AROUND MOTIVIC STRUCTURE OF QUANTUM COHOMOLOGY

Yuri I. Manin

(joint with Maxim Smirnov)

Plan

• Part I: INTRODUCTION.

MOTIVIC REFLEXIVITY OF QUANTUM COHOMOLOGY

• Part II: GENUS ZERO AND ONE MODULI MOTIVES

• Part III: ZETA POLYNOMIALS

INTRODUCTION AND OVERVIEW

CLASSICAL MOTIVES

• Choose an adequate intersection theory A^* :

(i) For each smooth projective (or proper) variety $X \mapsto A^*(X)$,

 $A^*(X)$ = algebraic (or Hodge) cycles on X modulo an adequate equivalence relation, over a coefficient ring Z, Q, C, Q_l.... (ii) Functorial pullback/pushforward: $f : X \to Y$ induces $f^* : A^*(Y) \to A^*(X), \quad f_* : A^*(X) \to A^*(Y)$

(iii) Compatibility with product: canonical morphisms

 $A^*(X) \otimes A^*(Y) \to A^*(X \times Y)$

(iv) The diagonal map $\Delta_X : X \to X \times X$ makes of $A^*(X)$ a graded commutative ring with multiplication induced by Δ_X^* . It satisfies the projection formula $f_*(x \cdot f^*(y)) = f_*(x) \cdot y$. • Define A* – correspondences as graded morphisms : If X is of pure dimension d, put

$$Corr^r(X,Y) := A^{d+r}(X \times Y).$$

Composition:

$$Corr^{r}(X,Y) \otimes Corr^{s}(Y,Z) \to Corr^{r+s}(X,Z):$$

 $f \otimes g \mapsto g \circ f := p_{XZ*}(p_{XY}^{*}(f) \cdot p_{YZ}^{*}(g))$

• Define category of graded correspondences :

Objects: varieties (smooth projective manifolds)/k; Morphisms: $Corr^*(X \times Y)$. • Define monoidal category of classical motives (Mot_k, \otimes) : *Objects:* (X, p, m), X a variety,

$$p = p^2 \in Corr^0(X, X), \ m \in \mathbf{Z}$$

Morphisms:

 $Hom_{Mot_{k}}((Y,q,n),(X,p,m)):=q\circ Corr^{n-m}(X,Y)\circ p\subset Corr^{*}(X,Y).$

Monoidal (tensor) product (on objects):

$$(X, p, m) \otimes (Y, q, n) = (X \times Y, p \otimes q, m + n)$$

Another monoidal structure: \oplus extending \coprod .

• Motives as target category of a cohomology theory :

$$h: Var_k^{opp} \to Mot_k:$$
$$h(X) := (X, id, 0),$$

 $h(\varphi: X \to Y) := [\Gamma_{\varphi}] \in Corr^0(X, Y) = Hom_{Mot_k}(h(Y), h(X)).$

• <u>Unit and Lefschetz motives</u> :

$$\mathbf{1} := (Spec \, k, id, 0), \quad \mathbf{L} := (Spec \, k, id, -1).$$

Fact:

$$h(\mathbf{P}^n) \cong \mathbf{1} \oplus \mathbf{L} \oplus ... \oplus \mathbf{L}^{\otimes n}.$$

• <u>The Tate twist :</u>

$$X(n) := X \otimes \mathbf{L}^{-n}$$

SUMMARY:

Classical motives are obtained from varieties by :

- "Linearizing morphisms": $\{f\} => \{\sum_i a_i f_{i*} f_i^*\}$.
- Adding kernels/cokernels of projectors.
- Twisting by $\mathbf{L}^{\otimes n}$, $n \in \mathbf{Z}$.

A QUESTION:

Consider "total (classical) motives": h(V) where $V \in Var_k$.

Question. What additional motivic structures are naturally supported by total motives rather than arbitrary ones?

Example. Each total motive is in a natural way *a unital* commutative algebra in the monoidal category of motives: Γ_{Δ_X} induces the multiplication

 $\cup: h(V) \otimes h(V) \to h(V)$

This structure is immensely generalized by the following:

BASIC DISCOVERY OF QUANTUM COHOMOLOGY: Each total motive in a natural way is an algebra over the cyclic modular operad

$$\mathcal{HM}(n-1) := \bigoplus_{g} h(\overline{M}_{g,n})$$

in the monoidal category of ind-motives.

This means that we have for any \boldsymbol{V} canonical correspondences

$$I_{g,n}(V) \in Corr^*(\overline{M}_{g,n} \times V^n)$$

which, when considered as morphisms in Mot_k , satisfy a host of identities: axioms of a modular operad and its representations.

EXPLANATIONS AND WARNINGS

• Explanation 1. Why ind-motives rather than simply motives? Two reasons:

(i) For each "arity" n, we have infinitely many genera g.

(ii) Each $I_{g,n}(V)$ is in fact an *infinite* sum of cycles indexed by *effective numerical equivalence classes* β of curves in V:

$$I_{g,n} = \sum_{\beta} I_{g,n}(V,\beta)$$

• Warning 2. Moduli spaces of stable curves of genus g with n + 1 marked points $\overline{M}_{g,n+1}$ generally are not smooth varieties, they are smooth Deligne-Mumford stacks/orbifolds.

For smooth orbifolds, there are *two different* Chow ring functors (coinciding upon Var_k):

 A^* (A. Vistoli et al.) and A^*_{χ} (B. Toën):

A. Vistoli. Intersection theory on algebraic stacks and their moduli spaces.

Inv. Math. 97 (1989), 613–669.

B. Toën. On motives for Deligne-Mumford stacks. IMRN, 17 (2000), 909–928.

Used as correspondences, these constructions give rise to two *a priori different* categories of classical motives of orbifolds.

In fact, the categories are the same, but the respective motivic cohomologies differ.

Theorem. (B. Toën). (i) The monoidal categories of classical motives, generated by Var_k , resp. orbifolds, using A^* , resp. A^*_{χ} , are naturally equivalent.

(ii) The motivic cohomology functors h and h_{χ} coincide upon Var_k . However, on orbifolds, h is a generally non-trivial direct factor of h_{χ} .

• Warning – Question 3. If one wants to extend the Quantum Cohomology theory to orbifolds (e.g. for defining QuCoho of components of the modular operad $\overline{M}_{*,*}$), what versions of the Chow groups are appropriate?

Tentative answer (B. Toën, letter of Jan. 2, 2009)

(i) One expects that $h(\overline{M}_{g,n})$ (cyclically) acts upon $h_{\chi}(V)^{\otimes n}$, and all operadic axioms are satisfied.

(ii) Probably, this becomes wrong for $h_{\chi}(\overline{M}_{g,n})$.

In this talk, I want to draw attention to the reflexivity problem:

HOW THE MODULAR OPERAD ACTS ON ITS OWN COMPONENTS?

GENERA 0, 1, AND TAUTOLOGICAL RINGS

• Chow rings of $\overline{M}_{g,n}$ are notoriously difficult to study, and our knowledge of them and respective motives is very incomplete.

• G. Faber, R. Pandharipande et al. introduced and studied the *tautological subrings* of Chow groups with coefficients Q: $R^*(\overline{M}_{g,n}) \subset A^*(\overline{M}_{g,n})$.

Rougly speaking, they are the smallest subrings closed under push–forwards via all boundary maps and all maps forgetting some marked points.

• For genus zero, the whole Chow ring is tautological.

Motives of $\overline{M}_{0,n}$, $n \ge 3$, are sums of Tate motives, and their structure is in principle very well understood.

Hence we may hope to describe explicitly the Gromov– Witten correspondences

$$I_{0,n}(\overline{M}_{0,m},\beta) \in A^*(\overline{M}_{0,n} \times (\overline{M}_{0,m})^n).$$

In fact, we did it, jointly with Maxim Smirnov, for the case of boundary classes β .

This will be explained in the next Part of the talk.

• For genus one, the tautological subring of the Chow ring is isomorphic to $H^{ev}(\overline{M}_{1,n})$. (Ezra Getzler, Dan Petersen).

For n < 11, it is isomorphic to the whole Chow ring, but with appearance of *cusp forms* of the respective weight this does not hold anymore.

Parts of cohomology of moduli spaces in genus one corresponding to the spaces of cusp modular forms provide an exciting challenge: to study their quantum cohomology action.

They can be included into the general picture with the help of the foliowing new definition: The following definition is motivated by the fact that the notion of modular operad with components of all genera is essentially equivalent to the notion of a *functor* on the category of stable modular graphs with values in DM-stacks.

• <u>Definition</u>. The *q*-tautological rings

 $R_q^*(\overline{M}_{g,\tau}) \subset A^*(\overline{M}_{g,\tau})$

are defined simultaneously for all stable modular graphs τ as the minimal set of subrings containing all fundamental classes of $A^*(\overline{M}_{0,\tau})$ and constituting a modular suboperad.

GENUS ZERO QUANTUM COHOMOLOGY

• Notation and preliminaries (arbitrary genus). Fix a finite set $\overline{\Sigma}$, a genus $g \ge 0$, a smooth projective manifold W, and an effective class $\beta \in A_1(W)$.

Then one can define a (proper DM)–stack $\overline{M}_{g,\Sigma}(W,\beta)$.

For a k-scheme T, one object of the groupoid $\overline{M}_{g,\Sigma}(W,\beta)(T)$ of T-points of this stack consists of a diagram of schemes of the following structure:

$$\begin{array}{c} \mathcal{C}_T \xrightarrow{f_T} W \\ \downarrow^{h_T} \\ T \end{array}$$

and a family of sections $x_{j,T}: T \to C_T, j \in \Sigma, h_T \circ x_{j,T} = id_T$.

They must satisfy the following conditions:

(a) $C_T \to T$ and $(x_{j,T})$ constitute a flat *prestable T*-family of curves of genus *g*.

(b) $f_T : (\mathcal{C}_T; (x_{j,T})) \to W$, is a stable map of class β .

Given such a diagram with sections, we call (W,β) its *tar*get, T its base, and the whole setup a T-family of stable maps. Isomorphisms of families, lifting id_T , must be identical also on W. Base changes are defined in an evident way.

The stack $\overline{M}_{g,\Sigma}(W,\beta)$ is defined as the base of the universal family of this type with given target (W,β) :

$$\overline{C}_{g,\Sigma}(W,\beta) \xrightarrow{f} W \\
\downarrow^{h} \\
\overline{M}_{g,\Sigma}(W,\beta)$$

It is endowed with sections $x_j : \overline{M}_{g,\Sigma}(W,\beta) \to \overline{C}_{g,\Sigma}(W,\beta)$, $j \in \Sigma$. Naturally, $\overline{C}_{g,\Sigma}(W,\beta)$ is a stack as well.

If W is a point, $\beta = 0$, we routinely omit the target and write simply $\overline{M}_{g,\Sigma}$, $\overline{C}_{g,\Sigma}$ etc.

The defining stack diagram produces the *evaluation/stabilization* diagram

$$\overline{M}_{g,\Sigma}(W,\beta) \xrightarrow{st} \overline{M}_{g,\Sigma} .$$

$$\downarrow^{ev}_{W^{\Sigma}}$$

Here

$$ev = (ev_j = f \circ x_j \mid j \in \Sigma) : \quad \overline{M}_{g,\Sigma}(W,\beta) \to W^{\Sigma}.$$

In the case $2g + |\Sigma| \ge 3$, the absolute stabilization morphism st discards the map f and stabilizes the remaining prestable family of curves

$$st: \overline{M}_{g,\Sigma}(W,\beta) \to \overline{M}_{g,\Sigma}.$$

The virtual fundamental class, or the J-class $[\overline{M}_{g,\Sigma}(W,\beta)]^{virt}$, is a canonical element in the Chow ring $A_*(\overline{M}_{g,\Sigma}(W,\beta))$:

 $J_{g,\Sigma}(W,\beta) \in A_D(\overline{M}_{g,\Sigma}(W,\beta)),$

where D is the virtual dimension (Chow grading degree)

 $(-K_W,\beta) + |\Sigma| + (\dim W - 3)(1 - g).$

The respective Gromov–Witten correspondence, defined for $2g + |\Sigma| \ge 3$, is the proper pushforward

$$I_{g,\Sigma}(W,\beta) := (ev, st)_*(J_{g,\Sigma}(W,\beta)) \in A_D(W^{\Sigma} \times \overline{M}_{g,\Sigma})$$

Understanding these correspondences is the content of *motivic* quantum cohomology.

• Example : $g = 0, \ \beta = 0$. In this case the universal family is

$$W \times \overline{C}_{0,\Sigma} \xrightarrow{pr_1} W$$

$$\downarrow^{id_W \times h}$$

$$W \times \overline{M}_{0,\Sigma}$$

with structure sections $id_W \times x_j$.

The stabilization morphism is simply the projection $st = pr_2: W \times \overline{M}_{0,\Sigma} \to \overline{M}_{0,\Sigma}.$

The evaluation morphism is the projection followed by the diagonal embedding Δ_{Σ} :

$$ev: W \times \overline{M}_{0,\Sigma} \to W \to W^{\Sigma}$$

We have:

$$J_{0,\Sigma}(W,0) = [\overline{M}_{0,\Sigma}(W,0)] = [W] \otimes [\overline{M}_{0,\Sigma}].$$

The virtual dimension is

$$|\Sigma| + \dim W - 3 = \dim (W \times \overline{M}_{0,\Sigma}).$$

Thus, finally, the Gromov–Witten correspondence is the class

$$I_{0,\Sigma}(W,0) = [\Delta_{\Sigma}(W)] \otimes [\overline{M}_{0,\Sigma}] \in A_*(W^{\Sigma} \times \overline{M}_{0,\Sigma}).$$

• Genus zero moduli spaces acting upon genus zero moduli spaces.

We will now study the Gromov–Witten correspondences of genus zero for $W = \overline{M}_{0,S}$, $\beta = class$ of a boundary curve in $\overline{M}_{0,S}$.

In particular , we need to understand the relevant J-classes and the diagrams

$$ev: \ \overline{M}_{0,\Sigma}(\overline{M}_{0,S},\beta) \to \overline{M}_{0,S}^{\Sigma}, \quad st: \ \overline{M}_{0,\Sigma}(\overline{M}_{0,S},\beta) \to \overline{M}_{0,\Sigma}$$

We also want to be able to trace various functorialities, in particular, in *both* S and Σ .

In the remaining parts of this section we describe a more general situation. Afterwards we will show that our main problem is contained in it. • Setup, part I.

(a) $b: E \to W :=$ a morphism of smooth irreducible projective manifolds.

(b) $\beta_E :=$ an effective genus zero curve class on E, and $\beta := b_*(\beta_E)$ its pushforward to W.

Any stable map $C_T/T \to E, (x_j : T \to C_T | j \in \Sigma)$, of class β_E , induces, after composition with b and stabilization, a stable map with target (W, β) .

Thus, we get a map

$$\widetilde{b}: \overline{M}_{0,\Sigma}(E,\beta_E) \to \overline{M}_{0,\Sigma}(W,\beta)$$

that clearly fits into the commutative diagram

$$\overline{M}_{0,\Sigma}(E,\beta_E) \xrightarrow{\widetilde{b}} \overline{M}_{0,\Sigma}(W,\beta)
\downarrow^{(ev_E,st_E)} \qquad \qquad \downarrow^{(ev_W,st_W)}
E^{\Sigma} \times \overline{M}_{0,\Sigma} \xrightarrow{b^{\Sigma} \times id} W^{\Sigma} \times \overline{M}_{0,\Sigma}$$

• **Proposition**. (i) Assume that

$$J_{0,\Sigma}(W,\beta) = \widetilde{b}_*(J_{0,\Sigma}(E,\beta_E)).$$

Then

$$I_{0,\Sigma}(W,\beta) = (b^{\Sigma} \times id)_*(I_{0,\Sigma}(E,\beta_E)).$$

(ii) Let $\gamma_j \in H^*(W)$, $j \in \Sigma$, be a finite family of cohomology classes marked by Σ . Then from (i) we have

 $pr_W^*(\otimes_{j\in\Sigma}\gamma_j)\cap I_{0,\Sigma}(W,\beta) =$

 $= (b^{\Sigma} \times id)_* [pr_E^*(\otimes_{j \in \Sigma} b^*(\gamma_j)) \cap I_{0,\Sigma}(E,\beta_E)].$

Here $pr_W: W^{\Sigma} \times \overline{M}_{0,\Sigma} \to W^{\Sigma}$ and $pr_E: E^{\Sigma} \times \overline{M}_{0,\Sigma} \to E^{\Sigma}$ are the respective projection morphisms, and H^* can be any standard cohomology theory.

• <u>Remark.</u>

In our applications to the case $W = \overline{M}_{0,S}$, E will be a boundary stratum containing the boundary curve representing β , and the virtual fundamental classes $J_{0,\Sigma}$ will coincide with the usual fundamental classes since the relevant deformation problem will be *unobstructed*.

Moreover, E will have a very special additional structure.

Below, we axiomatize the relevant geometry.

• Setup, part II.

Additional assumptions:

(c) E is explicitly represented as $E = B \times C$ where C is isomorphic to \mathbf{P}^1 .

This identification, including the projections $p = pr_B : E \to B$ and $pr_C : E \to C$, will constitute a part of structure.

(d) β_E is the (numerical) class of any fiber of p.

(f) The deformation problem for any fiber C_0 of p embedded via b_0 in W is trivially unobstructed in the sense of Behrend:

 $H^1(C_0, b_0^*(\mathcal{T}_W)) = 0.$

(f) The map \tilde{b} is an isomorphism.

These assumptions are quite strong, and with them we can complete the explicit computation of $I_{0,\Sigma}(W,\beta)$ • End of computations. (A) First of all, we have

$$pr_{B*}(\beta_E) = 0, \quad pr_{C*}(\beta_E) = 1$$

where 1 is the fundamental class [C] in the Chow ring of C. Thus, the two projections induce the map

$$(\widetilde{pr}_B, \widetilde{pr}_C) : \overline{M}_{0,\Sigma}(E, \beta_E) \to \overline{M}_{0,\Sigma}(B, 0) \times \overline{M}_{0,\Sigma}(C, \mathbf{1}).$$

Stabilization maps embed this morphism into the commutative diagram

$$\overline{M}_{0,\Sigma}(E,\beta_E) \longrightarrow \overline{M}_{0,\Sigma}(B,0) \times \overline{M}_{0,\Sigma}(C,\mathbf{1})$$

$$\begin{array}{c}
st_E \downarrow & st_B \times st_C \downarrow \\
\overline{M}_{0,\Sigma} \longrightarrow \overline{M}_{0,\Sigma} \times \overline{M}_{0,\Sigma}
\end{array}$$

where the lower line is the diagonal embedding.

(B) Similarly, evaluation maps produce the commutative diagram

$$\overline{M}_{0,\Sigma}(E,\beta_E) \longrightarrow \overline{M}_{0,\Sigma}(B,0) \times \overline{M}_{0,\Sigma}(C,1)$$

$$ev_E \downarrow \qquad ev_B \times ev_C \downarrow$$

$$E^{\Sigma} \xrightarrow{s} B^{\Sigma} \times C^{\Sigma}$$

where the lower line is now the evident permutation isomorphism induced by $E = B \times C$.

(C) Combining these two diagrams, we get

$$\begin{array}{c} \overline{M}_{0,\Sigma}(E,\beta_E) \longrightarrow \overline{M}_{0,\Sigma}(B,0) \times \overline{M}_{0,\Sigma}(C,\mathbf{1}) \\ (ev_E,st_E) \middle| & & & \downarrow (ev_B,st_B) \times (ev_C,st_C) \\ E^{\Sigma} \times \overline{M}_{0,\Sigma} \xrightarrow{\widetilde{\Delta}} B^{\Sigma} \times \overline{M}_{0,\Sigma} \times C^{\Sigma} \times \overline{M}_{0,\Sigma} \end{array}$$

Here the lower line is an obvious composition of permutations and the diagonal embedding of $\overline{M}_{0,\Sigma}$.

(D) It follows that

$$I_{0,\Sigma}(E,\beta_E) = \widetilde{\Delta}^! (I_{0,\Sigma}(B,0) \otimes I_{0,\Sigma}(C,\mathbf{1})) \,.$$

Here for $x \in A_*(X), y \in A_*(Y)$ we denote by $x \otimes y \in A_*(X \times Y)$ the image of $x \otimes y \in A_*(X) \otimes A_*(Y)$ wrt the canonical map $A_*(X) \otimes A_*(Y) \to A_*(X \times Y)$.

Furthermore,

$$I_{0,\Sigma}(B,0) = [\Delta_{\Sigma}(B) \times \overline{M}_{0,\Sigma}] \in A_*(B^{\Sigma} \times \overline{M}_{0,\Sigma}).$$

Finally, describe the space $\overline{M}_{0,\Sigma}(C, 1)$ and the class $I_{0,\Sigma}(C, 1)$.

(E) Recall the Fulton–MacPherson construction.

Let V be a smooth complete algebraic manifold. For a finite set Σ , let V^{Σ} be the direct product of a family of V's labeled by elements of Σ .

Denote by \widetilde{V}^{Σ} the blow up of the (small) diagonal in V^{Σ} . Finally, define $V^{\Sigma,0}$ as the complement to all partial diagonals in V^{Σ} .

The Fulton–MacPherson's configuration space $V\langle\Sigma\rangle$ is the closure of $V^{\Sigma,0}$ naturally embedded into the product

$$V^{\Sigma} \times \prod_{\Sigma' \subset \Sigma, |\Sigma'| \ge 2} \widetilde{V}^{\Sigma'}.$$

It turns out that $\overline{M}_{0,\Sigma}(C, 1)$ can be identified with $C\langle\Sigma\rangle$ in such a way that the birational morphism ev_C becomes the tautological open embedding when restricted to $C^{\Sigma,0}$.

Therefore, denoting by $D_{\Sigma} \subset C^{\Sigma} \times \overline{M}_{0,\Sigma}$ the closure of the graph of the canonical surjective map $C^{\Sigma,0} \to M_{0,\Sigma}$, we get

$$I_{0,\Sigma}(C,\mathbf{1}) = [D_{\Sigma}].$$

Combining all the above we get:

• **Proposition**. We have

$$I_{0,\Sigma}(E,\beta_E) = \widetilde{\Delta}^! ([\Delta_{\Sigma}(B) \times \overline{M}_{0,\Sigma} \times D_{\Sigma}])$$

and

$$I_{0,\Sigma}(W,\beta) = (b^{\Sigma} \times id)_* \circ \widetilde{\Delta}^! ([\Delta_{\Sigma}(B) \times \overline{M}_{0,\Sigma} \times D_{\Sigma}]).$$

APPLICATIONS

• Combinatorics of boundary strata in $\overline{M}_{0,S}$.

The basic combinatorial invariant of an S-pointed stable curve C of genus zero is its dual graph $\tau = \tau_C$.

Its set of *vertices* V_{τ} is (bijective to) the set of irreducible components of C.

Each vertex v is a boundary point of the set of flags $f \in F_{\tau}(v)$ which is (bijective to) the set consisting of singular points and S-labeled points on this component.

Put $F_{\tau} = \bigcup_{v \in V_{\tau}} F_{\tau}(v)$.

If two components of C intersect, the respective two vertices carry two flags that are grafted to form an *edge* e connecting the respective vertices. The set of edges is denoted E_{τ} . The flags that are not pairwise grafted are called *tails*.

Tails form a set T_{τ} which is naturally bijective to the set of S-labeled points and therefore itself is labeled by S.

Stable curves of genus zero correspond to *stable trees* τ : each vertex carries at least three flags.

Finally, the total space $\overline{M}_{0,S}$ is a disjoint union of *locally* closed strata M_{τ} indexed by stable S-labeled trees.

Generally, a stratum M_{τ} lies in the closure \overline{M}_{σ} of M_{σ} , iff σ can be obtained from τ by contracting a subset of edges.

Closed strata \overline{M}_{σ} corresponding to trees with nonempty set of edges are called *boundary* ones. The number of edges is the codimension of the stratum. • Boundary divisors. The classes of boundary divisors D_{σ} bijectively correspond to stable unordered 2-partitions σ : $S = S_1 \cup S_2$, card $S_i \ge 2$.

Here and below an unordered m-partition of a set S is synonymous to an equivalence relation on S with m equivalence classes.

• Boundary curves : combinatorics.

Consider an unordered 4-partition Π of S. Denote by the $S(\Pi)$ the set of irs components, that is, the quotient of S wrt the respective equivalence relation.

4-partitions are in a natural bijection with isomorphism classes of distinguished stable S-labeled trees π .

By definition, such a tree is endowed with one distinguished vertex v_0 , with the set of flags $S(\Pi)$ at this vertex $F_{\pi}(v_0)$.

The flags labeled by one-element components $\{s\}$ of Π are tails, carrying the respective labels $s \in S$. The remaining flags are halves of edges.

The second vertex of an edge, whose one half is labeled by a component S_i carries tails labeled by elements of S_i . We will routinely identify $F_{\pi}(v_0)$ with $S(\Pi)$.

Definition. (i) Given a 4-partition Π , denote by $P = P(\Pi)$ the set of those stable 2-partitions σ of S, each component of which is a union of two different components of Π . For $|S| \ge 4$ we have $|P(\Pi)| = 3$.

(ii) Denote by $N = N(\Pi)$ the set of those stable 2-partitions of S whose one component coincides with one component of Π . We have for $|S| \ge 5$: $1 \le |N(\Pi)| \le 4$. **Fact.** Π can be uniquely reconstructed from $P(\Pi)$; hence $P(\Pi)$ uniquely determines $N(\Pi)$ as well.

Proof. In fact, if $\Pi = (S_1, S_2, S_3, S_4)$ (numeration arbitrary), then by definition

 $P(\Pi)$ must consist of partitions

 $\sigma_1 = (S_1 \cup S_2, S_3 \cup S_4), \ \sigma_2 = (S_1 \cup S_3, S_2 \cup S_4), \ \sigma_3 = (S_1 \cup S_4, S_2 \cup S_3)$

Hence conversely, knowing $P(\Pi)$, we can reconstruct Π : its components are exactly non-empty pairwise intersections of components of different $\sigma_i \in P(\Pi)$.

• Boundary curves : geometry. Each 4-partition Π of S determines the following boundary stratum of $\overline{M}_{0,S}$:

$$b_{\Pi}: \quad \overline{M}_{\Pi}:=\cap_{\sigma\in N(\Pi)} D_{\sigma} \hookrightarrow \overline{M}_{0,S}.$$

Equivalently, \overline{M}_{Π} is the stratum, corresponding to the special tree π associated to Π .

In other words, now all components of Π are indexed by the flags $f \in F_{\pi}(v_0)$ at the special vertex v_0 , whereas components of cardinality ≥ 2 are also naturally indexed by the remaining vertices of π :

$$\overline{M}_{\Pi} = \overline{M}_{0,F_{\pi}(v_0)} \times \prod_{v \neq v_0} \overline{M}_{0,F_{\pi}(v)}.$$

Codimension of \overline{M}_{Π} is |N(P)|, and $1 \leq |N(\Pi)| \leq 4$.

Since $|F_{\pi}(v_0)| = 4$, the moduli space $\overline{M}_{0,F_{\pi}(v_0)}$ is \mathbf{P}^1 with three points naturally labeled by the set of stable partitions of $F_{\pi}(v_0)$ which in turn is canonically bijective to $P(\Pi)$.

Hence we may and will define the projection map

$$p = p_{\Pi} : \overline{M}_{\Pi} \to B_{\Pi} := \prod_{v \neq v_0} \overline{M}_{0, F_{\pi}(v)}$$

having three canonical disjoint sections canonically labeled by $P(\Pi)$.

Clearly, all fibers of p_{Π} are rationally equivalent so that they define a class

$$\beta = \beta(\Pi) \in A_1(\overline{M}_{0,S}).$$

Final Lemma. (i) For $n := |S| \ge 4$, each boundary curve (onedimensional boundary stratum) C_{τ} is a fiber of one of the projections p_{Π} .

(ii) $[C_{\tau_1}] = [C_{\tau_2}] \in A_1(\overline{M}_{0,S})$ iff these curves are fibers of one and the same projection p_{Π} .

• Gromov – Witten correspondences for genus zero moduli spaces.

Here I will show that one can apply the technique of Setups I, II in order to calculate

$$I_{0,\Sigma}(\overline{M}_{0,S},\beta(\Pi)) \in A_*((\overline{M}_{0,S})^{\Sigma} \times \overline{M}_{0,\Sigma}).$$

I will restrict myself by showing how general data of Setups I,II specialise to this case.

• Setup, part I.

- (a) $b: E \to W$ specialises to $b_{\Pi}: \overline{M}_{\Pi} \to \overline{M}_{0,S}$. (b), (d) β_E is the class of any fiber of $p = p_{\Pi}$.
- Setup, part II.

(c) Explicit isomorphism $E = B \times C$ is given by

$$\overline{M}_{\Pi} = \prod_{v \neq v_0} \overline{M}_{0, F_{\pi}(v)} \times \overline{M}_{0, F_{\pi}(v_0)}.$$

References

Yu. Manin, M. Smirnov. Towards motivic quantum cohomology of $\overline{M}_{0,S}$. Proc. of the Edinburg Math. Soc., Vol. 57 (ser. II), no 1, 2014, pp. 201–230. Preprint arXiv:1107.4915

K. Behrend. Gromov-Witten invariants in algebraic geometry. Inv. Math., 127 (1997), 601–617.

K. Behrend, Yu. Manin. Stacks of stable maps and Gromov-Witten invariants. Duke MJ, 85:1 (1996), 1–60.

THANK YOU FOR YOUR ATTENTION!