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INTRODUCTION AND OVERVIEW

CLASSICAL MOTIVES

• Choose an adequate intersection theory A∗:

(i) For each smooth projective (or proper) variety
X 7→ A∗(X),

A∗(X) = algebraic (or Hodge) cycles on X modulo an ade-
quate equivalence relation, over a coefficient ring Z, Q, C,Ql . . . .
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(ii) Functorial pullback/pushforward: f : X → Y induces

f∗ : A∗(Y )→ A∗(X), f∗ : A∗(X)→ A∗(Y )

(iii) Compatibility with product: canonical morphisms

A∗(X)⊗ A∗(Y )→ A∗(X × Y )

(iv) The diagonal map ∆X : X → X ×X makes of A∗(X)
a graded commutative ring with multiplication induced by

∆∗X . It satisfies the projection formula f∗(x · f∗(y)) = f∗(x) · y.
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• Define A∗ − correspondences as graded morphisms :

If X is of pure dimension d, put

Corrr(X, Y ) := Ad+r(X × Y ).

Composition:

Corrr(X, Y )⊗ Corrs(Y, Z)→ Corrr+s(X,Z) :

f ⊗ g 7→ g ◦ f := pXZ∗(p
∗
XY (f) · p∗Y Z(g))

• Define category of graded correspondences :

Objects: varieties (smooth projective manifolds)/k;

Morphisms: Corr∗(X × Y ).
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•Define monoidal category of classical motives (Motk,⊗):

Objects: (X, p,m), X a variety,

p = p2 ∈ Corr0(X,X), m ∈ Z

Morphisms:

HomMotk((Y, q, n), (X, p,m)) := q◦Corrn−m(X, Y )◦p ⊂ Corr∗(X, Y ).

Monoidal (tensor) product (on objects):

(X, p,m)⊗ (Y, q, n) = (X × Y, p⊗ q,m+ n)

Another monoidal structure: ⊕ extending
∐

.
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• Motives as target category of a cohomology theory :

h : V aroppk →Motk :

h(X) := (X, id, 0),

h(ϕ : X → Y ) := [Γϕ] ∈ Corr0(X, Y ) = HomMotk(h(Y ), h(X)).

• Unit and Lefschetz motives :

1 := (Spec k, id, 0), L := (Spec k, id,−1).

Fact:

h(Pn) ∼= 1⊕ L⊕ ...⊕ L⊗n.

• The Tate twist :

X(n) := X ⊗ L−n
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SUMMARY:

———————————————————————

Classical motives are obtained from varieties by :

• “Linearizing morphisms”: {f} => {
∑

i aifi∗f
∗
i }.

• Adding kernels/cokernels of projectors .
• Twisting by L⊗n, n ∈ Z.

———————————————————————
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A QUESTION:

Consider “total (classical) motives”: h(V ) where V ∈
V ark.

Question. What additional motivic structures are naturally sup-
ported by total motives rather than arbitrary ones?

Example. Each total motive is in a natural way a unital
commutative algebra in the monoidal category of motives: Γ∆X

induces the multiplication

∪ : h(V )⊗ h(V )→ h(V )

This structure is immensely generalized by the following:

BASIC DISCOVERY

OF QUANTUM COHOMOLOGY:
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—————————————————————————

Each total motive in a natural way is an algebra over the
cyclic modular operad

HM(n− 1) :=
⊕
g

h(Mg,n)

in the monoidal category of ind–motives.

This means that we have for any V canonical correspon-
dences

Ig,n(V ) ∈ Corr∗(Mg,n × V n)

which, when considered as morphisms in Motk, satisfy a
host of identities: axioms of a modular operad and its
representations.
—————————————————————————
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EXPLANATIONS AND WARNINGS

• Explanation 1. Why ind–motives rather than simply
motives? Two reasons:

(i) For each “arity” n, we have infinitely many genera g.

(ii) Each Ig,n(V ) is in fact an infinite sum of cycles indexed
by effective numerical equivalence classes β of curves in V :

Ig,n =
∑
β

Ig,n(V, β)

• Warning 2. Moduli spaces of stable curves of genus

g with n + 1 marked points Mg,n+1 generally are not smooth
varieties, they are smooth Deligne–Mumford stacks/orbifolds.
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For smooth orbifolds, there are two different Chow ring func-
tors (coinciding upon V ark):

A∗ (A. Vistoli et al.) and A∗χ (B. Toën):

A. Vistoli. Intersection theory on algebraic stacks and their moduli
spaces.

Inv. Math. 97 (1989), 613–669.

B. Toën. On motives for Deligne–Mumford stacks. IMRN, 17
(2000), 909–928.
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Used as correspondences, these constructions give rise to
two a priori different categories of classical motives of orbifolds.

In fact, the categories are the same, but the respective
motivic cohomologies differ.

Theorem. (B. Toën). (i) The monoidal categories of classical
motives, generated by V ark, resp. orbifolds, using A∗, resp. A∗χ, are
naturally equivalent.

(ii) The motivic cohomology functors h and hχ coincide upon V ark.
However, on orbifolds, h is a generally non–trivial direct factor of hχ.

•Warning −Question 3. If one wants to extend the Quan-
tum Cohomology theory to orbifolds (e.g. for defining QuCoho
of components of the modular operad M∗,∗), what versions of
the Chow groups are appropriate?
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Tentative answer (B. Toën, letter of Jan. 2, 2009)

(i) One expects that h(Mg,n) (cyclically) acts upon hχ(V )⊗n,
and all operadic axioms are satisfied.

(ii) Probably, this becomes wrong for hχ(Mg,n).

***
In this talk, I want to draw attention to the reflexivity

problem:

HOW THE MODULAR OPERAD ACTS ON ITS OWN
COMPONENTS?
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GENERA 0, 1, AND TAUTOLOGICAL RINGS

• Chow rings of Mg,n are notoriously difficult to study, and
our knowledge of them and respective motives is very incom-
plete.

•G. Faber, R. Pandharipande et al. introduced and studied
the tautological subrings of Chow groups with coefficients Q:
R∗(Mg,n) ⊂ A∗(Mg,n).

Rougly speaking, they are the smallest subrings closed un-
der push–forwards via all boundary maps and all maps for-
getting some marked points.

• For genus zero, the whole Chow ring is tautological.
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Motives of M0,n, n ≥ 3, are sums of Tate motives, and their
structure is in principle very well understood.

Hence we may hope to describe explicitly the Gromov–
Witten correspondences

I0,n(M0,m, β) ∈ A∗(M0,n × (M0,m)n).

In fact, we did it, jointly with Maxim Smirnov, for the case of
boundary classes β.

This will be explained in the next Part of the talk.
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• For genus one, the tautological subring of the Chow ring

is isomorphic to Hev(M1,n). (Ezra Getzler, Dan Petersen).

For n < 11, it is isomorphic to the whole Chow ring, but
with appearance of cusp forms of the respective weight this
does not hold anymore.

Parts of cohomology of moduli spaces in genus one cor-
responding to the spaces of cusp modular forms provide an
exciting challenge: to study their quantum cohomology ac-
tion.

They can be included into the general picture with the help
of the foliowing new definition:
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The following definition is motivated by the fact that the
notion of modular operad with components of all genera is
essentially equivalent to the notion of a functor on the category
of stable modular graphs with values in DM–stacks.

• Definition. The q–tautological rings

R∗q(Mg,τ ) ⊂ A∗(Mg,τ )

are defined simultaneously for all stable modular graphs τ as
the minimal set of subrings containing all fundamental classes
of A∗(M0,τ ) and constituting a modular suboperad.
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GENUS ZERO QUANTUM COHOMOLOGY

• Notation and preliminaries (arbitrary genus). Fix a finite
set Σ, a genus g ≥ 0, a smooth projective manifold W , and an
effective class β ∈ A1(W ).

Then one can define a (proper DM)–stack Mg,Σ(W,β).

For a k–scheme T , one object of the groupoid Mg,Σ(W,β)(T )
of T–points of this stack consists of a diagram of schemes of
the following structure:

CT
fT //

hT
��

W

T

and a family of sections xj,T : T → CT , j ∈ Σ, hT ◦ xj,T = idT .
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They must satisfy the following conditions:

(a) CT → T and (xj,T ) constitute a flat prestable T–family of
curves of genus g.

(b) fT : (CT ; (xj,T ))→ W , is a stable map of class β.

Given such a diagram with sections, we call (W,β) its tar-
get, T its base, and the whole setup a T–family of stable maps.
Isomorphisms of families, lifting idT , must be identical also
on W . Base changes are defined in an evident way.

The stack Mg,Σ(W,β) is defined as the base of the universal
family of this type with given target (W,β):

Cg,Σ(W,β)
f //

h
��

W

Mg,Σ(W,β)
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It is endowed with sections xj : Mg,Σ(W,β) → Cg,Σ(W,β),

j ∈ Σ. Naturally, Cg,Σ(W,β) is a stack as well.

If W is a point, β = 0, we routinely omit the target and
write simply Mg,Σ, Cg,Σ etc.

The defining stack diagram produces the evaluation/stabilization
diagram

Mg,Σ(W,β) st //

ev
��

Mg,Σ

WΣ

.

Here

ev = (evj = f ◦ xj | j ∈ Σ) : Mg,Σ(W,β)→ WΣ.
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In the case 2g+ |Σ| ≥ 3, the absolute stabilization morphism
st discards the map f and stabilizes the remaining prestable
family of curves

st : Mg,Σ(W,β)→Mg,Σ.

The virtual fundamental class, or the J–class [Mg,Σ(W,β)]virt,

is a canonical element in the Chow ring A∗(Mg,Σ(W,β)):

Jg,Σ(W,β) ∈ AD(Mg,Σ(W,β)) ,

where D is the virtual dimension (Chow grading degree)

(−KW , β) + |Σ|+ (dim W − 3)(1− g).
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The respective Gromov–Witten correspondence, defined for 2g+
|Σ| ≥ 3, is the proper pushforward

Ig,Σ(W,β) := (ev, st)∗(Jg,Σ(W,β)) ∈ AD(WΣ ×Mg,Σ)

Understanding these correspondences is the content of mo-
tivic quantum cohomology.

• Example : g = 0, β = 0. In this case the universal family
is

W × C0,Σ
pr1 //

idW×h
��

W

W ×M0,Σ

with structure sections idW × xj.
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The stabilization morphism is simply the projection

st = pr2 : W ×M0,Σ →M0,Σ.

The evaluation morphism is the projection followed by the
diagonal embedding ∆Σ:

ev : W ×M0,Σ → W → WΣ.

We have:

J0,Σ(W, 0) = [M0,Σ(W, 0)] = [W ]⊗ [M0,Σ].

The virtual dimension is

|Σ|+ dim W − 3 = dim (W ×M0,Σ).

Thus, finally, the Gromov–Witten correspondence is the
class

I0,Σ(W, 0) = [∆Σ(W )]⊗ [M0,Σ] ∈ A∗(WΣ ×M0,Σ).
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•Genus zero moduli spaces acting upon genus zero moduli spaces.

We will now study the Gromov–Witten correspondences of
genus zero for W = M0,S, β = class of a boundary curve in M0,S.

In particular , we need to understand the relevant J–classes
and the diagrams

ev : M0,Σ(M0,S , β)→M
Σ
0,S , st : M0,Σ(M0,S , β)→M0,Σ.

We also want to be able to trace various functorialities, in
particular, in both S and Σ.

In the remaining parts of this section we describe a more
general situation. Afterwards we will show that our main
problem is contained in it.
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• Setup, part I.

(a) b : E → W := a morphism of smooth irreducible pro-
jective manifolds.

(b) βE := an effective genus zero curve class on E, and
β := b∗(βE) its pushforward to W .

Any stable map CT /T → E, (xj : T → CT | j ∈ Σ), of class βE,
induces, after composition with b and stabilization, a stable
map with target (W,β).

Thus, we get a map

b̃ : M0,Σ(E, βE)→M0,Σ(W,β)

that clearly fits into the commutative diagram

M0,Σ(E, βE) b̃ //

(evE ,stE)
��

M0,Σ(W,β)

(evW ,stW )
��

EΣ ×M0,Σ
bΣ×id //WΣ ×M0,Σ
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• Proposition. (i) Assume that

J0,Σ(W,β) = b̃∗(J0,Σ(E, βE)).

Then
I0,Σ(W,β) = (bΣ × id)∗(I0,Σ(E, βE)).

(ii) Let γj ∈ H∗(W ), j ∈ Σ, be a finite family of cohomology classes
marked by Σ. Then from (i) we have

pr∗W (⊗j∈Σγj) ∩ I0,Σ(W,β) =

= (bΣ × id)∗[pr
∗
E(⊗j∈Σb

∗(γj)) ∩ I0,Σ(E, βE)].

Here prW : WΣ ×M0,Σ → WΣ and prE : EΣ ×M0,Σ → EΣ are the
respective projection morphisms, and H∗ can be any standard coho-
mology theory.
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• Remark.

In our applications to the case W = M0,S, E will be a bound-
ary stratum containing the boundary curve representing β,
and the virtual fundamental classes J0,Σ will coincide with
the usual fundamental classes since the relevant deformation
problem will be unobstructed.

Moreover, E will have a very special additional structure.

Below, we axiomatize the relevant geometry.
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• Setup, part II.

Additional assumptions:

(c) E is explicitly represented as E = B×C where C is isomorphic
to P1.

This identification, including the projections p = prB : E → B and
prC : E → C, will constitute a part of structure.

(d) βE is the (numerical) class of any fiber of p.

(f) The deformation problem for any fiber C0 of p embedded via b0
in W is trivially unobstructed in the sense of Behrend:

H1(C0, b
∗
0(TW )) = 0 .

(f) The map b̃ is an isomorphism.

These assumptions are quite strong, and with them we can
complete the explicit computation of I0,Σ(W,β)
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• End of computations. (A) First of all, we have

prB∗(βE) = 0, prC∗(βE) = 1

where 1 is the fundamental class [C] in the Chow ring of C.

Thus, the two projections induce the map

(p̃rB, p̃rC) : M0,Σ(E, βE)→M0,Σ(B, 0)×M0,Σ(C,1) .

Stabilization maps embed this morphism into the commu-
tative diagram

M0,Σ(E, βE) //

stE
��

M0,Σ(B, 0)×M0,Σ(C,1)

stB×stC
��

M0,Σ

∆
M0,Σ //M0,Σ ×M0,Σ

where the lower line is the diagonal embedding.
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(B) Similarly, evaluation maps produce the commutative
diagram

M0,Σ(E, βE) //

evE
��

M0,Σ(B, 0)×M0,Σ(C,1)

evB×evC
��

EΣ s // BΣ × CΣ

where the lower line is now the evident permutation isomor-
phism induced by E = B × C.

(C) Combining these two diagrams, we get

M0,Σ(E, βE) //

(evE ,stE)
��

M0,Σ(B, 0)×M0,Σ(C,1)

(evB ,stB)×(evC ,stC)
��

EΣ ×M0,Σ
∆̃ // BΣ ×M0,Σ × CΣ ×M0,Σ
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Here the lower line is an obvious composition of permuta-
tions and the diagonal embedding of M0,Σ.

(D) It follows that

I0,Σ(E, βE) = ∆̃!(I0,Σ(B, 0)⊗ I0,Σ(C,1)) .

Here for x ∈ A∗(X), y ∈ A∗(Y ) we denote by x⊗y ∈ A∗(X×Y )
the image of x ⊗ y ∈ A∗(X) ⊗ A∗(Y ) wrt the canonical map
A∗(X)⊗ A∗(Y )→ A∗(X × Y ).

Furthermore,

I0,Σ(B, 0) = [∆Σ(B)×M0,Σ] ∈ A∗(BΣ ×M0,Σ).

Finally, describe the space M0,Σ(C,1) and the class I0,Σ(C,1).
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(E) Recall the Fulton–MacPherson construction.

Let V be a smooth complete algebraic manifold. For a finite
set Σ, let V Σ be the direct product of a family of V ’s labeled
by elements of Σ.

Denote by Ṽ Σ the blow up of the (small) diagonal in V Σ.
Finally, define V Σ,0 as the complement to all partial diagonals
in V Σ.

The Fulton–MacPherson’s configuration space V 〈Σ〉 is the clo-
sure of V Σ,0 naturally embedded into the product

V Σ ×
∏

Σ′⊂Σ,|Σ′|≥2

Ṽ Σ′
.

It turns out that M0,Σ(C,1) can be identified with C〈Σ〉 in
such a way that the birational morphism evC becomes the
tautological open embedding when restricted to CΣ,0.
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Therefore, denoting by DΣ ⊂ CΣ ×M0,Σ the closure of the

graph of the canonical surjective map CΣ,0 →M0,Σ, we get

I0,Σ(C,1) = [DΣ] .

Combining all the above we get:

• Proposition. We have

I0,Σ(E, βE) = ∆̃!([∆Σ(B)×M0,Σ ×DΣ])

and

I0,Σ(W,β) = (bΣ × id)∗ ◦ ∆̃!([∆Σ(B)×M0,Σ ×DΣ]) .
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APPLICATIONS

• Combinatorics of boundary strata in M0,S .

The basic combinatorial invariant of an S–pointed stable
curve C of genus zero is its dual graph τ = τC .

Its set of vertices Vτ is (bijective to) the set of irreducible
components of C.

Each vertex v is a boundary point of the set of flags f ∈ Fτ (v)
which is (bijective to) the set consisting of singular points and
S–labeled points on this component.

Put Fτ = ∪v∈VτFτ (v).

If two components of C intersect, the respective two ver-
tices carry two flags that are grafted to form an edge e con-
necting the respective vertices.
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The set of edges is denoted Eτ . The flags that are not
pairwise grafted are called tails.

Tails form a set Tτ which is naturally bijective to the set of
S–labeled points and therefore itself is labeled by S.

Stable curves of genus zero correspond to stable trees τ : each
vertex carries at least three flags.

Finally, the total space M0,S is a disjoint union of locally
closed strata Mτ indexed by stable S–labeled trees.

Generally, a stratum Mτ lies in the closure Mσ of Mσ, iff σ
can be obtained from τ by contracting a subset of edges.

Closed strata Mσ corresponding to trees with nonempty
set of edges are called boundary ones. The number of edges is
the codimension of the stratum.
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• Boundary divisors. The classes of boundary divisors Dσ

bijectively correspond to stable unordered 2–partitions σ :
S = S1 ∪ S2, cardSi ≥ 2.

Here and below an unordered m–partition of a set S is synony-
mous to an equivalence relation on S with m equivalence classes.

• Boundary curves : combinatorics.

Consider an unordered 4–partition Π of S. Denote by the
S(Π) the set of irs components, that is, the quotient of S wrt
the respective equivalence relation.

4–partitions are in a natural bijection with isomorphism
classes of distinguished stable S–labeled trees π.

By definition, such a tree is endowed with one distinguished
vertex v0, with the set of flags S(Π) at this vertex Fπ(v0).
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The flags labeled by one–element components {s} of Π are
tails, carrying the respective labels s ∈ S. The remaining
flags are halves of edges.

The second vertex of an edge, whose one half is labeled by
a component Si carries tails labeled by elements of Si.

We will routinely identify Fπ(v0) with S(Π).

Definition. (i) Given a 4–partition Π, denote by P = P (Π) the set
of those stable 2–partitions σ of S, each component of which is a union
of two different components of Π. For |S| ≥ 4 we have |P (Π)| = 3.

(ii) Denote by N = N(Π) the set of those stable 2–partitions of S
whose one component coincides with one component of Π. We have
for |S| ≥ 5: 1 ≤ |N(Π)| ≤ 4.
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Fact. Π can be uniquely reconstructed from P (Π); hence P (Π)
uniquely determines N(Π) as well.

Proof. In fact, if Π = (S1, S2, S3, S4) (numeration arbitrary),
then by definition
P (Π) must consist of partitions

σ1 = (S1∪S2, S3∪S4), σ2 = (S1∪S3, S2∪S4), σ3 = (S1∪S4, S2∪S3)

Hence conversely, knowing P (Π), we can reconstruct Π: its
components are exactly non–empty pairwise intersections of
components of different σi ∈ P (Π).
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• Boundary curves : geometry. Each 4–partition Π of S de-

termines the following boundary stratum of M0,S:

bΠ : MΠ := ∩σ∈N(Π)Dσ ↪→M0,S .

Equivalently, MΠ is the stratum, corresponding to the spe-
cial tree π associated to Π.

In other words, now all components of Π are indexed by the
flags f ∈ Fπ(v0) at the special vertex v0, whereas components
of cardinality ≥ 2 are also naturally indexed by the remaining
vertices of π:

MΠ = M0,Fπ(v0) ×
∏
v 6=v0

M0,Fπ(v).
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Codimension of MΠ is |N(P )|, and 1 ≤ |N(Π)| ≤ 4.

Since |Fπ(v0)| = 4, the moduli space M0,Fπ(v0) is P1 with
three points naturally labeled by the set of stable partitions
of Fπ(v0) which in turn is canonically bijective to P (Π).

Hence we may and will define the projection map

p = pΠ : MΠ → BΠ :=
∏
v 6=v0

M0,Fπ(v)

having three canonical disjoint sections canonically labeled
by P (Π).

Clearly, all fibers of pΠ are rationally equivalent so that
they define a class

β = β(Π) ∈ A1(M0,S).
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Final Lemma. (i) For n := |S| ≥ 4, each boundary curve (one–
dimensional boundary stratum) Cτ is a fiber of one of the projections
pΠ.

(ii) [Cτ1 ] = [Cτ2 ] ∈ A1(M0,S) iff these curves are fibers of one and
the same projection pΠ.

•Gromov −Witten correspondences for genus zero moduli spaces.

Here I will show that one can apply the technique of Setups
I, II in order to calculate

I0,Σ(M0,S , β(Π)) ∈ A∗((M0,S)Σ ×M0,Σ).

I will restrict myself by showing how general data of Setups
I,II specialise to this case.
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• Setup, part I.

(a) b : E → W specialises to bΠ : MΠ →M0,S .

(b), (d) βE is the class of any fiber of p = pΠ.

• Setup, part II.

(c) Explicit isomorphism E = B × C is given by

MΠ =
∏
v 6=v0

M0,Fπ(v) ×M0,Fπ(v0).
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