$\Lambda_b ightarrow \Lambda(1520) \mu^+ \mu^-$ angular analysis

Felicia Volle

supervised by Yasmine Amhis, Carla Marín, Marie-Hélène Schune

Flavor at the Crossroads

April 26th, 2022

Felicia Volle (IJCLab Orsay)

Rare decays show deviations from the SM predictions

Differential branching ratios and angular observables

Only few measurements with b-baryon decays

$\Lambda_b \rightarrow p K^- \mu^+ \mu^-$

arXiv:1912.08139v2	(top),	arXiv:150	07.03414	(bottom
--------------------	--------	-----------	----------	---------

		Overall	Status as seen in —		
Particle	J^P	status	$N\overline{K}$	Σπ	Other channels
$\overline{\Lambda(1116)}$	$1/2^{+}$	****			$N\pi$ (weak decay)
$\Lambda(1380)$	$1/2^{-}$	**	**	**	
A(1405)	$1/2^{-}$	****	****	****	
A(1520)	$3/2^{-}$	****	****	****	$\Lambda \pi \pi, \Lambda \gamma$
$\Lambda(1600)$	$1/2^{+}$	****	***	****	$\Lambda \pi \pi, \Sigma(1385)\pi$
$\Lambda(1670)$	$1/2^{-}$	****	****	****	$\Lambda \eta$
A(1690)	$3/2^{-}$	****	****	***	$\Lambda\pi\pi, \Sigma(1385)\pi$
$\Lambda(1710)$	$1/2^{+}$	*	*	*	
$\Lambda(1800)$	$1/2^{-}$	***	***	**	$\Lambda \pi \pi, \Sigma(1385)\pi, N\overline{K}^*$
$\Lambda(1810)$	$1/2^{+}$	***	**	**	$N\overline{K}_2^*$
$\Lambda(1820)$	$5/2^{+}$	****	****	****	$\Sigma(1385)\pi$
A(1830)	$5/2^{-}$	****	****	****	$\Sigma(1385)\pi$
A(1890)	$3/2^{+}$	****	****	**	$\Sigma(1385)\pi, N\overline{K}^*$
$\Lambda(2000)$	$1/2^{-}$	*	*	*	
A(2050)	$3/2^{-}$	*	*	*	
A(2070)	$3/2^{+}$	*	*	*	
A(2080)	$5/2^{-}$	*	*	*	
$\Lambda(2085)$	$7/2^{+}$	**	**	*	
A(2100)	$7/2^{-}$	****	****	**	$N\overline{K}^*$
$\Lambda(2110)$	$5/2^{+}$	***	**	**	$N\overline{K}^*$
A(2325)	$3/2^{-}$	*	*		
A(2350)	$9/2^{+}$	***	***	*	
A(2585)		*	*		

$\Lambda(1405)$ and $\Lambda(1600)$ under $\Lambda(1520)$ mass peak

Felicia Volle (IJCLab Orsay)

 $\Lambda_b \rightarrow \Lambda(1520)\mu^+\mu^-$

Fit model

Analysis overview

- Mass window : $m(pK^-) \in [1470; 1570] \text{ MeV/c}^2$
- q^2 bins : [0.1,3], [3,6], [6,8], [11, 12.5], [15, 16.8], [1,6]
- Observable predictions through flavio
 - based on $\Lambda_b \rightarrow pK^-\ell^+\ell^-$ phenomenology with lattice QCD or QM form-factors [arXiv:1903.00448, arXiv.1108.6129, arXiv:2009.09313]

Angular observables

 $(\theta_\ell, \theta_\rho, \phi)$ in helicity basis

$$\begin{split} d\vec{\Omega} &= d\cos\theta_{\ell}d\cos\theta_{p}d\phi\\ \frac{d^{4}\Gamma}{dq^{2}d\vec{\Omega}} &= \sum_{i}\text{physics}_{i}\times\text{kinematics}_{i}\\ &= \frac{9\pi}{32}\sum_{i}L_{i}(q^{2},\mathcal{C},ff)\times f_{i}(\vec{\Omega}) \end{split}$$

 $\begin{aligned} \mathcal{C} &= \text{Wilson Coefficients} \rightarrow \text{short distance} \\ \text{part} \rightarrow \text{sensitive to NP} \\ ff &= \text{form factors} \rightarrow \text{long distance part} \end{aligned}$

Observables :

$$S_i = rac{L_i + ar{L}_i}{d(\Gamma + ar{\Gamma})/dq^2}, A_i = rac{L_i - ar{L}_i}{d(\Gamma + ar{\Gamma})/dq^2},
onumber \ A_{FB}^\ell = rac{3(L_{1c} + 2L_{2c})}{2(L_{1cc} + 2(L_{1ss} + L_{2cc} + 2L_{2ss} + L_{3ss}))}$$

Fit model

Angular PDF of $\Lambda_{3/2}$ (i.e. $\Lambda(1520)$) in HQlimit

Simplifications :

• Heavy quark limit $(m_b \to \infty)$

• Normalization
$$(\frac{d\Gamma}{dq^2} = 1)$$
:
 $\frac{1}{2}L_{1cc} + L_{1ss} = 1$
 $A_{FB,3/2}^{\ell} = \frac{3}{4}L_{1c}$

③ CP-average $(L_i \rightarrow S_i)$

$$\begin{aligned} &\frac{8\pi}{3} \frac{d^4\Gamma}{dq^2d\cos\theta_\ell d\cos\theta_{\Lambda^*} d\phi} \\ &= \cos^2\theta_{\Lambda^*} \left(L_{1c}\cos\theta_\ell + L_{1cc}\cos^2\theta_\ell + L_{1ss}\sin^2\theta_\ell \right) \\ &+ \sin^2\theta_{\Lambda^*} \left(L_{2c}\cos\theta_\ell + L_{2cc}\cos^2\theta_\ell + L_{2ss}\sin^2\theta_\ell \right) \\ &+ \sin^2\theta_{\Lambda^*} \left(L_{3ss}\sin^2\theta_\ell\cos^2\phi + L_{4ss}\sin^2\theta_\ell\sin\phi\cos\phi \right) \\ &+ \sin\theta_{\Lambda^*}\cos\theta_{\Lambda^*}\cos\phi(L_{5s}\sin\theta_\ell + L_{5sc}\sin\theta_\ell\cos\theta_\ell) \\ &+ \sin\theta_{\Lambda^*}\cos\theta_{\Lambda^*}\sin\phi(L_{6s}\sin\theta_\ell + L_{6sc}\sin\theta_\ell\cos\theta_\ell), \end{aligned}$$

arXiv:1903.00448, arXiv:2005.09602

$$\begin{split} \frac{8\pi}{3} \frac{\mathrm{d}^{4}\Gamma}{\mathrm{d}q^{2}\mathrm{d}\cos\theta_{\ell}\mathrm{d}\cos\theta_{\rho}\mathrm{d}\phi} &\simeq \frac{1}{4}\left(1+3\cos^{2}\theta_{\rho}\right)\left(\left(1-\frac{1}{2}\boldsymbol{S}_{1cc}\right)\left(1-\cos^{2}\theta_{\ell}\right)\right.\\ &+ \left.\boldsymbol{S}_{1cc}\cos^{2}\theta_{\ell} + \frac{4}{3}\boldsymbol{A}_{FB,3/2}^{\ell}\cos\theta_{\ell}\right) \end{split}$$

Angular PDF is only dependent on $\cos \theta_{\ell}$ and $\cos \theta_{p}$. ϕ integration, instead of using the HQlimit, is under investigation.

Felicia Volle (IJCLab Orsay)

 $\Lambda_b \rightarrow \Lambda(1520)\mu^+\mu^-$

Angular PDF of $\Lambda_{1/2}$ (i.e. $\Lambda(1405)$, $\Lambda(1600)$)

Simplifications :

- Strong decay : $\alpha = 0$
- Over the set of the s

OP-average

 $K(q^2,\cos\theta_\ell,\cos\theta_\Lambda,\phi) \equiv \frac{8\pi}{3} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}q^2\,\mathrm{d}\cos\theta_\ell\,\mathrm{d}\cos\theta_\Lambda\,\mathrm{d}\phi}\,,$

which can be decomposed in terms of a set of trigonometric functions,

$$\begin{split} K(q^2,\cos\theta_\ell,\cos\theta_\Lambda,\phi) &= \left(K_{1ss}\sin^2\theta_\ell + K_{1cc}\cos^2\theta_\ell + K_{1c}\cos\theta_\ell\right) \\ &+ \left(K_{2ss}\sin^2\theta_\ell + K_{2cc}\cos^2\theta_\ell + K_{2c}\cos\theta_\ell\right)\cos\theta_\Lambda \\ &+ \left(K_{3sc}\sin\theta_\ell\cos\theta_\ell + K_{3s}\sin\theta_\ell\right)\sin\theta_\Lambda\sin\phi \\ &+ \left(K_{4sc}\sin\theta_\ell\cos\theta_\ell + K_{4s}\sin\theta_\ell\right)\sin\theta_\Lambda\cos\phi \,. \end{split}$$

arXiv:1410.2115

$$\begin{split} \frac{8\pi}{3} \frac{\mathsf{d}^4 \Gamma}{\mathsf{d} q^2 \mathsf{d} \cos \theta_\ell \mathsf{d} \cos \theta_\rho \mathsf{d} \phi} &\simeq \frac{1}{2} \left(1 - \mathcal{K}_{1cc} \right) \left(1 - \cos^2 \theta_\ell \right) + \mathcal{K}_{1cc} \cos^2 \theta_\ell \\ &+ \frac{2}{3} \mathcal{A}_{FB,1/2}^\ell \cos \theta_\ell \end{split}$$

Angular PDF is only dependent on $\cos \theta_{\ell}$. K parameter encode information about $\Lambda_{1/2}$ resonances in m_{pK} window.

Felicia Volle (IJCLab Orsay)

 $\Lambda_b \rightarrow \Lambda(1520)\mu^+\mu^-$

Modeling the $\Lambda(1520)$ mass peak

Difficulty to estimate fraction of $\Lambda(1520)$ events $f_{3/2}$ from an angular fit only \rightarrow get $f_{3/2}$ by fitting the $m(pK^-)$ spectrum

 $\Lambda_b \rightarrow \Lambda(1520) \mu^+ \mu^-$ MC underlines need of relativistic Breit-Wigner :

$$|\mathsf{BW}_{\mathsf{rel}}(M_{\rho\mathsf{K}}, M_{\Lambda^*}, \Gamma_{\Lambda^*})|^2 = \left[\left(\frac{q(M_{\rho\mathsf{K}})}{q(M_{\Lambda^*})} \right)^{L_{\Lambda_b \to \Lambda^* \mu\mu}} \left(\frac{p(M_{\rho\mathsf{K}})}{p(M_{\Lambda^*})} \right)^{L_{\Lambda^* \to \rho\mathsf{K}}} \times F_{\Lambda_b \to \Lambda^* \mu\mu}(q(M_{\rho\mathsf{K}}), q(M_{\Lambda^*}, r_{\Lambda_b})) \frac{F_{\Lambda^* \to \rho\mathsf{K}}(p(M_{\rho\mathsf{K}}), p(M_{\Lambda^*}), r_{\Lambda^*})}{M_{\Lambda^*}^{2*} - M_{\rho\mathsf{K}}^2 - iM_{\Lambda^*}\Gamma(M_{\rho\mathsf{K}}, M_{\Lambda^*})} \right]^2 \\ \Gamma(M_{\rho\mathsf{K}}, M_{\Lambda^*}) = \Gamma_{\Lambda}^* \left(\frac{p(M_{\rho\mathsf{K}})}{p(M_{\Lambda^*})} \right)^{2L_{\Lambda^* \to \rho\mathsf{K}} + 1} \frac{M_{\Lambda^*}}{M_{\rho\mathsf{K}}} F_{\Lambda^* \to \rho\mathsf{K}}^2(\rho(M_{\rho\mathsf{K}}), p(M_{\Lambda^*}))$$

p, q Λ^*, K^- momentum in Λ_b, Λ^* restframe *F* Blatt-Weißkopf form factors

 $r_{\Lambda_b}, r_{\Lambda^*}$ Interaction radius of the Λ_b, Λ^*

 $L_{\Lambda^* \to pK}$ orbital angular momentum between p and K⁻ in the $\Lambda^* \to pK^-$ decay

 $L_{\Lambda_b \to \Lambda^* \mu \mu}$ orbital angular momentum between Λ^* and the dimuon system in the $\Lambda_b \to \Lambda^* \mu \mu$ decay $M_{\Lambda^*}, \Gamma_{\Lambda^*}$ pole mass and width of Λ^*

Fit strategy / physics PDF

Fit pK⁻ spectrum with

 $\mathsf{PDF}_{\mathsf{mass}} = f_{3/2} |\mathsf{BW}_{\mathsf{rel}}(M_{\mathcal{PK}}, M_{\Lambda(1520)}, \Gamma_{\Lambda(1520)})|^2 + (1 - f_{3/2}) \mathsf{Polynomial}_{o3}(M_{\mathcal{PK}}, a_1, a_2, a_3)$

by fixing $M_{\Lambda(1520)}$ and $\Gamma_{\Lambda(1520)}$ to their PDG value, $L_{\Lambda_b \to \Lambda^* \mu \mu} = 1$, $L_{\Lambda^* \to pK} = 2$, $r_{\Lambda_b} = 5 \text{ GeV}^{-1}$, $r_{\Lambda^*} = 3 \text{ GeV}^{-1}$

- Extract f_{3/2}
- Solution Fit angles $(\cos \theta_{\ell}, \cos \theta_{\rho})$ with

 $\mathsf{PDF}_{ang} = \mathit{f}_{3/2} \mathsf{PDF}_{ang,3/2}(A^{\ell}_{FB,3/2}, S_{1cc}) + (1 - \mathit{f}_{3/2}) \mathsf{PDF}_{angular,1/2}(A^{\ell}_{FB,1/2}, \mathit{K}_{1cc})$

Angular acceptance is not included here, but studies are on-going

Realistic samples

- Generator developed by A.Beck, T.Blake and M.Kreps
- Full angular distribution without angular acceptance is worked out
- Generation of single resonances and combinations of several resonances
- Resonances might have global complex phases between them
- Only phase differences important
- Generate random phase combinations for phase differences $\Delta\psi_{1405/1600}$:

phase combination	$\Delta\psi_{ m 1405}$	$\Delta\psi_{1600}$
0	0.00π	0.00π
1	1.38π	1.93π
2	1.10π	1.61π
3	0.43π	0.62 π
4	0.06π	1.38π
5	1.41π	0.70π

Fit realistic samples

- Fit mixture of three individual resonances, namely the $\Lambda(1405)$, $\Lambda(1520)$ and $\Lambda(1600)$
 - ✓ f_{3/2} is known
 - ✓ No interference
 - ✓ Validation of fit model without interferences
- It samples with random phase combinations
 - $\times f_{3/2}$ is à priori not known
 - ✓ Interferences of $\Lambda(1405)$, $\Lambda(1520)$ and $\Lambda(1600)$ are included
 - Adapt fit model

<u>Color code</u> : distribution of the $\Lambda(1520)$, $\Lambda(1405) + \Lambda(1600)$, total PDF

The $m(pK^{-})$ fit

Felicia Volle (IJCLab Orsay)

 $\Lambda_b \rightarrow \Lambda(1520)\mu^+\mu^-$

Angular fit of $\Lambda_{1/2} + \Lambda_{3/2}$ mixture without interferences

All the fits converge nicely and the $\cos \theta_{\rho}$ projections look good

Felicia Volle (IJCLab Orsay)

Angular fit of $\Lambda_{1/2} + \Lambda_{3/2}$ mixture without interferences

 $\cos \theta_{\ell}$ projections looks good as well

Felicia Volle (IJCLab Orsay)

Shape of realistic samples with interference

Phase combination 0 :

With interferences asymmetry in $\cos \theta_p$, but our PDF symmetric. Need of asymmetric terms in $\cos \theta_p$.

Recall from Anja

No impact of interferences on $m(pK^-)$ and $\cos \theta_{\ell}$, but changes shape of $\cos \theta_p$ even with few $\Lambda_{1/2}$ events !

Update angular fit model

Adding interference terms proportional to $\cos \theta_p$ and $\cos^2 \theta_p$ to the angular PDF of the $\Lambda_{1/2}$ resonances.

$$\begin{aligned} \mathsf{PDF}_{\mathsf{ang}} &= f_{3/2} \left(\left(1 - \frac{1}{2} \mathbf{S}_{1cc} \right) \left(1 - \cos^2 \theta_\ell \right) + \mathbf{S}_{1cc} \cos^2 \theta_\ell + \frac{4}{3} \mathbf{A}_{FB,3/2}^\ell \cos \theta_\ell \right) \\ & \times \left(\frac{1}{4} + \frac{3}{4} \cos^2 \theta_\rho \right) \\ & + (1 - f_{3/2}) \left(\frac{1}{2} \left(1 - K_{1cc} \right) \left(1 - \cos^2 \theta_\ell \right) + K_{1cc} \cos^2 \theta_\ell + \frac{2}{3} \mathbf{A}_{FB,1/2}^\ell \cos \theta_\ell \right) \\ & \times \left(\frac{3 - i_2}{3} + i_1 \cos \theta_\rho + i_2 \cos^2 \theta_\rho \right) \end{aligned}$$

<u>Color code</u> : distribution of the $\Lambda(1520)$, $\Lambda(1405) + \Lambda(1600)$, $\Lambda(1405) + \Lambda(1600) +$ interferences of 3 resonances, total PDF

Fit realistic samples with updated angular fit model

Phase combination 0:

New interference term can catch the asymmetric shape. Since interference term added to the $\Lambda_{1/2}$ PDF, it can get negative.

Fit realistic samples

Phase combination 1:

Only the distribution of $\cos \theta_p$ changes, $m(pK^-)$ and $\cos \theta_\ell$ stay the same.

Fit realistic samples

Phase combination 2, 3, 4 and 5:

Verification of observables stability

Observable values from the fit are similar for different phase combinations Uncertainties are linked to sample size \rightarrow not scaled

```
Felicia Volle (IJCLab Orsay)
```

Checking differences in $f_{3/2}$

Small deviations of $f_{3/2}$ found

Strength of interference terms

Interferences are treated as nuisance parameters

Conclusion

- ✓ Validation of physics PDF without interference terms
- ✓ Set up of physics PDF including interference terms
- $\checkmark\,$ Resulting fit values of the observables are the same for all the samples with different phase combinations
- \Box Estimation of bias on fit fraction from $m(pK^-)$ fit
- □ Scaling the samples to Run 1+2 yields and redo the fit
- □ Add angular acceptance
- Fit to control mode

□ ...

□ Systematic uncertainties

Thank you for your attention !

Blatt-Weißkopf form factors

$$\begin{split} B_0'(p,p_0,d) &= 1 \,, \\ B_1'(p,p_0,d) &= \sqrt{\frac{1+(p_0\,d)^2}{1+(p\,\,d)^2}} \,, \\ B_1'(p,p_0,d) &= \sqrt{\frac{9+3(p_0\,d)^2+(p_0\,d)^4}{1+(p\,\,d)^2}} \,, \\ B_2'(p,p_0,d) &= \sqrt{\frac{9+3(p_0\,d)^2+(p_0\,d)^4}{9+3(p\,\,d)^2+(p\,\,d)^4}} \,, \\ B_3'(p,p_0,d) &= \sqrt{\frac{225+45(p_0\,d)^2+6(p_0\,d)^4+(p_0\,d)^6}{225+45(p\,\,d)^2+6(p\,\,d)^4+(p\,\,d)^6}} \,, \\ B_4'(p,p_0,d) &= \sqrt{\frac{11025+1575(p_0\,d)^2+135(p_0\,d)^4+10(p_0\,d)^6+(p_0\,d)^8}{11025+1575(p\,\,d)^2+135(p\,\,d)^4+10(p\,\,d)^6+(p\,\,d)^8}} \,, \\ B_4'(p,p_0,d) &= \sqrt{\frac{893025+99225(p_0\,d)^2+6300(p_0\,d)^4+315(p_0\,d)^6+15(p_0\,d)^8+(p_0\,d)^{10}}{893025+99225(p\,\,d)^2+6300(p\,\,d)^4+315(p\,\,d)^6+15(p\,\,d)^8+(p\,\,d)^{10}}} \,, \end{split}$$

from LHCb-ANA-2013-053

 K_{1cc} and $A_{FB,1/2}^{\ell}$

Uncertainties are linked to sample size \rightarrow not scaled !

Felicia Volle (IJCLab Orsay)

Minuit output

RooMinimizerFcn: Minimized function has error status. Returning maximum FCN so far (129656) to force MIGRAD to back out of this region. Error log follows. Parameter values: AFB=-0.250593 AFBOneHalf=-0.232013 K1cc=0.175359 S1cc=0.323543 i1=-0.981721 i2=-0.960783 PID28680/ RooRealMPFE::nll AngularPdf full data a136c70 MPFE5[arg=nll AngularPdf full data GOF5 vars=(AFB, AFBOneHalf, K1cc, S1cc, ThreeHalfFrac, 11, 12, ml, gSguared)] p.d.f value of (AngularPdf) is less than zero (-0.001624) for entry 2447 @ ! refCoefNorm=(), !pdfs=(dGThreeHalfPdf = 0.209557/1.33333,dGOneHalfPdf = 0.41232/0.906319), !coefficients=(ThreeHalfFrac = 0.727957 +/- 0.0049118) p.d.f value of (AngularPdf) is less than zero (-0.003250) for entry 3656 0 ! refCoefNorm=(), !pdfs=(dGThreeHalfPdf = 0.209557/1.33333.dGOneHalfPdf = 0.41232/0.906319), !coefficients=(ThreeHalfFrac = 0.727957 +/- 0.0049118) p.d.f value of (AngularPdf) is less than zero (-0.001624) for entry 2447 @ ! refCoefNorm=(). !pdfs=(dGThreeHalfPdf = 0.209557/1.33333,dGOneHalfPdf = 0.41232/0.906319), !coefficients=(ThreeHalfFrac = 0.727957 +/- 0.0049118) p.d.f value of (AngularPdf) is less than zero (-0.003250) for entry 3656 @ ! refCoefNorm=(), !pdfs=(dGThreeHalfPdf = 0.209557/1.33333,dGOneHalfPdf = 0.41232/0.906319), !coefficients=(ThreeHalfFrac = 0.727957 +/- 0.0049118) p.d.f value of (AngularPdf) is less than zero (-0.010652) for entry 840 0 ! refCoefNorm=(), !pdfs=(dGThreeHalfPdf = 0.209557/1.33333.dGOneHalfPdf = 0.41232/0.906319), !coefficients=(ThreeHalfFrac = 0.727957 +/- 0.0049118) p.d.f value of (AngularPdf) is less than zero (-0.009655) for entry 1407 @ ! refCoefNorm=(), !pdfs=(dGThreeHalfPdf = 0.209557/1.33333,dGOneHalfPdf = 0.41232/0.906319), !coefficients=(ThreeHalfFrac = 0.727957 +/- 0.0049118) p.d.f value of (AngularPdf) is less than zero (-0.010652) for entry 840 0 ! refCoefNorm=(), !pdfs=(dGThreeHalfPdf = 0.209557/1.33333.dGOneHalfPdf = 0.41232/0.906319), !coefficients=(ThreeHalfFrac = 0.727957 +/- 0.0049118) p.d.f value of (AngularPdf) is less than zero (-0.009655) for entry 1407 @ ! refCoefNorm=(), !pdfs=(dGThreeHalfPdf = 0.209557/1.33333.dGOneHalfPdf = 0.41232/0.906319). !coefficients=(ThreeHalfFrac = 0.727957 +/- 0.0049118) p.d.f value of (AngularPdf) is less than zero (-0.004703) for entry 532 0 ! refCoefNorm=(), !pdfs=(dGThreeHalfPdf = 0.209557/1.33333,dGOneHalfPdf = 0.41232/0.906319), !coefficients=(ThreeHalfFrac = 0.727957 +/- 0.0049118) p.d.f value of (AngularPdf) is less than zero (-0.004703) for entry 532 0 ! refCoefNorm=(), !pdfs=(dGThreeHalfPdf = 0.209557/1.33333.dGOneHalfPdf = 0.41232/0.906319), !coefficients=(ThreeHalfFrac = 0.727957 +/- 0.0049118) RooNLLVar::nll AngularPdf full data[paramSet=(AFB,AFBOneHalf,K1cc,S1cc,ThreeHalfFrac,i1,i2 ,ml,gSquared) function value is NAN @ paramSet=(AFB = -0.250593.AFBOneHalf = -0.232013.K1cc = 0.175359,S1cc = 0.323543,ThreeHalfFrac = 0.727957 +/- 0.0049118,i1 = -0.981721,i2 = -0.960783.ml = 0.gSquared = 7) MIGRAD MINIMIZATION HAS CONVERGED. MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. COVARIANCE MATRIX CALCULATED SUCCESSFULLY FCN=88213.5 FROM MIGRAD STATUS=CONVERGED 522 CALLS 523 TOTAL EDM=7.81173e-86 STRATEGY= 2 FRROR MATRIX ACCURATE

COVADIANCE MATDI	Y CALCULATED SUCCESSED IN
COVARIANCE HATRI	
FUN=00213.5 FRUP	I HESSE STATUSTON 40 CALLS 503 TOTAL
	EDM=7.81/18e-06 STRATEGY= 2 ERROR MAIRIX ACCURATE
EXT PARAMETER	INTERNAL INTERNAL
NO. NAME	VALUE ERROR STEP SIZE VALUE
1 AFB	-2.38781e-01 4.01788e-03 2.33974e-05 -2.41111e-01
2 AFBOneHalf	-2.38269e-01 8.37365e-03 4.77853e-05 -2.40584e-01
3 K1cc	1.70811e-01 6.72561e-03 9.94670e-05 -7.18662e-01
4 S1cc	3.51643e-01 6.51424e-03 7.75063e-05 -3.01250e-01
5 i1	-1.21203e+00 2.48641e-02 9.59349e-05 -6.51038e-01
6 i2	-7.72697e-01 2.58713e-02 8.60677e-05 -2.74492e+00
	FRB DEF= 0.5
EXTERNAL ERROR M	ATRIX. NDIM= 25 NPAR= 6 ERR DEF=0.5
1.614e-85 -1.63	5e-05 8.415e-06 -1.628e-05 -2.670e-07 1.615e-08
-1.635e-85 7.81	2e-85 -3 618e-85 1 683e-85 7 111e-87 -2 382e-88
8 4158-86 -3 61	8e-05 4 524e-05 -2 008e-05 1 158e-06 2 142e-06
-1 6280-05 1 65	20 05 - 2 000 05 1 240 05 - 9 001 07 - 1 022 05
2 6700 07 7 11	
1 6150 09 -7 29	10-07 1.1300-00 -0.0010-07 0.1030-04 4.2070-04
DADAMETED CODDE	14TON COEFFCTENTS
PARAHETER CURRE	CHITON COEFFICIENTS
NO. GLUBA	
1 0.7247	7 1.000 -0.486 0.311 -0.622 -0.003 0.000
2 0.7374	1 -0.486 1.000 -0.641 0.308 0.003 -0.000
3 0.7347	1 0.311 -0.641 1.000 -0.479 0.007 0.012
4 0.7218	0 -0.622 0.308 -0.479 1.000 -0.005 -0.011
5 0.6633	6 -0.003 0.003 0.007 -0.005 1.000 0.663
6 0.6634	1 0.000 -0.000 0.012 -0.011 0.663 1.000
<pre>[#1] INFO:Miniza</pre>	tion — RooMinimizer::optimizeConst: deactivating const optimizati
>>> ANGULAR FIT	RESULT :
Refit = False ,	Failed = False , Minuit Status = 0 , AtLimit = False

<u>RooFitResult</u>: minimized FCN value: 88213.5, estimated distance to minimum: 7.81718e-06 covariance matrix quality: Full, accurate covariance matrix Status: MIDIMIZE® HESSE=0

Floating Parameter	FinalValue +/-	Error
AFB	-2.3878e-01 +/-	4.02e-03
AFBOneHalf	-2.3827e-01 +/-	8.37e-03
K1cc	1.7081e-01 +/-	6.73e-03
S1cc	3.5164e-01 +/-	6.51e-03
i1	-1.2120e+00 +/-	2.49e-02
i2	-7.7270e-01 +/-	2.59e-02