

Flavor hierarchies, flavor anomalies, and the Higgs mass from a warped extra dimension

Ben A. Stefanek

Physik-Institut University of Zurich

*In collaboration with: Javier Fuentes-Martin, Gino Isidori, Javier M. Lizana, Nudzeim Selimovic

Flavor at the Crossroads MITP 2022

Puzzles in the SM and Hints Toward New Physics

TeV-scale new physics?

2

Puzzles in the SM and Hints Toward New Physics

Flavor Puzzle

- Pessimist: Yukawa structure is accidental and/or originates at a very high scale.
- Optimist: Yukawa structure does not look accidental at all, and could be (at least partially) connected to the next scale of new physics.

Flavor could have a Multi-scale Explanation

Flavor could have a Multi-scale Explanation

Combined Explanation of the B-anomalies

					$\star II_{4} + IIV$ completion
	Model	R _{K^(*)}	R _{D(*)}	$R_{K^{(*)}} \& R_{D^{(*)}}$	[di Luzio, Grelio, Nardecchia 1708.08450
	$S_1 = (3, 1)_{-1/3}$	×	✓	×	Calibbi, Crivellin, Li <u>1709.00692;</u> Bordone, Cornella, Fuentes-Martin, Isidori 1712.0
alars	$R_2 = (3, 2)_{7/6}$	×	✓	×	Barbieri, Tesi, <u>1712.06844</u> ; Greljo, BAS,
SCO	$\widetilde{R}_2 = (3, 2)_{1/6}$	×	×	×	$\star S_1 + S_3$
	$S_3 = (3, 3)_{-1/3}$	✓	×	×	[Crivellin, Muller, Ota <u>1703.09226;</u> Buttazzo et al. <u>1706.07808;</u>
ctor	$U_1 = (3, 1)_{2/3}$	<	 Image: A second s	\checkmark	Marzocca <u>1803.10972</u> ,] $\blacktriangleright S \perp R$
Vec	$U_3 = (3, 3)_{2/3}$	✓	×	×	A $\mathcal{P}_3 \rightarrow \mathcal{N}_2$ [Bečirević et al. 1806.05689]
	[Angelescu, Bečirević,	Faroughy,	Sumensari,	<u>1808.08179]</u>	$\star 3 \times R_2(S_2?)$ See Luc's
Т	he U_1 is (one of)	the mos	st promis	sing mediators to	explain the B anomalies: \bigcirc See (

$$\checkmark \quad \text{No tree-level } b \to s \nu_{(\tau)} \nu_{(\tau)}$$

Being a vector, possibility to realize a $U(2)^5$ from a flavor non-universal gauge symmetry (possible connection to the SM flavor puzzle)

Third-family quark-lepton unification: Hint towards Pati-Salam-like unification

5

Gauge UV Completion for the U1 Leptoquark

Third family quark-lepton unification at the TeV scale

- 3rd family charged under $SU(4)_h$ \implies Direct NP couplings (L+R)
- Light families under 321 (SM-like)
- Accidental approximate $U(2)^5$ flavor symmetry: $\psi = (\psi_1 \psi_2 \psi_3)$

Field	$SU(4)_h$	$SU(3)_l$	$SU(2)_L$	$U(1)_{l+R}$
q_L^i	1	3	2	1/6
u_R^i	1	3	1	2/3
d_R^i	1	3	1	-1/3
ℓ_L^i	1	1	2	-1/2
e_R^i	1	1	1	-1
ψ_L	4	1	2	0
ψ_R^{\pm}	4	1	1	$\pm 1/2$
$\chi_{L,R}$	4	1	2	0
Н	1	1	2	1/2
Ω_1	$\overline{4}$	1	1	-1/2
Ω_3	$\overline{4}$	3	1	1/6
Ω_{15}	15	1	1	0

1st & 2nd families

3rd family

Third family quark-lepton unification at the TeV scale

Based on "4321" gauge symmetry:

 $U(1)_Y$

 $SU(4)_h \times SU(3)_l \times SU(2)_L \times U(1)_{l+R} \qquad (\Omega_{1,3,15}) \sim \mathcal{O}(\text{TeV})$

 $SU(3)_c$

• CKM mixing and NP couplings to light families from the leading O(0.1) breaking of $U(2)_q \times U(2)_{\ell}$:

$$\mathcal{L} \supset -\bar{q}_L^i \lambda_q^i \Omega_3 \chi_R - \bar{\ell}_L^i \lambda_\ell^i \Omega_1 \chi_R$$
$$-y_+ \bar{\chi}_L \tilde{H} \psi_R^+ - y_- \bar{\chi}_L H \psi_R^-$$

[di Luzio, Greljo, Nardecchia <u>1708.08450</u> Bordone, Cornella, Fuentes-Martin, Isidori <u>1712.01368</u>, <u>1805.09328</u>; Greljo, BAS, <u>1802.04274</u>; Cornella, Fuentes-Martin, Isidori <u>1903.11517</u>]

$$\stackrel{(f)}{\longrightarrow} SU(3)_c \times SU(2)_L \times U(1)_Y + U_1, G', Z' \qquad \chi = \begin{pmatrix} Q \\ L \end{pmatrix}$$

Field	$SU(4)_h$	$SU(3)_l$	$SU(2)_L$	$U(1)_{l+R}$	
q_L^i	1	3	2	1/6	
u_R^i	1	3	1	2/3	1st & 2nd
d_R^i	1	3	1	-1/3	families
$\ell_L^{\overline{i}}$	1	1	2	-1/2	141111165
$e_R^{\overline{i}}$	1	1	1	-1	
ψ_L	4	1	2	0	3rd family
ψ_R^{\pm}	4	1	1	$\pm 1/2$	Ordinaring
$\chi_{L,R}$	4	1	2	0	VL fermion
H	1	1	2	1/2	
Ω_1	$\overline{4}$	1	1	-1/2	1001 000
Ω_3	$\overline{4}$	3	1	1/6	4021 00D
Ω_{15}	15	1	1	0	scalars

Scalar sector: See Julie's talk!

8

Roadmap to a Multi-scale Theory of Flavor

Flavor in Randall-Sundrum Models

- 5D Yukawa couplings are anarchical, Higgs in the IR
- Localize top in the IR, light families in the UV
- Light family Yukawas receive exponential suppression
- But, **RH** fields must reach the IR where **KK** modes peak

Dangerous dipoles (among others) generated at the IR scale

$$\sim \frac{g_*^2}{16\pi^2} \frac{m_e}{\Lambda_{\rm IR}^2} \bar{e}_L \sigma_{\mu\nu} e_R F^{\mu\nu}$$

Benefits of a Multi-Scale Solution for Flavor

- Higgs profile extended into the bulk, RH fields localized in branes
- Light family Yukawas now done in the UV, smallness explained by the exponentially falling Higgs profile
- U(2) flavor symmetry with leading breaking in the LH sector.
- Dangerous operators involving RH fields naturally suppressed

[Dvali, Shifman, <u>'00;</u> Panico, Pomarol, <u>1603.06609</u>]

Dangerous dipoles now suppressed by the UV scales

$$\sim \frac{g_*^2}{16\pi^2} \frac{m_e}{\Lambda_1^2} \bar{e}_L \sigma_{\mu\nu} e_R F^{\mu\nu}$$

Higgs VEV Profile

$$\langle H \rangle \sim v_{\rm EW} e^{-k(L-y)}$$

*Fermion mass hierarchy fixes the total volume:

 $kL \approx \ln(m_t/m_u) \approx 10$

[Fuentes-Martin, Isidori, Pagès, BAS, <u>2012.10492</u>

Roadmap to a Multi-scale Theory of Flavor

4321 symmetry breaking and EWSB: Parallels

4321 symmetry breaking and EWSB: Parallels

Global symmetry	$\mathcal{G}_{\text{global}} = SU(4)_h \times SU(4)_l \times SO(5)$	
Gauge symmetry	$\mathscr{G}_{\text{gauge}} = SU(4)_h \times SU(3)_l \times SU(2)_L \times U(1)_{l+R}$	(4321 gauged)

[Fuentes-Martin, Stangl, 2004.11376]

[Fuentes-Martin, Isidori, Lizana, Selimovic, BAS, 2203.01952]

Ben A. Stefanek | Flavor hierarchies, flavor anomalies, and the Higgs mass from a warped extra dimension

"Minimal Composite	$SO(5) \rightarrow SO(4) \equiv SU(2)_L \times SU(2)_R + 4$ NGBs	[Agashe, Contino, Pomarol,
Higgs (MCHM)"	\bigstar [4NGBs ~ 4 or (2, $\overline{2}$) \longleftrightarrow H]	<u>nep-pn/0412009</u>

Global symmetry	$\mathcal{G}_{\text{global}} = SU(4)_h \times SU(4)_l \times SO(5)$	$(4_h \times 4_l \times \text{MCHM})$
Gauge symmetry	$\mathscr{G}_{\text{gauge}} = SU(4)_h \times SU(3)_l \times SU(2)_L \times U(1)_{l+R}$	(4321 gauged)

[Fuentes-Martin, Stangl, 2004.11376]

[Fuentes-Martin, Isidori, Lizana, Selimovic, BAS, 2203.01952]

Ben A. Stefanek | Flavor hierarchies, flavor anomalies, and the Higgs mass from a warped extra dimension

[Agashe, Contino, Pomarol,

hep-ph/0412089]

liggs (MCHM)"	$\bigstar [4 \text{ NGBs} \sim 4 \text{ or } (2, \overline{2}) \leftrightarrow H]$	<u>o-ph/0412089</u> j
Global symmetry	$\mathscr{G}_{global} = SU(4)_h \times SU(4)_l \times SO(5)$	$(4_h \times 4_l \times \text{MCHM})$
Gauge symmetry	$\mathscr{G}_{\text{gauge}} = SU(4)_h \times SU(3)_l \times SU(2)_L \times U(1)_{l+R}$	(4321 gauged)
Spontaneously brok	ten by a condensate at some IR scale $f \sim \text{few TeV}$	
Global SBB	$\mathscr{G}_{\mathrm{IR}} = SU(4)_D \times SO(4)$	(Custodial sym.)
Gauge SSB	$\mathscr{G}_0 = \mathscr{G}_{\text{gauge}} \cap \mathscr{G}_{\text{IR}} = SU(3)_c \times SU(2)_L \times U(1)_Y$	(Standard Model)
Goldstones	15 + 4 (15 eaten + NGB Higgs)	$(U_1,G',Z'+H)$

 $SO(5) \rightarrow SO(4) \equiv SU(2)_L \times SU(2)_R + 4$ NGBs

[Fuentes-Martin, Stangl, 2004.11376]

"Minimal Composite

[Fuentes-Martin, Isidori, Lizana, Selimovic, BAS, 2203.01952]

Ben A. Stefanek | Flavor hierarchies, flavor anomalies, and the Higgs mass from a warped extra dimension

[Agashe, Contino, Pomarol,

hep-ph/0412089]

Higgs (MCHM)"	★ $[4 \text{ NGBs} \sim 4 \text{ or } (2, \overline{2}) \leftrightarrow H]$	<u>J-pri/0412069</u> j					
Global symmetry	$\mathcal{G}_{\text{global}} = SU(4)_h \times SU(4)_l \times SO(5)$	$(4_h \times 4_l \times \text{MCHM})$					
Gauge symmetry	$\mathscr{G}_{gauge} = SU(4)_h \times SU(3)_l \times SU(2)_L \times U(1)_{l+R}$	(4321 gauged)					
Spontaneously broke	Spontaneously broken by a condensate at some IR scale $f \sim \text{few TeV}$						
Global SBB	$\mathcal{G}_{\mathrm{IR}} = SU(4)_D \times SO(4)$	(Custodial sym.)					
Gauge SSB	$\mathscr{G}_0 = \mathscr{G}_{\text{gauge}} \cap \mathscr{G}_{\text{IR}} = SU(3)_c \times SU(2)_L \times U(1)_Y$	(Standard Model)					
Goldstones	15 + 4 (15 eaten + NGB Higgs)	$(U_1,G^\prime,Z^\prime+H)$					

 $SO(5) \rightarrow SO(4) \equiv SU(2)_L \times SU(2)_R + 4$ NGBs

SM Higgs emerges as a Nambu-Goldstone boson of the same (strong) dynamics breaking 4321 gauge symmetry!

15

[Fuentes-Martin, Stangl, 2004.11376]

'Minimal Composite)

[Fuentes-Martin, Isidori, Lizana, Selimovic, BAS, 2203.01952]

AdS/CFT correspondence relates a strongly coupled 4D CFT to a 5D theory with a warped fifth dimension.

Warped 5D (AdS₅)

$$ds^2 = e^{-2ky}\eta_{\mu\nu}dx^{\mu}dx^{\nu} - dy^2$$

AdS/CFT correspondence relates a strongly coupled 4D CFT to a 5D theory with a warped fifth dimension.

Warped 5D (AdS₅)

 $ds^2 = e^{-2ky} \eta_{\mu\nu} dx^{\mu} dx^{\nu} - dy^2$

Composite (4D CFT)

• Strongly coupled sector (CFT) with global symmetry $\mathcal{G}_{\rm global}$

AdS/CFT correspondence relates a strongly coupled 4D CFT to a 5D theory with a warped fifth dimension.

Warped 5D (AdS₅)

- Strongly coupled sector (CFT) with global symmetry $\mathcal{G}_{\rm global}$
- Elementary sector with gauge symmetry $\mathscr{G}_{gauge} \subset \mathscr{G}_{global}$

AdS/CFT correspondence relates a strongly coupled 4D CFT to a 5D theory with a warped fifth dimension.

Warped 5D (AdS₅)

 $ds^2 = e^{-2ky}\eta_{\mu\nu}dx^{\mu}dx^{\nu} - dy^2$

- Strongly coupled sector (CFT) with global symmetry $\mathcal{G}_{\rm global}$
- Elementary sector with gauge symmetry $\mathscr{G}_{gauge} \subset \mathscr{G}_{global}$
- CFT becomes strongly coupled at some IR scale and spontaneously breaks $\mathscr{G}_{\text{global}} \to \mathscr{G}_{\text{IR}}$

AdS/CFT correspondence relates a strongly coupled 4D CFT to a 5D theory with a warped fifth dimension.

Warped 5D (AdS₅)

 $ds^2 = e^{-2ky}\eta_{\mu\nu}dx^{\mu}dx^{\nu} - dy^2$

- Strongly coupled sector (CFT) with global symmetry $\mathcal{G}_{\rm global}$
- Elementary sector with gauge symmetry $\mathscr{G}_{gauge} \subset \mathscr{G}_{global}$
- CFT becomes strongly coupled at some IR scale and spontaneously breaks $\mathscr{G}_{\text{global}} \to \mathscr{G}_{\text{IR}}$
- $\bullet~{\rm NGBs}$ in the coset ${\mathscr G}_{\rm global} / {\mathscr G}_{\rm IR}$

AdS/CFT correspondence relates a strongly coupled 4D CFT to a 5D theory with a warped fifth dimension.

Warped 5D (AdS₅)

 $ds^2 = e^{-2ky} \eta_{\mu\nu} dx^{\mu} dx^{\nu} - dy^2$

- Strongly coupled sector (CFT) with global symmetry $\mathcal{G}_{\rm global}$
- Elementary sector with gauge symmetry $\mathscr{G}_{gauge} \subset \mathscr{G}_{global}$
- CFT becomes strongly coupled at some IR scale and spontaneously breaks $\mathscr{G}_{\text{global}} \to \mathscr{G}_{\text{IR}}$
- $\bullet~{\rm NGBs}$ in the coset ${\mathscr G}_{\rm global} / {\mathscr G}_{\rm IR}$

 $^{*}\Lambda_{\mathrm{IR}}/\Lambda_{\mathrm{UV}}=e^{-kL}$ Large hierarchy solved à la RS

Fuentes-Martin, Isidori, Lizana, Selimovic, BAS, 2203.01952]

17

Fuentes-Martin, Isidori, Lizana, Selimovic, BAS, 2203.01952]

ver exemplies and the Higgs me

Fuentes-Martin, Isidori, Lizana, Selimovic, BAS, 2203.01952]

17

Gauge Sector

[Fuentes-Martin, Isidori, Lizana, Selimovic, BAS, 2203.01952]

18

Gauge-Higgs Unification and the Top Yukawa

Field	$SU(4)_h$	$SU(4)_l$	SO(5)	W^3 —	$\psi^{3}(+,+)$	q_L	$SU(2)_L$
Ψ^3	4	1	4	Ψ —	$\begin{bmatrix} \psi_u (\cdot, \cdot) \\ \tilde{\psi}_d^3 (+, -) \end{bmatrix}$	$B_{L,R}$	$SU(2)_R$

[Fuentes-Martin, Isidori, Lizana, Selimovic, BAS, 2203.01952]

Ben A. Stefanek | Flavor hierarchies, flavor anomalies, and the Higgs mass from a warped extra dimension

Gauge-Higgs Unification and the Top Yukawa

Can remove H from the bulk due to the SO(5) invariance:

$$W(x) = e^{-i\theta(x)}, \quad \theta(x) = g_5 \int_0^L dy \, A_5(x,y) = \frac{g_*}{\sqrt{2}} \frac{T^{\hat{a}} h^{\hat{a}}}{\Lambda_{\rm IR}}$$

[Fuentes-Martin, Isidori, Lizana, Selimovic, BAS, 2203.01952]

19

Gauge-Higgs Unification and the Top Yukawa

$$\mathcal{L}_{4\mathrm{D}} \supset -\frac{g_*}{2\sqrt{2}} \,\bar{\psi}_L^3 H \psi_{uR}^3 \, P(M_{\Psi^3}) \qquad (g_*^2 = g_5^2 k) \qquad \text{For } y_t : g_* \ge 2.2$$

Field	$SU(4)_h$	$SU(4)_l$	SO(5)
$\Psi^3, \Psi^3_d, \mathcal{X}^{(\prime)}$	4	1	4
$\Psi^j, \Psi^j_{u,d}$	1	4	4

21

[Fuentes-Martin, Isidori, Lizana, Selimovic, BAS, 2203.01952]

Field	$SU(4)_h$	$SU(4)_l$	SO(5)
$\Psi^3, \Psi^3_d, \mathcal{X}^{(\prime)}$	4	1	4
$\Psi^j, \Psi^j_{u,d}$	1	4	4

21

[Fuentes-Martin, Isidori, Lizana, Selimovic, BAS, 2203.01952]

Field	$SU(4)_h$	$SU(4)_l$	SO(5)
$\Psi^3, \Psi^3_d, \mathcal{X}^{(\prime)}$	4	1	4
$\Psi^j, \Psi^j_{u,d}$	1	4	4

- Mixing (Yukawa and VL) only occurs in the IR due to gauge symmetry (can be different for quarks and leptons).
- Results in a U(2) flavor symmetry with leading breaking in the LH sector.

[Fuentes-Martin, Isidori, Lizana, Selimovic, BAS, 2203.01952]

Ben A. Stefanek | Flavor hierarchies, flavor anomalies, and the Higgs mass from a warped extra dimension

Field	$SU(4)_h$	$SU(4)_l$	SO(5)
$\Psi^3, \Psi^3_d, \mathcal{X}^{(\prime)}$	4	1	4
$\Psi^j, \Psi^j_{u,d}$	1	4	4

- Mixing (Yukawa and VL) only occurs in the IR due to gauge symmetry (can be different for quarks and leptons).
- Results in a U(2) flavor symmetry with leading breaking in the LH sector.

[Fuentes-Martin, Isidori, Lizana, Selimovic, BAS, 2203.01952]

Ben A. Stefanek | Flavor hierarchies, flavor anomalies, and the Higgs mass from a warped extra dimension

Field	$SU(4)_h$	$SU(4)_l$	SO(5)
$\Psi^3, \Psi^3_d, \mathcal{X}^{(\prime)}$	4	1	4
$\Psi^j, \Psi^j_{u,d}$	1	4	4

- Mixing (Yukawa and VL) only occurs in the IR due to gauge symmetry (can be different for quarks and leptons).
- Results in a U(2) flavor symmetry with leading breaking in the LH sector.

[Fuentes-Martin, Isidori, Lizana, Selimovic, BAS, 2203.01952]

Ben A. Stefanek | Flavor hierarchies, flavor anomalies, and the Higgs mass from a warped extra dimension

Field	$SU(4)_h$	$SU(4)_l$	SO(5)
$\Psi^j, \Psi^j_{u,d}$	1	4	4
Σ	1	1	5

 Sigma Σ^T ~ (H' φ) takes a VEV along the singlet direction and propagates the breaking of SO(5) into the bulk:

$$\mathcal{L}_{5\mathrm{D}} \supset -Y_{u,d}^{ij} \,\overline{\Psi}^i \,\Sigma^a \,\Gamma^a \,P_R \Psi_{u,d}^j$$

[Panico, Pomarol, <u>1603.06609</u>]

[Fuentes-Martin, Isidori, Lizana, Selimovic, BAS, 2203.01952]

Ben A. Stefanek | Flavor hierarchies, flavor anomalies, and the Higgs mass from a warped extra dimension

Field	$SU(4)_h$	$SU(4)_l$	SO(5)
$\Psi^j, \Psi^j_{u,d}$	1	4	4
Σ	1	1	5

• Sigma $\Sigma^T \sim (H' \phi)$ takes a VEV along the singlet direction and propagates the breaking of SO(5) into the bulk:

$$\mathcal{L}_{5\mathrm{D}} \supset -Y_{u,d}^{ij} \,\bar{\Psi}^i \,\Sigma^a \,\Gamma^a \,P_R \Psi_{u,d}^j$$

[Panico, Pomarol, <u>1603.06609</u>]

[Fuentes-Martin, Isidori, Lizana, Selimovic, BAS, 2203.01952]

Ben A. Stefanek | Flavor hierarchies, flavor anomalies, and the Higgs mass from a warped extra dimension

Field	$SU(4)_h$	$SU(4)_l$	SO(5)
$\Psi^j, \Psi^j_{u,d}$	1	4	4
Σ	1	1	5

• Sigma $\Sigma^T \sim (H' \phi)$ takes a VEV along the singlet direction and propagates the breaking of SO(5) into the bulk:

$$\mathcal{L}_{5\mathrm{D}} \supset -Y_{u,d}^{ij} \,\bar{\Psi}^i \,\Sigma^a \,\Gamma^a \,P_R \Psi_{u,d}^j$$

[Panico, Pomarol, 1603.06609]

[Fuentes-Martin, Isidori, Lizana, Selimovic, BAS, 2203.01952]

Ben A. Stefanek | Flavor hierarchies, flavor anomalies, and the Higgs mass from a warped extra dimension

Field	$SU(4)_h$	$SU(4)_l$	SO(5)
$\Psi^j, \Psi^j_{u,d}$	1	4	4
Σ	1	1	5

• Sigma $\Sigma^T \sim (H' \phi)$ takes a VEV along the singlet direction and propagates the breaking of SO(5) into the bulk:

$$\mathcal{L}_{5\mathrm{D}} \supset -Y_{u,d}^{ij} \,\bar{\Psi}^i \,\Sigma^a \,\Gamma^a \,P_R \Psi_{u,d}^j$$

[Panico, Pomarol, <u>1603.06609</u>]

[Fuentes-Martin, Isidori, Lizana, Selimovic, BAS, 2203.01952]

Ben A. Stefanek | Flavor hierarchies, flavor anomalies, and the Higgs mass from a warped extra dimension

Field	$SU(4)_h$	$SU(4)_l$	SO(5)
$\Psi^j, \Psi^j_{u,d}$	1	4	4
Σ	1	1	5

• Sigma $\Sigma^T \sim (H' \phi)$ takes a VEV along the singlet direction and propagates the breaking of SO(5) into the bulk:

$$\mathcal{L}_{5\mathrm{D}} \supset -Y_{u,d}^{ij} \,\bar{\Psi}^i \,\Sigma^a \,\Gamma^a \,P_R \Psi_{u,d}^j$$

[Panico, Pomarol, <u>1603.06609</u>]

[Fuentes-Martin, Isidori, Lizana, Selimovic, BAS, 2203.01952]

Ben A. Stefanek | Flavor hierarchies, flavor anomalies, and the Higgs mass from a warped extra dimension

Field	$SU(4)_h$	$SU(4)_l$	SO(5)
$\boxed{ \Psi^j, \Psi^j_{u,d} }$	1	4	4
Σ	1	1	5

• Sigma $\Sigma^T \sim (H' \phi)$ takes a VEV along the singlet direction and propagates the breaking of SO(5) into the bulk:

$$\mathcal{L}_{5\mathrm{D}} \supset -Y_{u,d}^{ij} \,\bar{\Psi}^i \,\Sigma^a \,\Gamma^a \,P_R \Psi_{u,d}^j$$

[Panico, Pomarol, <u>1603.06609</u>]

[Fuentes-Martin, Isidori, Lizana, Selimovic, BAS, 2203.01952]

Ben A. Stefanek | Flavor hierarchies, flavor anomalies, and the Higgs mass from a warped extra dimension

A Comment on Neutrino Masses

\sim	$\begin{pmatrix} u_R \\ v_R \end{pmatrix}$,	m_v^i
	$\langle \Lambda \rangle$		

 Ψ_u

$$m_v^i \sim \frac{(M_u^i)^2}{M_R^i} \to \frac{(M_u^i)^2}{\Lambda_i}$$

3rd Family

• Type 1 Seesaw would give:

[Fuentes-Martin, Isidori, Pages, BAS, 2012.10492]

[Fuentes-Martin, Isidori, Lizana, Selimovic, BAS, 2203.01952]

Ben A. Stefanek | Flavor hierarchies, flavor anomalies, and the Higgs mass from a warped extra dimension

Neutrino Masses via an Inverse Seesaw Mechanism

ISS

$$W(x) = e^{-i\theta(h(x)/f)}$$

- Potential is a function of the Wilson line.
- Tree-level contributions from the bulk scalars Σ , Ω that break SO(5).
- 1-loop dominantly from the top and EW gauge bosons. Finite and fully calculable.

Field

$$SU(4)_h$$
 $SU(4)_l$
 $SO(5)$
 Ψ^3
 4
 1
 4

 Σ
 1
 1
 5

 Ω
 1
 4
 4

$$\begin{array}{cccc} \langle \Omega, \Sigma \rangle & \langle \Omega, \Sigma \rangle & & & t^{\binom{*}{}} & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

25

[Fuentes-Martin, Isidori, Lizana, Selimovic, BAS, 2203.01952]

$$V(h) \approx \alpha \cos\left(\frac{h}{f}\right) - \beta \sin^2\left(\frac{h}{f}\right)$$
$$\downarrow$$
$$\Psi^3, \Omega \qquad \Psi^3, \Sigma, W, Z$$

Field	$SU(4)_h$	$SU(4)_l$	SO(5)
Ψ^3	4	1	4
Σ	1	1	5
Ω	1	4	4

Higgs Mass :

Higgs VEV $(\alpha \approx -2\beta)$:

$$V(h) \approx \alpha \cos\left(\frac{h}{f}\right) - \beta \sin^2\left(\frac{h}{f}\right)$$
$$\downarrow$$
$$\Psi^3, \Omega \qquad \Psi^3, \Sigma, W, Z$$

Field	$SU(4)_h$	$SU(4)_l$	SO(5)
Ψ^3	4	1	4
Σ	1	1	5
Ω	1	4	4

Higgs Mass :

Higgs VEV ($\alpha \approx -2\beta$) :

$$m_h^2 \equiv 2\lambda \langle h \rangle^2 \approx \frac{2\beta \langle h \rangle^2}{f^4}$$
 $\cos(\langle h \rangle / f) = -\frac{\alpha}{2\beta}$

$$\lambda \approx \frac{1}{16\pi^2} \left[N_c y_t^4 \log \frac{\Lambda_{\rm IR}^2}{m_t^2} - \frac{9}{32} \zeta(3) g_*^2 \left(3g_L^2 + g_Y^2 \right) + \frac{\pi^2 g_*^4}{2(kL)^2} \frac{\langle \Sigma_{\rm IR} \rangle^2}{\Lambda_{\rm IR}^2} (\tilde{M}_{H'} - \tilde{M}_S) \right]$$

Quartic of the right size for $g_* \approx 2.5$, also compatible with the top Yukawa.

[Fuentes-Martin, Isidori, Lizana, Selimovic, BAS, 2203.01952]

Little hierarchy and the B-anomalies

Our model connects the mass of the 4321 gauge bosons to fine-tuning in the Higgs potential.

$$U_1, G', Z'$$
 Masses : $M_{15} = \frac{M_{KK}}{\sqrt{2kL}} = \frac{g_* f}{\sqrt{2kL}}$ $(g_* \approx 2.5, kL \approx 10)$

Fine tuning :
$$\frac{v^2}{f^2}$$

[Fuentes-Martin, Isidori, Lizana, Selimovic, BAS, 2203.01952]

27

Little hierarchy and the B-anomalies

Our model connects the mass of the 4321 gauge bosons to fine-tuning in the Higgs potential.

$$U_1, G', Z'$$
 Masses : $M_{15} = \frac{M_{KK}}{\sqrt{2kL}} = \frac{g_* f}{\sqrt{2kL}}$ $(g_* \approx 2.5, kL \approx 10)$

Fine tuning :
$$\frac{v^2}{f^2}$$
 Light U_1 leptoquark preferred to minimize fine-tuning!

*But also a light coloron- direct searches require $M_{15} \gtrsim 3.5 \,\text{TeV}$ which translates to $f \gtrsim 6.4 \,\text{TeV}$.

[Fuentes-Martin, Isidori, Lizana, Selimovic, BAS, 2203.01952]

Little hierarchy and the B-anomalies

Our model connects the mass of the 4321 gauge bosons to fine-tuning in the Higgs potential.

$$U_1, G', Z'$$
 Masses : $M_{15} = \frac{M_{\rm KK}}{\sqrt{2kL}} = \frac{g_* f}{\sqrt{2kL}}$ $(g_* \approx 2.5, \ kL \approx 10)$

Fine tuning :
$$\frac{v^2}{f^2}$$
 Light U_1 leptoquark preferred to minimize fine-tuning!

*But also a light coloron- direct searches require $M_{15} \gtrsim 3.5 \text{ TeV}$ which translates to $f \gtrsim 6.4 \text{ TeV}$.

27

Fine tuning :
$$\frac{v^2}{f^2} \approx 10^{-3}$$

(Could be improved slightly by splitting the 4321 gauge boson masses.)

[Fuentes-Martin, Isidori, Lizana, Selimovic, BAS, 2203.01952]

• Low energy pheno is the same as in the non-universal 4321 model.

[Fuentes-Martin, Isidori, Lizana, Selimovic, BAS, 2203.01952]

- Low energy pheno is the same as in the non-universal 4321 model.
- Strongest bound on the overall scale comes from coloron direct searches.

Benchmark Spectrum : $M_{\rm KK} \approx 2\Lambda_{\rm IR} = 16 \,{\rm TeV}$ $\Lambda_{\rm IR} = 8 \,{\rm TeV}$ $f \approx \frac{M_{\rm KK}}{g_*} \approx 6.4 \,{\rm TeV}$ $M_{15} \approx \frac{g_* f}{\sqrt{2kL}} \approx 3.6 \,{\rm TeV}$

[Fuentes-Martin, Isidori, Lizana, Selimovic, BAS, 2203.01952]

28

- Low energy pheno is the same as in the non-universal 4321 model.
- Strongest bound on the overall scale comes from coloron direct searches.
- Leading deviation in 3rd family EW vertex corrections from $KK \leftrightarrow SM$ mixing.

Benchmark Spectrum : $M_{\rm KK} \approx 2\Lambda_{\rm IR} = 16 \,{\rm TeV}$ $\Lambda_{\rm IR} = 8 \,{\rm TeV}$ $f \approx \frac{M_{\rm KK}}{g_*} \approx 6.4 \,{\rm TeV}$ $M_{15} \approx \frac{g_* f}{\sqrt{2kL}} \approx 3.6 \,{\rm TeV}$

Leading effect in $Z \rightarrow \tau_L \tau_L$

 $\frac{\delta g_{Z\Psi^{3}\Psi^{3}}}{g_{Z\Psi^{3}\Psi^{3}}} \approx -0.3 \frac{m_{Z}^{2}}{M_{\rm KK}^{2}} \frac{g_{*}^{2}}{g_{L}^{2}} \approx -\frac{0.3}{4c_{W}^{2}} \frac{\langle h \rangle^{2}}{f^{2}} \lesssim 10^{-3}$

[Fuentes-Martin, Isidori, Lizana, Selimovic, BAS, 2203.01952]

Ben A. Stefanek | Flavor hierarchies, flavor anomalies, and the Higgs mass from a warped extra dimension

- Low energy pheno is the same as in the non-universal 4321 model.
- Strongest bound on the overall scale comes from coloron direct searches.
- Leading deviation in 3rd family EW vertex corrections from $KK \leftrightarrow SM$ mixing.

 $\frac{\text{Benchmark Spectrum :}}{M_{\text{KK}} \approx 2\Lambda_{\text{IR}} = 16 \text{ TeV}}$ $\Lambda_{\text{IR}} = 8 \text{ TeV}$ $f \approx \frac{M_{\text{KK}}}{g_*} \approx 6.4 \text{ TeV}$ $M_{15} \approx \frac{g_* f}{\sqrt{2kL}} \approx 3.6 \text{ TeV}$

Leading effect in $Z \rightarrow \tau_L \tau_L$

 $\frac{\delta g_{Z\Psi^{3}\Psi^{3}}}{g_{Z\Psi^{3}\Psi^{3}}} \approx -0.3 \frac{m_{Z}^{2}}{M_{\rm KK}^{2}} \frac{g_{*}^{2}}{g_{L}^{2}} \approx -\frac{0.3}{4c_{W}^{2}} \frac{\langle h \rangle^{2}}{f^{2}} \lesssim 10^{-3} \qquad [f > 2.5 \,{\rm TeV} \ (M_{\rm KK} > 6 \,{\rm TeV})]$

28

[Fuentes-Martin, Isidori, Lizana, Selimovic, BAS, 2203.01952]

We presented a model where flavor hierarchies naturally emerge from a 3-brane structure in a warped extra dimension, where each SM family is quasi-localized on a different brane.

- We presented a model where flavor hierarchies naturally emerge from a 3-brane structure in a warped extra dimension, where each SM family is quasi-localized on a different brane.
- Our construction results in a $U(2)^n$ flavor symmetry with leading breaking in the left-handed sector.

- We presented a model where flavor hierarchies naturally emerge from a 3-brane structure in a warped extra dimension, where each SM family is quasi-localized on a different brane.
- Our construction results in a $U(2)^n$ flavor symmetry with leading breaking in the left-handed sector.
- The Higgs emerges as a pseudo-Nambu-Goldstone boson from the same strong dynamics that breaks 4321 gauge symmetry.

- We presented a model where flavor hierarchies naturally emerge from a 3-brane structure in a warped extra dimension, where each SM family is quasi-localized on a different brane.
- Our construction results in a $U(2)^n$ flavor symmetry with leading breaking in the left-handed sector.
- The Higgs emerges as a pseudo-Nambu-Goldstone boson from the same strong dynamics that breaks 4321 gauge symmetry.
- At low energies, the model reduces to the 4321 model, which is known to provide a good explanation of the *B*-meson anomalies.

Backup Slides

IR Masses

$$\begin{split} \Psi^{3} &= \begin{bmatrix} \psi^{3}\left(+,+\right) \\ \psi^{3}_{u}\left(-,-\right) \\ \tilde{\psi}^{3}_{d}\left(+,-\right) \end{bmatrix} , \qquad \Psi^{3}_{d} &= \begin{bmatrix} \tilde{\psi}^{3}\left(+,-\right) \\ \tilde{\psi}^{3}_{u}\left(+,-\right) \\ \psi^{3}_{d}\left(+,-\right) \end{bmatrix} , \\ \mathcal{X}^{(\prime)} &= \begin{bmatrix} \chi^{(\prime)}(\pm,\pm) \\ \chi^{(\prime)}_{u}(\pm,\pm) \\ \chi^{(\prime)}_{d}(\pm,\pm) \end{bmatrix} , \qquad \Psi^{j} &= \begin{bmatrix} \psi^{j}\left(+,+\right) \\ \tilde{\psi}^{j}_{u}\left(-,+\right) \\ \tilde{\psi}^{j}_{d}\left(-,+\right) \end{bmatrix} , \\ \Psi^{j}_{u} &= \begin{bmatrix} \tilde{\psi}^{j}\left(+,-\right) \\ \psi^{j}_{u}\left(-,-\right) \\ \psi^{j}_{d}\left(+,-\right) \end{bmatrix} , \qquad \Psi^{j}_{d} &= \begin{bmatrix} \hat{\psi}^{j}\left(+,-\right) \\ \hat{\psi}^{j}_{u}\left(+,-\right) \\ \psi^{j}_{d}\left(-,-\right) \end{bmatrix} , \end{split}$$

$$\mathcal{L}_{\mathrm{IR}} \supset \left(\bar{\mathcal{X}}_L \tilde{M}_{\chi} + \bar{\Psi}_L^3 \tilde{M}_{\Psi} + \bar{\Psi}_L^j \tilde{m}_{\psi}^j \right) \mathcal{P}_L \mathcal{X}_R' \,,$$

$$\mathcal{L}_{\mathrm{IR}} \supset \bar{\Psi}_{L}^{3} \tilde{M}_{\Psi d}^{L} \mathcal{P}_{L} \Psi_{dR}^{3} + \bar{\mathcal{X}}_{L} (\tilde{M}_{\chi d}^{L} \mathcal{P}_{L} + \tilde{M}_{\chi d}^{R} \mathcal{P}_{R}) \Psi_{dR}^{3} + \bar{\Psi}_{L}^{j} \tilde{m}_{\Psi j}^{R} \mathcal{P}_{R} \Psi_{R}^{3} + \bar{\Psi}_{L}^{j} (\tilde{m}_{dj}^{L} \mathcal{P}_{L} + \tilde{m}_{dj}^{R} \mathcal{P}_{R}) \Psi_{dR}^{3}$$

[Fuentes-Martin, Isidori, Lizana, Selimovic, BAS, 2203.01952]

32

Holographic Lagrangian

$$\begin{split} -\mathcal{L} \supset \frac{\Lambda_{\mathrm{IR}}}{\sqrt{kL}} \left[(\bar{\psi}_{L}^{3} \tilde{M}_{\Psi} + \bar{\chi}_{L} \tilde{M}_{\chi} + e^{-\frac{kz_{j}}{2}} \bar{\psi}_{L}^{j} \tilde{m}_{\psi}^{j}) \chi_{R}^{\prime} \right] \\ &+ \frac{g_{*}}{2\sqrt{2}} \left[\bar{\psi}_{L}^{3} H \psi_{uR}^{3} - e^{-\frac{kz_{j}}{2}} \bar{\psi}_{L}^{j} \tilde{m}_{\Psi j}^{R} H \psi_{uR}^{3} \right. \\ &+ e^{-\frac{kz_{j}}{2}} \left(\bar{\psi}_{L}^{3} \tilde{M}_{\Psi d}^{L} H \psi_{dR}^{3} + \bar{\chi}_{L} (\tilde{M}_{\chi d}^{L} - \tilde{M}_{\chi d}^{R}) H \psi_{dR}^{3} \right) \\ &+ e^{-kz_{j}} \bar{\psi}_{L}^{j} (\tilde{m}_{dj}^{L} - \tilde{m}_{dj}^{R}) H \psi_{dR}^{3} \right] + \mathrm{h.c.} \,, \end{split}$$

[Fuentes-Martin, Isidori, Lizana, Selimovic, BAS, 2203.01952]

Field	$SU(4)_h$	$SU(4)_l$	SO(5)
$\Psi^3, \Psi^3_d, \mathcal{X}^{\prime\prime}$	4	1	4
$\Psi^j, \Psi^j_{u,d}$	1	4	4
\mathcal{S}^i	1	1	1
Σ	1	1	5
Ω	1	4	4
Φ	1	1	1

$$\begin{split} \Psi^{3} &= \begin{bmatrix} \psi^{3}\left(+,+\right) \\ \psi^{3}_{u}\left(-,-\right) \\ \tilde{\psi}^{3}_{d}\left(+,-\right) \end{bmatrix}, \qquad \Psi^{3}_{d} &= \begin{bmatrix} \tilde{\psi}^{3}\left(+,-\right) \\ \tilde{\psi}^{3}_{u}\left(+,-\right) \\ \psi^{3}_{d}\left(+,-\right) \end{bmatrix}, \\ \mathcal{X}^{(\prime)} &= \begin{bmatrix} \chi^{(\prime)}(\pm,\pm) \\ \chi^{(\prime)}_{u}(\mp,\pm) \\ \chi^{(\prime)}_{d}(\mp,\pm) \end{bmatrix}, \qquad \Psi^{j} &= \begin{bmatrix} \psi^{j}\left(+,+\right) \\ \tilde{\psi}^{j}_{u}\left(-,+\right) \\ \tilde{\psi}^{j}_{d}\left(-,+\right) \end{bmatrix}, \\ \Psi^{j}_{u} &= \begin{bmatrix} \tilde{\psi}^{j}\left(+,-\right) \\ \psi^{j}_{u}\left(-,-\right) \\ \psi^{j}_{u}\left(+,-\right) \\ \psi^{j}_{d}\left(+,-\right) \end{bmatrix}, \qquad \Psi^{j}_{d} &= \begin{bmatrix} \hat{\psi}^{j}\left(+,-\right) \\ \hat{\psi}^{j}_{u}\left(+,-\right) \\ \psi^{j}_{d}\left(-,-\right) \end{bmatrix}, \end{split}$$

34

$$V(h) = \sum_{r} \frac{N_r}{16\pi^2} \int_0^\infty dp \, p^3 \log\left[\rho_r(-p^2)\right]$$

Field	$SU(4)_h$	$SU(4)_l$	SO(5)
Ψ^3	4	1	4
Σ	1	1	5
Ω	1	4	4

$$V(h) \approx \alpha(h) \cos\left(\frac{h}{f}\right) - \beta(h) \sin^2\left(\frac{h}{f}\right)$$

$$\begin{array}{ll} \underline{\text{VEV}:} & \underline{\text{Quartic}:} \\ \alpha_{\Omega} \approx (\tilde{M}_{\Omega}^{R} - \tilde{M}_{\Omega}^{L}) \Lambda_{\text{IR}}^{2} \langle \Omega_{\text{IR}} \rangle^{2} & \beta_{\Sigma} \approx \frac{1}{2} (\tilde{M}_{H'} - \tilde{M}_{S}) \frac{\Lambda_{\text{IR}}^{2}}{(kL)^{2}} \langle \Sigma_{\text{IR}} \rangle^{2} \\ \alpha_{\Psi^{3}}(h) \approx \frac{3N_{c}f^{4}}{32\pi^{2}} \zeta(3) y_{t}^{2} g_{*}^{2} - 2\beta_{\Psi^{3}}(h) & \beta_{\Psi^{3}}(h) \approx \frac{N_{c}f^{4}}{16\pi^{2}} y_{t}^{4} \left[\gamma + \log \frac{\Lambda_{\text{IR}}^{2}}{m_{t}^{2}(h)} \right] \\ \cos(\langle h \rangle / f) = -\frac{\alpha}{2\beta} & \beta_{\text{EW}} \approx -\frac{9f^{4}}{512\pi^{2}} g_{*}^{2} \zeta(3) \left(3g_{L}^{2} + g_{Y}^{2} \right) \end{array}$$

[Fuentes-Martin, Isidori, Lizana, Selimovic, BAS, 2203.01952]

35