1
(η21η

4
1)(η

1
2η

4
2)

∫

dLIPS(l1, l2) . (2.13)

The variables η1 and η2 indicate that the result is not necessarily proportional to the

tree-level form factor of the original operator but to the one of the operator in which the

corresponding X and Y fields are permuted. The occurring phase space integral is simply

the cut of a scalar bubble integral:

1

2

l1

l2

. (2.14)

At one-loop level, this cut is sufficient to determine the matrix element (I(1)1 )Y X
XY as the

bubble integral. The other matrix elements can be obtained in a similar way. More details

of such computations can be found e.g. in [16, 17].

The one-loop results are summarised in table 1. It is interesting to note that

(I(1)i )XY
XY + (I(1)i )Y X

XY = (I(1)i )XX
XX . (2.15)

This relation is a consequence of the SU(2) symmetry of the theory. Let us establish a

formalism to deal with these symmetries in more detail since it demonstrates the general

principle of how symmetries can be used to study form factors.
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The PSU(2, 2|4) symmetry of N = 4 SYM theory leads to the following Ward identity

of form factors:
n
∑

i=1

JAi FO(1, . . . , n; q) = FJAO(1, . . . , n; q) , (2.16)

which holds for any generator JAi of PSU(2, 2|4); see e.g. [4] for a detailed derivation. Let

us consider explicitly the generators8

J1i = η1i
∂

∂η2i
+ η2i

∂

∂η1i
, J2i = −iη1i

∂

∂η2i
+ iη2i

∂

∂η1i
, J3i = η1i

∂

∂η1i
− η2i

∂

∂η2i
(2.17)

of SU(2). Applying (2.16) to (2.8) for the minimal tree-level and one-loop form factor, we

find

[JA,I(1)] = 0 , (2.18)

where JA =
∑L

i=1 J
A
i . Inserting (2.11) into (2.18) yields (2.15) as well as similar identities.

Explicit expressions for the triangle and bubble integrals occurring in the results of

table 1 can be found e.g. in [59]. The one-mass triangle integral is IR divergent and UV

finite. The bubble integral, on the other hand, is IR finite but UV divergent. Hence, the

IR and UV divergences can be separated immediately.

The IR divergences of the above results match the universal form of one-loop IR

divergences [1]:

I(1)i i+1

∣

∣

∣

IR
= −

1

ε2
(−si i+1)

−ε
1i i+1+O(ε0)

=

[

−
γ(1)cusp

8ε2
−

G(1)
0

4ε

]

(−si i+1)
−ε

1i i+1+O(ε0) ,
(2.19)

where γ(1)cusp = 8 is the one-loop cusp anomalous dimension and G(1)
0 = 0 is the one-loop

collinear anomalous dimension. We have also introduced the identity operator

1i i+1 =
2

∑

A,B=1

ηAi
∂

∂ηAi
ηBi+1

∂

∂ηBi+1

. (2.20)

The UV divergences require the renormalisation of the operators. The renormalised

operators are defined in terms of the bare operators and the renormalisation constant Z

as shown in (1.2). The renormalised form factor is nothing but the form factor of the

renormalised operator. Since the form factor is linear in the operator, we can write in the

case of the minimal form factor:

F (0)
ZO

(1, . . . , L; q) = ZF (0)
O

(1, . . . , L; q) , (2.21)

where, on the right hand side, Z acts as an operator on the tree-level form factor, similar

to I(ℓ) discussed before, cf. (2.8).

8In general, the generators of PSU(2, 2|4) may obtain anomaly contributions, see e.g. [58]. These are,

however, absent for SU(2).
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At one-loop level, Z(1) has to render the renormalised one-loop interaction

I(1) = I(1) + Z(1) (2.22)

UV finite. This means that Z(1)
i i+1 has to cancel the UV divergence of the bubble integrals

occurring in I(1)i i+1. The UV divergence of the bubble integral is given by 1
ε .

9 Accordingly,

using the results in table 1, the one-loop renormalisation constant density is given by the

matrix elements

(Z(1)
i )XX

XX = 0 , (Z(1)
i )XY

XY =
1

ε
, (Z(1)

i )Y X
XY = −

1

ε
. (2.23)

It can be written in the compact operatorial form

Zi i+1 = Z
(1)
i =

1

ε
(1−P)i i+1 , (2.24)

where 1 is the identity operator (2.20) and

Pi i+1 =
2

∑

A,B=1

ηBi
∂

∂ηAi
ηAi+1

∂

∂ηBi+1

(2.25)

denotes the permutation operator.

In analogy to the renormalisation constant, we can also write the dilatation operator

as an operator acting on the minimal tree-level form factor. Applying (1.3) to (2.23), we

find the one-loop dilatation operator density

(D(1)
i )XX

XX = 0 , (D(1)
i )XY

XY = 2 , (D(1)
i )Y X

XY = −2 . (2.26)

These expressions can be combined into the well-known form [32]

D
(1)
i i+1 = 2(1−P)i i+1 . (2.27)

Let us now proceed to two-loop order.

2.3 Two-loop form factors

In the two-loop case, the range of connected interactions can be either two or three. Fur-

thermore, two disconnected one-loop interactions can occur at two-loop level. In total, we

can introduce the two-loop operator I(2) similar to the one-loop case as

I(2) =
L
∑

i=1

(

I(2)i i+1 i+2 + I(2)i i+1 +
1

2

L+i−2
∑

j=i+2

I(1)i i+1I
(1)
j j+1

)

, (2.28)

9We use a modified minimal subtraction scheme with effective planar coupling constant g2 =
(

4π e−γE
)ε g2

YM
Nc

(4π)2
.
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(I(2)i ) XX
XX

XY
XY

Y X
XY

i

i+1

s2i i+1 +1 +1 0

i

i+1

si i+1 +1 +1 0

i

i+1

l
si i+1si l 0 +1 -1

i

i+1

0 +1 -1

i

i+1

0 +1 -1

Table 2: Linear combinations of diagrams contributing to the two-loop form factors of

range two in the SU(2) sector. Terms between horizontal lines always occur in fixed com-

binations.

where I(2)i i+1 and I(2)i i+1 i+2 are given by

I(2)i i+1 = I(2)i =
2

∑

A,B,C,D=1

(I(2)i )ZCZD
ZAZB

ηCi
∂

∂ηAi
ηDi+1

∂

∂ηBi+1

,

I(2)i i+1 i+2 = I(2)i =
2

∑

A,B,C,D,E,F=1

(I(2)i )ZDZEZF
ZAZBZC

ηDi
∂

∂ηAi
ηEi+1

∂

∂ηBi+1

ηFi+2
∂

∂ηCi+2

.

(2.29)

For interaction range two, three distinct cases occur: XX → XX, XY → XY and

XY → Y X. For interaction range three, six distinct cases occur: XXX → XXX,

XXY → XXY , XYX → XY X, XXY → XYX, XYX → XXY and XXY → Y XX.

The remaining combinations can be obtained from these cases by exchanging X ↔ Y

and by using parity, i.e. reverting the order of the fields. We collect our results for the

corresponding matrix elements in table 2 and table 3. The matrix elements (I(2)i )XX
XX and

(I(2)i )XXX
XXX occur in the BPS case and were computed in [14] using the unitarity method.

The other matrix elements can be calculated in a similar but slightly more involved com-

putation. Let us give a brief account of this computation.

The cuts that have to be considered are depicted in figures 2a, 2b, 2c and 2d. The tree-

level next-to-minimal and one-loop minimal form factors, which occur as building blocks,

are given in subsections 2.1 and 2.2, respectively. The required tree-level and one-loop

amplitudes are standard. A particularly interesting cut is the triple cut shown in figure 2d,

which involves the tree-level next-to-MHV six-point scalar amplitudes. As given explicitly

in appendix A, these scalar amplitudes take a simple form in terms of Mandelstam variables.
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(I(2)i ) XXX
XXX

XXY
XXY

XY X
XY X

XY X
XXY

XXY
XYX

Y XX
XXY

i

i+1

i+2

l si lsi+1 i+2 +1 +1 +1 0 0 0

i

i+1

i+2

l
si i+1si+2 l +1 +1 +1 0 0 0

i

i+1

i+2

si i+1 i+2 -1 -1 -1 0 0 0

i

i+1

i+2

si i+1 0 +1 +1 -1 -1 0

i

i+1

i+2

l si l 0 +1 +1 -1 -1 0

i

i+1

i+2

0 -1 -1 +1 +1 0

i

i+1

i+2

0 0 +1 -1 0 +1

i

i+1

i+2

si+1 i+2 0 0 +1 0 0 0

i

i+1

i+2

l
si+2 l 0 0 +1 0 0 0

i

i+1

i+2

0 0 -1 0 0 0

i

i+1

i+2

0 0 +1 0 -1 0

Table 3: Linear combinations of integrals contributing to the two-loop form factors of

range three in the SU(2) sector. The integrals are grouped such that those between two

horizontal lines are always occurring in the same combination. The second and fourth

group as well as the third and fifth group are related by parity.

Let us consider for example the (I(2)i )Y XX
XXY case. The cut integrand is given by the product
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IR divergences have well defined 
universal structure[BDS]. Subtract by  
BDS ansatz. We are only left with UV 
divergence which are renormalized.

Similar to the one-loop case, all these identities are a consequence of SU(2) invariance and

follow from the Ward identity (2.16), which at two-loop order yields

[JA,I(2)] = 0 . (2.35)

Given the full integrand of the two-loop form factor, we can perform a similar analysis

as in the one-loop case. However, we will see that this requires a more involved subtraction

of the IR divergences. This will be the topic of the next section.

3 Two-loop dilatation operator and remainder function

In the one-loop case, the UV divergences stem from the bubble integrals alone. Therefore,

the one-loop renormalisation constant can be read off directly from the coefficient of these

integrals. This is no longer true for two-loop form factors, since the two-loop integrals

in general contain a mixing of IR and UV divergences. However, IR divergences have a

well-understood universal structure [37–40]. This allows us to subtract the IR divergences

systematically using the BDS ansatz [41, 42].

Similar to the one-loop case (2.22), the two-loop renormalised form factor is given by

I(2) = I(2) + I(1)Z(1) + Z(2) , (3.1)

where

Z(2) =
L
∑

i=1

(

Z(2)
i i+1 i+2 +

1

2

L+i−2
∑

j=i+2

Z(1)
i i+1Z

(1)
j j+1

)

. (3.2)

Applying the BDS ansatz [41, 42] to the renormalised form factors, we obtain a finite

two-loop remainder function:

R(2) = I(2)(ε)−
1

2

(

I(1)(ε)
)2

− f (2)(ε)I(1)(2ε) +O(ε) , (3.3)

where

f (2)(ε) = −2ζ2 − 2ζ3ε− 2ζ4ε
2 . (3.4)

At two-loop order, connected interactions involve at most three fields of the composite

operator, which have to be adjacent at the planar level. Hence, both the remainder function

and the dilatation operator can be written in terms of densities that act only on triples of

neighbouring sites at a time and are summed over all L insertion points. For each triple of

neighbouring points, we define the variables

ui =
si i+1

si i+1 i+2
, vi =

si+1 i+2

si i+1 i+2
, wi =

si+2 i

si i+1 i+2
, (3.5)

where

si i+1 i+2 = si i+1 + si+1 i+2 + si+2 i (3.6)

and cyclic identification i ∼ i+ L is understood. These variables satisfy ui + vi + wi = 1.

The remainder R(2) can be written in terms of its density as

R(2) =
L
∑

i=1

R(2)
i i+1 i+2 . (3.7)
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Like in 1-loop we can write the 
operator form of the renormalization 
operator. This leads to the two-loop 
dilatation operator in SU(2) sector.

Alternatively, this can be written in the operatorial form11

Z(2)
i i+1 i+2 =

1

2

(

1

ε2
−

1

ε

)

(

Pi i+1Pi+1 i+2 + Pi+1 i+2Pi i+1 − 3Pi i+1 − 3Pi+1 i+2 + 4
)

. (3.11)

Using (1.3), we have for the two-loop dilatation operator

D(2) = 4ε
(

Z(2) −
1

2
(Z(1))2

)

, (3.12)

where (Z(1))2 should be understood as an operator product. For example,

(D(2)
i )XY X

XXY = 4ε

(

(Z(2)
i )XY X

XXY −
1

2
(Z(1)

i+1)
Y X
XY (Z

(1)
i )XX

XX −
1

2
(Z(1)

i )XY
XY (Z

(1)
i+1)

Y X
XY

−
1

4
(Z(1)

i+1)
Y X
XY (Z

(1)
i+1)

XY
XY −

1

4
(Z(1)

i+1)
Y X
Y X(Z

(1)
i+1)

Y X
XY

)

= 4 .

(3.13)

In total, we have

(D(2)
i )XXX

XXX = 0 , (D(2)
i )XY X

XY X = −8 , (D(2)
i )XXY

XXY = −2 ,

(D(2)
i )XXY

XY X = 4 , (D(2)
i )XY X

XXY = 4 , (D(2)
i )Y XX

XXY = −2 ,
(3.14)

which agrees exactly with the known result [33]

D
(2)
i i+1 i+2 = −2

(

Pi i+1Pi+1 i+2 + Pi+1 i+2Pi i+1 − 3Pi i+1 − 3Pi+1 i+2 + 4
)

. (3.15)

3.2 Finite remainders

Next, we calculate the finite remainder densities. The remainder densities fulfil analogous

relations to (2.34):

(R(2)
i )Y XX

XXY + (R(2)
i )XY X

XXY + (R(2)
i )XXY

XXY = (R(2)
i )XXX

XXX ,

(R(2)
i )XY X

XY X + (R(2)
i )Y XX

XY X + (R(2)
i )XXY

XY X = (R(2)
i )XXX

XXX ,

(R(2)
i )XY X

XXY + (R(2)
i )Y XX

XXY = (R(2)
i )XXY

XY X + (R(2)
i )XXY

Y XX .

(3.16)

These are equally a consequence of SU(2) symmetry and can be derived from

[JA,R(2)] = 0 , (3.17)

which is a consequence of (2.18) and (2.35). Combining (3.16) with the symmetry under

the exchange of X ↔ Y and the reversion of the order of the fields, we can express all

remainder densities in terms of (R(2)
i )XXX

XXX , (R
(2)
i )XY X

XXY and (R(2)
i )Y XX

XXY . Hence, it is enough

to consider these three cases.
11Note that the coefficient of the simple pole coincides with the one of the double pole up to a sign. This

is a consequence of the fact that only one Feynman integral with overall two-loop UV divergence occurs in

the SU(2) sector when using a manifestly IR finite formulation, and it does not hold for general operators;

cf. [34].
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Alternatively, this can be written in the operatorial form11
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Using (1.3), we have for the two-loop dilatation operator

D(2) = 4ε
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1
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(Z(1))2

)

, (3.12)

where (Z(1))2 should be understood as an operator product. For example,
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i+1)

Y X
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(Z(1)
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Y X(Z
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In total, we have

(D(2)
i )XXX

XXX = 0 , (D(2)
i )XY X

XY X = −8 , (D(2)
i )XXY

XXY = −2 ,

(D(2)
i )XXY

XY X = 4 , (D(2)
i )XY X

XXY = 4 , (D(2)
i )Y XX

XXY = −2 ,
(3.14)

which agrees exactly with the known result [33]

D
(2)
i i+1 i+2 = −2

(

Pi i+1Pi+1 i+2 + Pi+1 i+2Pi i+1 − 3Pi i+1 − 3Pi+1 i+2 + 4
)

. (3.15)

3.2 Finite remainders

Next, we calculate the finite remainder densities. The remainder densities fulfil analogous

relations to (2.34):

(R(2)
i )Y XX

XXY + (R(2)
i )XY X

XXY + (R(2)
i )XXY

XXY = (R(2)
i )XXX
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(R(2)
i )XY X

XY X + (R(2)
i )Y XX

XY X + (R(2)
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XXY + (R(2)
i )Y XX

XXY = (R(2)
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XY X + (R(2)
i )XXY
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(3.16)

These are equally a consequence of SU(2) symmetry and can be derived from

[JA,R(2)] = 0 , (3.17)

which is a consequence of (2.18) and (2.35). Combining (3.16) with the symmetry under

the exchange of X ↔ Y and the reversion of the order of the fields, we can express all

remainder densities in terms of (R(2)
i )XXX

XXX , (R
(2)
i )XY X

XXY and (R(2)
i )Y XX

XXY . Hence, it is enough

to consider these three cases.
11Note that the coefficient of the simple pole coincides with the one of the double pole up to a sign. This

is a consequence of the fact that only one Feynman integral with overall two-loop UV divergence occurs in

the SU(2) sector when using a manifestly IR finite formulation, and it does not hold for general operators;

cf. [34].
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We can compute other interesting quantities !



Transcendentality of Remainder Function

Finite remainder function is obtained 
from the BDS ansatz of renormalized 
form factors. It was also computed 
earlier for the BPS form factor at 2-
loops.

Similar to the one-loop case, all these identities are a consequence of SU(2) invariance and

follow from the Ward identity (2.16), which at two-loop order yields

[JA,I(2)] = 0 . (2.35)

Given the full integrand of the two-loop form factor, we can perform a similar analysis

as in the one-loop case. However, we will see that this requires a more involved subtraction

of the IR divergences. This will be the topic of the next section.

3 Two-loop dilatation operator and remainder function

In the one-loop case, the UV divergences stem from the bubble integrals alone. Therefore,

the one-loop renormalisation constant can be read off directly from the coefficient of these

integrals. This is no longer true for two-loop form factors, since the two-loop integrals

in general contain a mixing of IR and UV divergences. However, IR divergences have a

well-understood universal structure [37–40]. This allows us to subtract the IR divergences

systematically using the BDS ansatz [41, 42].

Similar to the one-loop case (2.22), the two-loop renormalised form factor is given by

I(2) = I(2) + I(1)Z(1) + Z(2) , (3.1)

where

Z(2) =
L
∑

i=1

(

Z(2)
i i+1 i+2 +

1

2

L+i−2
∑

j=i+2

Z(1)
i i+1Z

(1)
j j+1

)

. (3.2)

Applying the BDS ansatz [41, 42] to the renormalised form factors, we obtain a finite

two-loop remainder function:

R(2) = I(2)(ε)−
1

2

(

I(1)(ε)
)2

− f (2)(ε)I(1)(2ε) +O(ε) , (3.3)

where

f (2)(ε) = −2ζ2 − 2ζ3ε− 2ζ4ε
2 . (3.4)

At two-loop order, connected interactions involve at most three fields of the composite

operator, which have to be adjacent at the planar level. Hence, both the remainder function

and the dilatation operator can be written in terms of densities that act only on triples of

neighbouring sites at a time and are summed over all L insertion points. For each triple of

neighbouring points, we define the variables

ui =
si i+1

si i+1 i+2
, vi =

si+1 i+2

si i+1 i+2
, wi =

si+2 i

si i+1 i+2
, (3.5)

where

si i+1 i+2 = si i+1 + si+1 i+2 + si+2 i (3.6)

and cyclic identification i ∼ i+ L is understood. These variables satisfy ui + vi + wi = 1.

The remainder R(2) can be written in terms of its density as

R(2) =
L
∑

i=1

R(2)
i i+1 i+2 . (3.7)
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At 2-loops  interaction length is 3, 
remainder function is also a density acting 
simultaneously on 3 neighboring points.
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Remainder is a function of:
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For every triplet 
of points these 
are like cross-
ratio’s in 
amplitudes.



For scattering amplitudes and BPS form factors remainder function 
was of uniform transcendentally of degree (2l).

Alternatively, this can be written in the operatorial form11

Z(2)
i i+1 i+2 =

1

2

(

1

ε2
−

1

ε

)

(

Pi i+1Pi+1 i+2 + Pi+1 i+2Pi i+1 − 3Pi i+1 − 3Pi+1 i+2 + 4
)

. (3.11)

Using (1.3), we have for the two-loop dilatation operator

D(2) = 4ε
(

Z(2) −
1

2
(Z(1))2

)

, (3.12)

where (Z(1))2 should be understood as an operator product. For example,

(D(2)
i )XY X

XXY = 4ε

(

(Z(2)
i )XY X

XXY −
1

2
(Z(1)

i+1)
Y X
XY (Z

(1)
i )XX

XX −
1

2
(Z(1)

i )XY
XY (Z

(1)
i+1)

Y X
XY

−
1

4
(Z(1)

i+1)
Y X
XY (Z

(1)
i+1)

XY
XY −

1

4
(Z(1)

i+1)
Y X
Y X(Z

(1)
i+1)

Y X
XY

)

= 4 .

(3.13)

In total, we have

(D(2)
i )XXX

XXX = 0 , (D(2)
i )XY X

XY X = −8 , (D(2)
i )XXY

XXY = −2 ,

(D(2)
i )XXY

XY X = 4 , (D(2)
i )XY X

XXY = 4 , (D(2)
i )Y XX

XXY = −2 ,
(3.14)

which agrees exactly with the known result [33]

D
(2)
i i+1 i+2 = −2

(

Pi i+1Pi+1 i+2 + Pi+1 i+2Pi i+1 − 3Pi i+1 − 3Pi+1 i+2 + 4
)

. (3.15)

3.2 Finite remainders

Next, we calculate the finite remainder densities. The remainder densities fulfil analogous

relations to (2.34):

(R(2)
i )Y XX

XXY + (R(2)
i )XY X

XXY + (R(2)
i )XXY

XXY = (R(2)
i )XXX

XXX ,

(R(2)
i )XY X

XY X + (R(2)
i )Y XX

XY X + (R(2)
i )XXY

XY X = (R(2)
i )XXX

XXX ,

(R(2)
i )XY X

XXY + (R(2)
i )Y XX

XXY = (R(2)
i )XXY

XY X + (R(2)
i )XXY

Y XX .

(3.16)

These are equally a consequence of SU(2) symmetry and can be derived from

[JA,R(2)] = 0 , (3.17)

which is a consequence of (2.18) and (2.35). Combining (3.16) with the symmetry under

the exchange of X ↔ Y and the reversion of the order of the fields, we can express all

remainder densities in terms of (R(2)
i )XXX

XXX , (R
(2)
i )XY X

XXY and (R(2)
i )Y XX

XXY . Hence, it is enough

to consider these three cases.
11Note that the coefficient of the simple pole coincides with the one of the double pole up to a sign. This

is a consequence of the fact that only one Feynman integral with overall two-loop UV divergence occurs in

the SU(2) sector when using a manifestly IR finite formulation, and it does not hold for general operators;

cf. [34].
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Relations exist between different component remainders as a 
consequence of SU(2) symmetry. Only 3 independent ones.
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which is a consequence of (2.18) and (2.35). Combining (3.16) with the symmetry under
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(2)
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XXY . Hence, it is enough

to consider these three cases.
11Note that the coefficient of the simple pole coincides with the one of the double pole up to a sign. This

is a consequence of the fact that only one Feynman integral with overall two-loop UV divergence occurs in
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cf. [34].
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+G ({1− ui, 1− ui, 1, 0} , vi) + (ui ↔ vi) . (3.19)

Here, the Goncharov polylogarithm in the last line is the only piece that cannot be written

in terms of classical polylogarithms. This relatively compact expression was obtained using

the symbol techniques [62, 63]. The corresponding symbol is given by [14]12
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∣

∣
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)
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wi

− ui ⊗ vi ⊗
ui
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⊗
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wi

+ (ui ↔ vi) . (3.20)

The remainder density (R(2)
i )XY X

XXY is of mixed transcendentality with degree ranging

from three to zero. Its contribution of degree three has the symbol

S
(

(R(2)
i )XY X
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∣
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3

)
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vi

1− vi
⊗

ui
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. (3.21)

The full transcendentality-three part can be given as

(R(2)
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XXY
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∣

∣
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−
1

6
π2 log (−si i+1 i+2) . (3.22)

12The symbols can be conveniently calculated using the Mathematica code [64].
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Together with the terms of lower transcendentality, we have

(R(2)
i )XY X

XXY = (R(2)
i )XY X

XXY

∣

∣

∣

3
+ Li2 (1− ui) + Li2 (1− vi) (3.23)

+ log (ui) log (vi)−
1

2
log (−si+1 i+2) log

(

ui
vi

)

+ 2 log (−si i+1) +
π2

3
− 7 .

The final remainder density (R(2)
i )Y XX

XXY is of mixed transcendentality with degree rang-

ing from two to zero. It reads

(R(2)
i )Y XX

XXY =
1

2
log (−si+1 i+2) log

(

ui
vi

)

− Li2 (1− ui)− log (ui) log (vi) +
1

2
log2 (vi)

+ log (−si+1 i+2)− 2 log (−si i+1) +
7

2
. (3.24)

Let us emphasise that, if non-vanishing, the transcendentality-four contribution is the

same for all remainder function densities. Furthermore, there is only one transcendentality-

three function and two functions of transcendentality smaller or equal to two that contribute

to the results in the SU(2) sector. Notably, the highest degree of transcendentality t = 4−s

is directly related to the shuffling number s of the respective remainder density, i.e. to the

number indicating by how many legs the field flavours are shuffled. For instance, (R(2)
i )XY X

XXY

has shuffling number s = 1 and maximal transcendentality degree t = 3.

Interestingly, the rational pieces of the remainder function are connected to the dilata-

tion operator as

D
(2)
i i+1 i+2 = −

4

7
R(2)

i i+1 i+2

∣

∣

∣

0
. (3.25)

4 Conclusion and outlook

In this paper, we have calculated the two-loop minimal form factor for all operators in the

SU(2) sector of planar N = 4 SYM theory via the on-shell method of unitarity. More-

over, we have extracted the corresponding two-loop remainder function and the two-loop

dilatation operator from it. The results of this paper provide a solid stepping stone towards

calculating the complete two-loop dilatation operator of N = 4 SYM theory. The employed

method, however, is independent of the high symmetry of planar N = 4 SYM theory, in

particular of its integrability, and it is thus also applicable to less symmetric theories.

The SU(2) sector is the simplest closed sector of the theory whose operators do not

renormalise diagonally. It is hence well suited to study the occurrence of operator mix-

ing and the dilatation operator. Due to the on-shell nature of the external fields, the

divergences of the form factors are a combination of UV and IR divergences. We have

disentangled the UV divergences from the IR divergences using the BDS ansatz and the

universality of the latter. Because of the operator mixing, we needed to promote the inter-

actions to operators and the iterative structure of the BDS ansatz to an operatorial form

as well. From the UV divergences, we have determined the renormalisation constants and

the dilatation operator.

In contrast to the BPS case, the two-loop remainders of non-protected operators in the

SU(2) sector do not exhibit maximal uniform transcendentality. However, their maximally
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Here, the Goncharov polylogarithm in the last line is the only piece that cannot be written

in terms of classical polylogarithms. This relatively compact expression was obtained using

the symbol techniques [62, 63]. The corresponding symbol is given by [14]12

S
(

(R(2)
i )XXX

XXX

∣

∣

∣

4

)

= −ui ⊗ (1− ui)⊗

[

ui − 1

ui
⊗

vi
wi

+
vi
wi

⊗
w2
i

uivi

]

− ui ⊗ ui ⊗
1− ui
vi

⊗
wi

vi

−ui ⊗ vi ⊗
vi
wi

⊗
ui
wi

− ui ⊗ vi ⊗
ui
wi

⊗
vi
wi

+ (ui ↔ vi) . (3.20)
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The full transcendentality-three part can be given as
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12The symbols can be conveniently calculated using the Mathematica code [64].
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Together with the terms of lower transcendentality, we have

(R(2)
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+ Li2 (1− ui) + Li2 (1− vi) (3.23)
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1

2
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(

ui
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)

+ 2 log (−si i+1) +
π2

3
− 7 .

The final remainder density (R(2)
i )Y XX

XXY is of mixed transcendentality with degree rang-

ing from two to zero. It reads

(R(2)
i )Y XX

XXY =
1

2
log (−si+1 i+2) log

(

ui
vi

)

− Li2 (1− ui)− log (ui) log (vi) +
1

2
log2 (vi)

+ log (−si+1 i+2)− 2 log (−si i+1) +
7

2
. (3.24)

Let us emphasise that, if non-vanishing, the transcendentality-four contribution is the

same for all remainder function densities. Furthermore, there is only one transcendentality-

three function and two functions of transcendentality smaller or equal to two that contribute

to the results in the SU(2) sector. Notably, the highest degree of transcendentality t = 4−s

is directly related to the shuffling number s of the respective remainder density, i.e. to the

number indicating by how many legs the field flavours are shuffled. For instance, (R(2)
i )XY X

XXY

has shuffling number s = 1 and maximal transcendentality degree t = 3.

Interestingly, the rational pieces of the remainder function are connected to the dilata-

tion operator as

D
(2)
i i+1 i+2 = −

4

7
R(2)

i i+1 i+2

∣

∣

∣

0
. (3.25)

4 Conclusion and outlook

In this paper, we have calculated the two-loop minimal form factor for all operators in the

SU(2) sector of planar N = 4 SYM theory via the on-shell method of unitarity. More-

over, we have extracted the corresponding two-loop remainder function and the two-loop

dilatation operator from it. The results of this paper provide a solid stepping stone towards

calculating the complete two-loop dilatation operator of N = 4 SYM theory. The employed

method, however, is independent of the high symmetry of planar N = 4 SYM theory, in

particular of its integrability, and it is thus also applicable to less symmetric theories.

The SU(2) sector is the simplest closed sector of the theory whose operators do not

renormalise diagonally. It is hence well suited to study the occurrence of operator mix-

ing and the dilatation operator. Due to the on-shell nature of the external fields, the

divergences of the form factors are a combination of UV and IR divergences. We have

disentangled the UV divergences from the IR divergences using the BDS ansatz and the

universality of the latter. Because of the operator mixing, we needed to promote the inter-

actions to operators and the iterative structure of the BDS ansatz to an operatorial form

as well. From the UV divergences, we have determined the renormalisation constants and

the dilatation operator.

In contrast to the BPS case, the two-loop remainders of non-protected operators in the

SU(2) sector do not exhibit maximal uniform transcendentality. However, their maximally
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Leading transcendental degree is 3.

Leading transcendental degree is 2
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Rational terms of the remainder function are related to the 
dilatation operator !



Only 1 transcendental degree 4 function. It is same as in BPS 
case, would be true for any operator which is an identity in flavor 
space.

For non-protected operator we have mixed transcendentality for 
minimal form factors.

Leading degree of transcendentality t=4-s, is related to the 
shuffling number s of the remainder function density.

Only one function of transcendental degree 3 and two of degree 
2 and less.

Conjecture: Maximal transcendental part of all two loop minimal 
form factors has same degree 4 part as for the BPS one.

Soft and collinear limit the remainder function of minimal form 
factors are non-vanishing as in BPS case.



Conclusions & Outlook

!
Study of form factor of non-protected operator. 
New interesting features for Konishi- UV divergence, rational terms. 
Modification of Unitarity prescription in D=4 for non-protected operators 
Study Cross-section like quantity for CFT— IR safe. 
Anomalous Dimension @ 2 loops for Konishi. 
SU(2) operator 2 loop dilatation operator. 
SU(2) remainder function does not have uniform transcendentality. 

!
Three point functions from Unitarity — CFT data ? 
Cross -section for energy- energy Correlation function? 
Higher-loop Cross-section for Konishi? 
Dilatation operator for other operators at 2 loops? 
Other theories-ABJM? 
Bootstrap remainder function for all transcendentality and higher points?


