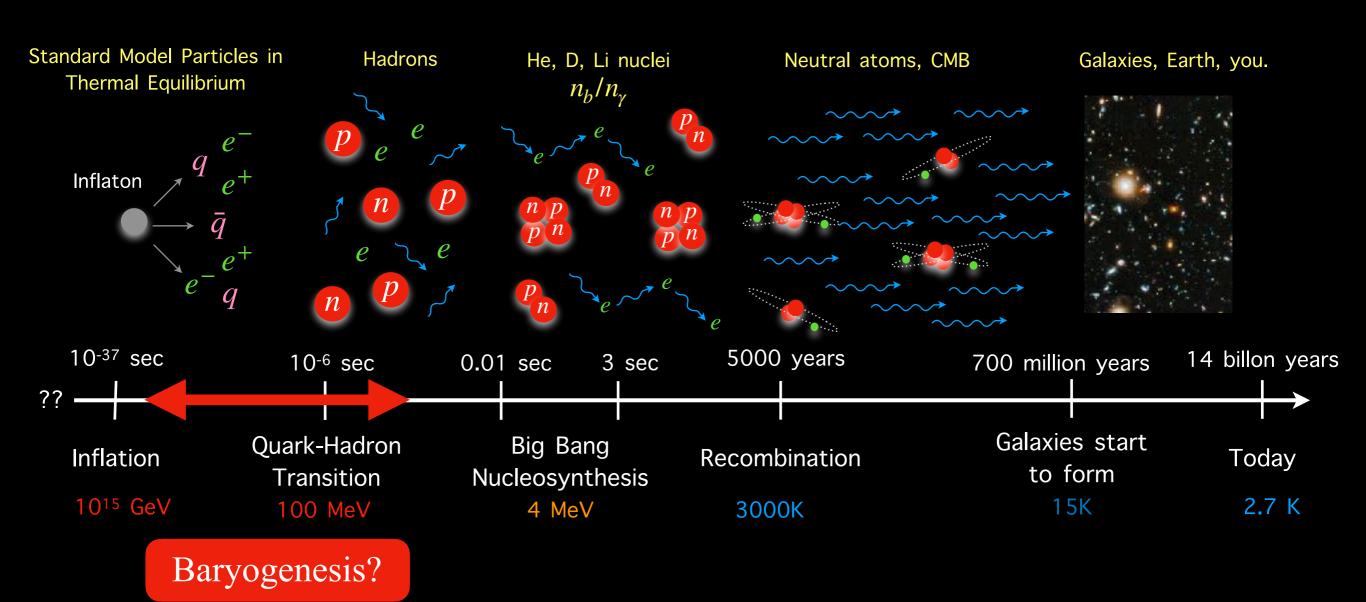
Mesogenesis

Gilly Elor


Mainz Institute for Theoretical Physics, JGU

MITP Mega Dark Matter Workshop

May13 2022

Yet another none Mega Dark Matter talk


The History of the Universe

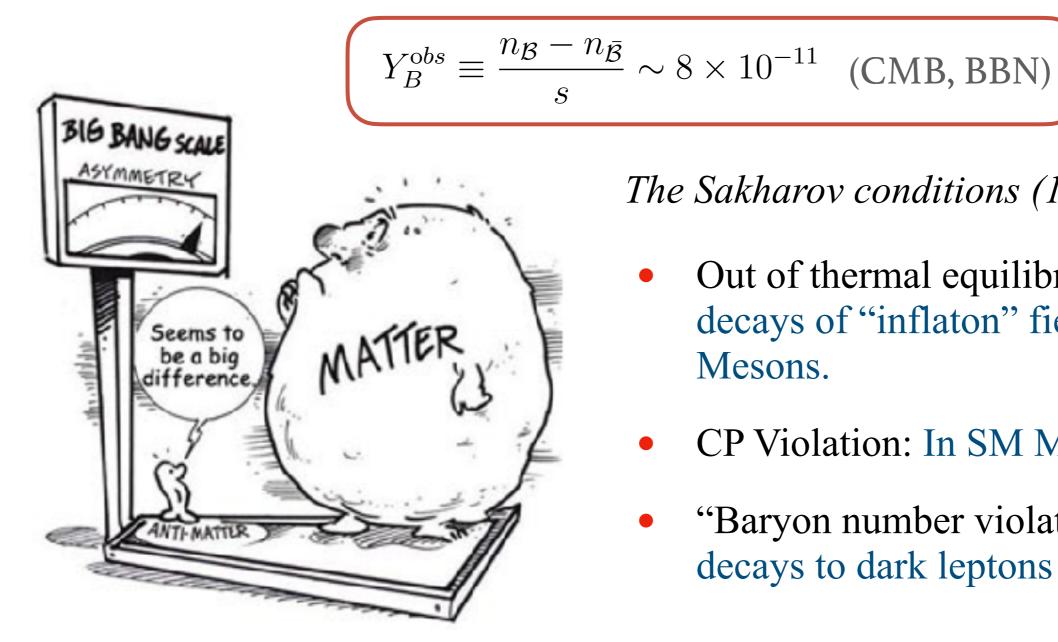
What mechanism generated the initial asymmetry? Observed to be (BBN, CMB):

$$Y_B^{obs} \equiv \frac{n_{\mathcal{B}} - n_{\bar{\mathcal{B}}}}{s} \sim 8 \times 10^{-11}$$


"Traditional" Baryogenesis

Affleck-Dine (very hard to test)

•


Making the Universe at 20MeV

- Controlled by experimental observables. Signals!
- Theoretically appealing e.g. Relaxion and Nnaturalness require low scale baryogenesis.

Mesogenesis

How to generate a matter/antimatter asymmetry

The Sakharov conditions (1967):

- Out of thermal equilibrium: Late decays of "inflaton" field to SM Mesons.
- CP Violation: In SM Meson systems.
- "Baryon number violation": SM Meson decays to dark leptons or baryons.

The Many Flavors of Mesogenesis

Mechanism	CPV	Dark Sector	Observables	Relevant Experiments
B^0 Mesogenesis	$B_s^0 \& B_d^0$	Dark baryons	$A_{sl}^{s,d}$	LHCb
	oscillations		$Br(B \to \mathcal{B} + X)$	B Factories, LHCb
			A_{CP}^D	B Factories, LHCb
D^+ Mesogenesis	D^{\pm} decays	Dark leptons	${\rm Br}_{D^+}$	B Factories, LHCb
		and/or baryons	$Br(\mathcal{M}^+ \to \ell^+ + X)$	peak searches e.g. PSI, PIENU
			A_{CP}^B	B Factories, LHCb
B^+ Mesogenesis	B^{\pm} decays	Dark leptons	${\rm Br}_{B^+}$	B Factories, LHCb
		and/or baryons	$Br(\mathcal{M}^+ \to \ell^+ + X)$	peak searches e.g. PSI, PIENU
			$A_{CP}^{B_c}$	LHCb, FCC
B_c^+ Mesogenesis	B_c^{\pm} decays	Dark baryons	$\mathrm{Br}_{B_c^+}$	LHCb, FCC
			$\operatorname{Br}_{B^+ \to \mathcal{B}^+ + X}$	B Factories, LHCb

GE, M. Escudero, A. E. Nelson, PRD, [1810.00880]

G. Alonso-Alvarez, GE, A. E. Nelson, H. Xiao, JHEP, [1907.10612]

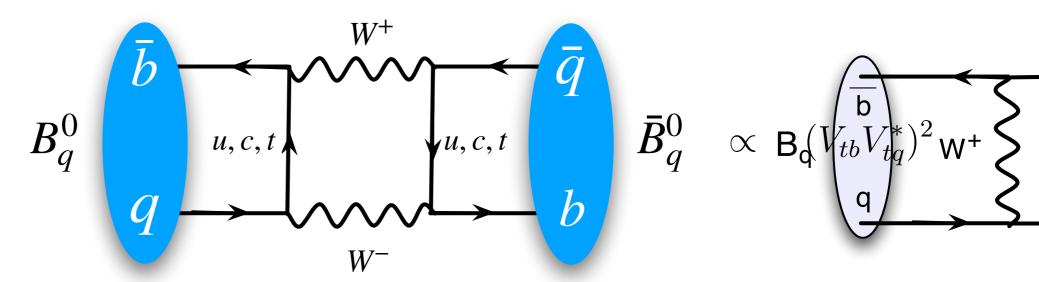
GE, R. McGehee, PRD [2011.06115]

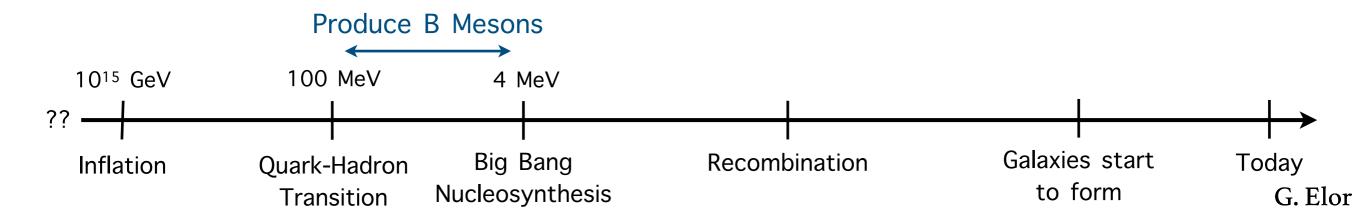
G. Alonso-Alvarez, GE. M. Escudero, PRD, [2101.02706]

F. Elahi, GE, R. McGehee, [2109.09751]

G. Alonso-Alvarez, GE, M. Escudero, B. Fornal, B. Grinstein, J.M. Camalich [arXiv:2111.12712]

Neutral B Meson Oscillations

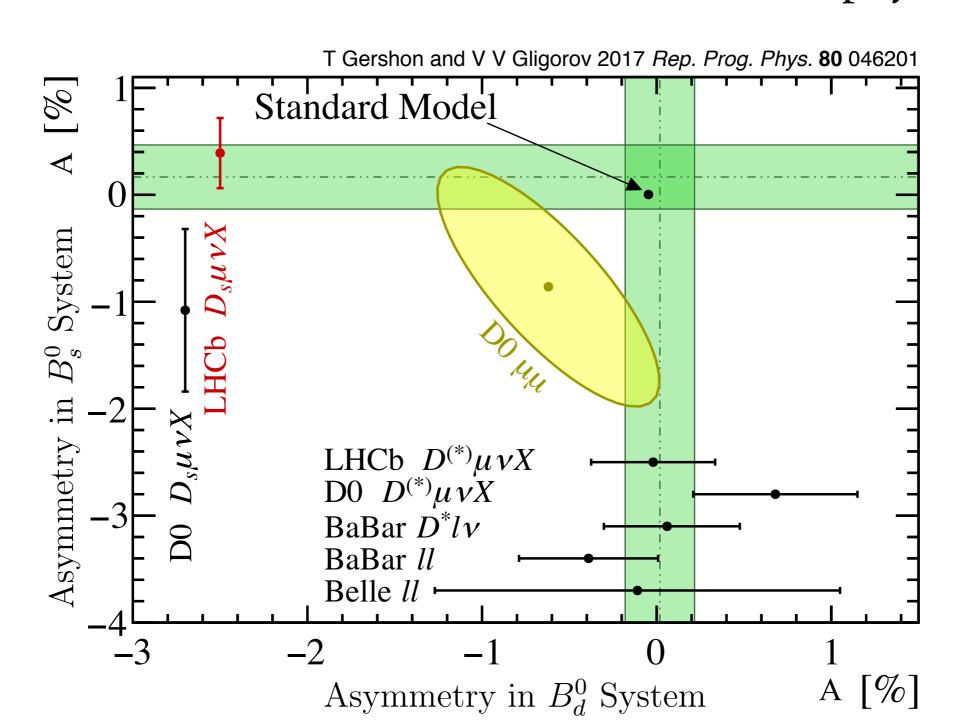

-1.0



At low energies we can use CPV in *B* meson mixing e.g. from CKM phases in the case of the Standard Model (but new physics contributions are also not excluded)

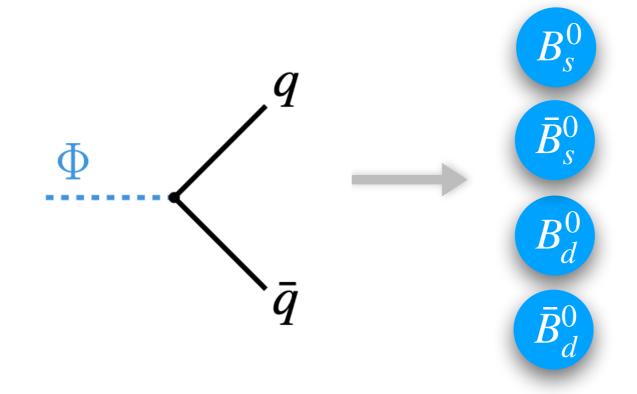
(excl

CP Violation


B meson/anti-meson mixing has sizable CP violation

Observable:
$$A_{\mathrm{SL}}^{q} = \frac{\Gamma\left(B_{q}^{0} \to B_{q}^{0} \to f\right) - \Gamma\left(B_{q}^{0} \to B_{q}^{0} \to f\right)}{\Gamma\left(\bar{B}_{q}^{0} \to B_{q}^{0} \to f\right) + \Gamma\left(B_{q}^{0} \to \bar{B}_{q}^{0} \to \bar{f}\right)}$$

CP Violation

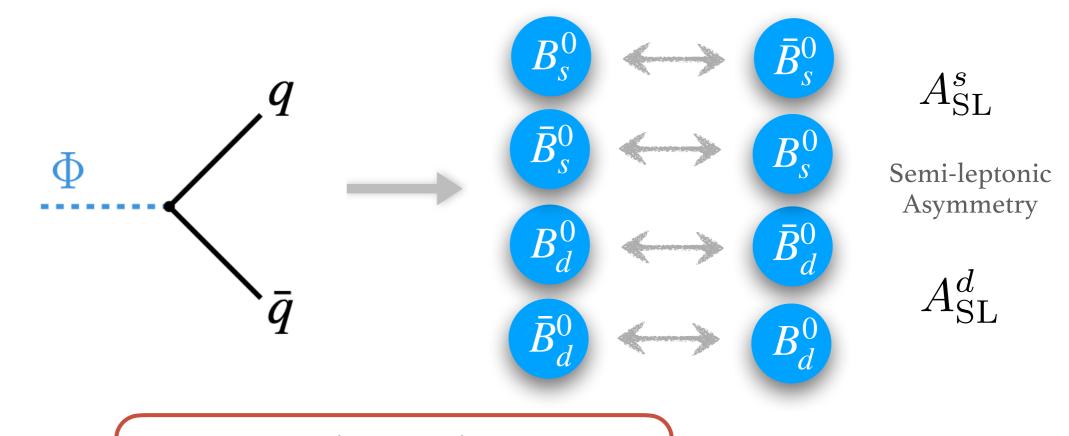

Can accommodate contributions from new physics

Sakharov I. Out of Equilibrium

Late decay of an "inflaton-like" field

Decays at: $\Gamma_{\Phi} = 4H(T_R)$ to quarks $m_{\Phi} \in [5 \, \mathrm{GeV}, 100 \, \mathrm{GeV}]$

 $3.5\,\mathrm{MeV} \lesssim T_\mathrm{R} \lesssim 100\,\mathrm{MeV}$


Before BBN

After QCD phase transition

Sakharov II. CP Violation

Late decay of an "inflaton-like" field

Decays at: $\Gamma_{\Phi} = 4H(T_R)$ to quarks $m_{\Phi} \in [5 \, \mathrm{GeV}, 100 \, \mathrm{GeV}]$

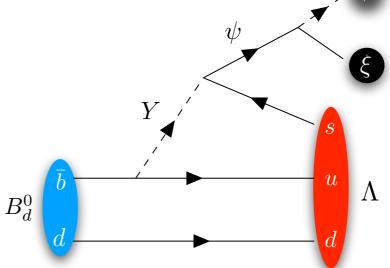
 $3.5\,\mathrm{MeV} \lesssim T_\mathrm{R} \lesssim 100\,\mathrm{MeV}$

Before **BBN**

After QCD phase transition

Sakharov III. B Violation?

Need a way to change baryon number


Hide baryon number in a dark sector rather than violate it

An Explic Dark Sector Baryon

Field	Spin	Q_{EM}	Baryon no.	\mathbb{Z}_2	Hige
Φ	0	0	0	+1	$11-100\mathrm{GeV}$
Y	0	-1/3	-2/3	+1	$\mathcal{O}(\mathrm{TeV})$
ψ	1/2	0	-1	+1	$\mathcal{O}(\mathrm{GeV})$
ξ	1/2	0	0	-1	$\mathcal{O}(\mathrm{GeV})$
ϕ	0	0	$\begin{bmatrix} & B \end{bmatrix}$	VIES -1	$Son_{\mathcal{O}(GeV)}$
			Ç	$J_h =$	- U

baryon number in a dark sector

Kinematics: $m_{\psi} < m_B - m_{\rm Baryon} < 4.3 \, {\rm GeV}$

Proton stability: $m_{\psi} > m_{p} - m_{e} \simeq 937.8 \, \mathrm{MeV}$

Equal and opposite dark and visible baryon as yn mætries generated.

$$Y_{\mathcal{B}} - Y_{\bar{\mathcal{B}}} = -\left(Y_{\psi} - Y_{\bar{\psi}}\right)$$

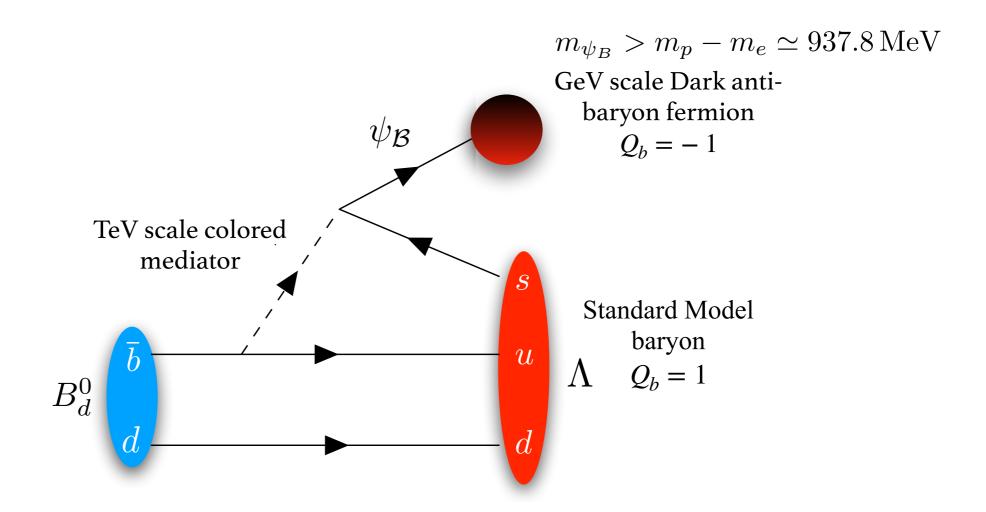
An Explicit Mos

Field	Spin	Q_{EM}	Baryon no.	\mathbb{Z}_2	Mass
Y	0	-1/3	-2/3	+1	$\mathcal{O}(\mathrm{TeV})$
$\psi_{\mathcal{B}}$	1/2	0	-1	+1	$\mathcal{O}(\mathrm{GeV})$

SUSY Squark

Kinematics, forbid
proton decay

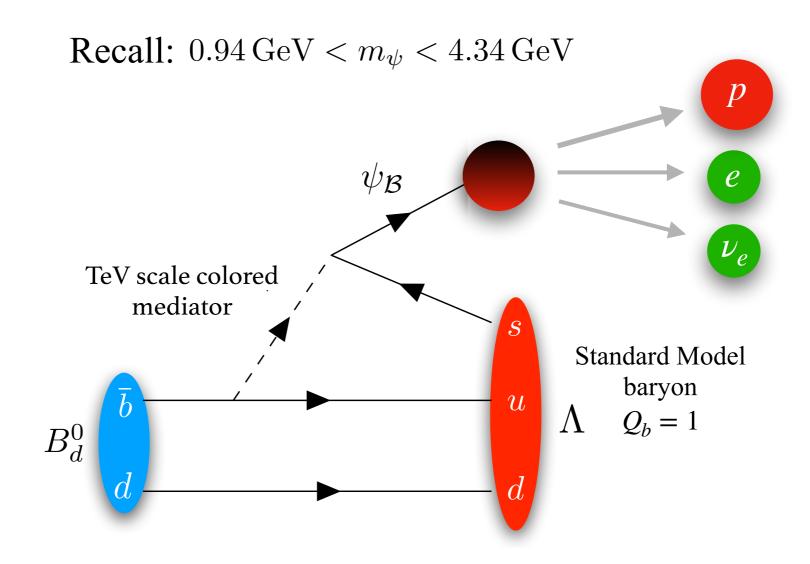
Allowed by all the symmetries:


$$\mathcal{L}_{-1/3} = -\sum_{i,j} y_{u_i d_j} Y^* \bar{u}_{iR} d_{jR}^c - \sum_k y_{\psi d_k} Y d_{kR}^c \bar{\psi}_{\mathcal{B}} + \text{h.c.}$$

Effective four fermion operator at MeV scales:

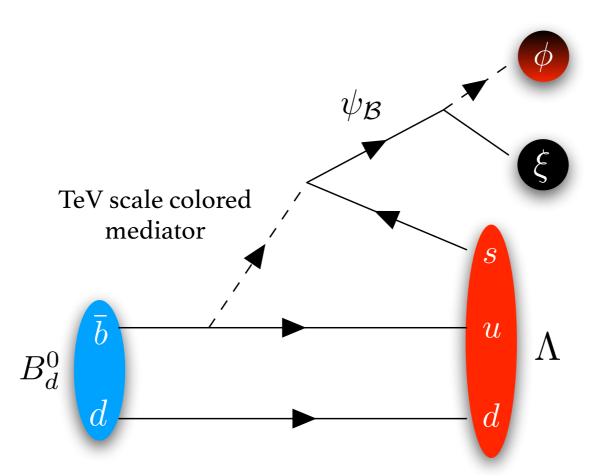
$$\mathcal{H}_{eff} = \frac{\kappa}{m_Y^2} b \, u \, s \, \psi_{\mathcal{B}}$$

This interaction *does not* change baryon number


New decay of the B Meson

Equal and opposite dark and visible baryon asymmetries generated.

$$Y_{\mathcal{B}} - Y_{\bar{\mathcal{B}}} = -\left(Y_{\psi} - Y_{\bar{\psi}}\right)$$


Dark Matter?

New dark baryon is unstable and will decay to baryonic matter, washing out the asymmetry in the process. It cannot be the dark matter.

Dark Matter

Dark fermion must quickly decay within the dark sector.

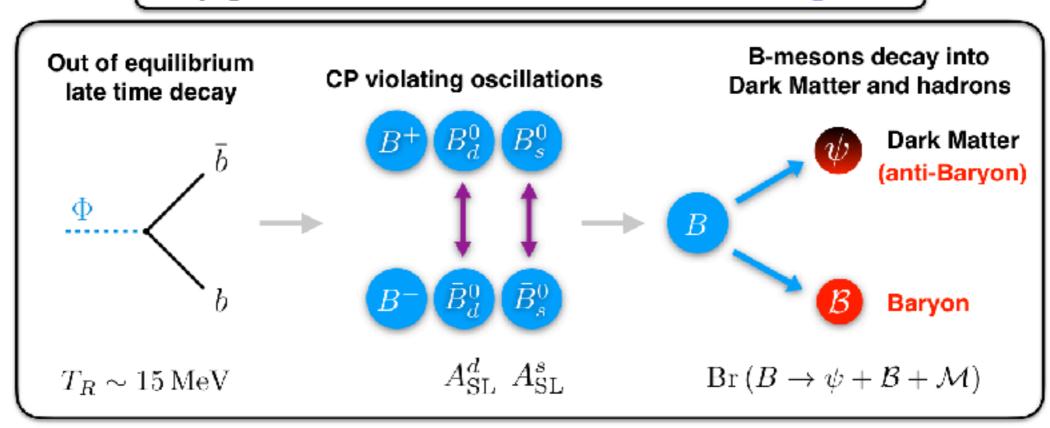
Dark scalar anti-baryon

$$Q_b = -1$$

Dark Fermion

$$Q_b = 0$$

DM stability/asymmetry preserved if:


$$m_{\phi} < m_p + m_e + m_{\xi}$$

Generated asymmetry:

$$(Y_{\mathcal{B}} - Y_{\bar{\mathcal{B}}} = -(Y_{\phi} - Y_{\phi^*}))$$

Neutral B Mesogenesis

Baryogenesis and Dark Matter from B Mesons: B-Mesogenesis

Asymmetry is related to observables:

$$Y_{\mathcal{B}} \simeq 8.7 \times 10^{-11} \frac{\text{Br}(B \to \psi \mathcal{B} \mathcal{M})}{10^{-2}} \sum_{q=s,d} \alpha_q \frac{A_{\text{SL}}^q}{10^{-4}}$$

succesful B Mesogenesis requires:

$$A_{\rm SL}^{s,d} \times \operatorname{Br}\left(B^0 \to \psi \,\mathcal{B} \,\mathcal{M}\right) > 10^{-6}$$

Boltzmann Equations

$$\frac{dn_{\Phi}}{dt} + 3Hn_{\Phi} = -\Gamma_{\Phi}n_{\Phi}$$

$$\frac{d\rho_{\rm rad}}{dt} + 4H\rho_{\rm rad} = +\Gamma_{\Phi} m_{\Phi} n_{\Phi}$$

Inflaton:
$$\frac{dn_{\Phi}}{dt} + 3Hn_{\Phi} = -\Gamma_{\Phi}n_{\Phi}$$
 Hubble:
$$\frac{d\rho_{\rm rad}}{dt} + 4H\rho_{\rm rad} = +\Gamma_{\Phi}m_{\Phi}n_{\Phi}$$

$$\Gamma_{\Phi} = 4H\left(T_R\right)$$

$$\Gamma_{\Phi} = 4H(T_R)$$

Symmetric component of the dark scalar baryon

$$\frac{dn_{\phi+\phi^*}}{dt} + 3H n_{\phi+\phi^*} = 2\Gamma_{\Phi}^B n_{\Phi} - 2\langle \sigma v \rangle_{\phi} \left(n_{\phi+\phi^*}^2 - n_{\text{eq},\phi+\phi^*}^2 \right)$$

Anti-symmetric dark sector baryon makes up the baryon asymmetry

$$\frac{dn_{\phi-\phi^*}}{dt} + 3Hn_{\phi-\phi^*} = 2\Gamma_{\Phi}^B \sum_{q} \operatorname{Br}\left(\overline{b} \to B_q^0\right) A_{\mathrm{SL}}^q f_{\mathrm{deco}}^q n_{\Phi}$$

(20)Example Benchmark Point 1S encl neck work ve constan in table II: GeV, 0.3}. The left $panel_{\infty}^{(2)}$ corresponds the $m_{\xi} = 1.8 \,\mathrm{GeV}$ = 1-51GGV:11WeVtake hour 114 BOTai hánge in bel e Bascilla Br $(B \to \psi \mathcal{B} \mathcal{M}) = 5.6 \times 10^{-3}$ is the standard with the standard particles, as we take $m_{\epsilon} \neq 1$ GeV, 5.6×10^{-3} , 3.3 GeV, 0.3 and the properties of the particles, as we take $m_{\epsilon} \neq 1$ GeV reported to 1.5 GeV $-\frac{10^{-4}}{m_{\xi}} = Y_{10}$ $m_{\phi} = 1$ $m_{\phi} = 1 3 \, \mathrm{Ge}$ contributions to the leptonic asymmetry to be positive $A_{\ell\ell} = 10^{-4}$ at $T \sim 15$ MeV corresponds to decommende effects speciments MARINES CIPTE BY be underste aale do lookin ly c remark to a method by skine the property of mainly as dark partyons $\phi + \phi^*$, when $\phi = 1.3$ at∲reproduc∈ bility 10 Faultions n(5) Ann 27. -We × 10-4 - the dip in the asymmetry 24 in be under this case to correspond to the SM prediction. 1Both benchmark 2011 to reprod at $T \sim 15 \,\mathrm{Me}$ **fy**]* The latest of the simplifying the phenomena of the second The parameter space of our mixed highway with the leptonic way wi $m_{\epsilon} < p_{54} \kappa_{\rm III}/2$ one thing the least of B^8 for the sector $m_\phi < n_{35}$ and $m_\phi < n_{35}$ and $m_\phi < n_{35}$ $t_{\rm III}/2$ $\Omega_{\rm DM} h^2 (29) .12$ news physisis, convibutions, marizes the pa-.12 Coherent Bs $\Omega_{\rm DM}h^2 = 0.12$ Barvon states w can constrained by kinematics, proteined usual = \$2 EAL 1

In visible values. For mastance, and the constrained by kinematics, proteined as a constrained by kinematics, proteined by kinematics, proteined as a constrained by kinematics, proteined by kinematics, proteined as a constrained by kinematics, proteined by kinematics, $Y_B = 8.7 \times 10^{-11}$ 45 y Buryon when 10 $T_{L_{as}} \lesssim 20 \, \mathrm{MeV} \ T_{B_d} \lesssim 10 \, \mathrm{MeV} \ 30$ 10 EAL III Coherent Bd oscillations start to T_{γ} / MeV

deplete the as Figure 120 Wheel $T_{B_d} \lesssim 10 \,\mathrm{MeV}$

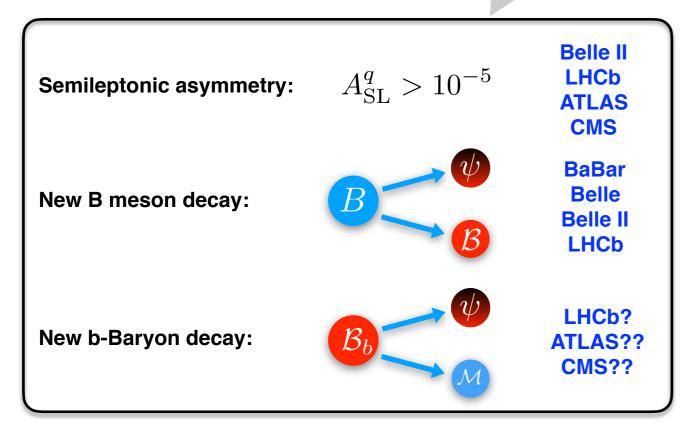
Numerical Result

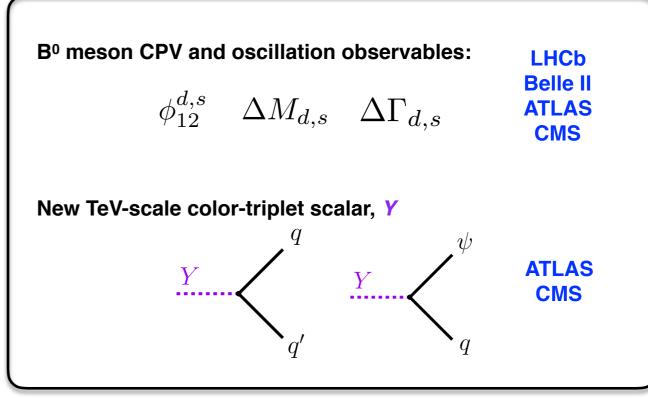
$$Y_{\mathcal{B}} \simeq 8.7 \times 10^{-11} \frac{\text{Br}(B \to \psi \mathcal{B} \mathcal{M})}{10^{-2}} \sum_{q=s,d} \alpha_q \frac{A_{\text{SL}}^q}{10^{-4}}$$

Successful neutral *B*-Mesogenesis

$$A_{\rm SL}^{s,d} \times \operatorname{Br}\left(B^0 \to \psi \,\mathcal{B}\,\mathcal{M}\right) > 10^{-6}$$

Experimental Observables


Signals of Neutral B-Mesogenesis


For successful baryogenesis: $A_{\rm SL}^{s,d} \times \text{Br}\left(B^0 \to \psi \,\mathcal{B} \,\mathcal{M}\right) > 10^{-6}$

Collider Signals of Baryogenesis and Dark Matter from B Mesons (*B-Mesogenesis*)


Direct Signals

Indirect Signals

The Semi-Leptonic Asymmetry

G. Elor

Flavorful Variations

No a priori reason to expect a particular flavor structure.

Most general interactions:

$$\left(\mathcal{L}_{-1/3} = -\sum_{i,j} y_{u_i d_j} Y^* \bar{u}_{iR} d_{jR}^c - \sum_k y_{\psi d_k} Y d_{kR}^c \bar{\psi} + \text{h.c.}\right)$$

Possible operators:

$$\mathcal{O}_{ud} = \psi \, b \, u \, d$$
 $\mathcal{O}_{us} = \psi \, b \, u \, s$
 $\mathcal{O}_{cd} = \psi \, b \, c \, d$
 $\mathcal{O}_{cs} = \psi \, b \, c \, s$

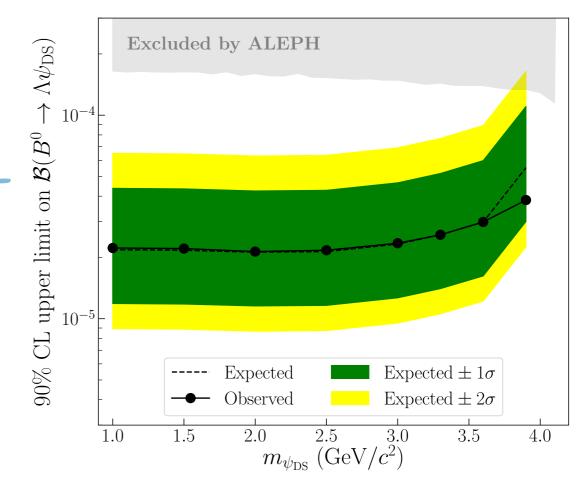
B-Mesogenesis requires:

 $Br(B \to \psi \mathcal{B} \mathcal{M}) \gtrsim 10^{-4}$

Searching for new b-Hadron Decays

Can be searched for at Belle, BaBar and LHCb

Flavorful variations:

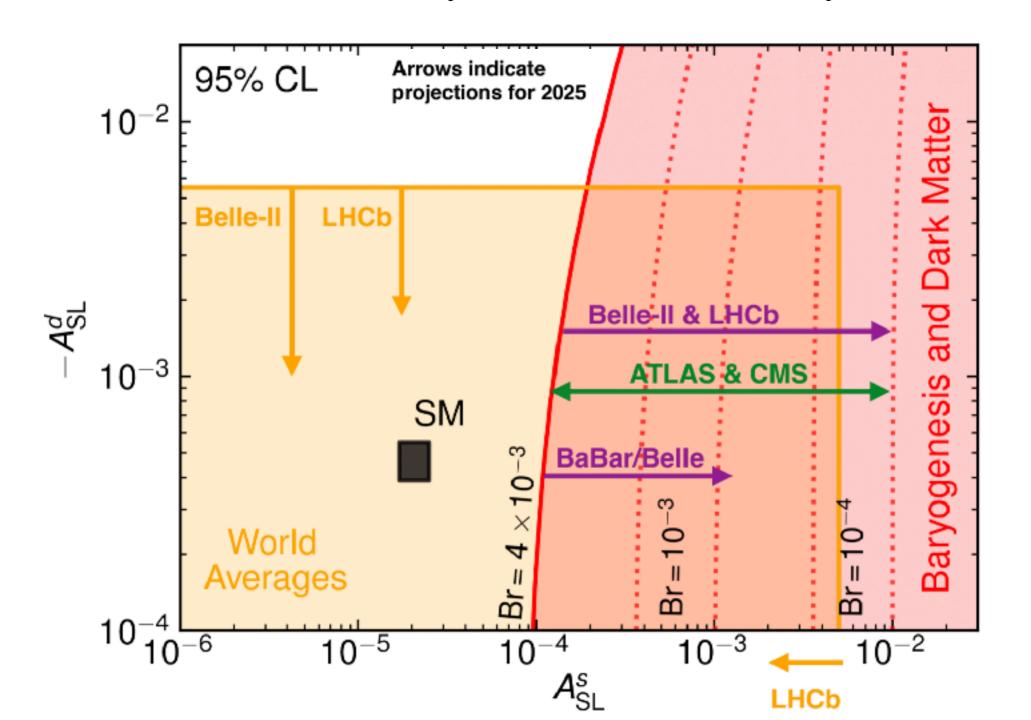

, , , , , , , , , , , , , , , , , , , ,			
Operator/Decay	Initial State	Final state	
$\mathcal{O} = \psi b u d$ $\bar{b} \to \psi u d$	B_d B_s B^+ Λ_b	$\psi + n (udd)$ $\psi + \Lambda (uds)$ $\psi + p (duu)$ $\bar{\psi} + \pi^{0}$	Directly related to baryon asymmetry
$\mathcal{O} = \psi b u s$ $\bar{b} \to \psi u s$	B_d B_s B^+ Λ_b	$\psi + \Lambda (usd)$ $\psi + \Xi^{0} (uss)$ $\psi + \Sigma^{+} (uus)$ $\bar{\psi} + K^{0}$	Indirectly constrains <i>B</i> -Mesogenesis. Charged track is an advantage for searches
$\mathcal{O} = \psi b c d$ $\bar{b} \to \psi c d$	B_d B_s B^+ Λ_b	$\psi + \Lambda_c + \pi^- (cdd)$ $\psi + \Xi_c^0 (cds)$ $\psi + \Lambda_c (dcu)$ $\bar{\psi} + \overline{D}^0$	b-flavored baryon decays can
$\mathcal{O} = \psi b c s$ $\bar{b} \to \psi c s$	B_d B_s B^+ Λ_b	$\psi + \Xi_c^0 (csd)$ $\psi + \Omega_c (css)$ $\psi + \Xi_c^+ (csu)$ $\bar{\psi} + D^- + K^+$	yield indirect constraints. G. I

Targeted Searches at Colliders

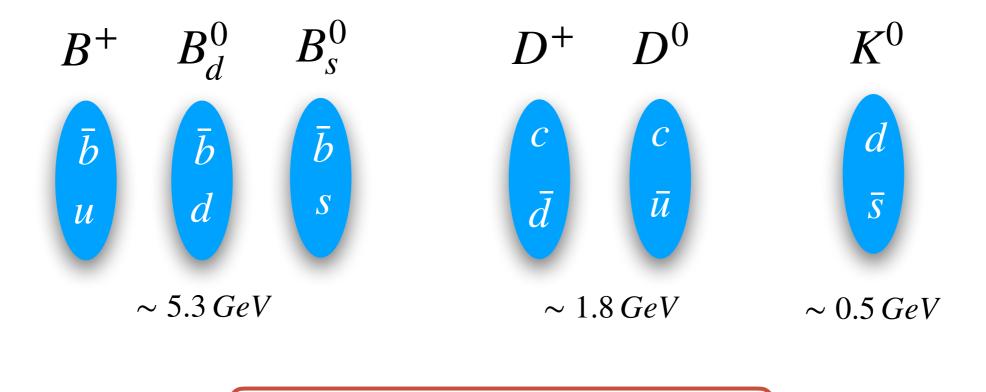
UV Model:
$$\mathcal{L}_{-1/3} = -\sum_{i,j} y_{u_i d_j} Y^* \bar{u}_{iR} d^c_{jR} - \sum_k y_{\psi d_k} Y d^c_{kR} \bar{\psi}_B + \text{h.c.}$$

Operator/Decay	Initial State	Final state
	B_d	$\psi + n (udd)$
$\mathcal{O} = \psi b u d$	B_s	$\psi + \Lambda \left(uds \right)$
$\bar{b} \rightarrow \psi u d$	B^+	$\psi + p \left(duu \right)$
	Λ_b	$\bar{\psi} + \pi^0$
	B_d	$\psi + \Lambda \left(usd \right)$
$\mathcal{O} = \psi b u s$	B_s	$\psi + \Xi^0 (uss)$
$\bar{b} \rightarrow \psi u s$	B^+	$\psi + \Sigma^+ (uus)$
	Λ_b	$\bar{\psi} + K^0$
	B_d	$\psi + \Lambda_c + \pi^- \left(cdd \right)$
$\mathcal{O} = \psi b c d$	B_s	$\psi + \Xi_c^0 \left(cds \right)$
$\overline{b} \rightarrow \psi c d$	B^+	$\psi + \Lambda_c (dcu)$
	Λ_b	$\overline{\psi} + \overline{D}^0$
	B_d	$\psi + \Xi_c^0 \left(csd \right)$
$\mathcal{O} = \psi b c s$	B_s	$\psi + \Omega_c \left(css \right)$
$\bar{b} \rightarrow \psi c s$	B^+	$\psi + \Xi_c^+ (csu)$
	Λ_b	$\bar{\psi} + D^- + K^+$

Belle collaboration [arXiv:2110.14086]

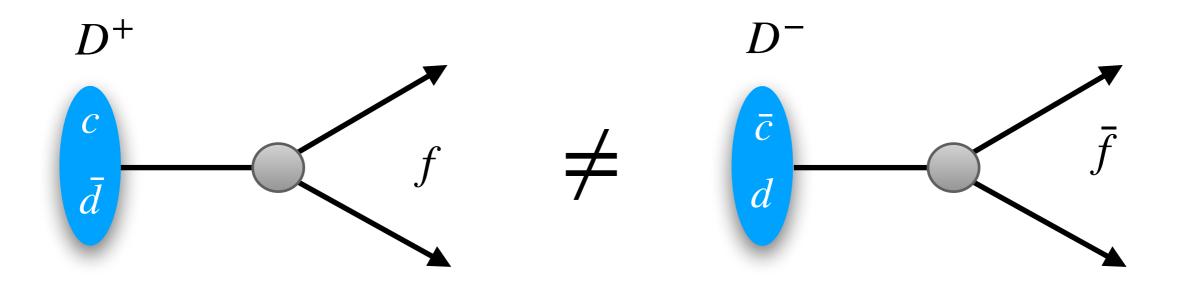


Proposed searches for all modes at LHCb [2106.12870]


G. Elor

Discovering Neutral B-Mesogenesis

Could be fully tested in but a few years.


Why Neutral B Mesons?

• Kinematics: Dark baryons must be GeV scale. Only *B* mesons are heavy enough to decay into GeV scale. Charge dark particle under lepton number instead, then it can be light.

 $m_{\psi_B} > m_p - m_e \simeq 937.8 \,\mathrm{MeV}$

Charged D Mesogenesis

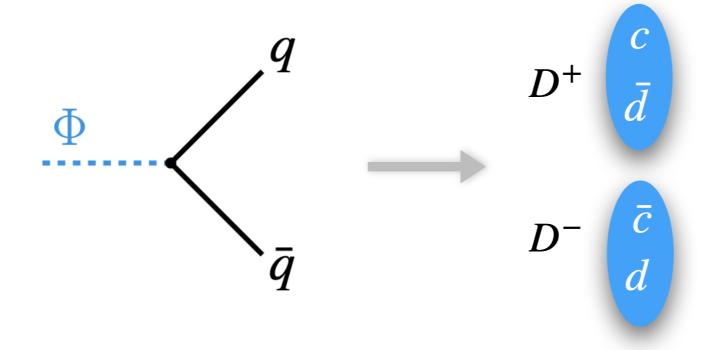
Observable:
$$A_{CP}^f = \frac{\Gamma(D^+ \to f) - \Gamma(D^- \to \bar{f})}{\Gamma(D^+ \to f) + \Gamma(D^- \to \bar{f})}$$

CPV in Charged D Decays

Example: Standard Model decays to an odd number of charged pions

D^+ decay mode	$A_{CP}^f/10^{-2}$
$K_S^0\pi^+$	-0.41 ± 0.09
$K^-\pi^+\pi^+$	-0.18 ± 0.16
$K^-\pi^+\pi^+\pi^0$	$-0.3 \pm 0.6 \pm 0.4$
$K_S^0\pi^+\pi^0$	$-0.1 \pm 0.7 \pm 0.2$
$K_S^0 \pi^+ \pi^+ \pi^-$	$0.0 \pm 1.2 \pm 0.3$
$\pi^+\pi^0$	2.4 ± 1.2
$\pi^+\eta$	1.0 ± 1.5

D^+ decay mode	$A_{CP}^f/10^{-2}$
$\pi^+\eta$	1.0 ± 1.5
$\pi^+\eta'(958)$	-0.6 ± 0.7
$K^+K^-\pi^+$	0.37 ± 0.29
$\phi\pi^+$	0.01 ± 0.09
$a_0(1450)^0\pi^+$	$-19 \pm 12^{+8}_{-11}$
$\phi(1680)\pi^{+}$	$-9 \pm 22 \pm 14$
$\pi^+\pi^+\pi^-$	-1.7 ± 4.2


Not a small number if we want to explain

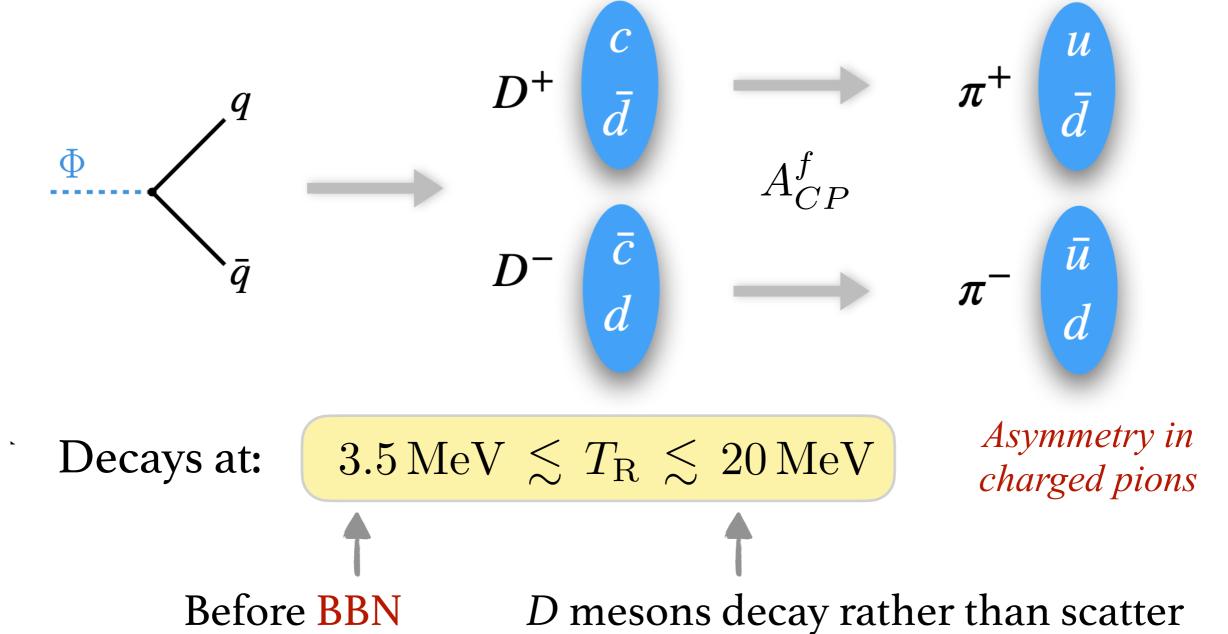
$$Y_B^{\text{obs}} = (8.718 \pm 0.004) \times 10^{-11}$$

Sakharov I. Out of Equilibrium

Late decay of an "inflaton-like" field

Decays at: $\Gamma_{\Phi} = 4H(T_R)$ to quarks $m_{\Phi} \in [5 \, \mathrm{GeV}, 100 \, \mathrm{GeV}]$

 $3.5\,\mathrm{MeV}\,\lesssim\,T_\mathrm{R}\,\lesssim\,20\,\mathrm{MeV}$


Before BBN

After QCD phase transition

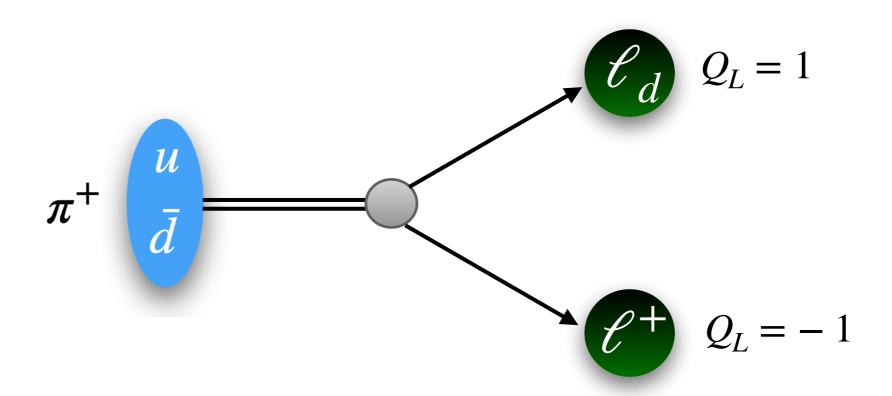
Sakharov II. CP Violation

D mesons quickly undergo Standard Model decays to pions

Sakharov III. B Violation?

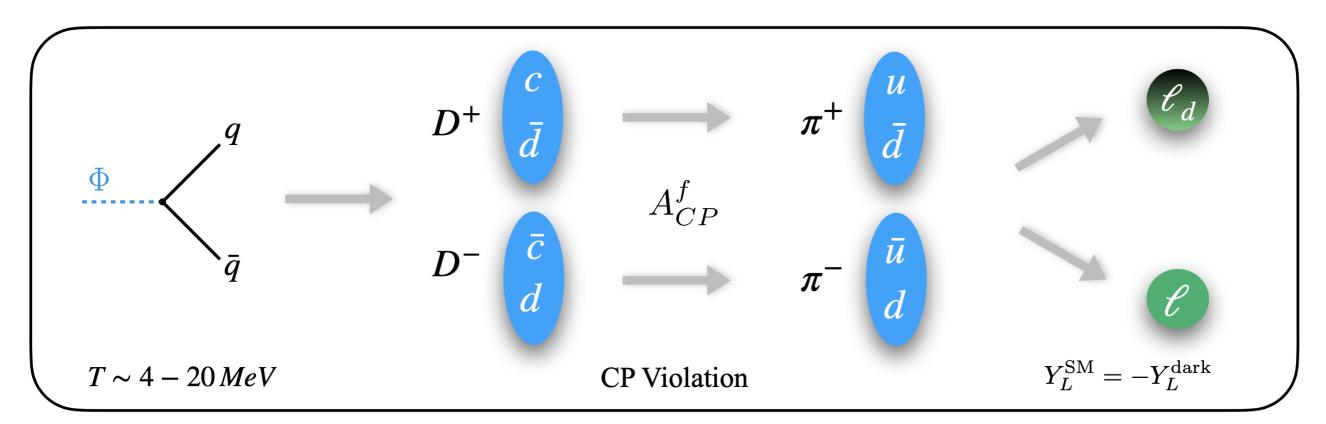
Need a way to change baryon number

Hide baryon *and lepton* number in a dark sector without violating either.

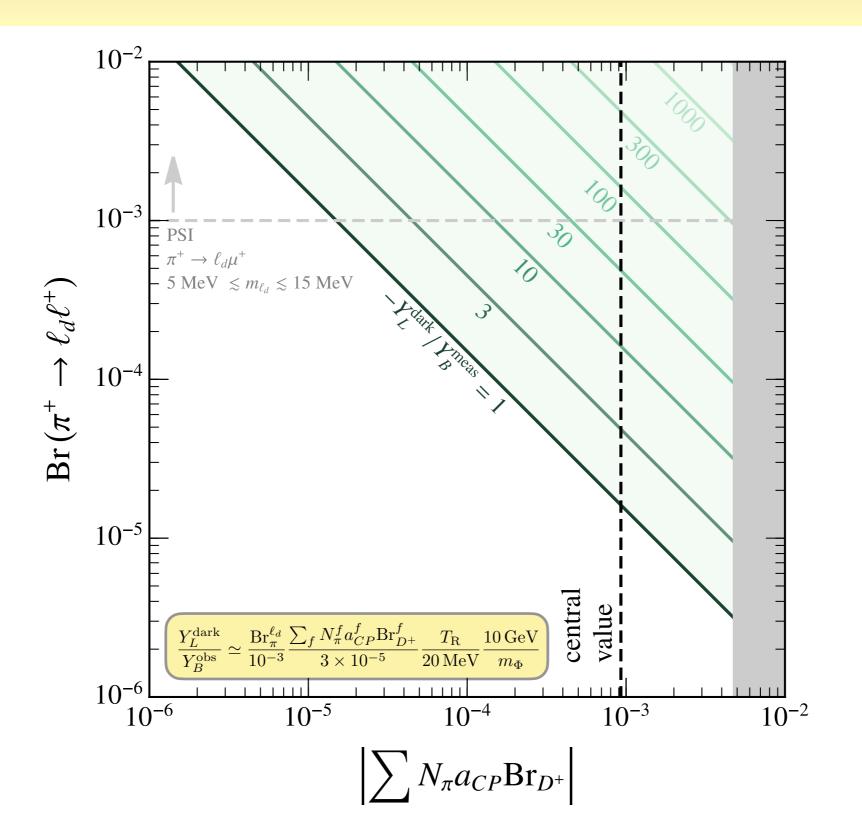


First generate a lepton asymmetry

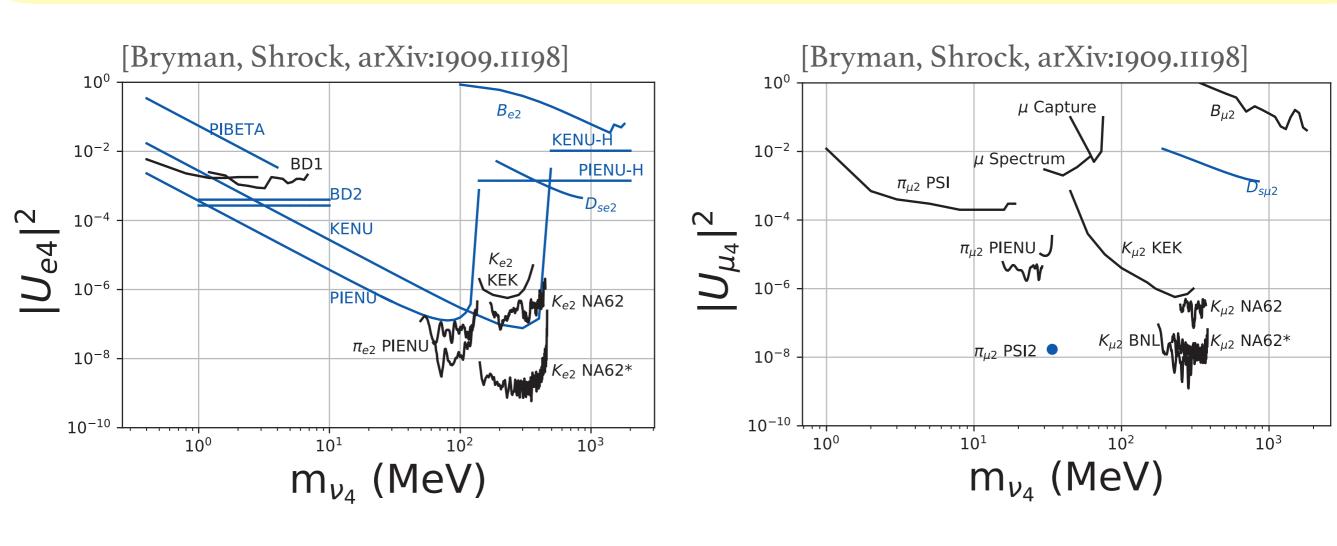
Dark Sector Lepton


Portal Operator:
$$\mathcal{O} = \frac{1}{\Lambda^2} \left[\bar{d} \Gamma^{\mu} u \right] \left[\bar{\ell}_d \Gamma_{\mu} \ell \right] + \text{h.c.}$$

Pion Decays: $\pi^+ \to \ell_d + \ell^+$, $m_{\ell_d} < m_{\pi^+} - m_{\ell}$ Can be light


Generating a Lepton Asymmetry

Equal and opposite dark/visible sector lepton asymmetry



$$Y_L^{\text{dark}} \equiv \left(\frac{n_{\ell_d} - n_{\bar{\ell_d}}}{s}\right) \propto \text{Br}\left(\pi^+ \to \ell_d + \ell^+\right) \sum_f A_{\text{CP}}^f \times \text{Br}\left(D^+ \to f\right)$$

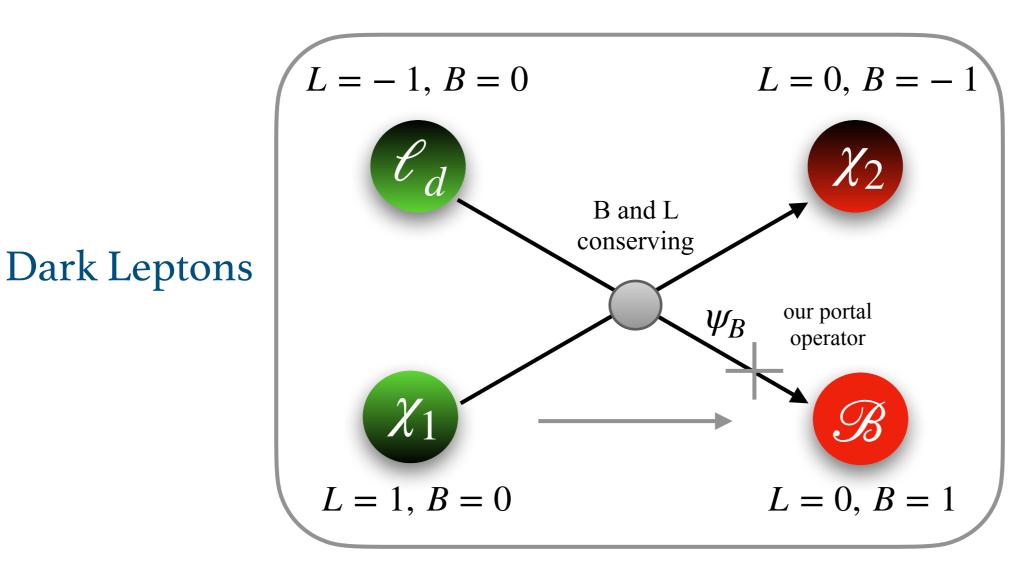
Generating a Lepton Asymmetry

Limits on Pion Decays

Limit on $|U_{\ell N}|^2 \Rightarrow \text{limit on } \frac{\Gamma(\pi^{\pm} \to \ell^{\pm} + \ell_d)}{\Gamma(\pi^{\pm} \to \ell^{\pm} + \nu_{\text{SM}})}$

[Shrock, Phys. Rev. D24, 1232 (1981)]

$$Br(\pi^{\pm} \to \mu^{\pm} + MET) \lesssim 10^{-3}$$
, for $5 \, MeV < m_{\ell_d} < 15 \, MeV$.


G. Elor

Generating a Baryon Asymmetry

When you make the Universe at 20 MeV, you (of course) can not use Electroweak Sphalerons to transfer a lepton into a baryon asymmetry.

You also don't need them...

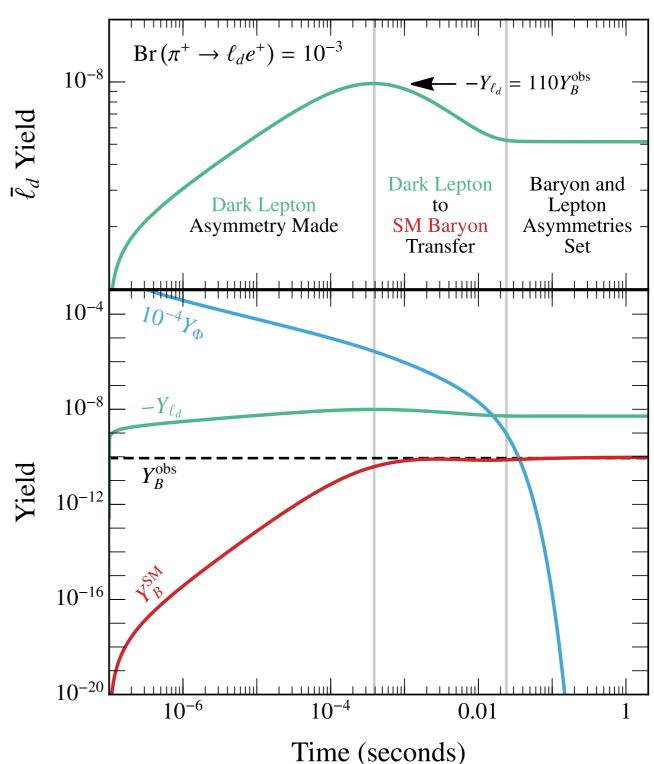
Dark Scatterings

Dark Baryon

SM Baryon

Freezing-In a Baryon Asymmetry

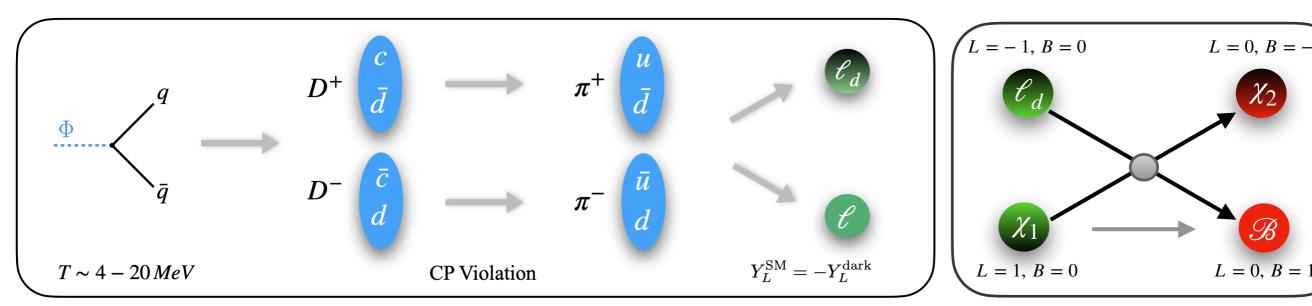
Example Benchmark point:


$$T_R = 10 \text{ MeV}, m_{\Phi} = 6 \text{ GeV}$$

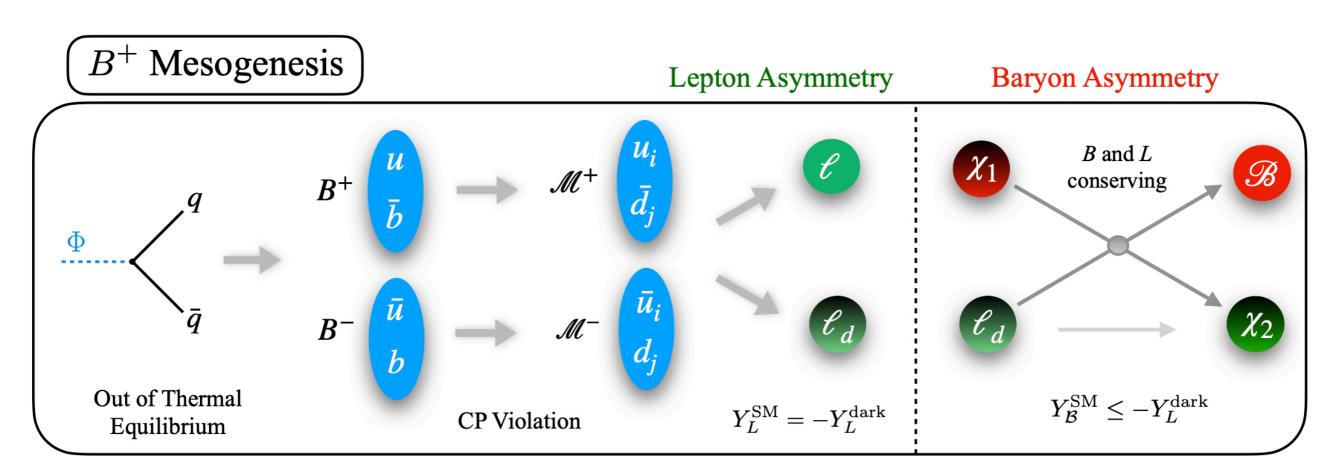
 $\langle \sigma v \rangle = 1 \times 10^{-15} \text{ GeV}^{-2}$

$$Br\left(\Phi \to \chi_1 \bar{\chi}_1\right) = 0.1$$

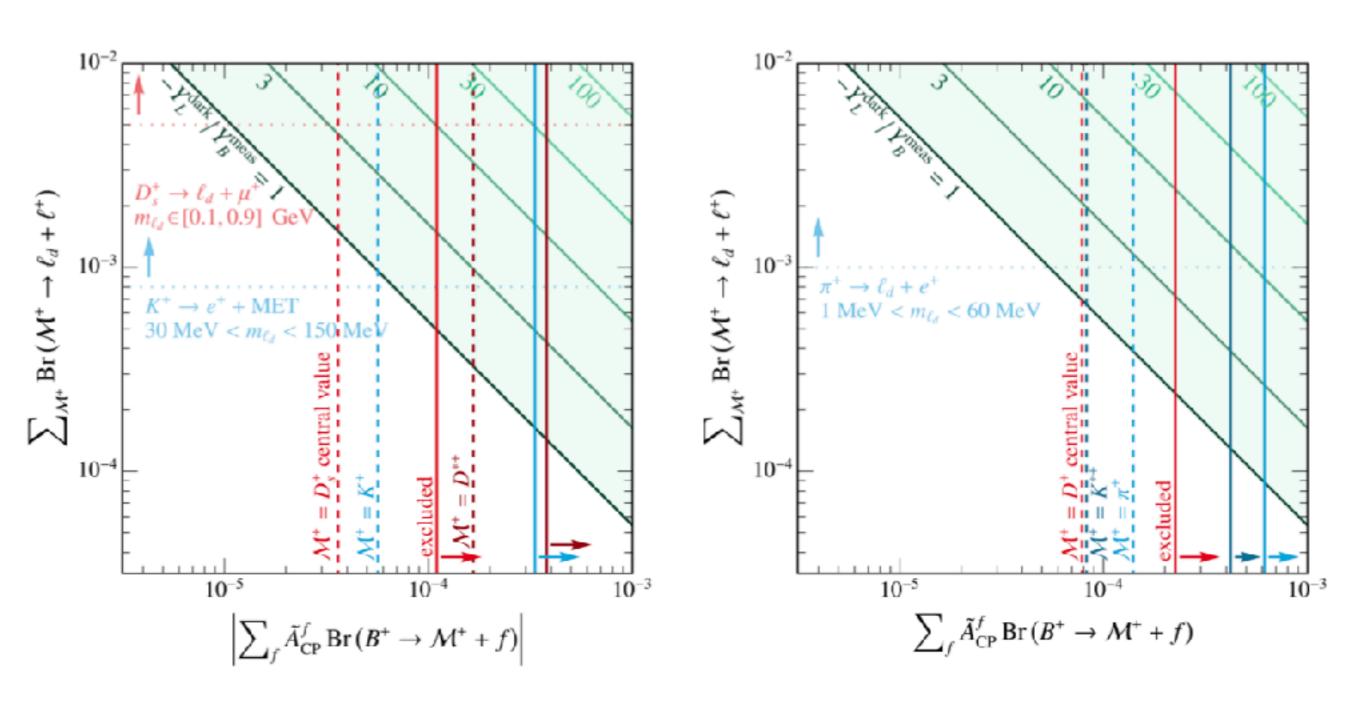
$$\sum_{f} N_{\pi}^{f} a_{CP}^{f} Br_{D^{+}}^{f} = \left(-9.3 \times 10^{-4}\right)$$


$$\frac{d}{dt} (n_{\mathcal{B}} - n_{\overline{\mathcal{B}}}) + 3H (n_{\mathcal{B}} - n_{\overline{\mathcal{B}}}) =$$
$$-\langle \sigma v \rangle n_{\chi_1} (n_{\ell_d} - n_{\bar{\ell}_d})$$

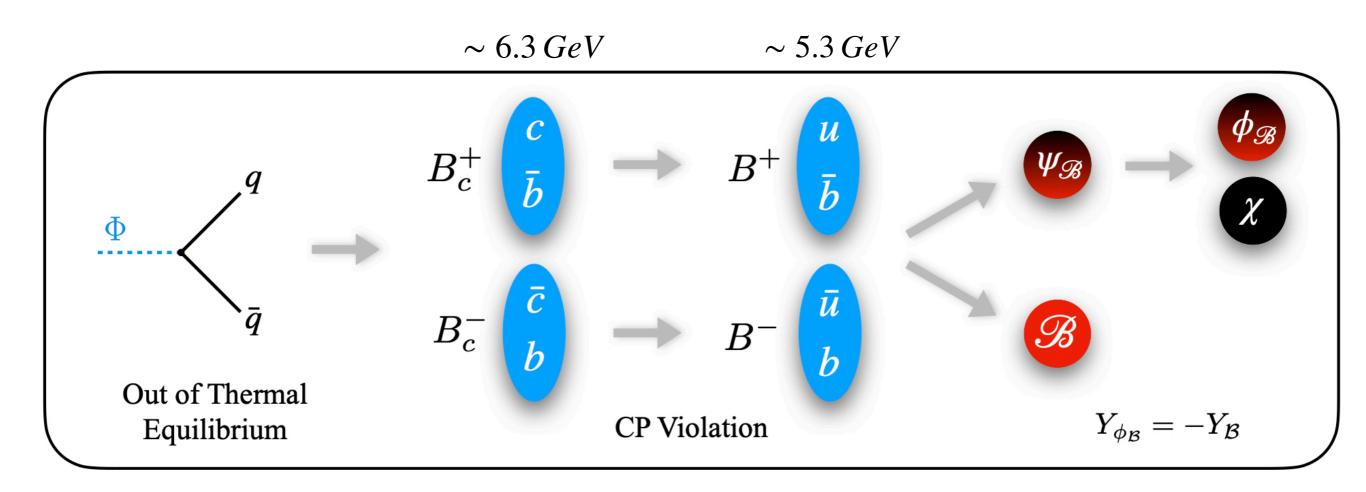
$$\left. \frac{n_{\chi_1} \langle \sigma v \rangle}{H(T)} \right|_{T=T_R} \gtrsim \frac{Y_B^{\text{obs}}}{Y_L^{\text{dark}}}$$


G. Elor

D⁺ Mesogenesis

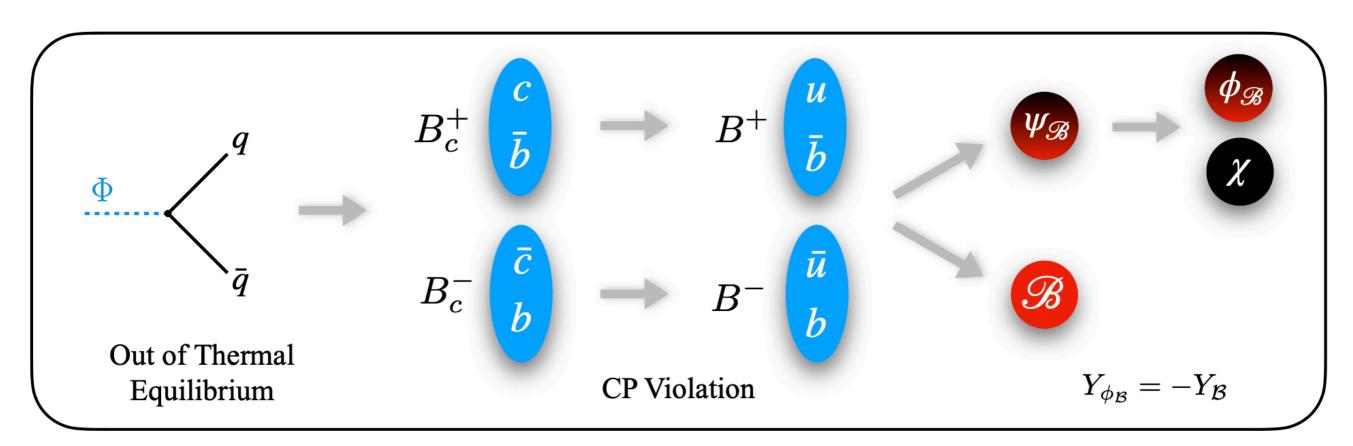

- First generates a lepton asymmetry and then freezes in a baryon asymmetry through dark sector scatterings.
- Baryogenesis and dark matter production are controlled by experimental observables of the charged *D* Mesons system.

B⁺ Mesogenesis



$$Y_{\ell_d} \propto \sum_{\mathcal{M}^+} \operatorname{Br}_{\mathcal{M}^+}^{\ell_d} \sum_f \tilde{A}_{\operatorname{CP}}^f \operatorname{Br}_{B^+}^f$$

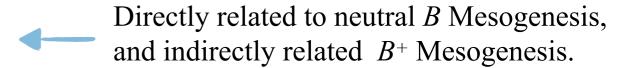
$$\tilde{A}_{\operatorname{CP}}^f = \frac{\Gamma(B^+ \to f) - \Gamma(B^- \to f)}{\Gamma(B^+ \to f) + \Gamma(B^- \to f)}$$


B⁺ Mesogenesis

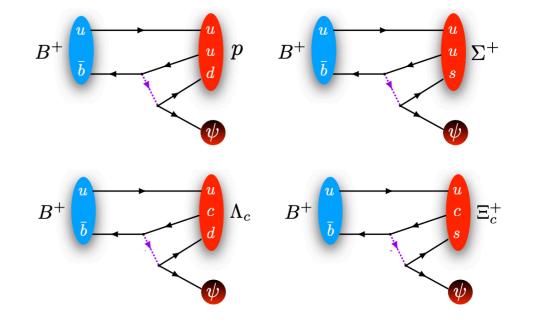
B_c^+ Mesogenesis

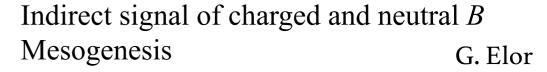
B_c⁺ Mesogenesis

$$A_{\text{CP}}^{f} = \frac{\Gamma(B_c^+ \to f) - \Gamma(B_c^- \to \bar{f})}{\Gamma(B_c^+ \to f) + \Gamma(B_c^- \to \bar{f})} \qquad \mathcal{O} = \frac{y^2}{M_{\phi}^2} \bar{\psi}_{\mathcal{B}} b \bar{u}_i^{\text{c}} d_j + \text{h.c.},$$


$$m_{\psi_B} > m_p - m_e \simeq 937.8 \,\text{MeV}$$

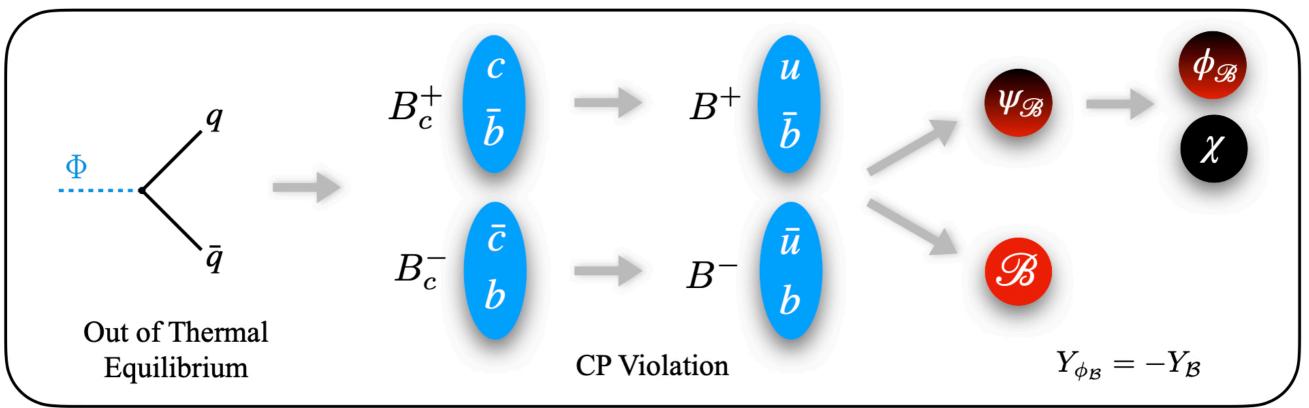
B^+ Decay


GE with Fatemeh Elahi and Robert McGehee [arXiv:2109.09751]

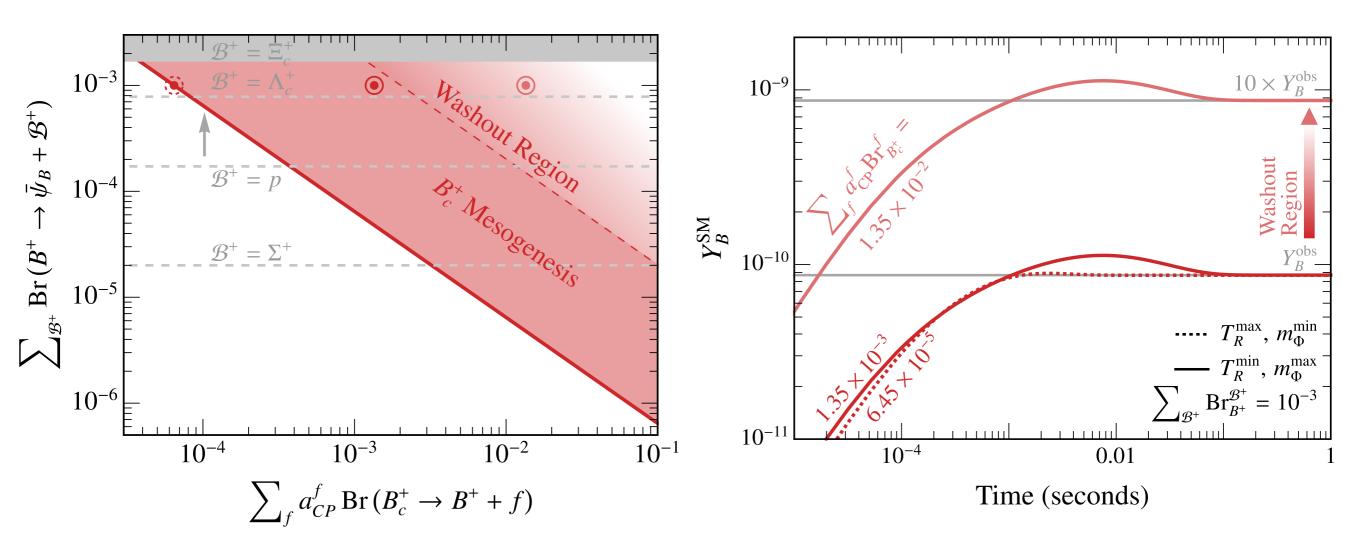

UV Model:
$$\mathcal{L}_{-1/3} = -\sum_{i,j} y_{u_i d_j} Y^* \bar{u}_{iR} d^c_{jR} - \sum_k y_{\psi d_k} Y d^c_{kR} \bar{\psi} + \text{h.c.}$$

Operator/Decay	Initial State	Final state		
	B_d	$\psi + n (udd)$		
$\mathcal{O} = \psi b u d$	B_s	$\psi + \Lambda \left(uds \right)$		
$\bar{b} \to \psi u d$	B^+	$\psi + p \left(duu \right)$		
	Λ_b	$\bar{\psi} + \pi^0$		
	B_d	$\psi + \Lambda \left(usd \right)$		
$\mathcal{O} = \psi b u s$	B_s	$\psi + \Xi^0 (uss)$		
$\bar{b} \rightarrow \psi u s$	B^+	$\psi + \Sigma^{+} (uus)$		
	Λ_b	$\bar{\psi} + K^0$		
	B_d	$\psi + \Lambda_c + \pi^- (cdd)$		
$\mathcal{O} = \psi b c d$	B_s	$\psi + \Xi_c^0 \left(cds \right)$		
$\bar{b} o \psi c d$	B^+	$\psi + \Lambda_c \left(dcu \right)$		
	Λ_b	$\overline{\psi} + \overline{D}^0$		
	B_d	$\psi + \Xi_c^0 \left(csd \right)$		
$\mathcal{O} = \psi b c s$	B_s	$\psi + \Omega_c \left(css \right)$		
$\overline{b} \rightarrow \psi c s$	B^+	$\psi + \Xi_c^+ (csu)$		
	Λ_b	$\bar{\psi} + D^- + K^+$		

Directly related to charged B Mesogenesis



B_c^+ Mesogenesis


Same UV model as Neutral *B* Mesogenesis:

$$\mathcal{O} = \frac{y^2}{M_{\phi}^2} \bar{\psi}_{\mathcal{B}} b \bar{u}_i^{c} d_j + \text{h.c.},$$

$$m_{\psi_B} > m_p - m_e \simeq 937.8 \,\text{MeV}$$

$$Y_{\mathcal{B}} \equiv \frac{n_{\mathcal{B}} - n_{\bar{\mathcal{B}}}}{s} \propto \sum_{f} A_{\mathrm{CP}}^{f} \operatorname{Br} \left(B_{c}^{+} \to B^{+} + f \right) \times \sum_{\mathcal{B}^{+}} \operatorname{Br} \left(B^{+} \to \bar{\psi}_{\mathcal{B}} + \mathcal{B}^{+} \right)$$

B_c ⁺ Mesogenesis

$$\frac{Y_{\mathcal{B}}}{Y_{\mathcal{B}}^{\text{obs}}} \simeq \frac{\sum_{\mathcal{B}^{+}} \operatorname{Br}_{B^{+}}^{\mathcal{B}^{+}}}{10^{-3}} \frac{\sum_{f} a_{\text{CP}}^{f} \operatorname{Br}_{B_{c}^{+}}^{f}}{6.45 \times 10^{-5}} \frac{T_{R}}{20 \text{ MeV}} \frac{2m_{B_{c}^{+}}}{m_{\Phi}}$$

The Many Flavors of Mesogenesis

Mechanism	CPV	Dark Sector	Observables	Relevant Experiments	
B^0 Mesogenesis	$B_s^0 \& B_d^0$	Dark baryons	$A_{sl}^{s,d}$	LHCb	
	oscillations		$Br(B \to \mathcal{B} + X)$	B Factories, LHCb	
			A_{CP}^D	B Factories, LHCb	
D^+ Mesogenesis	D^{\pm} decays	Dark leptons	Br_{D^+}	B Factories, LHCb	
		and/or baryons	$\operatorname{Br}(\mathcal{M}^+ \to \ell^+ + X)$	peak searches e.g. PSI, PIENU	
			A_{CP}^{B}	B Factories, LHCb	
B^+ Mesogenesis	B^{\pm} decays	Dark leptons	Br_{B^+}	B Factories, LHCb	
		and/or baryons	$\operatorname{Br}(\mathcal{M}^+ \to \ell^+ + X)$	peak searches e.g. PSI, PIENU	
			$A_{CP}^{B_c}$	LHCb, FCC	
B_c^+ Mesogenesis	B_c^{\pm} decays	decays Dark baryons Br $_{B_c^+}$		LHCb, FCC	
			$\operatorname{Br}_{B^+ \to \mathcal{B}^+ + X}$	B Factories, LHCb	

Outlook:

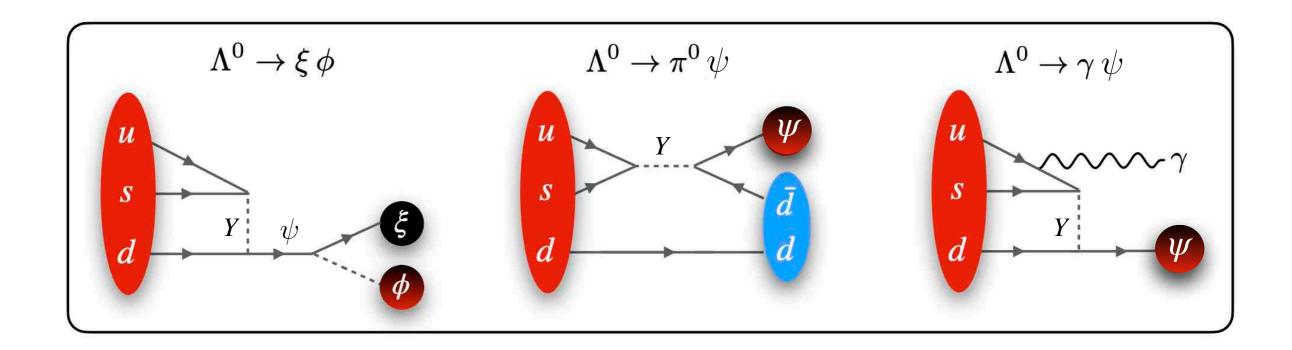
- Continued support of experimental efforts.
- Even more flavors of Mesogenesis?
- Making the Universe above 20 MeV?
- Theory of inflation?
- Explore UV embedding and dark sector models.

The Many Flavors of Mesogenesis

Mechanism	Mechanism CPV Dark Sector		Observables	Relevant Experiments	
B^0 Mesogenesis	$B_s^0 \& B_d^0$	Dark baryons	$A_{sl}^{s,d}$	LHCb	
	oscillations	cillations $\operatorname{Br}(B)$		B Factories, LHCb	
			A^D_{CP}	B Factories, LHCb	
D^+ Mesogenesis	D^{\pm} decays	Dark leptons	Br_{D^+}	B Factories, LHCb	
		and/or baryons	$\operatorname{Br}(\mathcal{M}^+ \to \ell^+ + X)$	peak searches e.g. PSI, PIENU	
			A_{CP}^{B}	B Factories, LHCb	
B^+ Mesogenesis	B^{\pm} decays	Dark leptons	Br_{B^+}	B Factories, LHCb	
		and/or baryons	$\operatorname{Br}(\mathcal{M}^+ \to \ell^+ + X)$	peak searches e.g. PSI, PIENU	
			$A_{CP}^{B_c}$	LHCb, FCC	
B_c^+ Mesogenesis	B_c^{\pm} decays	ays Dark baryons Br $_{B_c^+}$		LHCb, FCC	
			$\operatorname{Br}_{B^+ \to \mathcal{B}^+ + X}$	B Factories, LHCb	

Outlook:

- Continued support of experimental efforts.
- Even more flavors of Mesogenesis?

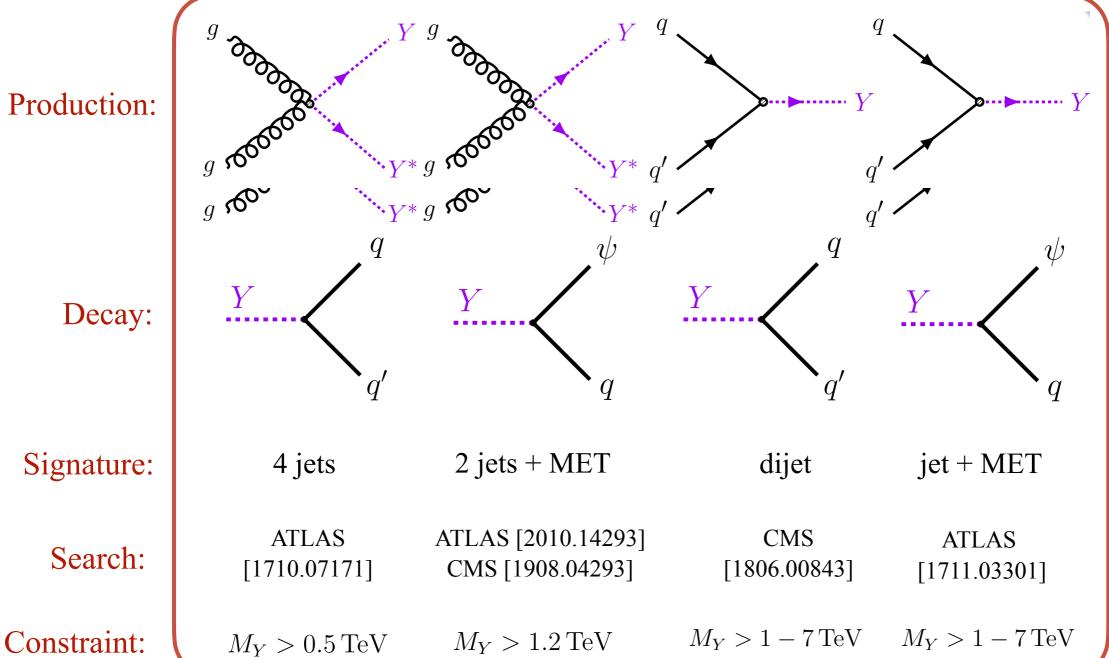

Thanks!

- Making the Universe above 20 MeV?
- Theory of inflation?
- Explore UV embedding and dark sector models.

Backups

New Hyperon Decays

Another indirect probe of *B*-Mesogenesis that can be searched for at BESIII, Belle-II, and LHCb



Light hadrons: we can compute form factors by matching onto chiral EFT.

[arXiv:2111.12712] GE with Gonzalo Alonso-Alvarez, Miguel Escudero, Bartosz Fornal, Benjamin Grinstein, Jorge Martin Camalich

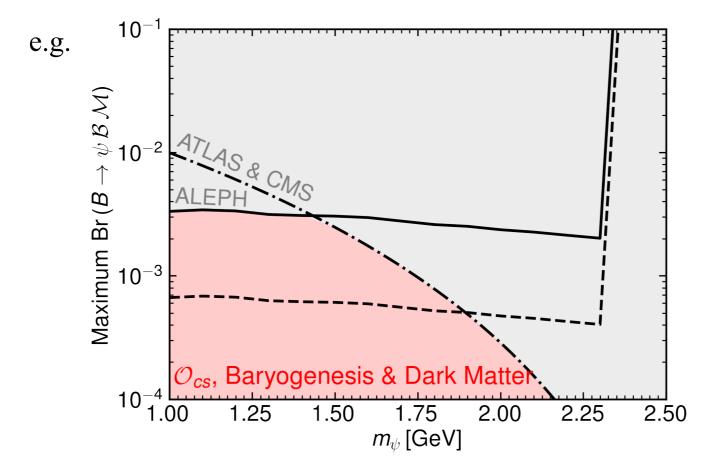
Colored Triplet Scalar

Constraints from LHC squark searches

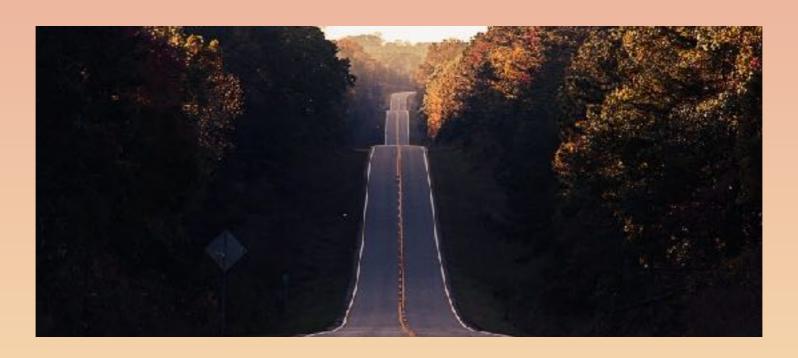
 d_j

 d_i

Colored Triplet Scalar


Constraints from LHC squark searches

B-Mesogenesis requires:


$$Br(B \to \psi \mathcal{B} \mathcal{M}) \simeq 10^{-3} \left(\frac{\Delta m}{3 \text{ GeV}}\right)^4 \left(\frac{1.5 \text{ TeV}}{M_Y} \frac{\sqrt{y_{ub} y_{\psi d}}}{0.53}\right)^4 \gtrsim 10^{-4}$$

 $Br > 10^{-4} \qquad \Delta m = m_B - m_\psi - m_\mathcal{B} - m_\mathcal{M}$

Since collider bounds depend on the ratio $\frac{\sqrt{y_{u_id_j}y_{\psi d_k}}}{M_Y}$ they will in turn constrain the branching fraction.

A Roadmap for Discovering Neutral *B*-Mesogenesis

GE with Gonzalo Alonso-Alvarez, Miguel Escudero, [arXiv:2101.02706, PRD]

Paper out last month: "The Strange Physics of Dark Baryons"
GE with Gonzalo Alonso-Alvarez, Miguel Escudero, Bartosz Fornal, Benjamin Grinstein,
Jorge Martin Camalich [arXiv:2111.12712]

Recent searches by the Belle collaboration [arXiv:2110.14086]
Proposed searches at LHCb, see [arXiv:2105.12668] and [arXiv:2106.12870]

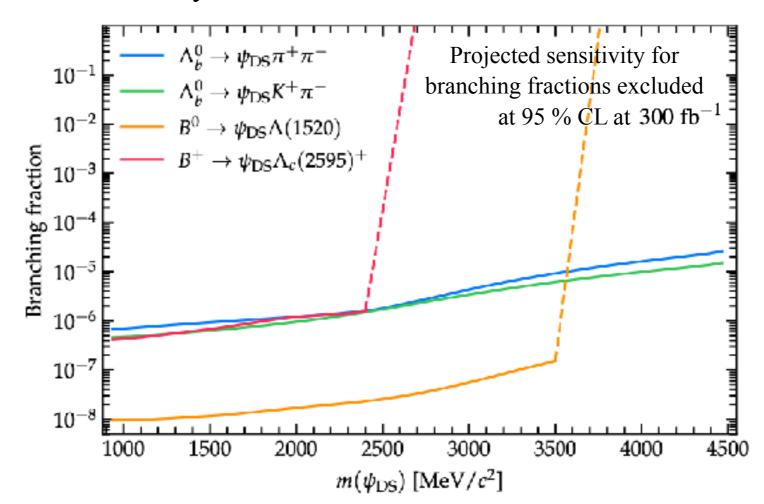
Searching for new b-Hadron Decays

Possibilities at LHCb

[See our white paper on "Stealth Physics at LHCb" 2105.12668]

- No handle on initial energy of decaying *B* meson so measuring missing energy is non-trivial.
- But, LHCb has advantages: larger number of *B* mesons produced than at Belle, excellent vertex resolution, and good particle reconstruction efficiencies.
- Some possibilities for searches do exist. e.g. new paper just last week!

Prospects on searches for baryonic Dark Matter produced in b-hadron decays at LHCb [2106.12870]


Alexandre Brea Rodríguez ^{a,1}, Veronika Chobanova ^{b,1}, Xabier Cid Vidal ^{c,1}, Saúl López Soliño ^{d,1}, Diego Martínez Santos ^{e,1}, Titus Mombächer ^{f,1}, Claire Prouvé ^{g,1}, Emilio Xosé Rodríguez Fernández ^{h,1}, Carlos Vázquez Sierra ^{i,2}

¹Instituto Galego de Física de Altas Enerxías (IGFAE), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain ²European Organization for Nuclear Research (CERN), Geneva, Switzerland

Searching for new b-Hadron Decays

Proposed Search at LHCb [2106.12870]

- Search for decays of B mesons and b-Flavored baryons into an excited baryon in the final state $B \to \psi \mathcal{B}^*$
- The excited baryon promptly decay at the same decay point as original decay, allowing one to trigger on this decay.

Boltzmann Equations

Late time decay of Inflaton

$$\Gamma_{\Phi} = 4H(T_R)$$

$$\frac{dn_{\Phi}}{dt} + 3Hn_{\Phi} = -\Gamma_{\Phi}n_{\Phi}$$

• Inflaton:
$$\frac{dn_{\Phi}}{dt} + 3Hn_{\Phi} = -\Gamma_{\Phi}n_{\Phi}$$
• Radiation:
$$\frac{d\rho_{\rm rad}}{dt} + 4H\rho_{\rm rad} = +\Gamma_{\Phi}m_{\Phi}n_{\Phi}$$
• Hubble:
$$H^2 = \frac{8\pi}{3M_{\rm Pl}^2} \left(\rho_{\rm rad} + m_{\Phi}n_{\Phi}\right)$$

$$H^2 = \frac{8\pi}{3M_{\rm Pl}^2} \left(\rho_{\rm rad} + m_{\Phi} n_{\Phi} \right)$$

Boltzmann Equations

Dark Sector

Symmetric component of the dark scalar baryon

$$\frac{dn_{\phi+\phi^*}}{dt} + 3H n_{\phi+\phi^*} = 2\Gamma_{\Phi}^B n_{\Phi} - 2\langle \sigma v \rangle_{\phi} \left(n_{\phi+\phi^*}^2 - n_{\text{eq},\phi+\phi^*}^2 \right)$$

• The dark Majorana fermion

Overproduced particle must be depleted by additional dark interactions.

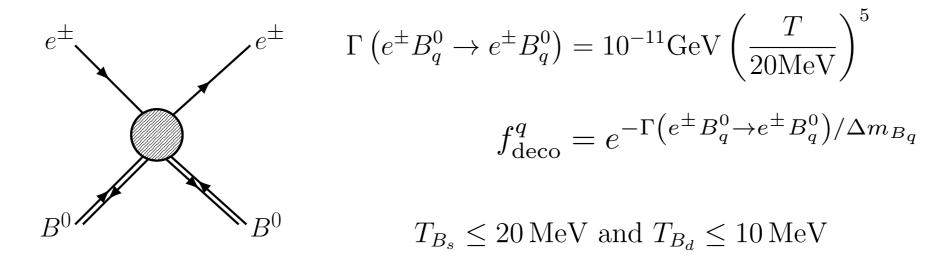
$$\frac{dn_{\xi}}{dt} + 3Hn_{\xi} = 2\Gamma_{\Phi}^{B}n_{\Phi} - \langle \sigma v \rangle_{\xi} \left(n_{\xi}^{2} - n_{\text{eq},\xi}^{2}\right)$$

$$\Gamma_{\Phi}^{B} \equiv \Gamma_{\Phi} \times \text{Br}\left(B \to \psi \mathcal{B} \mathcal{M}\right)$$

Simplification: For the (low) temperature range of interest we can check that the *B* mesons decay more quickly than they annihilate

Boltzmann Equations

The Baryon Asymmetry


• Anti-symmetric dark sector baryon makes up the baryon asymmetry

$$\frac{d n_{\phi - \phi^*}}{dt} + 3H n_{\phi - \phi^*} = 2\Gamma_{\Phi}^B \sum_{q} \operatorname{Br}\left(\overline{b} \to B_q^0\right) A_{\operatorname{SL}}^q f_{\operatorname{deco}}^q n_{\Phi}$$

 $200\,\mathrm{MeV}$

 ${
m feV}$

Coherent B meson oscillations maintained for 20 MeV scales and below

(20)Example Benchmark Point

enclneck work ve constan in Table II: GeV, 0.3}. The left $panel_{\infty}^{(2)}$ corresponds the $m_{\xi} = 1.8 \,\mathrm{GeV}$ = 1-5-GGV-1-Wedrake hard Har BC-a hánge in bel e Bascilla Br $(B \to \psi \mathcal{B} \mathcal{M}) = 5.6 \times 10^{-3}$ Harmogeths Green which the social property $(25.5 \, \text{GeV}, 5.6 \times 10^{-3}, 3.3 \, \text{GeV}, 0.3)$ The first property of the social property of the $-\frac{10^{-4}}{m_{\xi}} = Y_{10}$ $m_{\phi} = 1 3 \, \mathrm{Ge}$ contributions to the leptonic asymmetry to be positive. And $= 10^{-4}$ and $= 2A_{00}$. The change at $T \sim 15$ MeV corresponds to decoherence effects specially at $T \approx 15$ MeV corresponds to decoherence effects specially at $T \approx 15$ MeV. MARINES CIPTE BY i be underste aale do lookin ly c remark to a method by skine the property of mainly as dark partyons $\phi + \phi^*$, where $\phi = 1.3$ at∲reproduc∈ builte 10 Faultions not in the asymmetry 20 h be under **fy**]* this case to correspond to the SM prediction. 1Both benchmark 28 19 reprod $m_{\epsilon} < p_{54} \kappa_{\rm III}/2$ e leptonic 3 vincetry Teachev dunk Yukaw profit and A_s = \overline{a} \overline{a} \overline{b} \overline{b} \overline{b} \overline{b} \overline{a} \overline{a} \overline{b} \overline{a} \overline{a} \overline{b} \overline{a} $\overline{$ $t_{\rm III}/2$ $\Omega_{\rm DM} h^2 (29) .12$ news physisis, confidentially marizes the pa-.12 Coherent Bs $\Omega_{\rm DM}h^2 = 0.12$ Barton states we can constrained by kinematics, proteined usual=\$2 EAL 1

In the state of the st $Y_B = 8.7 \times 10^{-11}$ Produce an 18 asymmetry when 10 $T_{L_{as}} \lesssim 20 \, \mathrm{MeV} \ T_{B_d} \lesssim 10 \, \mathrm{MeV} \ 30$ 10

EAL III

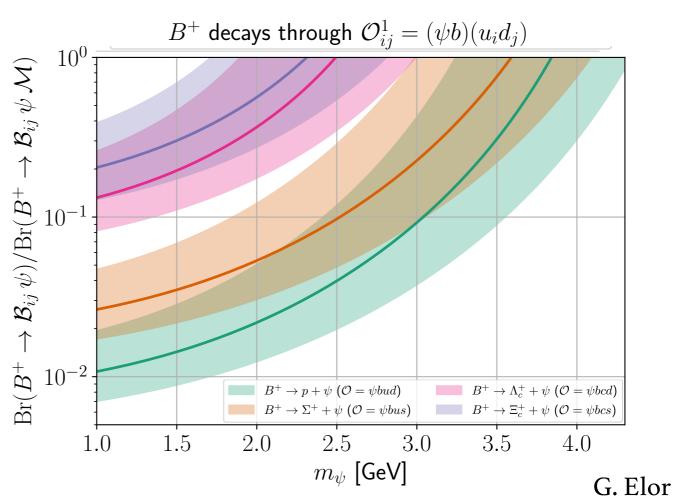
 T_{γ} / MeV

Coherent Bd oscillations start to deplete the as Figure 120 Wheel $T_{B_d} \lesssim 10 \,\mathrm{MeV}$

 $m_{\phi} = 1$

at $T \sim 15 \,\mathrm{Me}$

Searching for new b-Hadron Decays


Caution: Inclusive vs. Exclusive Rates

• All decays (and their searches) discussed thus far have been *exclusive*. But, the observable controlling the baryon asymmetry is an *inclusive* rate.

$$Br(B \to \psi \mathcal{B} \mathcal{M}) \gtrsim 10^{-4}$$

- Need a dedicated calculation using QCD sum rules or lattice techniques etc. to calculate form factors. Beyond my current expertise....
- Phase space method
 [Bigi, Phys.Lett.B 106, 510 (1981)]

$$\frac{\operatorname{Br}(B \to \psi \mathcal{B})}{\operatorname{Br}(B \to \psi \mathcal{B} \mathcal{M})} \gtrsim (1 - 10) \%.$$

Freezing-In a Baryon Asymmetry

Boltzmann Equations with scattering: $\bar{\ell}_d + \chi_1 \rightarrow \chi_2 + \mathcal{B}$

• New dark lepton/lepto-baryon: $m_{\Phi} \gtrsim m_{\chi_1} \quad m_{\Phi} \gtrsim m_{\chi_2} + m_{\mathcal{B}}$

$$\frac{dn_{\chi_1}}{dt} + 3Hn_{\chi_1} = \Gamma_{\Phi} n_{\Phi} \operatorname{Br} \left(\Phi \to \chi_1 \bar{\chi}_1\right) - \langle \sigma v \rangle n_{\bar{\ell}_d} n_{\chi_1}$$

Dark lepton:

$$\frac{d}{dt} \left(n_{\ell_d} - n_{\bar{\ell}_d} \right) + 3H \left(n_{\ell_d} - n_{\bar{\ell}_d} \right) = 2\Gamma_{\Phi}^D n_{\Phi} \operatorname{Br}_{\pi}^{\ell_d} \sum_{f} N_{\pi}^f a_{CP}^f \operatorname{Br}_{D^+}^f - \langle \sigma v \rangle n_{\chi_1} \left(n_{\ell_d} - n_{\bar{\ell}_d} \right)$$

Baryon asymmetry:

$$\left(\frac{d}{dt}\left(n_{\mathcal{B}} - n_{\overline{\mathcal{B}}}\right) + 3H\left(n_{\mathcal{B}} - n_{\overline{\mathcal{B}}}\right) = -\langle \sigma v \rangle n_{\chi_{1}} \left(n_{\ell_{d}} - n_{\overline{\ell}_{d}}\right)\right)$$

To efficiently transfer the asymmetry $\left. \frac{n_{\chi_1} \left< \sigma v \right>}{H(T)} \right|_{T=T_R} \ \gtrsim \ \frac{Y_B^{
m obs}}{Y_L^{
m dark}}$

Boltzmann Equations: Lepton Asymmetry

• Inflaton:
$$\frac{dn_{\Phi}}{dt} + 3Hn_{\Phi} = -\Gamma_{\Phi}n_{\Phi}$$

• Radiation:
$$\frac{d\rho_{\rm rad}}{dt} + 4H\rho_{\rm rad} = +\Gamma_{\Phi}m_{\Phi}n_{\Phi}$$

• Hubble:
$$H^2 = \frac{8\pi}{3M_{\rm Pl}^2} \left(\rho_{\rm rad} + m_{\Phi} n_{\Phi} \right) \qquad \Gamma_{\Phi} = 4H \left(T_R \right)$$

The dark lepton asymmetry:

$$\Gamma_{\Phi}^{D} \equiv \Gamma_{\Phi} \operatorname{Br}(\Phi \to c) \operatorname{Br}(c \to D)$$

$$\frac{d}{dt} \left(n_{\ell_d} - n_{\bar{\ell}_d} \right) + 3H \left(n_{\ell_d} - n_{\bar{\ell}_d} \right) = 2 \Gamma_{\Phi}^D n_{\Phi} \operatorname{Br}_{\pi}^{\ell_d} \sum_{f} N_{\pi}^f a_{CP}^f \operatorname{Br}_{D^+}^f$$

Experimental Observables:

$$a_{CP}^f \equiv A_{CP}^f/(1+A_{CP}^f) \approx A_{CP}^f$$
 LHCb, B
 $\operatorname{Br}_{D^+}^f \equiv \operatorname{Br}(D^+ \to f)$

 $\operatorname{Br}_{\pi}^{\ell_d} \equiv \operatorname{Br}(\pi^+ \to \ell_d + \ell^+)$ PIENU, PSI, etc. Charged pion decays:

Dark Possibilities

$$\bar{\ell}_d + \chi_1 \to \chi_2 + \bar{\psi}_B$$

Field	L	В	Field	L	В
χ_1	1	0	χ_1	1	1
χ_2	0	-1	χ_2	0	0
χ_1	0	1	χ_1	0	0
χ_2	1	0	χ_2	-1	-1

Models

Proof of concept that what I have told you thus far is not (too) crazy.

Some example models/dark sector charge assignments.

$$\bar{\ell}_d + \chi_1 \to \chi_2 + \mathcal{B}$$

• Estimation of the scattering cross section to confirm it can be large enough to transfer the asymmetry given current constraints.

$$\langle \sigma v \rangle \gtrsim 10^{-16} \,\mathrm{GeV}^{-2} \, \frac{Y_B^{\mathrm{obs}}}{Y_L^{\mathrm{dark}}} \times \frac{10 \,\mathrm{GeV}}{m_\Phi} \frac{20 \,\mathrm{MeV}}{T_R} \frac{10^{-1}}{\mathrm{Br}(\Phi \to \chi_1 \bar{\chi_1})}$$

Portal to the Dark Sector

Model Build for:
$$\bar{\ell}_d + \chi_1 \rightarrow \chi_2 + \mathcal{B}$$

New fields: (Same model as for *B*-Mesogenesis[arXiv:1810.00880])

Color triplet scalar mediator

Dark Baryon

Field	Spin	L	В	\mathbb{Z}_2	Mass
Y	0	0	-2/3	+1	$\gtrsim 1\mathrm{TeV}$
ℓ_d	1/2	1	0	+1	$\mathcal{O}(10-140\mathrm{MeV})$
ψ_B	1/2	0	-1	+1	$\gtrsim 1.2\mathrm{GeV}$

Collider bounds (as just discussed)

Stability of matter, neutron star bounds

Allowed Interactions:

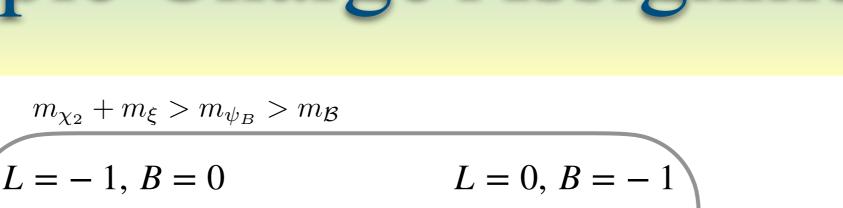
$$\mathcal{L} \supset y_{u_i d_j} Y^* \bar{u}_i d_j^c + y_{\psi d_k} Y \bar{\psi}_B d_k^c + h.c.$$

$$\longrightarrow$$

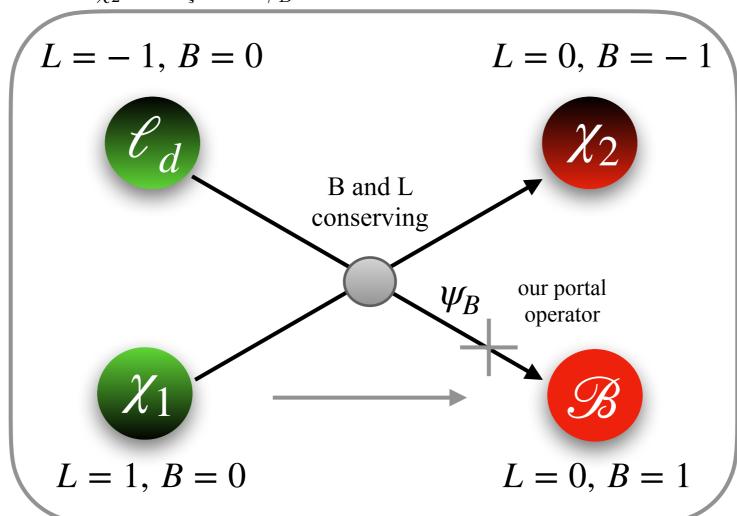
$$\mathcal{L}_{\mathrm{eff}} = rac{y^2}{M_Y^2} ar{u}_i^c d_j d_k^c \psi_B \qquad egin{array}{l} \mathit{dark \ baryon \ 'mixing''} \ \mathit{baryon \ 'mixing''} \end{array}$$

Example Charge Assignment

 $m_{\chi_2} + m_{\xi} > m_{\psi_B} > m_{\mathcal{B}}$ L = -1, B = 0L = 0, B = -1B and L conserving our portal ψ_B operator L = 1, B = 0L = 0, B = 1

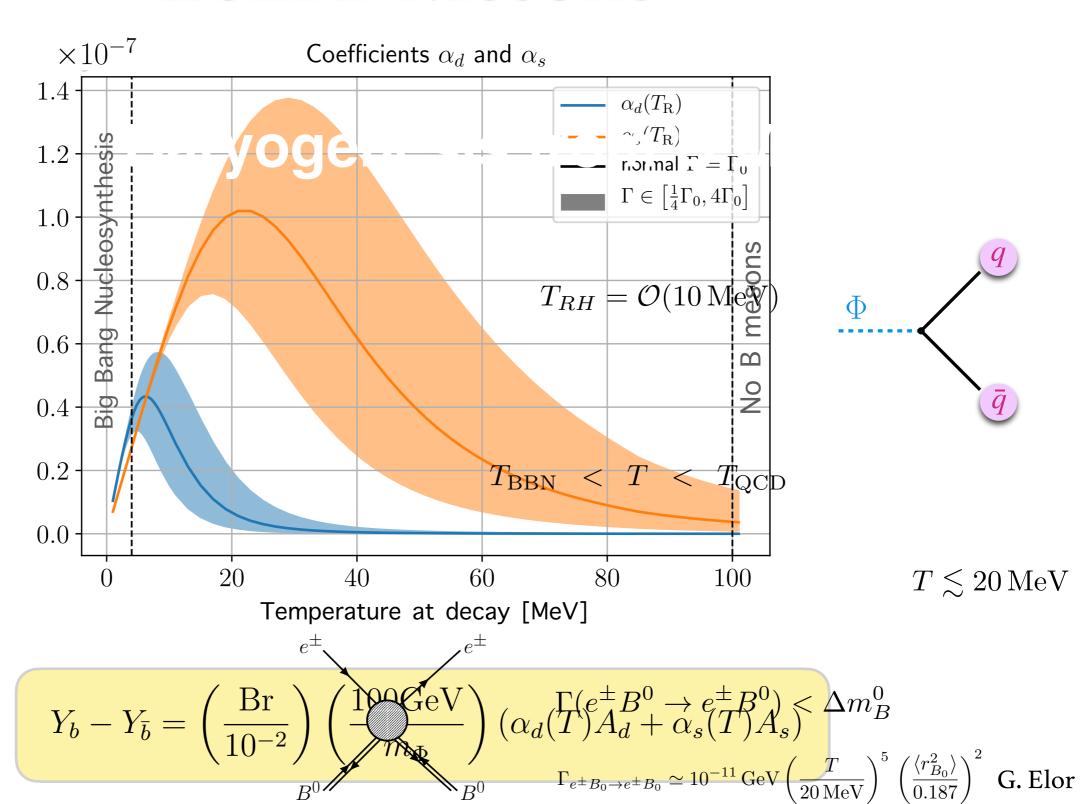

Dark Leptons

Dark Baryons


$$\mathcal{L} \supset y_b \, \bar{\psi}_B \xi \chi_2 + y_l \, \bar{\ell}_d \xi \chi_1 + \text{h.c.}.$$

MeV scale Dirac Fermion mediator

Example Charge Assignment

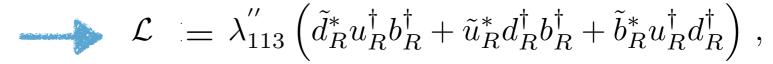

Dark Leptons

Dark Baryons

$$\langle \sigma v \rangle \simeq 10^{-15} \,\mathrm{GeV}^{-2} \,(y_l \, y_b)^2 \times \left(\frac{10 \,\mathrm{MeV}}{m_{\ell_d}}\right) \left(\frac{20 \,\mathrm{GeV}}{m_{\chi_1}}\right) \left(\frac{10 \,\mathrm{GeV}}{m_{\chi_2}}\right)$$

Baryogenesis and Dark Matter from B Mesons

A Supersymmetric Theory

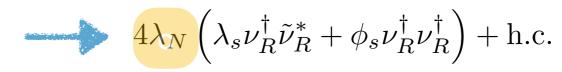

MSSM, R Symmetry, and Dirac Gauginos and Sterile Neutrios

Superfield	R-Charge	L no.
$\mathbf{U}^c,\mathbf{D}^c$	2/3	0
Q	4/3	0
$\mathbf{H}_u, \mathbf{H}_d$	0	0
$\mathbf{R}_u,\mathbf{R}_d$	2	0
S	0	0
${f L}$	1	1
\mathbf{E}^c	1	-1
\mathbf{N}_R^c	1	-1

"RPV"
$$\mathbf{W} = y_u \mathbf{Q} \mathbf{H}_u \mathbf{U}^c - y_d \mathbf{Q} \mathbf{H}_d \mathbf{D}^c - y_e \mathbf{L} \mathbf{H}_d \mathbf{E}^c + \frac{1}{2} \lambda_{ijk}'' \mathbf{U}_i^c \mathbf{D}_j^c \mathbf{D}_k^c$$

$$+ \mu_u \mathbf{H}_u \mathbf{R}_d + \mu_d \mathbf{R}_u \mathbf{H}_d$$

$$+ \lambda_u^t \mathbf{H}_u \mathbf{T} \mathbf{R}_d + \lambda_d^t \mathbf{R}_u \mathbf{T} \mathbf{H}_d + \lambda_d^s \mathbf{S} \mathbf{R}_u \mathbf{H}_d.$$


Gauge:

$$\mathcal{L}_{\text{gauge}} = -\sqrt{2}g(\phi T^a \psi^{\dagger}) \lambda^{a\dagger} + \text{h.c.}$$

$$\Rightarrow -\sqrt{2}g(\tilde{d}_R^* d_R \tilde{B}^{\dagger}) - \sqrt{2}g(\tilde{d}_L d_L^{\dagger} \tilde{B}^{\dagger}) + \text{h.c.}$$

Neutrio:

$$\mathbf{W} = \frac{\lambda_N}{4} \mathbf{S} \mathbf{N}_R^c \mathbf{N}_R^c + \mathbf{H}_u \mathbf{L}^i y_N^{ij} \mathbf{N}_R^{c,j} + \frac{1}{2} \mathbf{N}_R^c M_M \mathbf{N}_R^c + \text{h.c.},$$

Parameter space: "RPV" couplings and squark mass mixing

A Supersymmetric Theory

Superpartners and SM particles have different charge under an unbroken R-symmetry. We can identify this with Baryon number.

Superpartners as dark baryons.

	Field	Spin	Q_{EM}	Baryon no.	\mathbb{Z}_2	Mass
	Φ	0	0	0	+1	11 - 100 GeV
MSSM Squark	$ ilde{d}_R$	0	-1/3	-2/3	+1	$\mathcal{O}(\mathrm{TeV})$
Dirac Bino	$\left[egin{array}{c} ilde{B} \ \lambda_s^\dagger \end{array} ight]$	1/2	0	-1	+1	$\mathcal{O}(\mathrm{GeV})$
Right handed	$ u_R$	1/2	0	0	-1	$\mathcal{O}(\mathrm{GeV})$
neutrino multiplet	$ ilde{ u}_R$	0	0	-1	-1	$\mathcal{O}(\mathrm{GeV})$