

Universität Zürich

Renormalization Group Evolved 4321 and intriguing behaviors in the UV

MITP Scientific Program, Flavor at the Crossroads, 27 April 2022

Julie Pagès University of Zurich (UZH)

Based on R. Houtz, J.Pagès and S. Trifinopoulos, arXiv:2204.06440

Radiative Electroweak Symmetry Breaking

Laudau poles

3 UV Unification

Renormalization Group Evolution of the 4321 Scalar sector

Julie Pagès — Renormalization Group Evolved 4321 and intriguing behaviours in the UV — MITP Flavor at the Crossroads 2022

B anomalies

Vector LQ mediator for the B anomalies

Julie Pagès — Renormalization Group Evolved 4321 and intriguing behaviours in the UV — MITP Flavor at the Crossroads 2022

UV origin of the U_1 leptoquark

Flavor universal [Di Luzio, Greljo, Nardecchia, 1708.08450] [Di Luzio, Fuentes-Martín, Greljo, Nardecchia, Renner, 1808.00942] · (Ω3) ► large mixing between 3rd generation SM fields and vector-like partners \hookrightarrow Landau poles $\lesssim 100 \text{ TeV}$ <<u>(</u>Ω₁) Flavor non-universal [Greljo, Stefanek, 1802.04274] مممم [Bordone, Cornella, Fuentes-Martín, Isidori, 1805.09328] [Cornella, Fuentes-Martin, Isidori, 1903.11517] see Claudia's talk Ψ

Julie Pagès — Renormalization Group Evolved 4321 and intriguing behaviours in the UV — MITP Flavor at the Crossroads 2022

4321 model

[Di Luzio, Fuentes-Martín, Greljo, Nardecchia, Renner, 1808.00942]

Spontaneous symmetry breaking of the 4321 model

Julie Pagès — Renormalization Group Evolved 4321 and intriguing behaviours in the UV — MITP Flavor at the Crossroads 2022

$$\frac{1}{2} (\Omega_1^{\dagger} \Omega_1)^2 + \frac{\rho_2}{2} \operatorname{Tr}[\Omega_3^{\dagger} \Omega_3]^2 + \frac{\rho_2'}{2} \operatorname{Tr}[\Omega_3^{\dagger} \Omega_3 \Omega_3^{\dagger} \Omega_3]$$

$$_{3} \Omega_3^{\dagger} \Omega_1 + \frac{\rho_5}{3!} (\epsilon_{\alpha\beta\gamma\delta} \epsilon^{abc} (\Omega_3)^{\alpha}_{a} (\Omega_3)^{\beta}_{b} (\Omega_3)^{\gamma}_{c} (\Omega_1)^{\delta} + \text{h.c.})$$

$$H^{\dagger}H + \frac{\lambda}{2}(H^{\dagger}H)^2$$

$$\Omega_1^{\dagger}\Omega_1 + \eta_3 H^{\dagger}H \operatorname{Tr}[\Omega_3^{\dagger}\Omega_3]$$

Renormalization Group Evolution of the 4321

- Fix boundary conditions from phenomenology constraints 1) \hookrightarrow since under-constrained, pick a benchmark satisfying the constraints
- Derive all β -functions for each theory/energy range at one-loop 2) crosschecked/computed with RGBeta [Thomsen, 2101.08265]
- Run, Match (at tree-level), Run, etc... 3)

Julie Pagès — Renormalization Group Evolved 4321 and intriguing behaviours in the UV — MITP Flavor at the Crossroads 2022

 $V = V_{\Omega} + V_{H} + V_{\Omega H}$ $\{\rho_i\}, m_{\Omega_{1,3}} \quad \lambda, \mu_H \quad \{\eta_i\}$

1. Landau poles

"Asymptotic freedom" in gauge couplings but Landau poles develop in the Ω potential quartics

Decoupling of radial modes is not easily realised with $g_4 = 3$

$$m_{\text{radial}} = \sqrt{\lambda} v$$
 $m_{\text{gauge}} = \frac{g v}{2}$

$$\frac{m_{\text{radial}}}{m_{\text{gauge}}} = 2\frac{\sqrt{\lambda}}{g} \lesssim 2.4 \left(\frac{3}{g}\right)$$

Decoupling limit corresponds to $\lambda \gg 2$

Julie Pagès — Renormalization Group Evolved 4321 and intriguing behaviours in the UV — MITP Flavor at the Crossroads 2022

Masses of the radials

Landau poles and masses of the radials

Running of the quartic ρ_1

$$egin{split} eta_{
ho_1} &= \left(16
ho_1 - 3g_1^2 - rac{45}{2}g_4^2
ight)
ho_1 \ &+ 24
ho_3^2 + 12
ho_3
ho_4 + 6
ho_4^2 + 4\eta_1^2 \ &+ rac{3}{4}g_1^4 + rac{9}{4}g_1^2g_4^2 + rac{99}{16}g_4^4 \end{split}$$

Large quartic couplings

heavier radials

lower cut-off scale

2. Radiative Electroweak symmetry breaking

 $V(\langle \phi \rangle)$ Radiative electroweak symmetry breaking: Electroweak symmetry is <u>conserved</u> at the classical level, but loop corrections to the mass parameter of the Higgs boson trigger its spontaneous breaking. \Rightarrow A positive Higgs mass parameter at high field value can turn negative at lower scale via the renormalization group flow.

Examples:

[Babu, Gogoladze, Khan, 1512.05185]

- Standard Model
- Type-I seesaw model
- Scalar singlet dark matter model

Julie Pagès — Renormalization Group Evolved 4321 and intriguing behaviours in the UV — MITP Flavor at the Crossroads 2022

Necessary ingredients:

 $\beta_H^{\rm SM} \propto m_H^2$ X $\beta_{H}^{\text{SS1}} = \beta_{H}^{\text{SM}} - 4 |y_{\nu}|^{2} |m_{R}|^{2}$ $\beta_H^{\rm sDM} = \beta_H^{\rm SM} + \lambda_3 m_s^2$

new states

positive contribution

 \Rightarrow TeV-scale new scalars

Radiative Electroweak Symmetry Breaking

All ingredients are here!

Diagonalization of the Hessian (equivalent to integrating out $\Omega_{1,3}$) gives the effective SM Higgs mass:

$$\mu_{\text{eff}}^2 = -\frac{\lambda_{\text{eff}}}{2}v^2 = \mu_H^2 - \frac{\eta_1 D_1 - 3\eta_3 \rho_3}{D_{12}}m_{\Omega_1}^2 - 3\frac{\eta_3 \rho_1 - \eta_1 \rho_3}{D_{12}}m_{\Omega_3}^2 \qquad \begin{array}{l} D_1 = 3\rho_2 + \rho_2' > 0\\ D_{12} = \rho_1 D_1 - 3\rho_3^2 > 0\\ D_{123} = \lambda D_{12} - (3\eta_3^2 \rho_1 - 6\eta_1 \eta_3 \rho_3 + \eta_1^2) \end{array}$$

Julie Pagès — Renormalization Group Evolved 4321 and intriguing behaviours in the UV — MITP Flavor at the Crossroads 2022

$$\beta_{\mu_{H}^{2}} = \left(6\lambda + 8y_{t}^{2} - \frac{3}{2}g_{1}^{2} - \frac{9}{2}g_{2}^{2}\right)\mu_{H}^{2}$$

$$+ 8\eta_{1}m_{\Omega_{1}}^{2} + 24\eta_{3}m_{\Omega_{3}}^{2}$$

$$H_{1}$$

$$\eta_{1,3}$$
positive contribution for $\eta_{1,3} < 0$

Radiative Electroweak Symmetry Breaking

Julie Pagès — Renormalization Group Evolved 4321 and intriguing behaviours in the UV — MITP Flavor at the Crossroads 2022

Fine-tuning

Quantifying the fine-tuning and identifying sensitivity of $m_{h_{phys}}$ to variation of the quartic by $\pm 1\%$

3. Unification in the UV

In some UV completion of 4321 see Ben's talk

[Fuentes-Martín, Isidori, Lizana, Selimovic, Stefanek, 2203.01952] [Bordone, Cornella, Fuentes-Martín, Isidori, 1712.01368]

• the doublet Higgs comes from a bi-doublet fi leading to a two-Higgs-doublet-model after 4

$$\mu_H = \mu_2$$
 and

• the two $\Omega_{1,3}$ come from the same "bi-quadruplet" under $SU(4)_{\text{light}}$ and $SU(4)_3 \quad \Omega \sim$ leading to the relations after SSB:

$$m_{\Omega_1} = m_{\Omega_{3'}}$$
 $\rho_1 = \rho_2 + \rho'_2$, $\rho_2 = \rho_3$ and $\rho'_2 = \rho_4$

 $\eta_1 = \eta_2 = \eta_3$

Julie Pagès — Renormalization Group Evolved 4321 and intriguing behaviours in the UV — MITP Flavor at the Crossroads 2022

ield under
$$SU(2)_L$$
 and $SU(2)_R \quad \Phi \sim \begin{pmatrix} H_2 & H \end{pmatrix}$
4321 breaking scale with relations:

$$\lambda = \lambda_2 = \lambda_3$$

$$= \eta_4$$

UV unification

UV unification scale

Number of benchmark points satisfying the UV conditions per energy scale \hookrightarrow unification scale between $10^2 - 10^4 \text{ TeV}$

Conclusion

The RGE of the 4321 scalar sector revealed *intriguing* features:

- Laudau poles appear as early as 100 TeV for heavy scalar radial modes
- Radiative EWSB can happen but fine-tuning seems ineluctable
- ► Couplings can unify in the UV between $10^2 10^4$ TeV

Julie Pagès — Renormalization Group Evolved 4321 and intriguing behaviours in the UV — MITP Flavor at the Crossroads 2022

Back-up

U_1 , G' and Z' masses and couplings

Gauge bosons masses

$$M_U = \frac{g_4}{2}\sqrt{\omega_1^2 + \omega_3^2}$$

$$M_{G'} = \sqrt{\frac{g_4^2 + g_3^2}{2}} \,\omega_3$$

$$M_{Z'} = \frac{1}{2\sqrt{6}} \sqrt{\left(3g_4^2 + 2g_1^2\right) \left(3\omega_1^2 + \omega_3^2\right)}$$

Julie Pagès — Renormalization Group Evolved 4321 and intriguing behaviours in the UV — MITP Flavor at the Crossroads 2022

Gauge bosons couplings

$$g_U = g_4$$

$$g_{G'} = \sqrt{g_4^2 - g_s^2}$$

 $g_s = \frac{g_4 g_3}{\sqrt{g_4^2 + g_3^2}}$

$$g_{Z'} = \frac{1}{2\sqrt{6}} \sqrt{g_4^2 - \frac{2}{3}g_Y^2}$$

Radial modes spectrum

$\Omega_{1,3}$ radials

$$\Omega_1^{\dagger} = \begin{pmatrix} \tilde{T}_1 \\ \frac{\omega_1}{\sqrt{2}} + \tilde{S}_1^* \end{pmatrix} \qquad \Omega_3^{\dagger} = \begin{pmatrix} \left(\frac{\omega_3}{\sqrt{2}} + \frac{\tilde{S}_3^*}{\sqrt{3}}\right) \mathbb{1}_3 + \tilde{O}_3^{a*} t^a \\ \tilde{T}_3^{\dagger} \end{pmatrix}$$

•
$$M_{O_R}^2 = \omega_3(\rho_2'\omega_3 - \rho_5\omega_1)$$
 with $\rho_2'\omega_3 > \rho_5\omega_1$
• $M_{T_R}^2 = \frac{1}{2}\left(\rho_4 - \rho_5\frac{\omega_3}{\omega_1}\right)\left(\omega_1^2 + \omega_3^2\right)$ with $\rho_4\omega_1 > \rho_5\omega_3$

•
$$M_{S_0}^2 = \frac{\rho_5}{2} \frac{\omega_3}{\omega_1} \left(3\omega_1^2 + \omega_3^2 \right)$$
 with $\rho_5 > 0$

•
$$M_{S_1}^2 = \frac{1}{2} \left(\rho_1 \omega_1^2 + (3\rho_2 + \rho_2')\omega_3^2 + \frac{\rho_5}{2} \frac{\omega_3}{\omega_1} (\omega_1^2 - \omega_3^2) \right) - \frac{u}{2\omega_1}$$

•
$$M_{S_2}^2 = \frac{1}{2} \left(\rho_1 \omega_1^2 + (3\rho_2 + \rho_2')\omega_3^2 + \frac{\rho_5}{2} \frac{\omega_3}{\omega_1} (\omega_1^2 - \omega_3^2) \right) + \frac{u}{2\omega_1}$$

$$u^{2} = \left[\rho_{1}\omega_{1}^{3} + (3\rho_{2} + \rho_{2}')\omega_{1}\omega_{3}^{2} + \frac{\rho_{5}}{2}\omega_{3}(\omega_{1}^{2} - \omega_{3}^{2})\right]^{2} - 4\omega_{1}\omega_{3}\left[\rho_{1}\omega_{1}^{3}\left(\frac{\rho_{5}}{2}\omega_{1} + (3\rho_{2} + \rho_{2}')\omega_{3}\right) - 3\omega_{3}\left(\rho_{3}^{2}\omega_{1}^{3} + \rho_{3}\rho_{5}\omega_{3}\omega_{1}^{2} + \frac{\rho_{5}^{2}}{3}\omega_{3}^{2}\omega_{1} + \frac{\rho_{5}}{6}(3\rho_{2} + \rho_{2}')\omega_{3}^{3}\right)\right].$$

Julie Pagès — Renormalization Group Evolved 4321 and intriguing behaviours in the UV — MITP Flavor at the Crossroads 2022

 H, H_2 radials

$$H = \begin{pmatrix} \eta_W^+ \\ \frac{v+h}{\sqrt{2}} + i \eta_Z \end{pmatrix} \qquad H_2 = \begin{pmatrix} h^+ \\ \frac{1}{\sqrt{2}} (h_R + i h_I) \end{pmatrix}$$

$$\begin{split} m_h^2 &= \lambda v^2 \ , \\ m_{\pm}^2 &= \mu_2^2 + \frac{\lambda_3}{2} v^2 \ , \\ m_R^2 &= \mu_2^2 + \frac{\lambda_3 + \lambda_4 + \lambda_5}{2} v^2 \\ m_I^2 &= \mu_2^2 + \frac{\lambda_3 + \lambda_4 - \lambda_5}{2} v^2 \end{split}$$

$$egin{aligned} V_H &\supset \mu_2^2 H_2^\dagger H_2 + rac{\lambda_2}{2} (H_2^\dagger H_2)^2 + \lambda_3 (H^\dagger H) (H_2^\dagger H_2) \ &+ \lambda_4 (H^\dagger H_2) (H_2^\dagger H) + rac{\lambda_5}{2} \left((H^\dagger H_2)^2 + ext{h.c}
ight) \end{aligned}$$

 $V_{\Omega H} \supset \eta_2 \, H_2^{\dagger} H_2 \, \Omega_1^{\dagger} \Omega_1 + \eta_4 \, H_2^{\dagger} H_2 \, \mathrm{Tr}[\Omega_3^{\dagger} \Omega_3]$

Back-up

Boundary conditions

+ Bounded from below conditions

Julie Pagès — Renormalization Group Evolved 4321 and intriguing behaviours in the UV — MITP Flavor at the Crossroads 2022

• $g_U \approx (1.1 \pm 0.2) \times \left(\frac{M_U}{2 \text{ TeV}}\right) \Leftrightarrow \sqrt{\omega_1^2 + \omega_3^2} \in [3, 4.5]$ TeV for the B anomalies • $\{\rho_i\}$ and $\{\eta_i\}$ from $M_{G'} \gtrsim 4$ TeV and $M_{U}, M_{Z'} \gtrsim 3$ TeV (high-p_T bounds) $M_{O_R}, M_{T_R} \gtrsim 2 \text{ TeV} (\text{QCD collider bounds})$ $M_{S_{0,1,2}} \gtrsim 500 \text{ GeV}$ (Higgs collider bounds)

 λ and μ_H from vacuum equation for H and physical Higgs mass

Julie Pagès — Renormalization Group Evolved 4321 and intriguing behaviours in the UV — MITP Flavor at the Crossroads 2022

U_1, G' searches

Back-up

Benchmark points

Ω VEVs	values	scalar couplings	values
$\ $ ω_1	$1.5 { m ~TeV}$	λ	0.2
ω_3	$4 { m TeV}$	$ ho_1$	0.5
mass parameters		$ ho_2$	0.1
μ_{H}^{2}	$(1.6 \text{ TeV})^2$	$ ho_2'$	0.5
$\parallel m_{\Omega_1}^2$	$-(1.8 \text{ TeV})^2$	$ ho_3$	0.1
$\parallel m_{\Omega_3}^2$	$-(2.5 \text{ TeV})^2$	$ ho_4$	1
gauge coupling		$ ho_5$	0.01
g_4	3	η_1	-0.1
		η_3	-0.1

Julie Pagès — Renormalization Group Evolved 4321 and intriguing behaviours in the UV — MITP Flavor at the Crossroads 2022

Beta-functions - Gauge and Higgs potential

Gauge couplings:

$$\mu \frac{d\alpha_i}{d\mu} \equiv \frac{1}{16\pi^2} \,\beta_{\alpha_i} = -\frac{\alpha_i^2}{2\pi} b_i$$

$$U(1)': b_1 = -\frac{115}{18} , \qquad SU(2)_L: b_2 = \frac{19}{6} - \frac{8}{3}n_{\rm VL}$$
$$SU(3)_{1+2}: b_3 = \frac{23}{3} , \qquad SU(4)_3: b_4 = \frac{38}{3} - \frac{4}{3}n_{\rm VL}$$

Top yukawa:

$$\beta_{y_t} = \left(\frac{11}{2}y_t^2 - \frac{9}{4}g_2^2 - \frac{45}{4}g_4^2 - \frac{3}{4}g_1^2\right)y_t$$

Higgs masses:

$$\begin{split} \beta_{\mu_{H}^{2}} &= \left(6\lambda + 8y_{t}^{2} - \frac{3}{2}g_{1}^{2} - \frac{9}{2}g_{2}^{2}\right)\mu_{H}^{2} + 8\eta_{1}m_{\Omega_{1}}^{2} + 24\eta_{3}m_{\Omega_{3}}^{2} + (4\lambda_{3} + 2\lambda_{4})\mu_{H}^{2} + (4\lambda_{3} + 2\lambda_{4})\mu_{H}^{2} + (4\lambda_{3} + 2\lambda_{4})\mu_{H}^{2} + 8\eta_{2}m_{\Omega_{1}}^{2} + 24\eta_{3}m_{\Omega_{1}}^{2} + 24\eta_{3}m_{\Omega_{1}}^{2} + 24\eta_{3}m_{\Omega_{1}}^{2} + (4\lambda_{3} + 2\lambda_{4})\mu_{H}^{2} + (4\lambda_{3} + 2\lambda_{4})\mu_{H}^{2} + 8\eta_{2}m_{\Omega_{1}}^{2} + 24\eta_{3}m_{\Omega_{1}}^{2} + 24\eta_{3}m_{\Omega_{1}}^{2} + 24\eta_{3}m_{\Omega_{1}}^{2} + 24\eta_{3}m_{\Omega_{1}}^{2} + (4\lambda_{3} + 2\lambda_{4})\mu_{H}^{2} + 8\eta_{2}m_{\Omega_{1}}^{2} + 24\eta_{3}m_{\Omega_{1}}^{2} + 24\eta_{3}m_{\Omega_{1}$$

Julie Pagès — Renormalization Group Evolved 4321 and intriguing behaviours in the UV — MITP Flavor at the Crossroads 2022

Higgs quartics:

$$\begin{split} \beta_{\lambda} &= \left(12\lambda + 16y_{t}^{2} - 3g_{1}^{2} - 9g_{2}^{2}\right)\lambda + 8\eta_{1}^{2} + 24\eta_{3}^{2} - 16y_{t}^{4} + 4\lambda_{3}^{2} + 4\lambda_{3}\lambda_{4} + 2\lambda_{4}^{2} + 4\lambda_{3}\lambda_{4} + 2\lambda_{4}^{2} + 4\lambda_{3}\lambda_{4} + 2\lambda_{4}^{2} + 4\lambda_{3}\lambda_{4} + 2\lambda_{4}^{2} + \frac{3}{4}g_{1}^{4} + \frac{3}{2}g_{1}^{2}g_{2}^{2} + \frac{9}{4}g_{2}^{4} \\ &+ \frac{3}{4}g_{1}^{4} + \frac{3}{2}g_{1}^{2}g_{2}^{2} + \frac{9}{4}g_{2}^{4} \\ \beta_{\lambda_{3}} &= \left(4\lambda_{3} + 6\lambda + 6\lambda_{2} - 3g_{1}^{2} - 9g_{2}^{2} + 16y_{t}^{2}\right)\lambda_{3} + 2\lambda_{4}(\lambda + \lambda_{2}) + 2\lambda_{4}^{2} + 2\lambda_{5}^{2} - 14\lambda_{5}^{2} \\ &+ 8\eta_{1}\eta_{2} + 24\eta_{3}\eta_{4} + \frac{3}{4}g_{1}^{4} - \frac{3}{2}g_{1}^{2}g_{2}^{2} + \frac{9}{4}g_{2}^{4} \\ \beta_{\lambda_{4}} &= \left(4\lambda_{4} + 2\lambda + 2\lambda_{2} + 8\lambda_{3} - 3g_{1}^{2} - 9g_{2}^{2} + 16y_{t}^{2}\right)\lambda_{4} + 8\lambda_{5}^{2} + 3g_{1}^{2}g_{2}^{2} + 16y_{t}^{4} \\ \beta_{\lambda_{5}} &= \left(2\lambda + 2\lambda_{2} + 8\lambda_{3} + 12\lambda_{4} + 16y_{t}^{2} - 9g_{2}^{2} - 3g_{1}^{2}\right)\lambda_{5} \end{split}$$

 $(4)\mu_2^2$

 $4\eta_4 m_{\Omega_3}^2$

Beta-functions - Ω potential

Ω quartics:

$$\begin{split} \beta_{\rho_1} &= \left(16\rho_1 - 3g_1^2 - \frac{45}{2}g_4^2\right)\rho_1 + 24\rho_3^2 + 12\rho_3\rho_4 + 6\rho_4^2 + 4\eta_1^2 + 4\eta_2^2 \\ &\quad + \frac{3}{4}g_1^4 + \frac{9}{4}g_1^2g_4^2 + \frac{99}{16}g_4^4 \\ \beta_{\rho_2} &= \left(32\rho_2 + 28\rho_2' - \frac{1}{3}g_1^2 - 16g_3^2 - \frac{45}{2}g_4^2\right)\rho_2 + 6\rho_2'^2 + 8\rho_3^2 + 4\rho_3\rho_4 + 4\rho_4 \\ &\quad + 4\eta_3^2 + 4\eta_4^2 + \frac{1}{108}g_1^4 + \frac{11}{6}g_3^4 + \frac{27}{16}g_4^4 - \frac{1}{9}g_1^2g_3^2 - \frac{1}{12}g_1^2g_4^4 + \frac{13}{2}g_3^2g_4^2 \\ \beta_{\rho_2'} &= \left(14\rho_2' + 12\rho_2 - \frac{1}{3}g_1^2 - 16g_3^2 - \frac{45}{2}g_4^2\right)\rho_2' + 2\rho_4^2 - 4\rho_5^2 \\ &\quad + \frac{5}{2}g_3^4 + \frac{9}{2}g_4^4 + \frac{1}{3}g_1^2g_3^2 + \frac{1}{3}g_1^2g_4^2 - \frac{7}{2}g_3^2g_4^2 \\ \beta_{\rho_3} &= \left(4\rho_3 + 10\rho_1 + 26\rho_2 + 14\rho_2' - \frac{5}{3}g_1^2 - 8g_3^2 - \frac{45}{2}g_4^2\right)\rho_3 + 2\rho_4^2 + 4\rho_5^2 \\ &\quad + 2(\rho_1 + 3\rho_2 + \rho_2')\rho_4 + 4\eta_1\eta_3 + 4\eta_2\eta_4 + \frac{1}{12}g_1^4 + \frac{1}{4}g_1^2g_4^2 + \frac{27}{16}g_4^4 \\ \beta_{\rho_4} &= \left(8\rho_4 + 2\rho_1 + 2\rho_2 + 6\rho_2' + 8\rho_3 - \frac{5}{3}g_1^2 - 8g_3^2 - \frac{45}{2}g_4^2\right)\rho_4 - 4\rho_5^2 \\ &\quad - g_1^2g_4^2 + \frac{9}{2}g_4^4 \\ \beta_{\rho_5} &= \left[6(\rho_2 - \rho_2' + \rho_3 - \rho_4) - g_1^2 - 12g_3^2 - \frac{45}{2}g_4^2\right]\rho_5 \end{split}$$

Julie Pagès — Renormalization Group Evolved 4321 and intriguing behaviours in the UV — MITP Flavor at the Crossroads 2022

 Ω masses: $\beta_{m^2_{\Omega_1}} = \left(10\rho_1 - \frac{3}{2}g_1^2 - \frac{45}{4}g_4^2\right)m^2_{\Omega_1} + (24\rho_3 + 6\rho_4)m^2_{\Omega_3} + 4\eta_1\mu^2_H + 4\eta_2\mu^2_2$ $\beta_{m_{\Omega_3}^2} = \left(26\rho_2 + 14\rho_2' - \frac{1}{6}g_1^2 - 8g_3^2 - \frac{45}{4}g_4^2\right)m_{\Omega_3}^2 + 4\eta_3\mu_H^2 + (8\rho_3 + 2\rho_4)m_{\Omega_1}^2 + 4\eta_4\mu_2^2$ Mixing quartics: $\beta_{\eta_1} = \left(4\eta_1 + 6\lambda + 10\rho_1 - 3g_1^2 - \frac{9}{2}g_2^2 - \frac{45}{4}g_4^2 + 8y_t^2\right)\eta_1$ $+4\lambda_3\eta_2+2\lambda_4\eta_2+24\rho_3\eta_3+6\rho_4\eta_3+\frac{3}{4}g_1^4$ $\beta_{\eta_2} = \left(4\eta_2 + 6\lambda_2 + 10\rho_1 - 3g_1^2 - \frac{9}{2}g_2^2 - \frac{45}{4}g_4^2 + 8y_t^2\right)\eta_2$ $+4\lambda_3\eta_1 + 2\lambda_4\eta_1 + 24\rho_3\eta_4 + 6\rho_4\eta_4 + \frac{3}{4}g_1^4$ $\beta_{\eta_3} = \left(6\lambda + 26\rho_2 + 14\rho_2' - \frac{5}{3}g_1^2 - \frac{9}{2}g_2^2 - 8g_3^2 - \frac{45}{4}g_4^2 + 8y_t^2\right)\eta_3$ $+(4\lambda_3+2\lambda_4)\eta_4+(8\rho_3+2\rho_4)\eta_1+4\eta_3^2+\frac{1}{12}g_1^4$ $\beta_{n_4} = 6\lambda_2\eta_4 + (4\lambda_3 + 2\lambda_4)\eta_3 + 2(13\rho_2 + 7\rho_2')\eta_4 + (8\rho_3 + 2\rho_4)\eta_2 + 4\eta_4^2$ $-\left(\frac{5}{3}g_1^2 + \frac{9}{2}g_2^2 + 8g_3^2 + \frac{45}{4}g_4^2\right)\eta_4 + \frac{1}{12}g_1^4 + 8\eta_4Y_{12}$

 p_{5}^{2}

Bounded from below conditions

 V_{Ω} conditions

$$\begin{split} \rho_1 &> 0 \ , \\ \rho_2 + \rho_2' &> 0 \ , \quad 3\rho_2 + \rho_2' > 0 \ , \\ \rho_3 &> -\sqrt{\rho_1(\rho_2 + \rho_2')} \ , \quad \rho_3 + \rho_4 > -\sqrt{\rho_1(\rho_2 + \rho_2')} \\ |\rho_5| &< \frac{1}{4}(\rho_1 + 3(3\rho_2 + \rho_2') + 6\rho_3) \ , \end{split}$$

 $\lambda > 0 \;, \qquad \lambda_2 > 0 \;, \qquad \lambda_3 > -$

Julie Pagès — Renormalization Group Evolved 4321 and intriguing behaviours in the UV — MITP Flavor at the Crossroads 2022

 $V_{\Omega H}$ conditions

$$\eta_{1} > -\sqrt{\lambda\rho_{1}} ,$$

$$\eta_{3} > -\min\left[\sqrt{\lambda(\rho_{2} + \rho_{2}')}, \sqrt{\lambda(3\rho_{2} + \rho_{2}')}\right]$$

$$\eta_{2} > -\sqrt{\lambda_{2}\rho_{1}}$$

$$\eta_{4} > -\min\left[\sqrt{\lambda(\rho_{2} + \rho_{2}')}, \sqrt{\lambda(3\rho_{2} + \rho_{2}')}\right]$$

 $V_{\rm 2HDM}$ conditions

$$-\sqrt{\lambda \lambda_2} , \qquad \lambda_3 + \lambda_4 - |\lambda_5| > -\sqrt{\lambda \lambda_2}$$

Effective quantities for EWSB

Potential minimization

 $rac{\partial V(s_1, s_3, s_3)}{\partial h_i}$

$$[M_{s_3,s_1,h}^2]_{ij} = \frac{\partial^2 V}{\partial h_i \partial h_j} \text{ with } h_i \in (s_3,s_1,h)$$

$$M_{s_3,s_1,h}^2 = \begin{pmatrix} 2(3\rho_2 + \rho_2')\omega_3^2 \ 2\sqrt{3}\rho_3\omega_1\omega_3 \ \sqrt{6}\eta_3v\omega_3 \ ,\\ 2\sqrt{3}\rho_3\omega_1\omega_3 \ 2\rho_1\omega_1^2 \ \sqrt{2}\eta_1v\omega_1 \ ,\\ \sqrt{6}\eta_3v\omega_3 \ \sqrt{2}\eta_1v\omega_1 \ \lambda v^2 \end{pmatrix}$$

Effective mass and quartic coupling:

$$\mu_{\text{eff}}^2 = -\frac{\lambda_{\text{eff}}}{2}v^2 = \mu_H^2 - \frac{\eta_1 D_1 - 3\eta_3 \rho_3}{D_{12}}m_{\Omega_1}^2 - 3\frac{\eta_3 \rho_1 - \eta_1 \rho_3}{D_{12}}m_{\Omega_3}^2 \qquad \qquad m_{h_{\text{phys}}}^2 = \lambda_{\text{eff}} v^2 = \frac{D_{123}}{D_{12}}v^2 + O\left(\frac{v^2}{\omega_{1,3}^2}\right)$$

Julie Pagès — Renormalization Group Evolved 4321 and intriguing behaviours in the UV — MITP Flavor at the Crossroads 2022

$$\left. \frac{h}{h} \right|_{\langle h \rangle, \langle s_1 \rangle, \langle s_3 \rangle} = 0 \quad \text{for } h_i = h, s_1, s_3$$

positive-definite:

$$D_{1} = 3\rho_{2} + \rho_{2}' > 0$$

$$D_{12} = \rho_{1}D_{1} - 3\rho_{3}^{2} > 0$$

$$D_{123} = \lambda D_{12} - (3\eta_{3}^{2}\rho_{1} - 6\eta_{1}\eta_{3}\rho_{3} + \eta_{1}^{2}D_{1}) >$$

Back-up