Review and Prospects for Lepton Flavour Universality in charged current channels: semitauonic B decays

Guy Wormser (IJCLab)

Outline

- A few words about Lepton Flavour Universality
- Overview of LFUV tests with semitauonic B decays
- Why is it interesting to measure $\Lambda_b^0 \rightarrow \Lambda_c^+ \tau^- \overline{\nu}_{\tau}$
- The observation of $\Lambda_b^0 \rightarrow \Lambda_c^+ \tau^- \overline{\nu}_{\tau}$
- Impact of the measurement
- Prospects regarding LFUV tests in the charged current sector (and related measurements)
- Improved knowledge required on D_s inclusive decays to 3π
- Conclusion

Lepton Flavour Universality

- Lepton Flavour Universality is one of many « ad hoc » symmetries and « pillars » of the Standard Model
 - Baryon number, lepton number, (charged) lepton flavour,...
- It postulates that the properties of the three charged leptons (e, μ , τ) are the exactly the same beside their mass
- This does not need to be the case in many New Physics models
- First hints of Lepton Flavour Universality violation appeared 10 years ago with BABAR publication regarding semi-tauonic B decays
- This field became « the hottest game » in town with results coming both from charged and neutral currents

CC LFUV characteristics

- Abundant reaction BR ~1%
- High precision of SM prediction ~1%
- Charged Higgs, Leptoquarks are the usual suspects
- Sensitivity in the TeV range: direct search possible at the LHC : however many scenarios still open after taking into account the present direct exclusions domains

 $\overline{u}.d$

(b)

 B^{-}, \bar{B}^{0}

- If the present WA average is correct, , R(D*)/R(D*)_{SM}=1.23: Large new physics effects !!
- Possibility to measure the effects for various B parents and charm spectators : the importance of the spin : $\Lambda_b^0 \rightarrow \Lambda_c^+ \tau^- \overline{\nu}_{\tau}$
- Sensitivity not only on the yield but also in the internal characterics of the event (q² and angular distributions)
- New physics can couple differently to Vcb and Vub transitions
- Therefore , very important to get a high statistics sample as pure as possible !

(a)

 B^{\cdot}

 $D^{0,(*)}, D^{+,(*)}$

The pioneering BABAR 2012 result PRL109, 101802(2012)

- At the Y(4S), the strategy is a priori simple :
 - Reconstruct a « tag » B to gain access to the other B center of mass frame and thus to the missing mass
 - Select events with $\mathsf{D}^*\mu$ topology on the signal side
 - Count events with μ much softer than for normal semileptonic decays
 - The winning « trick » : much higher efficiency reconstruction of the « tag » B particle

Other R(D*) results up to now

- 3 new measurements by BELLE collaboration
 - Hadronic tag as for BABAR-leptonic tau decay
 - PRD92, 072014(2015)
 - Semileptonic Tag , more statistics but worse CM and missing mass resolutionleptonic tau decay
 - PRD94, 072007 (2015)
 - Hadronic tag –hadronic tau decay in $\pi/\pi\pi^{\circ}$. Important to access tau polarization information. Real challenge to fight hadronic background
 - PRL118,211801 (2017), arXiv1612.00529
- 1 new mesurement from LHCb collaboration
 - PRL115, 1183(2015)
 - Muonic tau decay in a hadronic collider !!!!

LHCb muonic result (2015)

FPCP Conference, June 5 2017, Prague

PARIS-SACLAY

Measurement of semitauonic decays at LHCb using the hadronic decay $\tau^- \rightarrow \pi^- \pi^+ \pi^- (\pi^0) v_{\tau}$

- Similar BR as the muonic channel
- The possibility to measure the τ vertex is the key to reject the background and obtain a high purity sample
- The 3π dynamics of the τ decay is very specific : possible to distinguish τ decays from the main double charm background from D_s decays
- The presence of only 2 neutrinos in the final state, coupled to the vertices reconstruction, allows to reconstruct the complete event kinematics: good precision on q^2 and $cos\theta^*$
- Background control samples with exclusive mass peaks

The initial very large background : example of $B^0 \rightarrow D^* \tau v$

- The D^{*} $\tau\nu$ decay, with τ going into 3 pions (it can also be $3\pi + \pi^0$) leads to a D^{*} $3\pi(+X)$ final state
- Nothing is more common than a $\mathsf{D}^*3\pi$ (+X) final state in a typical B decay :

 $\mathsf{BR}(\mathsf{B}^{0} \rightarrow \mathsf{D}^{*} 3\pi + \mathsf{X}) / \mathsf{BR}(\mathsf{B}^{0} \rightarrow \mathsf{D}^{*} \tau v; \tau \rightarrow 3\pi)_{\mathsf{SM}} \sim \mathbf{100}$

A very strong background suppression

method is absolutely needed :

The DETACHED VERTEX METHOD

Vertex topology of the usual B decay

Selection: detached vertex

Selection: the detached vertex method LHCb-PAPER-2017-027

The second level of background : double charm

- The second gate consists of B⁰ decays where the 3π vertex is transported away from the D⁰ vertex by a charm carrier: D_s, D⁺ or D⁰ (in that order of importance)
- This gate is thinner :

BR(B⁰->D* 'D'; 'D' \rightarrow 3 π X)/ BR(B⁰->D* $\tau\nu$; τ ->3 π)_{SM}~10

Opening the second gate !

• LHCb has three very good weapons to blow this door away:

PARIS-SACLAY

- Background partial reconstruction
- 3π dynamics
- Neutral isolation

IHEP seminar

Flavor at the crossroards , Mainz, April 25 2022

15

universite

PARIS-SACLAY

Most recent update of $\mathcal{R}(D^*)-\mathcal{R}(D)$ status BR(B \rightarrow D^(*) τ v)/BR(D^(*) μ v)

Observation of the decay $\Lambda_b^0 \rightarrow \Lambda_c^+ \tau^- \overline{v}_{\tau}$ with $\tau^- \rightarrow \pi^- \pi^+ \pi^- (\pi^0) v_\tau$ decay LHCb-PAPER-2021-044 arxiv:2201:03497

Why Lepton Flavour Universality tests with Λ_b^0 are interesting ? $\mathcal{R}(\Lambda_c^+) \equiv \mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \tau^- \overline{\nu}_{\tau}) / \mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \mu^- \overline{\nu}_{\mu})$

- Lepton Flavour Universality violation hints in the meson sector $\mathcal{R}(D^*)$ - $\mathcal{R}(D)$: 3.4 σ away from SM in the latest 2021 HFLAV update
- With spin ½ spectator, the baryonic channel adds a very complementary test
- Similar precision on SM prediction with lattice QCD computations

 $\mathcal{R}(\Lambda_c^+)_{SM} = 0,324 \pm 0,004$ F. Bernlochner et al., Physical Review D 99 055008 (2019)

with input from Lattice QCD FF: W. Detmold, C. Lehner, S. Meinel, Physical Review D 92 034503 (2015)

- But different NP couplings: could help pin down NP source
- Unique to LHCb. Never searched for before!

NP expectations for $\mathcal{R}(\Lambda_c^+)$ in various models

A. Datta et al., Journal of High Energy Physics 1708 (2017) 131

	g_S only	g_P only	g_L only	g_R only	g_T only
	-0.4	0.3	-2.2	-0.044	0.4
$R(\Lambda_c)$	0.290 ± 0.009	0.342 ± 0.010	0.479 ± 0.014	0.344 ± 0.011	0.475 ± 0.037
$R^{Ratio}_{\Lambda_c}$	0.872 ± 0.007	1.026 ± 0.001	1.44	1.033 ± 0.003	1.426 ± 0.100
	-1.5 - 0.3i	0.4-0.4i	0.15-0.3i	0.08-0.67i	0.2-0.2i
$R(\Lambda_c)$	0.384 ± 0.013	0.346 ± 0.011	0.470 ± 0.014	0.465 ± 0.014	0.404 ± 0.021
$R^{Ratio}_{\Lambda_c}$	1.154 ± 0.008	1.040 ± 0.002	1.412	1.397 ± 0.005	1.213 ± 0.050

 $\mathcal{R}(\Lambda_c^+)$ can be below or well above SM , when satisfying $\mathcal{R}(D^*)$ - $\mathcal{R}(D)$ constraints

NP predictions with all present constraints from the meson sector

Coupling	$R(\Lambda_c)_{max}$	$R^{Ratio}_{\Lambda_c,max}$	coupling value	$R(\Lambda_c)_{min}$	$R_{\Lambda_c,min}^{Katio}$	coupling value
g_S only	0.405	1.217	0.363	0.314	0.942	-1.14
g_P only	0.354	1.062	0.658	0.337	1.014	0.168
g_L only	0.495	1.486	0.094 + 0.538i	0.340	1.022	-0.070 + 0.395i
g_R only	0.525	1.576	0.085 + 0.793i	0.336	1.009	-0.012
g_T only	0.526	1.581	0.428	0.338	1.015	-0.005

$\mathcal{R}(\Lambda_c^+)$ analysis workflow with $\tau^- \rightarrow \pi^- \pi^+ \pi^- (\pi^0) \nu_{\tau}$

- Tight Λ_c^+ PID selection in pK π mode. Λ_c^+ sideband template used in the signal fit to remove the background under the Λ_c^+ peak
- Combine with detached $\pi^-\pi^+\pi^-$ triplet forming τ^- candidates
- Prompt background rejection thanks to vertex topology
- Reconstruct decay kinematics
- D_s^- and D^0 exclusive peaks to control double charm background
- Anti- D_s^- to reject double charm background
- Normalisation channel : $\Lambda_b^0 \to \Lambda_c^+ \pi^- \pi^+ \pi^-$ (without $\Lambda_c^{*+} \pi^-$) [same final state and similar dynamics]

Tight Λ_c^+ selection

LHCb-PAPER-2021-044 arxiv:2201:03497

$\mathcal{R}(\Lambda_c^+)$ analysis workflow

- Tight Λ_c^+ PID selection. Λ_c^+ sideband template used in the signal fit to remove the background under the Λ_c^+ peak
- Combine with detached $\pi^-\pi^+\pi^-$ triplet forming τ^- candidates
- Prompt background rejection thanks to vertex topology
- Reconstruct decay kinematics
- D_s^- and D^0 exclusive peaks to control double charm background
- Anti- D_s^- to reject double charm background
- Normalisation channel : $\Lambda_b^0 \to \Lambda_c^+ \pi^- \pi^+ \pi^-$ (without $\Lambda_c^{*+} \pi^-$) [same final state and similar dynamics]

« Prompt » background rejection

Flavor at the crossroards , Mainz, April 25 2022

25

IVers

PARIS-SACLAY

Control of the suppression factor with the normalisation channel : $\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^- \pi^+ \pi^-$

LHCb-PAPER-2021-044 arxiv:2201:03497

Flavor at the crossroards, Mainz, April 25 2022

$\mathcal{R}(\Lambda_c^+)$ analysis workflow

- Tight Λ_c^+ PID selection. Λ_c^+ sideband template used in the signal fit to remove the background under the Λ_c^+ peak
- Combine with detached $\pi^-\pi^+\pi^-$ triplet forming τ^- candidates
- Prompt background rejection thanks to vertex topology
- Reconstruct decay kinematics
- D_s^- and D^0 exclusive peaks to control double charm background
- Anti- D_s^- to reject double charm background
- Normalisation channel : $\Lambda_b^0 \to \Lambda_c^+ \pi^- \pi^+ \pi^-$ (without $\Lambda_c^{*+} \pi^-$) [same final state and similar dynamics]

Reconstruction of the kinematics

- Using the position of the three vertices, the direction of flight of the Λ_b^0 and of the τ particles can be reconstructed.
- The momenta of these 2 particles by solving two 2nd-degree equations
- τ pseudo decay time and q² can be measured with a 15% resolution

Background Partial reconstruction

PARIS-SACLAY

$\mathcal{R}(\Lambda_c^+)$ analysis workflow

- Tight Λ_c^+ PID selection. Λ_c^+ sideband template used in the signal fit to remove the background under the Λ_c^+ peak
- Combine with detached $\pi^-\pi^+\pi^-$ triplet forming τ^- candidates
- Prompt background rejection thanks to vertex topology
- Reconstruct decay kinematics
- D_s^- and D^0 exclusive peaks to control double charm background
- Anti- D_s^- to reject double charm background
- Normalisation channel : $\Lambda_b^0 \to \Lambda_c^+ \pi^- \pi^+ \pi^-$ (without $\Lambda_c^{*+} \pi^-$) [same final state and similar dynamics]

The control channels D_s, D°, and D⁺

31

The anti-D_s BDT : 3π dynamics, partial reconstruction and isolation

Min(mass($\pi^+\pi^-$)) Max(mass($\pi^+\pi^-$))

32

BDT results

- Good separation obtained
- Allows to select an high purity sample at high efficiency
- Charged Isolation and PID cuts are also required to select candidates

LHCb-PAPER-2017-017, in preparation

LAL Orsay seminar, June 21 2017

The D_s decay model fit at low BDT

34

The importance of the « D_s-o-meter »

- The minimum $\pi^+\pi^-$ mass contains critical information about the rate of η and η' decays
- At low mass, only η and η' (red,green) contributions are peaking

```
\eta \rightarrow \pi^+ \pi^- \pi^\circ and \eta' \rightarrow \eta \pi^+ \pi^-
```

- At the ρ mass where the signal lives, only η' contributes ($\eta' \rightarrow \rho \gamma$)
- Using the low BDT region, one constraints the D_c decay model to be used at high BDT

Distribution of the 3π mass after final selection

Distribution of the $K^+ \pi^- \pi^+ \pi^-$ mass for events with one extra kaon track at the 3π vertex

The exclusive $\Lambda_c^+ D_s^-(X)$ control sample

LHCb-PAPER-2021-044 arxiv:2201:03497

Fit to the $\Lambda_{\rm b} \rightarrow \Lambda^+_{\ \rm c} \pi^- \pi^+ \pi^-$ mass distribution

Projection on q²

Flavor at the crossroards , Mainz, April 25 2022

$\mathcal{R}(\Lambda_c^+)$ analysis workflow

- Tight Λ_c^+ PID selection. Λ_c^+ sideband template used in the signal fit to remove the background under the Λ_c^+ peak
- Combine with detached $\pi^-\pi^+\pi^-$ triplet forming τ^- candidates
- Prompt background rejection thanks to vertex topology
- Reconstruct decay kinematics
- D_s^- and D^0 exclusive peaks to control double charm background
- Anti- D_s^- to reject double charm background
- Normalisation channel : $\Lambda_b^0 \to \Lambda_c^+ \pi^- \pi^+ \pi^-$ (without $\Lambda_c^{*+} \pi^-$) [same final state and similar dynamics]

3D Fit results

- The fit is a 3D binned (6x6x6) maximum likelihood template fit to the data
- 3 variables :
 - τ decay time
 - q²
 - Anti- D_s^- BDT
- Fit results : $\chi^2/dof=1.3$

Signal yield = 349 ± 40 $\Lambda_c^* \tau v = 35$ N $D_s^- = 2757 \pm 80$ N $D^+ = 443 \pm 55$ N $D^0 = 186 \pm 7$ Combinatorial 679

Results of the nominal fit

Parameter	Fit result	Constraint value
N_{sig}	$349 \pm 40 \ (11.8\%)$	
$f_{ au ightarrow 3\pi u}$		0.78
$f_{\Lambda_c^* au \overline{ u}_ au}$		0.1
$N_{D^0}^{same}$	80.2 ± 8.3	81.4 ± 7.4
$f_{D^0}^{v_1-v_2}$	1.3 ± 0.7	
$\tilde{N_{D_s}}$	2755.9 ± 81	
f_{D_s}	0.49 ± 0.09	0.65 ± 0.08
$f_{D^*_{s0}}$	0.0 ± 0.012	0.28 ± 0.12
$f_{D'_{-1}}$	0.41 ± 0.07	0.29 ± 0.12
$f_{\Lambda_c(2625)D_s^{(*)}}^{s_1}$	0.19 ± 0.06	0.22 ± 0.09
$f_{\Sigma_c \pi D^{(*)}}$	0.0 ± 0.02	0.22 ± 0.05
\tilde{N}_{D^+}	443 ± 54	
N_{combi}		40.3
N^{bkg}_{++}		639
$\chi^{2^{A_{c}}}$	256	
reduced χ^2 (ndof = 216)	1.30	

Flavor at the crossroards , Mainz, April 25 2022

Fit projections : τ decay time and BDT

Flavor at the crossroards , Mainz, April 25 2022

Fit projection : q² Low BDT

rène Joliot-Curi

LHCb-PAPER-2021-044 arxiv:2201:03497

High BDT(>0.66)

niversite

PARIS-SACLAY

43

Flavor at the crossroards , Mainz, April 25 2022

Observation of the decay $\Lambda_b^0 \rightarrow \Lambda_c^+ \tau^- \overline{v}_{\tau}$

- Increase of fit χ^2 with signal forced to 0 : 7.3 σ statistical only
- Increase of fit χ^2 with signal forced to 0 after inclusion of systematic uncertainty (dominated by template shapes): 6.1 σ
- We can claim observation of the decay $\Lambda_b^0 \to \Lambda_c^+ \tau^- \overline{\nu}_{\tau}$!

$\mathcal{R}(\Lambda_c^+)$ analysis workflow

- Tight Λ_c^+ PID selection. Λ_c^+ sideband template used in the signal fit to remove the background under the Λ_c^+ peak
- Combine with detached $\pi^-\pi^+\pi^-$ triplet forming τ^- candidates
- Prompt background rejection thanks to vertex topology
- Reconstruct decay kinematics
- D_s^- and D^0 exclusive peaks to control double charm background
- Anti- D_s^- to reject double charm background
- Normalisation channel : $\Lambda_b^0 \to \Lambda_c^+ \pi^- \pi^+ \pi^-$ (without $\Lambda_c^{*+} \pi^-$) [same final state and similar dynamics]

$\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^- \pi^+ \pi^-$ normalisation peak

Comparison of the 3π mass distribution for $\Lambda_c^+ 3\pi$ and $D^* 3\pi$ events before and after $\Lambda_c^{*+}\pi$ events removal

LHCb-PAPER-2021-044 arxiv:2201:03497

Distribution of the difference m($\Lambda_c^+ \pi^+ \pi^-$)-m(Λ_c^+) in the $\Lambda_b^0 \to \Lambda_c^+ \pi^- \pi^+ \pi^-$ mass peak

Regarding $\Lambda_c^+ \pi^+ \pi^- \pi^+$ mode: PDG2020

 $\Gamma(\Lambda_c^+\pi^+\pi^-\pi^-)/\Gamma_{\text{total}}$ Γ₂₉/Γ VALUE (units 10^{-3}) EVTS DOCUMENT ID TECN COMMENT 7.7+1.1 OUR FIT Error includes scale factor of 1.1 $14.9^{+3.8}_{-3.2}\pm 1.2$ ¹ AALTONEN 12A CDF pp at 1.96 TeV • • • We do not use the following data for averages, fits, limits, etc. • • • BARI 91 SFM $\Lambda_c^+ \rightarrow p K^- \pi^+$ 90 seen ¹AALTONEN 12A reports $[\Gamma(\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^+ \pi^- \pi^-)/\Gamma_{\text{total}}] / [B(\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^-)] =$ $3.04 \pm 0.33 \substack{+0.70\\-0.55}$ which we multiply by our best value $B(\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^-) = (4.9 \pm$ 0.4) \times 10⁻³. Our first error is their experiment's error and our second error is the systematic error from using our best value. $\Gamma(\Lambda_c^+\pi^+\pi^-\pi^-)/\Gamma(\Lambda_c^+\pi^-)$ Γ_{29}/Γ_{24} DOCUMENT ID VALUE TECN COMMENT 1.56±0.21 OUR FIT $1.43 \pm 0.16 \pm 0.13$ AAIJ 11E LHCB pp at 7 TeV

For $\Lambda_c^+ \pi^+ \pi^- \pi^+$ data, the PDG error is 14%. (a bit better for some reason than the combination of the 8% of the absolute BR($\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^-$) and the 13.5% ratio coming from the ratio.)

RIS-SACLA

Largest systematic : template shapes

Source	$\delta \mathcal{K}(\Lambda_c^+)/\mathcal{K}(\Lambda_c^+)[\%]$
Simulated sample size	3.8
Fit bias	3.9
Signal modeling	2.0
$\Lambda_c^{*+} \tau^- \overline{ u}_{ au}$	2.5
$D_s^- \to 3\pi X$ decay model	2.5
$\Lambda_b^0 \to \Lambda_c^+ D_s^- X, \Lambda_b^0 \to \Lambda_c^+ D^- X, \Lambda_b^0 \to \Lambda_c^+ \overline{D}{}^0 X \text{ background}$	4.7
Combinatorial background	0.5
Particle identification and trigger corrections	1.5
Data/simulation agreement for isolation and vertex	4.5
$D_s^+, D^-, \overline{D}^0$ templates shapes	13.0
Efficiency ratio	2.8
Normalization channel efficiency (modeling of $\Lambda_b^0 \to \Lambda_c^+ 3\pi$)	3.0
Total uncertainty	16.5

LHCb-PAPER-2021-044 arxiv:2201:03497

Flavor at the crossroards , Mainz, April 25 2022

• Using $\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^- \pi^+ \pi^-)_{\text{no }\Lambda_c^{*+}} = (0.614 \pm 0.094)\%$ [PDG2020], $\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \tau^- \overline{\nu}_{\tau}) = (1,50 \pm 0,16 \text{ (stat)} \pm 0,25 \text{ (sys)} \pm 0,23 \text{ (ext)})\%$ (SM expectation=(1.8± 0.1)%

• Using $\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \ \mu^- \overline{v}_{\mu}) = (6.2 \pm 1.4)\%$ [PDG2020], $\mathcal{R}(\Lambda_c^+)=0.242 \pm 0.026 \text{ (stat)} \pm 0.040 \text{ (syst)} \pm 0.059 \text{ (ext)}$ (SM expectation=0.324 ± 0.004)

F. Bernlochner et al., Physical Review D 99 055008 (2019) with input from W. Detmold, C. Lehner, S. Meinel, Physical Review D 92 034503 (2015)

Constraints on New Physics models (including all meson-based results)

Coupling	$R(\Lambda_c)_{max}$	$R^{Ratio}_{\Lambda_c,max}$	coupling value	$R(\Lambda_c)_{min}$	$R^{Ratio}_{\Lambda_c,min}$	coupling value
g_S only	0.405	1.217	0.363	0.314	0.942	-1.14
g_P only	0.354	1.062	0.658	0.337	1.014	0.168
g_L only	0.495	1.486	0.094 + 0.538i	0.340	1.022	-0.070 + 0.395i
g_R only	0.525	1.576	0.085 + 0.793i	0.336	1.009	-0.012
g_T only	0.526	1.581	0.428	0.338	1.015	-0.005

A. Datta et al., Journal of High Energy Physics 1708 (2017) 131

Our result excludes regions of the parameter space of effective theories with only one vector, axial-vector or tensor coupling

Flavor at the crossroards , Mainz, April 25 2022

Constraints from $\mathcal{R}(D^*)$ - $\mathcal{R}(D)$ for effective model with one mediator

A. Datta et al., Journal of High Energy Physics 1708 (2017) 131

Constraints with a SM-like $\mathcal{R}(\Lambda_c^+)$

(Constraints with a large $\mathcal{R}(\Lambda_c^+)$)

A. Datta et al., Journal of High Energy Physics 1708 (2017) 131

Irène Joliot-Curie

Future of some systematic uncertainties: D** feed-down

- $B^{\circ} \rightarrow D^{**} \tau v$ and $B^{+} \rightarrow D^{**} \tau v$ constitute potential feeddown to the signal
- New R(D^{**}) SM predictions rather low (denomitaor is BR(B->D^{**} $\mu\nu$) •

$\mathcal{R}(D_0^*) = 0.08(3),$	$\mathcal{R}(D_1') = 0.05(2),$
$\mathcal{R}(D_1) = 0.10(2),$	$\mathcal{R}(D_2^*) = 0.07(1)$

All experiments are taking more conservative assumptions regarding the D** ٠ rate. This could enhance the discrepancy by 0.5 σ

All detached vertices

Florian U. Bernlochner, Manuel Franco Sevilla, Dean J. Robinson, and Guy Wormser Rev. Mod. Phys. 94, 015003

600

Experimental measurement of $D^{**}(2420)$ the way :

LHCb Preliminary

-D**⁰(2420)

Future of some systematic uncertainties: A little promenade through D_s decays

56

Flavor at the crossroards , Mainz, April 25 2022

 $\pi^+\pi^-\pi^+/a_1^+$?

- $\eta \pi^+ \pi^- \pi^+$, BESIII new result
- $\omega \pi^+ \pi^- \pi^+$
- $\eta \dot{\pi}^+ \pi^- \pi^+$, my another ongoing work at BESIII
- $\phi \pi^+ \pi^- \pi^+$
- $K_s^0 \pi^+ \pi^- \pi^+$

- Additional distributions after fit:
 - $M(3\pi)$ requiring $M(3\pi 2K)$ around the $m(D_s^+)$
- Take into account contributions from $D_s^+ \rightarrow \phi a_1$ by reweighting the phase space $D_s^+ \rightarrow \phi 3\pi$

Ds decays	ir
PDG	

BR in red for error larger

than 20%

Type	Intermediate process	BR_{PDG} (%)	Comments
$\eta \pi^+$	NR	1.68	125
$\omega \pi^+$	NR	0.192	-
$\eta'\pi^+$	NR	3.94	
$a_{0}^{0}\pi^{+}$	NR	1.10	BESIII $\eta 3\pi$ analysis
$\phi \pi^+$	NR	4.50	-
$\eta \pi^+ \pi^0$	$\eta \rho^0, a_0^0 \pi^+, a_0^+ \pi^0, NR$	9.50	BESIII $\eta \pi \pi^0$ analysis
$\omega \pi^+ \pi^0$	$\omega ho^+, NR$	2.80	$BR(\omega\rho^+)/BR(\overline{\omega\pi^+\pi^0}) = 0.52 \pm 0.30$
$\omega\eta\pi^+$	$\omega a_0^+, NR$	< 2.13	-
$\eta' \pi^+ \pi^0$	$\eta' \rho^+, NR$	5.60	$BR(D_s^+ \to \eta' \rho^+) = 5.8\%$
$a_0^0 \pi^+ \pi^0$	$a_0^0 ho^+, NR$	-	BESIII $K K \pi \pi^0$ & $\eta 3 \pi$ analysis
$\phi \pi^+ \pi^0$	$\phi \rho^+, NR$		BESIII $KK\pi\pi^0$ analysis
$K^{0}2\pi^{+}\pi^{-}$	$K^{0}a_{1}^{+}, NR$	0.60	
$\eta 2\pi^+\pi^-$	$\eta a_1^+, \eta' \pi^+, a_0^+ \rho^0, NR$	-	BESIII $\eta 3\pi$ analysis
$\omega 2\pi^+\pi^-$	$\omega a_1^+, NR$	1.60	1.5
$\eta' 2\pi^+\pi^-$	$\eta' a_1^+, NR$	-	24) (14)
$a_0^0 2\pi^+\pi^-$	$\eta' a_1^+, NR$		
$\phi 2\pi^+\pi^-$	$\phi a_1^+, NR$	1.21	10 2 0
$K^{+}K^{-}2\pi^{+}\pi^{-}(NR)$	-	0.09	Large uncertainty $(\pm 0.07\%)$.
$K^0 \bar{K}^0 2\pi^+ \pi^- (NR)$		0.336	$BR(2K_s^0 2\pi^+\pi^-) = 8.4 \pm 3.5 \times 10^{-4}.$
$2\pi^+\pi^-$		0.90	
$3\pi^+2\pi^-$	17 — 10	0.79	
$3\pi^+ 2\pi^- \pi^0(NR?)$		3.0	$BR(D_s^+ \to 3\pi^+ 2\pi^- \pi^0) = 4.9 \pm 3.2\%$
$\tau^+ (\rightarrow 2\pi^+\pi^-(\pi^0))\bar{\nu_\tau}$	1 — T	0.767	1120 S = 1

f0 decays: potential inconsistency:

Mode				0	Fraction (Γ_i / Γ)	Conf. Level	
ππ				seen			
$\Gamma(f_0(980) o \pi\pi)$	$)/\Gamma(f_0(980)$	$ ightarrow \pi\pi$)+ $\Gamma(f_0(980)$ $ ightarrow$	$K\overline{K}$)]			$\Gamma_1/(\Gamma$	$_1+\Gamma_2$
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT		
		• • We do not use the fo	lowing date	a for avera	oges, fits, limits, etc.	••	
0.52 ± 0.12	9.9k	¹ AUBERT	20060	BABR	$B^\pm o K^\pm \pi^\pm \pi^\mp$		
$0.75 \ ^{+0.11}_{-0.13}$		² ABLIKIM	2005Q	BES2	$\chi_{c0} ightarrow$ 2 π^+ 2 π^-	, $\pi^{+}\pi^{-}K^{+}K^{-}$	
0.84 ± 0.02		³ ANISOVICH	2002D	SPEC	Combined fit		
~ 0.68		OLLER	1999B	RVUE	$\pi \ \pi o \pi \pi$, $K\overline{K}$		
0.67 ± 0.09		⁴ LOVERRE	1980	HBC	$4 \; \pi^- \; p ightarrow n2 \; K_S^0$	1	
$0.81 \ ^{+0.09}_{-0.04}$		4 CASON	1978	STRC	$7 \ \pi^- \ p ightarrow n2 \ K_{\ell}^0$	5	
0.70 1.0.09		4 WETZEL	1976	OSPK	$8.9 = n \rightarrow n^2$	K ⁻⁰	

Upcoming analysis using 3π channel

- R(D*) with 2015-2016 data (x2 compared to what is published)
- D* polarization in D* τv events
- R(D**°(2420))
- In a longer term
 - Legacy measurement with the full run 2 for R(D*), R(Λ_c), R(D°,D⁺,D_s)
 - Full angular analysis
 - R(J/ψ)
- Similar set of measurements also worked on using the muonic channel

Conclusion regarding $\Lambda_b^0 \rightarrow \Lambda_c^+ \tau^- \overline{v}_{\tau}$

LHCb-PAPER-2021-044 arxiv:2201:03497

- The decay $\Lambda_b^0 \to \Lambda_c^+ \tau^- \overline{v}_{\tau}$ has been observed for the first time with a significance of 6.1 σ
 - $\mathcal{K}(\Lambda_c^+) = 2.46 \pm 0.27 \text{ (stat)} \pm 0.40 \text{ (syst)}$
 - $\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \tau^- \overline{\nu}_{\tau}) = (1,50 \pm 0,16 \text{ (stat)} \pm 0,25 \text{ (sys)} \pm 0,23 \text{ (ext)}) \%$
 - $\mathcal{R}(\Lambda_c^+)=0.242 \pm 0.026 \text{ (stat)} \pm 0.040 \text{ (syst)} \pm 0.059 \text{ (ext)}$
- Everything compatible with SM (~1 σ below)
- A fraction of the parameter space of effective theories with only one vector, axial-vector or tensor couplings can be excluded

Conclusions regarding semileptonic decays

- Present hint of 3.4 σ deviation from SM in R(D*)-R(D)
- New LHCb result on $\mathrm{R}(\Lambda_{\mathrm{c}})$ compatible with SM and exclusing some NP scenarios
- This will be resolved one way or another in the next years due to an upcoming wealth of new measurements from LHCb:
 - R ratios for many particles : D*, D**, D+, D°, Λ_c , D_s, J/ ψ ,
 - D* polarization, full angular analysis
 - Higher signal/noise using 3π mode
- Belle-II will also participate to this exciting game

Backup

Flavor at the crossroards , Mainz, April 25 2022

66

universite

PARIS-SACLAY

Subtracting $\Lambda_{c}^{*+}\pi^{-}$

$\Gamma(\Lambda_{c}(2595)^{+}\pi^{-},\Lambda_{c}(2595)^{+}\to\Lambda_{c}^{+}\pi^{+}\pi^{-})/\Gamma(\Lambda_{c}^{+}\pi^{+}\pi^{-}\pi^{-})$ Γ_{30}/Γ_{29} VALUE (units 10⁻²) DOCUMENT ID

 $4.4 \pm 1.7^{+0.6}_{-0.4}$ AAIJ 11E LHCB pp at 7 TeV

HTTP://PDG.LBL.GOV

Page 11 Created: 6/1/2020 08:33

COMMENT

TECN

for a total of (20.3±4) % of the full $\Lambda_c^+ \pi^- \pi^+ \pi^-$ yield. This corresponds to a total error of 14.8%.

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

$\Gamma(\Lambda_{c}(2625)^{+}\pi^{-},\Lambda_{c}(2625)^{+}\to\Lambda_{c}^{+}\pi^{+}\pi^{-})/\Gamma(\Lambda_{c}^{+}\pi^{+}\pi^{-}\pi^{-})$				Г ₃₁ /Г ₂₉	
VALUE (units 10 ⁻²)	DOCUMENT ID		TECN	COMMENT	
$4.3 \pm 1.5 \pm 0.4$	AAIJ	11E	LHCB	pp at 7 TeV	
$\Gamma(\Sigma_c(2455)^0\pi^+\pi^-,\Sigma_c^0 ightarrow\Lambda_c^+)$	⁺ π ⁻)/Γ(Λ ⁺ _c π	+π-	π ⁻)		Г ₃₂ /Г ₂₉
VALUE (units 10 ⁻²)	DOCUMENT ID		TECN	COMMENT	
7.4±2.4±1.2	AAIJ	11E	LHCB	pp at 7 TeV	
Γ($Σ_c$ (2455) ⁺⁺ $π^-π^-$, $Σ_c^{++}$ –	$\rightarrow \Lambda_c^+ \pi^+)/\Gamma(\lambda$	1 ⁺ _c π⁻	⁺ π ⁻ π ⁻	-)	Г ₃₃ /Г ₂₉
VALUE (units 10 ⁻²)	DOCUMENT ID		TECN	COMMENT	
4.2±1.8±0.7	AAIJ	11E	LHCB	pp at 7 TeV	

Regarding $\Lambda_c^+ \mu^- \overline{v}_{\mu}$

$\Gamma(\Lambda_c^+ \ell^- \overline{\nu}_\ell) / \Gamma_{\text{total}}$	DOCUMENT ID	TECN	Г39/Г
0.062 ^{+0.014} _{-0.013} OUR FIT			
$0.050 \substack{+0.011 + 0.016 \\ -0.008 - 0.012}$	¹ ABDALLAH 04	4A DLPH	$e^+e^- \rightarrow Z^0$
1 Derived from a combined like Wise variable and using HQ $2.03 \pm 0.46 \substack{+0.72 \\ -1.00}$.	elihood and event rate ET. The slope of the f	e fit to the form factor	distribution of the lsguris measured to be $ ho^2 =$
$\frac{\Gamma(\Lambda_{c}^{+}\ell^{-}\overline{\nu}_{\ell})}{VALUE}/\Gamma(\Lambda_{c}^{+}\pi^{-})$	DOCUMENT ID	TECN	Г <u>з</u> 9/Г <u>24</u>
12.7+3.1 12.7_2.7 OUR FIT			

 $16.6 \pm 3.0^{+2.8}_{-3.6}$

- AALTONEN 09E CDF $p\overline{p}$ at 1.96 TeV
- 22.6% for the semileptonic channel
- Combining with the $\Lambda_c^+ \pi^- \pi^+ \pi^-$ the crude number is 27%.
- It reduces to 24% by removing the 13% relative error mentioned in the PDG for their $f_{\Lambda b}$ fraction (8.4+1.1)%

Baryon production from B mesons

- The only way to get $\Lambda_{\rm c}\,3\pi\,$ with the inverted vertex topology is the production of two charmed baryons
- Two such decays exist
 - Two-body mode $B^{\circ} \rightarrow \Lambda_c \Xi c$ BR =(0,12+_ 0.08)% similar to signal mode
 - Three-body mode $B^{\circ} \rightarrow \Lambda_c \Lambda_c K^{\circ}$ (can come partially from $\Lambda_c \Xi_c$ (2930) BR= (0.04+_0.009)%

The decay $\Xi_c \rightarrow \Xi 3\pi$ (BR=1.7%) or $\Lambda_c \rightarrow \Lambda 3\pi$ (BR=5%) is then needed (The 3 pions have to come from the same vertex)

• Small but $f_d = 4*f_{\Lambda}$

Important to note that mass(3π) <1.1 GeV

• B⁺ contribution suppressed by isolation requirements

Most recent experimental results: rare decays

- ▶ Fully leptonic decays (e.g. $B_s \rightarrow \mu^+ \mu^-$)
 - See Cristina Lazzeroni 's talk, Tue 9:00AM
- Lepton Universality Tests
 - See Carla Marin Benito's talk Tue 2:40PM
 - See Saurabh Sandilya's talk Tue 3:00PM
- Belle-II results: Slavomira Stefkova 's talk, Tue 2:20M

Flavor at the crossroards , Mainz, April 25 2022

Branching Fractions of $b \to s\ell^+\ell^-$ decays

Þ

Flavor at the crossroards , Mainz, April 25 2022

74

Angular analyses of $b \to s \ell^+ \ell^-$ decays

- SM prediction challenging, but uncertainties smaller than for BFs
- Optimised observables where hadronic uncertainties cancel out at 1st order (e.g. P5')
- A growing number of global fits to $b \rightarrow s\ell\ell$ results (and others) Algueró et al: arXiv:2104.08921 Altmannshofer et al: arXiv:2103.13370 Ciucchini et al: arXiv:1903.09632 Geng et al arXiv:2103.12738 Hurth et al: arXiv:2104.10058 Kowalska et al: arXiv:1903.10932
- Global tension with SM:

- Theory uncertainty under scrutiny
 - , See Danny van Dyk's talk 🛛 👷

10

 Combine the information from so many observables and channels fitting the EFT coefficients [B. Capdevila, M. Fedele, S. Neshatpour, P. Stangl, Flavour Anomany Workshop '21]

- Attempt to have a best estimate of combined global significance to SM fitting all WC together: 4.3 σ tension with SM [arXiv:2104.05631] with only clean observables
- See Davide Lancierini's poster

Combined interpretation in a ~TeV vector leptoquak model (U₁)

Flavor at the crossroards, Mainz, April 25 2022

rène Joliot-Curie

Best fit including $\mathcal{R}(D^{(*)})-\mathcal{R}(K)$

79

Role of the direct LHC searches C. Cornella et al., https://arxiv.org/pdf/2103.16558.pdf

Flavor at the crossroards , Mainz, April 25 2022

In this model, Lepton Flavour violation should be seen ($B \rightarrow \mu \tau$, $K \mu \tau$)

C. Cornella et al., https://arxiv.org/pdf/2103.16558.pdf

⁸¹

For Belle-II, large deviation expected in $B \rightarrow K v \bar{v}$

C. Cornella et al., https://arxiv.org/pdf/2103.16558.pdf

Flavor at the crossroards , Mainz, April 25 2022

RPV3 : another model that can accomodate all present LFU results + g-2

W. Altmannshofer, P. S. Bhupal Dev, A.Soni, and Y.Sui Phys. Rev.D 102, 015031 (2020)

