

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Explaining the Hints for Lepton Flavour Universality Violation with Three S_2 Leptoquark Generations

Luc Schnell Flavor at the Crossroads April 27, 2022

1. Motivation and Setup

1.1 Flavour Anomalies
1.2 Single Leptoquark Solutions
1.3 Leptoquarks with Lepton Flavour
1.4 Three Leptoquark Generations
1.5 Lagrangian

1. Motivation and Setup 1.1 Flavour Anomalies

Hints for Lepton Flavour Universality Violation

Source: cerncourier.com

No Hints for Charged Lepton Flavour Violation

1. Motivation and Setup **1.2 Single Leptoquark Solutions**

1. Motivation and Setup **1.3 Leptoquarks with Lepton Flavour**

- <u>2107.07518 (Greljo, Soreq, Stangl, Thomsen, Zupan)</u> introduced a theoretical framework for **muoquarks**, LQs that only couple to muons.
- This can e.g. be achieved via appropriate $U(1)_X$ gauge extensions of the SM.

•
$$X_H = 0$$
, $X_{Q_i} = X_{U_j} = X_{D_k} \equiv X_q$ for i, j ,

• This is an economic framework for **joint explanations of the muon anomalies.** But it gives the muon a special treatment and leaves out the other anomalies.

\rightarrow Can this be extended to three generations?

k = 1.2.3

• $X_{\ell_2} \neq X_{\ell_{1,2}}$ for $\ell = L, E \rightarrow$ if LQs have appropriate charges, they couple exclusively to muons.

1. Motivation and Setup **1.4 Three Leptoquark Generations**

- Three LQ generations that couple to one lepton flavour each (tauquark, muoquark, electroquark)
 - $X_H = 0$, $X_{Q_i} = X_{U_i} = X_{D_k} \equiv X_q$ for i, j, k = 1, 2, 3• $X_{\ell_1}, X_{\ell_2}, X_{\ell_3}$ pairwise different for $\ell = L, E$
- This is still satisfied by 234 charge assignments for $U(1)_X$ where $-10 \le X_{F_i} \le 10$ for all SM fermions (before it was **273**). A possible solution is $L_{\mu} - L_{\tau}$.

Sources: 2103.12504 (Angelescu et al.), 2002.12544 (Bigaran et al.)

- Di-quark couplings not possible \rightarrow no proton decay
- Radiative generation of charged lepton masses

1. Motivation and Setup **1.5 Lagrangian**

$$\mathcal{L}_{LQ} = \left(Y_{ij}^{RL}\bar{u}_{i}\left[\Phi_{2}\cdot L_{j}\right] + Y_{ij}^{LR}\left[\bar{Q}_{i}e_{j}\Phi_{2}\right] + H.c.\right) - \left(M^{2} + Y^{H(1)}\left[H^{\dagger}H\right]\right)\Phi_{2}^{\dagger}\Phi_{2}$$
$$-Y^{H(3)}\left[H\cdot\Phi_{2}\right]^{\dagger}\left[H\cdot\Phi_{2}\right] + \mathcal{L}_{4\Phi},$$
Complete SLQ Lagrangian in 2105.04844 (Crivellin, LS)
Three LQ generations with lepton flavours.
$$\mathcal{L}_{LQ} = \sum_{\ell} \left(Y_{\ell}^{RL}\bar{u}_{i}\left[\Phi_{2,\ell}\cdot L_{\ell}\right] + Y_{\ell}^{LR}\left[\bar{Q}_{i}e_{\ell}\Phi_{2,\ell}\right] + H.c.\right)$$

$$\mathcal{L}_{LQ} = \left(Y_{ij}^{RL} \bar{u}_i \left[\Phi_2 \cdot L_j \right] + Y_{ij}^{LR} \left[\bar{Q}_i e_j \Phi_2 \right] + \text{H.c.} \right) - \left(M^2 + Y^{H(1)} \left[H^{\dagger} H \right] \right) \Phi_2^{\dagger} \Phi_2 - Y^{H(3)} \left[H \cdot \Phi_2 \right]^{\dagger} \left[H \cdot \Phi_2 \right] + \mathcal{L}_{4\Phi} ,$$

$$\textbf{Three LQ generations with} \qquad \textbf{Complete SLQ Lagrangian} \text{ in } 2105.04844 \text{ (Crivellin, LS)}$$

$$\mathcal{L}_{LQ} = \sum_{\ell} \left(Y_{i\ell}^{RL} \bar{u}_i \left[\Phi_{2,\ell} \cdot L_{\ell} \right] + Y_{i\ell}^{LR} \left[\bar{Q}_i e_\ell \Phi_{2,\ell} \right] + \text{H.c.} \right) \\ - \left(M_{\ell}^2 + Y_{\ell}^{H(1)} \left[H^{\dagger} H \right] \right) \Phi_{2,\ell}^{\dagger} \Phi_{2,\ell} - Y_{\ell}^{H(3)} \left[H \cdot \Phi_{2,\ell} \right]^{\dagger} \left[H \cdot \Phi_{2,\ell} \right] + \mathcal{L}_{4\Phi} .$$

Source: 2203.10111 (Crivellin, Fuks, LS)

2. Phenomenology

2.1 Tauquark

- 2.2 Tauquark and Muoquark
- 2.3 Muoquark
- 2.4 Electroquark
- 2.5 Higgs Couplings

2. Phenomenology 2.1 Tauquark

$R_{D^{(*)}}$ Anomaly

- > 3σ deviation from SM predictions in $R_{D^{(*)}}$. •
- In our model we get a **tree-level** contribution to $C_{S_L} = +4C_T$, giving an excellent fit to data provided that a complex phase is present.
- Running with **wilson**, fit with **flavio**.

$$R_{D^{(*)}} = \left. \frac{\operatorname{Br}(B \to D^{(*)} \tau \bar{\nu})}{\operatorname{Br}(B \to D^{(*)} \ell \bar{\nu})} \right|_{\ell \in \{e, \mu\}} ,$$

Source: HFLAV Semileptonic Results 2021

$$(\mathcal{O}_{S_L})_{bc\tau\nu_{\tau}} = -\frac{4G_F}{\sqrt{2}} V_{23}^{\text{CKM}} \left(\bar{c}P_L b\right) \left(\bar{\tau}P_L \nu_{\tau}\right) ,$$

$$(\mathcal{O}_T)_{bc\tau\nu_{\tau}} = -\frac{4G_F}{\sqrt{2}} V_{23}^{\text{CKM}} \left(\bar{c}\sigma^{\mu\nu}P_L b\right) \left(\bar{\tau}\sigma_{\mu\nu}P_L \nu_{\tau}\right) ,$$

2. Phenomenology 2.1 Tauquark

$pp \rightarrow \tau \tau$ Tail

- Tree-level *t*-channel contribution (\rightarrow energy enhancement).
- Simulation with MadGraph_aMC@NLO+Pythia8, reconstruction with MadAnalysis5 (b-tag inclusive).

Source: CMS-PAS-HIG-21-001

2. Phenomenology

2. Phenomenology 2.3 Muoquark

Lepton Masses, AMMs and EDMs

- The contributions to these observables are related.
- There is a m_t -enhanced contribution to C_7 .

$$a_{\ell}^{\mathrm{LQ}} = \frac{G_F m_{\ell}^2}{\sqrt{2}\pi^2} \operatorname{Re}\left\{ \left(\mathcal{C}_7 \right)_{\ell\ell} \right\} \quad \text{and} \quad \left| d_{\ell}^{\mathrm{LQ}} \right| = \frac{eG_F m_{\ell}}{2\sqrt{2}\pi^2} \left| \operatorname{Im}\left\{ \left(\mathcal{C}_7 \right)_{\ell\ell} \right\} \right|,$$

The same diagram (without photon) also induces corrections to the lepton masses.

$$m_{\ell}^{\mathrm{LQ}} \approx -\frac{m_{t}N_{c}}{16\pi^{2}} \mathcal{E}_{3}\left(\frac{\mu^{2}}{M_{\ell}^{2}}, \frac{m_{t}^{2}}{M_{\ell}^{2}}\right) \hat{Y}_{3\ell}^{LR} Y_{3\ell}^{RL*} \quad \text{with} \quad \mathcal{E}_{3}\left(x, y\right) = \frac{1}{\epsilon} + 1 + \log\left(x\right) + y\log\left(y\right) \,,$$

$$(\mathcal{O}_{7})_{\ell\ell} = \frac{4G_{F}}{\sqrt{2}} \frac{e}{16\pi^{2}} m_{\ell} (\bar{\ell} \sigma^{\mu\nu} P_{R} \ell) F_{\mu\nu}.$$

 \rightarrow Could there be a common explanation to the lepton masses, $(g-2)_{\ell}$ and the absence of EDMs?

14

2. Phenomenology 2.3 Muoquark

Radiative Mass Generation

• Model example discussed in <u>2107.07518 (Greljo, Soreq, Stangl,</u> Thomsen, Zupan): radiative mass generation for charged leptons.

$$\mathcal{L} \supset \left(Y_{i\ell}^{RL} \bar{u}_i \left[\Phi_{2,\ell}^{RL} \cdot L_\ell \right] + Y_{i\ell}^{LR} \left[\bar{Q}_i e_\ell \Phi_{2,\ell}^{LR} \right] + \right)$$

$$-M_{\ell,LR}^{2} \Phi_{2,\ell}^{LR\dagger} \Phi_{2,\ell}^{LR} - M_{\ell,RL}^{2} \Phi_{2,\ell}^{RL\dagger} \Phi_{2,\ell}^{RL} - \tilde{M}_{\ell}^{2} \left(\Phi_{2,\ell}^{LR\dagger} \Phi_{2,\ell}^{RL} + \right)$$

$$M_{\ell,LR} = M_{\ell,RL} \equiv M_{\ell} \qquad \left(\begin{array}{c} M_{\ell}^{2} & \tilde{M}_{\ell}^{2} \\ \tilde{M}_{\ell}^{2} & M_{\ell}^{2} \end{array} \right)$$

$$real \rightarrow no EDM$$

$$m_{e} \approx \frac{3m_{t}}{16\pi^{2}} Y_{3e}^{LR} Y_{3e}^{RL} \frac{\tilde{M}_{e}^{2}}{M_{e}^{2}} \qquad a_{e} \approx \frac{3}{16\pi^{2}} Y_{3e}^{LR} Y_{3e}^{RL} \frac{m_{\mu}m_{t}\tilde{M}_{e}^{2}}{M_{e}^{4}} \left(-\frac{5}{3} + \frac{4}{3} \log \frac{M_{e}^{2}}{m_{t}^{2}} \right)$$

 $pp \rightarrow ee$ Tail

- CMS found an excess in dielectron events.
- This was also found by ATLAS, but with less significance.
- The data prefers LQ representations interfering **constructively** with the SM contribution.
- $\sim 3\sigma$ improvement can be reached.

Table 4: The dielectron and dimuon event yields for the data, the expected background and the respective significance in the different SRs used in the analysis. The p-value of each observation is defined as the probability, given the background-only hypothesis, of an observation at least as large as that seen in the data. The significance is the Gaussian cumulative density function of the p-value, and negative significances correspond to deficits.

SR	Data	Background	Significance
e^+e^- Const.	19	12.4±1.9	1.28 - 0.72
e^+e^- Dest.	2	3.1±1.1	
$\mu^+\mu^-$ Const.	6	9.6±2.1	- 0.99
$\mu^+\mu^-$ Dest.	1	1.4±0.9	- 0.58

Source: 2006.12946 (ATLAS)

Parity Violation Data

- LQs induce parity-violating contributions to electron-nucleon interactions.
- This modifies the weak charge Q_w of nucleons, as measured by Q_{weak} / APV.
 - Q_{weak} : low-energy electron-proton scattering
 - APV : parity-violating transitions in atoms (e.g. 7S - 6S in ¹³³Cs)

$$\mathcal{L}_{\text{eff}}^{ee} = \frac{G_F}{\sqrt{2}} \sum_{q=u,d,s} \left(C_{1q}^e \left[\bar{q} \gamma^\mu q \right] \left[\bar{e} \gamma_\mu \gamma_5 e \right] + C_{2q}^e \left[\bar{q} \gamma^\mu \gamma_5 q \right] \left[\bar{e} \gamma_\mu e^{-2q} \right] \right]$$

$$Q_w = -2 \left[Z \left(2\mathcal{C}_{1u}^e + \mathcal{C}_{1d}^e \right) + N \left(\mathcal{C}_{1u}^e + 2\mathcal{C}_{1d}^e \right) \right],$$

19

2. Phenomenology **2.5 Higgs Couplings**

Oblique Corrections

- We looked into this **before** the CDF II measurement.
- LQ-Higgs terms that break $SU(2)_L$ spontaneously lead to W-mass corrections.

$$S^{\text{LQ}} \approx -\frac{7N_c v^2}{36\pi} \sum_{\ell} \frac{Y_{\ell}^{H(3)}}{M_{\ell}^2} \qquad T^{\text{LQ}} \approx +\frac{N_c v^2}{96\pi^2 \alpha} \sum_{\ell} \left(\frac{Y_{\ell}^{H(3)}}{M_{\ell}}\right)^2$$

$$\begin{split} S &= -\frac{4s_w^2 c_w^2}{\alpha m_Z^2} \left(\Pi_{ZZ}(0) - \Pi_{ZZ}(m_Z^2) + \Pi_{\gamma\gamma}(m_Z^2) + \frac{c_w^2 - s_w^2}{c_w s_w} \Pi_{Z\gamma}(m_Z^2) \right) \\ T &= \frac{\Pi_{WW}(0)}{\alpha m_W^2} - \frac{\Pi_{ZZ}(0)}{\alpha m_Z^2} \\ U &= -\frac{4s_w^2 c_w^2}{\alpha} \left(\frac{\Pi_{WW}(0) - \Pi_{WW}(m_W^2)}{c_w^2 m_W^2} - \frac{\Pi_{ZZ}(0) - \Pi_{ZZ}(m_Z^2)}{m_Z^2} \right) \\ &+ \frac{s_w^2}{c_w^2} \frac{\Pi_{\gamma\gamma}(m_Z^2)}{m_Z^2} + 2\frac{s_w}{c_w} \frac{\Pi_{Z\gamma}(m_Z^2)}{m_Z^2} \right), \end{split}$$

Source: 2006.10758 (Crivellin et al.)

2. Phenomenology **2.5 Higgs Couplings**

• Without CDF II measurement:

Source: 2203.10111 (Crivellin, Fuks, LS)

2. Phenomenology **2.5 Higgs Couplings**

• With CDF II measurement:

Source: 2006.10758 (Crivellin et al.)

Contributions from $\Phi_{2,\ell}$ ($Y^{H(3)} = \pm 1.0, \pm 2.0, \pm 3.0$) Global fit de Blas *et al.* (standard average, 1σ , 2σ) Global fit de Blas *et al.* (conservative average, $1\sigma, 2\sigma$)

Global fit Ellis *et al.* $(1\sigma, 2\sigma)$

- Best fit point
- SM point

 $-2\Delta \log \mathcal{L} = -39.0$

- S_2 still yields a good fit, but very large couplings are needed.
- $S_1 S_3$ can accomplish large contributions to ΔT $(\rightarrow$ lepton flavor violation?).

Source: 2204.03996 (Athron et al.), 2204.09031 (Bhaskar et al.)

3. Conclusions

3. Conclusions

- The hints for LFUV in multiple lepton generations and the absence of LFV motivate lepton flavoured LQs.
- We examined a corresponding model with three S_2 generations.
- It can provide explanations to deviations in
 - $\ \ \, R_{D^{(*)}} \,, \qquad \ \ \, \triangleright \, pp \to ee \,, \qquad \ \ \, \triangleright \, (a_e) \,.$ $(b \to s \ell^+ \ell^-), \quad (pp \to \tau \tau),$ • a_{μ} , • (S, T, U),
- There is an interesting relation between the LQ contributions to the charged lepton masses, AMMs and EDMs.

Thank you for your attention!