

Felix Wilsch

Universität Zürich

Based on work in collaboration with:

Lukas Allwicher, Darius A. Faroughy, Florentin Jaffredo, Olcyr Sumensari

Flavor at the Crossroads – MITP

22. April 2022

Outline

- Motivation: Complementarity of low and high energy probes of flavor
- Drell-Yan production at hadron colliders
 - Form-factor parametrization
 - EFT & NP mediator contributions
 - Cross-sections
- **HighPT** A Mathematica code for high- p_T flavor physics
- Flavor fits for the SMEFT & explicit NP models
- EFT validity and SMEFT effects at d = 6 and d = 8

Introduction

Flavor physics at low and high energies

B-anomalies

- Indication of LFUV in semileptonic B decays
- Preferred explanation: leptoquarks (LQ)
- Effects possibly measurable also in other semileptonic transitions
- In particular at high-p_T at hadron colliders [see Ulrich's talk]
- Motivates analysis of high- p_T Drell-Yan tails as high-energy probes of these semileptonic transitions

Low- & high-energy constraints

High- p_{T} searches (CMS and ATLAS) can probe the same operators constrained by flavor-physics experiments (NA62, KOTO, BES-III, LHCb, Belle-II...)

Di-tau tails as NP probes

If there is NP in semileptonic transitions:

- Expect deviations in high- p_T tails of invariant / transverse mass distributions
- For large 3rd generation couplings: in particular τ tails are relevant Faroughy, Greljo, Kamenik [1609.07138]

Semileptonic transitions at high- p_T – MITP

U_1 searches at LHC

- ATLAS and CMS exclusion limits on the U_1 LQ

ATLAS recast [2002.12223]

CMS search

Flavor in Drell-Yan tails

- Drell-Yan production at LHC:
 - NC: $pp \rightarrow \ell_{\alpha}^{+} \ell_{\beta}^{-}$
 - CC: $pp \rightarrow \ell_{\alpha} \nu_{\beta}$
- Hadronic cross-section:

$$\sigma_{\text{had}}(pp \to \ell_{\alpha} \ell_{\beta}) = L_{ij} \otimes \left[\hat{\sigma}\right]_{ij}^{\alpha\beta}$$

- L_{ij} parton-parton luminosities / PDFs
 - Heavy flavor suppressed

$$[\hat{\sigma}]_{ij}^{\alpha\beta} = \hat{\sigma}(q_i \bar{q}_j \to \ell_{\alpha} \ell_{\beta})$$

partonic cross-section / hardscattering: energy enhancement in EFT

$$\hat{\sigma}(b\bar{s} \to \mu^+\mu^-) \propto \frac{\hat{s}}{\Lambda^4} \left| [C]_{32}^{22} \right|^2 \qquad \hat{s} \ll \Lambda^2$$

➡ Can overcome PDF suppression

Complementarity of high- p_T data

• LFV: high- p_T tails vs low-energy flavor observables

• Constraints on $c \rightarrow u\ell\ell$

Recast of heavy LFV resonance search ATLAS [1807.06573]

Fuentes-Martin, Greljo, Camalich, Ruiz-Alvarez [2003.12421] Angelescu, Faroughy, Sumensari [2002.05684]

- Limits from quark flavor conserving transitions much better than Quarkonia limits
- Possibility of probing charm transitions much better than low energy experiments

Universität

Zürich

Drell-Yan cross-section

General form-factor description

Drell-Yan form-factors

Universität Zürich^{u™}

• Drell-Yan processes:

 $\bar{u}_i u_j \to \ell_\alpha^- \ell_\beta^+, \quad \bar{d}_i d_j \to \ell_\alpha^- \ell_\beta^+, \quad \bar{u}_i d_j \to \ell_\alpha^- \bar{\nu}_\beta, \quad \bar{d}_i u_j \to \ell_\alpha^+ \nu_\beta$

• Amplitude form-factor decomposition:

$$\begin{split} \left[\mathcal{A}\right]_{ij}^{\alpha\beta} &\equiv \mathcal{A}\left(\bar{q}_{i}q'_{j} \rightarrow \bar{\ell}_{\alpha}\ell'_{\beta}\right) \\ &= \frac{1}{v^{2}}\sum_{X,Y}\left\{\left(\bar{\ell}_{\alpha}\mathbb{P}_{X}\ell'_{\beta}\right)\left(\bar{q}_{i}\mathbb{P}_{Y}q'_{j}\right)\left[\mathcal{F}_{S}^{XY,qq'}\left(\hat{s},\hat{t}\right)\right]_{ij}^{\alpha\beta}\right\} \text{Scalar} \\ &+ \left(\bar{\ell}_{\alpha}\gamma_{\mu}\mathbb{P}_{X}\ell'_{\beta}\right)\left(\bar{q}_{i}\gamma^{\mu}\mathbb{P}_{Y}q'_{j}\right)\left[\mathcal{F}_{V}^{XY,qq'}\left(\hat{s},\hat{t}\right)\right]_{ij}^{\alpha\beta} \text{Vector} \\ &+ \left(\bar{\ell}_{\alpha}\sigma_{\mu\nu}\mathbb{P}_{X}\ell'_{\beta}\right)\left(\bar{q}_{i}\sigma^{\mu\nu}\mathbb{P}_{Y}q'_{j}\right)\delta^{XY}\left[\mathcal{F}_{T}^{XY,qq'}\left(\hat{s},\hat{t}\right)\right]_{ij}^{\alpha\beta} \text{Tensor} \\ &+ \left(\bar{\ell}_{\alpha}\gamma_{\mu}\mathbb{P}_{X}\ell'_{\beta}\right)\left(\bar{q}_{i}\sigma^{\mu\nu}\mathbb{P}_{Y}q'_{j}\right)\frac{ik_{\nu}}{v}\left[\mathcal{F}_{D_{q}}^{XY,qq'}\left(\hat{s},\hat{t}\right)\right]_{ij}^{\alpha\beta} \text{Dipole} \\ &+ \left(\bar{\ell}_{\alpha}\sigma_{\mu\nu}\mathbb{P}_{X}\ell'_{\beta}\right)\left(\bar{q}_{i}\gamma^{\mu}\mathbb{P}_{Y}q'_{j}\right)\frac{ik^{\nu}}{v}\left[\mathcal{F}_{D_{\ell}}^{XY,qq'}\left(\hat{s},\hat{t}\right)\right]_{ij}^{\alpha\beta}\right\} \text{Dipole} \end{split}$$

- - $$\begin{split} X, Y &\in L, R \\ \hat{s} &= k^2 = (p_{\ell} + p_{\ell'})^2 \\ \hat{t} &= (p_{\ell} p_{q'})^2 \end{split}$$
- General parametrization of tree-level effects invariant under $SU(3)_c \times U(1)_e$
- Captures local and non-local effects

EFT and mediator contributions

- Analytic continuation of form-factors to complex plane (\hat{s}, \hat{t})
- Separate simple poles from analytic function

$$\mathcal{F}_{I}(\hat{s},\hat{t}) = \mathcal{F}_{I,\operatorname{Reg}}(\hat{s},\hat{t}) + \mathcal{F}_{I,\operatorname{Poles}}(\hat{s},\hat{t})$$

- Analytic function of \hat{s} , \hat{t}
- Describes contact interactions
- No SM contribution
- EFT contributions
- Can be matched to the SMEFT

- Isolated simple poles in \hat{s} , \hat{t}
- No branch-cuts at tree-level
- Describes non-local effects due to exchange of mediators
- SM contributes only to $F_{V,Poles}$
- Further contributions from heavy NP mediators

Form-factor framework can incorporate both EFT and explicit NP models

Singular form-factors $F_{I, \text{Poles}}(\hat{s}, \hat{t})$

• Pole form-factors: non-analytic functions with finite number of simple poles

$$F_{I,\text{Poles}}(\hat{s},\hat{t}) = \sum_{a} \frac{v^2 \mathscr{S}_{I(a)}}{\hat{s} - \Omega_a} + \sum_{b} \frac{v^2 \mathscr{T}_{I(b)}}{\hat{t} - \Omega_b} - \sum_{c} \frac{v^2 \mathscr{U}_{I(c)}}{\hat{s} + \hat{t} + \Omega_c}$$

- ► *a* : sum over all *s*-channel (colorless) mediators
- ► *b* : sum over all *t*-channel (colorful) mediators
- c : sum over all u-channel (colorful) mediators
- SM contribution $\rightarrow \mathscr{S}_{V(a)} \ (a \in \{\gamma, Z, W\})$
- NP contribution $\rightarrow \mathcal{S}_{I(a)}, \mathcal{T}_{I(b)}, \mathcal{U}_{I(c)}$
- Residues can be made independent of \hat{s} , \hat{t} by partial fraction decomposition:

$$\frac{f(z)}{z - \Omega} = \frac{f(\Omega)}{z - \Omega} + g(z, \Omega)$$

redefines $F_{I, \text{Reg}}$

$$\begin{split} &\mathcal{S}_{I(a)}(\hat{s}) \to \mathcal{S}_{I(a)} \\ &\mathcal{T}_{I(b)}(\hat{t}) \to \mathcal{T}_{I(b)} \\ &\mathcal{U}_{I(c)}(\hat{u}) \to \mathcal{U}_{I(c)} \end{split}$$

$$\hat{u} = -\hat{s} - \hat{t}$$

$$\Omega_n = m_n^2 - im_n\Gamma_n$$

Universität

Regular form-factors $F_{I, \text{Reg}}(\hat{s}, \hat{t})$

- **Regular form-factors:** analytic functions of \hat{s} , \hat{t}
- Describe unresolved d.o.f. \rightarrow EFT
- Formal expansion in validity range of the EFT $|\hat{s}|, |\hat{t}| < \Lambda^2$:

- Derivative expansion:
$$F_{I,Reg}(\hat{s},\hat{t}) = \sum_{n,m=0}^{\infty} F_{I,(n,m)} \left(\frac{\hat{s}}{v^2}\right)^n \left(\frac{\hat{t}}{v^2}\right)^m$$

- EFT expansion: $F_{I,(n,m)} = \sum_{k=n+m+1} \mathcal{O}\left((v^2/\Lambda^2)^k\right)$

• Terms to consider at mass dimension d

-
$$d = 6$$
: $(n, m) = (0, 0)$

-
$$d = 8$$
: $(n, m) = (0, 0), (1, 0), (0, 1)$

$$\mathscr{L}_{\text{SMEFT}} = \mathscr{L}_{\text{SM}} + \sum_{i} \frac{C_{i}^{(6)}}{\Lambda^{2}} Q_{i}^{(6)} + \sum_{i} \frac{C_{i}^{(8)}}{\Lambda^{4}} Q_{i}^{(8)} + \mathcal{O}(\Lambda^{-6})$$

• Cross-section in the SMEFT to $\mathcal{O}(\Lambda^{-4})$

$$\sigma \sim \left|A_{\rm SM}\right|^2 + \frac{1}{\Lambda^2} 2\operatorname{Re}\left(A^{(6)}A_{\rm SM}^*\right) + \frac{1}{\Lambda^4}\left(\left|A^{(6)}\right|^2 + 2\operatorname{Re}\left(A^{(8)}A_{\rm SM}^*\right)\right) + \mathcal{O}(\Lambda^{-6})$$

- Consistent description up to $\mathcal{O}(\Lambda^{-4})$
 - $|A^{(6)}|^2$ contribution can be energy enhanced
 - LFV only through $|A^{(6)}|^2$ (no SM interfence)
- \blacksquare Requires inclusion of d = 8 operators
 - Only d = 8 interference with SM relevant

SMEFT operators d = 6

- Warsaw basis d = 6 Grzadkowski, Iskrzynski, Misiak, Rosiek [1008.4884]
- Operator classes contributing to Drell-Yan: ψ^4 , $\psi^2 H^2 D$, $\psi^2 X H$

$pp ightarrow \ell\ell$ ψ^4 $pp ightarrow \ell u$ d = 6 $\mathcal{O}_{lq}^{(1)}$ $(\bar{l}_{lpha}\gamma^{\mu}l_{eta})(\bar{q}_i\gamma_{\mu}q_j)$ \checkmark $\mathcal{O}_{lq}^{(3)}$ $(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}l_{\beta})(\bar{q}_{i}\gamma_{\mu}\tau^{I}q_{j})$ \checkmark \mathcal{O}_{lu} $(\bar{l}_{lpha}\gamma^{\mu}l_{eta})(\bar{u}_{i}\gamma_{\mu}u_{j})$ $(\bar{l}_{lpha}\gamma^{\mu}l_{eta})(\bar{d}_{i}\gamma_{\mu}d_{j})$ \mathcal{O}_{ld} $(\bar{e}_{lpha}\gamma^{\mu}e_{eta})(\bar{q}_{i}\gamma_{\mu}q_{j})$ \mathcal{O}_{eq} $(\bar{e}_{lpha}\gamma^{\mu}e_{eta})(\bar{u}_{i}\gamma_{\mu}u_{j})$ \mathcal{O}_{eu} \mathcal{O}_{ed} $(\bar{e}_{lpha}\gamma^{\mu}e_{eta})(\bar{d}_{i}\gamma_{\mu}d_{j})$ $\mathcal{O}_{ledq} + \mathrm{h.c.}$ $(\bar{l}_{lpha}e_{eta})(\bar{d}_{i}q_{j})$ $\mathcal{O}_{lequ}^{(1)}$ + h.c. $(ar{l}_lpha e_eta)arepsilon(ar{q}_i u_j)$ $\mathcal{O}_{lequ}^{(3)}$ + h.c. $(\bar{l}_{\alpha}\sigma^{\mu\nu}e_{\beta})\varepsilon(\bar{q}_{i}\sigma_{\mu\nu}u_{j})$

4-fermion

dipoles

d=6	$\psi^2 XH + ext{h.c.}$	$pp ightarrow \ell\ell$	$pp ightarrow \ell u$
\mathcal{O}_{eW}	$(\bar{l}_{lpha}\sigma^{\mu u}e_{eta}) au^{I}HW^{I}_{\mu u}$	\checkmark	\checkmark
\mathcal{O}_{eB}	$(ar{l}_lpha \sigma^{\mu u} e_eta) HB_{\mu u}$	\checkmark	—
\mathcal{O}_{uW}	$\left(ar{q}_i\sigma^{\mu u}u_j ight) au^I\widetilde{H}W^I_{\mu u}$	\checkmark	\checkmark
\mathcal{O}_{uB}	$\left(ar{q}_i\sigma^{\mu u}u_j ight)\widetilde{H}B_{\mu u}$	\checkmark	_
\mathcal{O}_{dW}	$\left(ar{q}_i \sigma^{\mu u} d_j ight) au^I H W^I_{\mu u}$	\checkmark	\checkmark
\mathcal{O}_{dB}	$(ar q_i \sigma^{\mu u} d_j) H B_{\mu u}$	\checkmark	_

Z/W coupling modifications

d=6	$\psi^2 H^2 D$	$pp ightarrow \ell \ell$	$pp ightarrow \ell u$
$\mathcal{O}_{Hl}^{(1)}$	$(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)$	\checkmark	_
$\mathcal{O}_{Hl}^{(3)}$	$(ar{l}_{lpha}\gamma^{\mu} au^{I}l_{eta})(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)$	\checkmark	\checkmark
$\mathcal{O}_{Hq}^{(1)}$	$(ar{q}_i\gamma^\mu q_j)(H^\dagger i\overleftrightarrow{D}_\mu H)$	\checkmark	—
$\mathcal{O}_{Hq}^{(3)}$	$(\bar{q}_i \gamma^\mu \tau^I q_j) (H^\dagger i \overleftrightarrow{D}^I_\mu H)$	\checkmark	\checkmark
\mathcal{O}_{He}	$(\bar{e}_{lpha}\gamma^{\mu}e_{eta})(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)$	\checkmark	_
\mathcal{O}_{Hu}	$(ar{u}_i\gamma^\mu u_j)(H^\dagger i \overleftrightarrow{D}_\mu H)$	\checkmark	_
\mathcal{O}_{Hd}	$(\bar{d}_i \gamma^\mu d_j) (H^\dagger i \overleftrightarrow{D}_\mu H)$	\checkmark	_
\mathcal{O}_{Hud} + h.c.	$(\bar{u}_i \gamma^\mu d_j) (\widetilde{H}^\dagger i D_ u H)$	_	✓

SMEFT operators d = 8

- Extension of Warsaw basis by C. Murphy Murphy [2005.00059]
 - see also: Li, Ren, Shu, Xiao, Yu, Zheng [2005.00008]
- Operator classes contributing to Drell-Yan: $\psi^4 D^2$, $\psi^4 H^2$, $\psi^2 H^2 D^3$, $\psi^2 H^4 D$

d=8	$\psi^4 D^2$	$pp ightarrow \ell\ell$	$pp o \ell u$
$\mathcal{O}_{l^2q^2D^2}^{(1)}$	$D^ u(ar l_lpha\gamma^\mu l_eta)D_ u(ar q_i\gamma_\mu q_j)$	\checkmark	_
$\mathcal{O}_{l^2q^2D^2}^{(2)}$	$(ar{l}_lpha\gamma^\mu\overleftrightarrow{D}^ u l_eta)(ar{q}_i\gamma_\mu\overleftrightarrow{D}_ u q_j)$	\checkmark	_
$\mathcal{O}_{l^2 q^2 D^2}^{(3)}$	$D^{ u}(ar{l}_lpha\gamma^\mu au^I l_eta)D_ u(ar{q}_i\gamma_\mu au^I q_j)$	\checkmark	\checkmark
$\mathcal{O}_{l^2q^2D^2}^{(4)}$	$(ar{l}_{lpha}\gamma^{\mu}\overleftrightarrow{D}^{I u}l_{eta})(ar{q}_{i}\gamma_{\mu}\overleftrightarrow{D}^{I}_{ u}q_{j})$	\checkmark	\checkmark
$\mathcal{O}_{l^2 u^2 D^2}^{(1)}$	$D^ u(ar{l}_lpha\gamma^\mu l_eta)D_ u(ar{u}_i\gamma_\mu u_j)$	\checkmark	_
$\mathcal{O}_{l^{2}_{l} u^{2} D^{2}}^{(2)}$	$(ar{l}_{lpha}\gamma^{\mu}\overleftrightarrow{D}^{ u}l_{eta})(ar{u}_{i}\gamma_{\mu}\overleftrightarrow{D}_{ u}u_{j})$	\checkmark	_
$\mathcal{O}_{l^2d^2D^2}^{(1)}$	$D^{ u}(ar{l}_{lpha}\gamma^{\mu}l_{eta})D_{ u}(ar{d}_{i}\gamma_{\mu}d_{j})$	\checkmark	_
$\mathcal{O}_{l^2 d^2 D^2}^{(2)}$	$(ar{l}_{lpha}\gamma^{\mu}D^{ u}l_{eta})(ar{d}_{i}\gamma_{\mu}D^{ u}d_{j})$	\checkmark	_
$\mathcal{O}_{q^2 e^2 D^2}^{(1)}$	$D^{ u}(ar{q}_i\gamma^{\mu}q_j)D_{ u}(ar{e}_lpha\gamma_{\mu}e_eta)$	\checkmark	_
$\mathcal{O}_{q^2 e^2 D^2}^{(2)}$	$(ar{q}_i\gamma^\mu\overleftrightarrow{D}^ u q_j)(ar{e}_lpha\gamma_\mu\overleftrightarrow{D}_ u e_eta)$	\checkmark	_
$\mathcal{O}_{e_{2}^{2}u^{2}D^{2}}^{(1)}$	$D^ u(ar e_lpha\gamma^\mu e_eta)D_ u(ar u_j\gamma_\mu u_j)$	\checkmark	_
$\mathcal{O}^{(2)}_{e_{+}^{2}u^{2}D^{2}}$	$(ar{e}_lpha\gamma^\mu \overleftarrow{D}^ u e_eta)(ar{u}_i\gamma_\mu \overleftarrow{D}_ u u_j)$	\checkmark	—
$\mathcal{O}_{e_{2}^{2}d^{2}D^{2}}^{(1)}$	$D^{ u}(ar{e}_{lpha}\gamma^{\mu}e_{eta})D_{ u}(ar{d}_{i}\gamma_{\mu}d_{j})$	\checkmark	_
()			
$\mathcal{O}_{e^2d^2D^2}^{(2)}$	$(ar{e}_lpha \gamma^\mu D^{ u} e_eta) (d_i \gamma_\mu D_{ u} d_j)$	\checkmark	_
$\mathcal{O}_{e^2d^2D^2}^{(2)}$	$(ar{e}_{lpha}\gamma^{\mu}D^{ u}e_{eta})(d_{i}\gamma_{\mu}D_{ u}d_{j})$		
$\frac{\mathcal{O}_{e^2d^2D^2}^{(2)}}{d=8}$	$\frac{(\bar{e}_{\alpha}\gamma^{\mu}D^{\nu}e_{\beta})(d_{i}\gamma_{\mu}D_{\nu}d_{j})}{\psi^{4}H^{2}}$	\checkmark $pp \rightarrow \ell \ell$	$pp ightarrow \ell u$
$\frac{\mathcal{O}_{e^2d^2D^2}^{(2)}}{d=8}$ $\frac{d=8}{\mathcal{O}_{l^2q^2H^2}^{(1)}}$	$\frac{(\bar{e}_{\alpha}\gamma^{\mu}D^{\nu}e_{\beta})(d_{i}\gamma_{\mu}D_{\nu}d_{j})}{\psi^{4}H^{2}}$ $\frac{(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{q}_{i}\gamma_{\mu}q_{j})(H^{\dagger}H)}{(\bar{\ell}_{\alpha}\gamma^{\mu}\ell_{\beta})(\bar{q}_{i}\gamma_{\mu}q_{j})(H^{\dagger}H)}$	$\frac{\checkmark}{pp \rightarrow \ell \ell}$	$pp ightarrow \ell u$
$\begin{array}{c} \mathcal{O}_{e^2d^2D^2}^{(2)} \\ \hline \\ d=8 \\ \hline \\ \mathcal{O}_{l^2q^2H^2}^{(1)} \\ \mathcal{O}_{l^2q^2H^2}^{(2)} \end{array}$	$\frac{(\bar{e}_{\alpha}\gamma^{\mu}D^{\nu}e_{\beta})(d_{i}\gamma_{\mu}D_{\nu}d_{j})}{\psi^{4}H^{2}}$ $\frac{(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{q}_{i}\gamma_{\mu}q_{j})(H^{\dagger}H)}{(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}l_{\beta})(\bar{q}_{i}\gamma_{\mu}q_{j})(H^{\dagger}\tau^{I}H)}$	$ \begin{array}{c} \checkmark \\ pp \rightarrow \ell\ell \\ \checkmark \\ \checkmark \\ \checkmark \end{array} $	$pp \rightarrow \ell \nu$
$\begin{array}{c} \mathcal{O}_{e^2d^2D^2}^{(2)} \\ \hline \\ d = 8 \\ \hline \\ \mathcal{O}_{l^2q^2H^2}^{(1)} \\ \mathcal{O}_{l^2q^2H^2}^{(2)} \\ \mathcal{O}_{l^2q^2H^2}^{(3)} \\ \mathcal{O}_{l^2q^2H^2}^{(3)} \end{array}$	$\frac{(\bar{e}_{\alpha}\gamma^{\mu} D^{\nu}e_{\beta})(d_{i}\gamma_{\mu} D_{\nu}d_{j})}{\psi^{4}H^{2}}$ $\frac{(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{q}_{i}\gamma_{\mu}q_{j})(H^{\dagger}H)}{(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}l_{\beta})(\bar{q}_{i}\gamma_{\mu}q_{j})(H^{\dagger}\tau^{I}H)}$ $(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}l_{\beta})(\bar{q}_{i}\gamma_{\mu}\tau^{I}q_{j})(H^{\dagger}H)$	$ \begin{array}{c} \checkmark \\ pp \rightarrow \ell\ell \\ \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \end{array} $	$pp \rightarrow \ell \nu$ $-$ $-$ \checkmark
$\begin{array}{c} \mathcal{O}_{e^2d^2D^2}^{(2)} \\ \hline \\ d=8 \\ \hline \\ \mathcal{O}_{l^2q^2H^2}^{(1)} \\ \mathcal{O}_{l^2q^2H^2}^{(2)} \\ \mathcal{O}_{l^2q^2H^2}^{(3)} \\ \mathcal{O}_{l^2q^2H^2}^{(4)} \\ \mathcal{O}_{l^2q^2H^2}^{(4)} \end{array}$	$\frac{(\bar{e}_{\alpha}\gamma^{\mu}D^{\nu}e_{\beta})(d_{i}\gamma_{\mu}D_{\nu}d_{j})}{\psi^{4}H^{2}}$ $\frac{(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{q}_{i}\gamma_{\mu}q_{j})(H^{\dagger}H)}{(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}l_{\beta})(\bar{q}_{i}\gamma_{\mu}q_{j})(H^{\dagger}\tau^{I}H)}$ $(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}l_{\beta})(\bar{q}_{i}\gamma_{\mu}\tau^{I}q_{j})(H^{\dagger}H)}$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{q}_{i}\gamma_{\mu}\tau^{I}q_{j})(H^{\dagger}\tau^{I}H)}$	$ \begin{array}{c} \checkmark \\ pp \rightarrow \ell\ell \\ \checkmark \end{array} $	$\begin{array}{c} - \\ pp \rightarrow \ell \nu \\ - \\ \checkmark \\ - \\ \checkmark \\ - \end{array}$
$\begin{array}{c} \mathcal{O}_{e^2d^2D^2}^{(2)} \\ \hline \\ \hline \\ d = 8 \\ \hline \\ \mathcal{O}_{l^2q^2H^2}^{(1)} \\ \mathcal{O}_{l^2q^2H^2}^{(2)} \\ \mathcal{O}_{l^2q^2H^2}^{(3)} \\ \mathcal{O}_{l^2q^2H^2}^{(4)} \\ \mathcal{O}_{l^2q^2H^2}^{(5)} \\ \mathcal{O}_{l^2q^2H^2}^{(5)} \end{array}$	$ \begin{array}{c} (\bar{e}_{\alpha}\gamma^{\mu}D^{\nu}e_{\beta})(d_{i}\gamma_{\mu}D_{\nu}d_{j}) \\ \\ \hline \psi^{4}H^{2} \\ \hline \\ (\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{q}_{i}\gamma_{\mu}q_{j})(H^{\dagger}H) \\ (\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}l_{\beta})(\bar{q}_{i}\gamma_{\mu}\tau^{I}q_{j})(H^{\dagger}\tau^{I}H) \\ (\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{q}_{i}\gamma_{\mu}\tau^{I}q_{j})(H^{\dagger}\tau^{I}H) \\ (\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{q}_{i}\gamma_{\mu}\tau^{I}q_{j})(H^{\dagger}\tau^{I}H) \\ \epsilon^{IJK}(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}l_{\beta})(\bar{q}_{i}\gamma_{\mu}\tau^{J}q_{j})(H^{\dagger}\tau^{K}H) \end{array} $	$ \begin{array}{c} \checkmark \\ pp \rightarrow \ell\ell \\ \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \\ - \\ \end{array} $	$\begin{array}{c} -\\ pp \rightarrow \ell \nu \\ \hline \\ -\\ \checkmark \\ -\\ \checkmark \\ \checkmark \end{array}$
$\begin{array}{c} \mathcal{O}_{e^2d^2D^2}^{(2)} \\ \hline \boldsymbol{d} = \boldsymbol{8} \\ \hline \mathcal{O}_{l^2q^2H^2}^{(1)} \\ \mathcal{O}_{l^2q^2H^2}^{(2)} \\ \mathcal{O}_{l^2q^2H^2}^{(3)} \\ \mathcal{O}_{l^2q^2H^2}^{(4)} \\ \mathcal{O}_{l^2q^2H^2}^{(5)} \\ \hline \mathcal{O}_{l^2q^2H^2}^{(1)} \\ \hline \mathcal{O}_{l^2w^2H^2}^{(1)} \end{array}$	$(\bar{e}_{\alpha}\gamma^{\mu} D^{\nu} e_{\beta})(d_{i}\gamma_{\mu} D_{\nu}d_{j})$ $\psi^{4}H^{2}$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{q}_{i}\gamma_{\mu}q_{j})(H^{\dagger}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}l_{\beta})(\bar{q}_{i}\gamma_{\mu}\tau^{I}q_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{q}_{i}\gamma_{\mu}\tau^{I}q_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{q}_{i}\gamma_{\mu}\tau^{J}q_{j})(H^{\dagger}\tau^{K}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{q}_{i}\gamma_{\mu}u^{J}q_{j})(H^{\dagger}H)$	$ \begin{array}{c} \checkmark \\ pp \rightarrow \ell\ell \\ \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \\ - \\ \checkmark \\ \checkmark \end{array} $	$pp \rightarrow \ell \nu$ $-$ \downarrow \downarrow $-$ \downarrow \downarrow $-$ \downarrow
$\begin{array}{c} \mathcal{O}_{e^2d^2D^2}^{(2)} \\ \hline \\ d = 8 \\ \hline \\ \mathcal{O}_{l^2q^2H^2}^{(2)} \\ \mathcal{O}_{l^2q^2H^2}^{(2)} \\ \mathcal{O}_{l^2q^2H^2}^{(3)} \\ \mathcal{O}_{l^2q^2H^2}^{(4)} \\ \mathcal{O}_{l^2q^2H^2}^{(5)} \\ \hline \\ \mathcal{O}_{l^2q^2H^2}^{(1)} \\ \mathcal{O}_{l^2y^2H^2}^{(2)} \\ \mathcal{O}_{l^2y^2H^2}^{(2)} \\ \mathcal{O}_{l^2y^2H^2}^{(2)} \end{array}$	$(\bar{e}_{\alpha}\gamma^{\mu}D^{\nu}e_{\beta})(d_{i}\gamma_{\mu}D_{\nu}d_{j})$ $\psi^{4}H^{2}$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{q}_{i}\gamma_{\mu}q_{j})(H^{\dagger}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}l_{\beta})(\bar{q}_{i}\gamma_{\mu}\tau^{I}q_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{q}_{i}\gamma_{\mu}\tau^{I}q_{j})(H^{\dagger}\tau^{I}H)$ $\epsilon^{IJK}(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}l_{\beta})(\bar{q}_{i}\gamma_{\mu}\tau^{J}q_{j})(H^{\dagger}\tau^{K}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{u}_{i}\gamma_{\mu}u_{j})(H^{\dagger}\mu)$ $(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}l_{\beta})(\bar{u}_{i}\gamma_{\mu}u_{j})(H^{\dagger}\mu)$	$ \begin{array}{c} \checkmark \\ pp \rightarrow \ell\ell \\ \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \\ \hline \\ \checkmark \\ \checkmark$	$\begin{array}{c} - \\ pp \rightarrow \ell \nu \\ \hline - \\ \checkmark \\ - \\ \checkmark \\ - \\ \checkmark \\ - \\ \checkmark \\ - \\ - \\$
$\begin{array}{c} \mathcal{O}_{e^2d^2D^2}^{(2)} \\ \hline \\ d = 8 \\ \hline \\ \mathcal{O}_{l^2q^2H^2}^{(1)} \\ \mathcal{O}_{l^2q^2H^2}^{(2)} \\ \mathcal{O}_{l^2q^2H^2}^{(3)} \\ \mathcal{O}_{l^2q^2H^2}^{(4)} \\ \mathcal{O}_{l^2q^2H^2}^{(5)} \\ \hline \\ \mathcal{O}_{l^2q^2H^2}^{(1)} \\ \mathcal{O}_{l^2u^2H^2}^{(2)} \\ \mathcal{O}_{l^2u^2H^2}^{(2)} \\ \mathcal{O}_{l^2u^2H^2}^{(1)} \\ \mathcal{O}_{l^2d^2H^2}^{(1)} \\ \mathcal{O}_{l^2d^2H^2}^{(1)} \end{array}$	$(\bar{e}_{\alpha}\gamma^{\mu}D^{\nu}e_{\beta})(d_{i}\gamma_{\mu}D_{\nu}d_{j})$ $\psi^{4}H^{2}$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{q}_{i}\gamma_{\mu}q_{j})(H^{\dagger}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}l_{\beta})(\bar{q}_{i}\gamma_{\mu}q_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{q}_{i}\gamma_{\mu}\tau^{I}q_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{q}_{i}\gamma_{\mu}\tau^{J}q_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{q}_{i}\gamma_{\mu}u_{j})(H^{\dagger}\tau^{K}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{u}_{i}\gamma_{\mu}u_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{u}_{i}\gamma_{\mu}d_{j})(H^{\dagger}H)$	$ \begin{array}{c} \checkmark \\ pp \rightarrow \ell\ell \\ \checkmark \\ \checkmark$	$\begin{array}{c} - \\ \hline pp \rightarrow \ell \nu \\ \hline - \\ \checkmark \\ \hline - \\ \hline \hline \hline \hline$
$\begin{array}{c} \mathcal{O}_{e^2d^2D^2}^{(2)} \\ \hline d = 8 \\ \hline \mathcal{O}_{l^2q^2H^2}^{(1)} \\ \mathcal{O}_{l^2q^2H^2}^{(2)} \\ \mathcal{O}_{l^2q^2H^2}^{(3)} \\ \mathcal{O}_{l^2q^2H^2}^{(4)} \\ \mathcal{O}_{l^2q^2H^2}^{(5)} \\ \hline \mathcal{O}_{l^2q^2H^2}^{(1)} \\ \mathcal{O}_{l^2u^2H^2}^{(2)} \\ \mathcal{O}_{l^2u^2H^2}^{(2)} \\ \mathcal{O}_{l^2d^2H^2}^{(2)} \\ $	$(\bar{e}_{\alpha}\gamma^{\mu}D^{\nu}e_{\beta})(d_{i}\gamma_{\mu}D_{\nu}d_{j})$ $\psi^{4}H^{2}$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{q}_{i}\gamma_{\mu}q_{j})(H^{\dagger}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}l_{\beta})(\bar{q}_{i}\gamma_{\mu}\tau^{I}q_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{q}_{i}\gamma_{\mu}\tau^{I}q_{j})(H^{\dagger}\tau^{I}H)$ $\epsilon^{IJK}(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}l_{\beta})(\bar{q}_{i}\gamma_{\mu}u^{J}q_{j})(H^{\dagger}\tau^{K}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{u}_{i}\gamma_{\mu}u_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}\ell_{\beta})(\bar{u}_{i}\gamma_{\mu}u_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}\ell_{\beta})(\bar{d}_{i}\gamma_{\mu}d_{j})(H^{\dagger}\pi^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}l_{\beta})(\bar{d}_{i}\gamma_{\mu}d_{j})(H^{\dagger}\tau^{I}H)$	$ \begin{array}{c} \checkmark \\ pp \rightarrow \ell\ell \\ \checkmark \\ \checkmark$	$\begin{array}{c} - \\ pp \rightarrow \ell \nu \\ \hline \\ - \\ \checkmark \\ - \\ \checkmark \\ - \\ \checkmark \\ - \\ \hline \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$
$\begin{array}{c} \mathcal{O}_{e^2d^2D^2}^{(2)} \\ \hline \\ d = 8 \\ \hline \\ \mathcal{O}_{l^2q^2H^2}^{(2)} \\ \mathcal{O}_{l^2q^2H^2}^{(2)} \\ \mathcal{O}_{l^2q^2H^2}^{(3)} \\ \mathcal{O}_{l^2q^2H^2}^{(4)} \\ \mathcal{O}_{l^2q^2H^2}^{(5)} \\ \mathcal{O}_{l^2q^2H^2}^{(5)} \\ \mathcal{O}_{l^2w^2H^2}^{(2)} \\ \mathcal{O}_{l^2w^2H^2}^{(2)} \\ \mathcal{O}_{l^2d^2H^2}^{(2)} $	$(\bar{e}_{\alpha}\gamma^{\mu}D^{\nu}e_{\beta})(d_{i}\gamma_{\mu}D_{\nu}d_{j})$ $\frac{\psi^{4}H^{2}}{(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{q}_{i}\gamma_{\mu}q_{j})(H^{\dagger}H)}$ $(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}l_{\beta})(\bar{q}_{i}\gamma_{\mu}q_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}l_{\beta})(\bar{q}_{i}\gamma_{\mu}\tau^{I}q_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{q}_{i}\gamma_{\mu}\tau^{J}q_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}\ell_{\beta})(\bar{q}_{i}\gamma_{\mu}u_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}\ell_{\beta})(\bar{u}_{i}\gamma_{\mu}u_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}\ell_{\beta})(\bar{d}_{i}\gamma_{\mu}d_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}l_{\beta})(\bar{d}_{i}\gamma_{\mu}d_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}\eta_{j})(\bar{e}_{\alpha}\gamma_{\mu}e_{\beta})(H^{\dagger}H)$	$ \frac{\checkmark}{pp \rightarrow \ell \ell} $ $ \frac{\checkmark}{\checkmark} $	$ \begin{array}{c} - \\ - \\ \\ - \\ \\ - \\ \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $
$\begin{array}{c} \mathcal{O}_{e^2d^2D^2}^{(2)} \\ \hline \\ d = 8 \\ \hline \mathcal{O}_{l^2q^2H^2}^{(1)} \\ \mathcal{O}_{l^2q^2H^2}^{(2)} \\ \mathcal{O}_{l^2q^2H^2}^{(3)} \\ \mathcal{O}_{l^2q^2H^2}^{(4)} \\ \mathcal{O}_{l^2q^2H^2}^{(5)} \\ \mathcal{O}_{l^2q^2H^2}^{(5)} \\ \mathcal{O}_{l^2u^2H^2}^{(2)} \\ \mathcal{O}_{l^2d^2H^2}^{(2)} \\ \mathcal{O}_{l^2d^2H^2}^{(2)} \\ \mathcal{O}_{l^2d^2H^2}^{(2)} \\ \mathcal{O}_{l^2d^2H^2}^{(2)} \\ \mathcal{O}_{l^2d^2H^2}^{(2)} \\ \mathcal{O}_{l^2d^2H^2}^{(2)} \\ \mathcal{O}_{q^2e^2H^2}^{(2)} \\ \mathcal{O}_{q^2e^2H^2}^{(2)} \\ \mathcal{O}_{q^2e^2H^2}^{(2)} \\ \mathcal{O}_{q^2e^2H^2}^{(2)} \end{array}$	$(\bar{e}_{\alpha}\gamma^{\mu}D^{\nu}e_{\beta})(d_{i}\gamma_{\mu}D_{\nu}d_{j})$ $\frac{\psi^{4}H^{2}}{(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{q}_{i}\gamma_{\mu}q_{j})(H^{\dagger}H)}$ $(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}l_{\beta})(\bar{q}_{i}\gamma_{\mu}q_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}l_{\beta})(\bar{q}_{i}\gamma_{\mu}\tau^{I}q_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{q}_{i}\gamma_{\mu}\tau^{J}q_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}\ell_{\beta})(\bar{u}_{i}\gamma_{\mu}u_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{d}_{i}\gamma_{\mu}d_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{d}_{i}\gamma_{\mu}d_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{d}_{i}\gamma_{\mu}d_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{q}_{i}\gamma^{\mu}q_{j})(\bar{e}_{\alpha}\gamma_{\mu}e_{\beta})(H^{\dagger}H)$ $(\bar{q}_{i}\gamma^{\mu}\tau^{I}q_{j})(\bar{e}_{\alpha}\gamma_{\mu}e_{\beta})(H^{\dagger}\tau^{I}H)$		$-$ $pp \rightarrow \ell \nu$ $-$ \checkmark $-$ \checkmark $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$
$\begin{array}{c} \mathcal{O}_{e^2d^2D^2}^{(2)} \\ \hline d = 8 \\ \hline \mathcal{O}_{l^2q^2H^2}^{(2)} \\ \mathcal{O}_{l^2q^2H^2}^{(2)} \\ \mathcal{O}_{l^2q^2H^2}^{(3)} \\ \mathcal{O}_{l^2q^2H^2}^{(4)} \\ \mathcal{O}_{l^2q^2H^2}^{(5)} \\ \mathcal{O}_{l^2u^2H^2}^{(1)} \\ \mathcal{O}_{l^2u^2H^2}^{(2)} \\ \mathcal{O}_{l^2d^2H^2}^{(2)} \\ \mathcal{O}_{l^2d^2H^2}^{(2)} \\ \mathcal{O}_{l^2d^2H^2}^{(2)} \\ \mathcal{O}_{l^2d^2H^2}^{(2)} \\ \mathcal{O}_{q^2e^2H^2}^{(2)} \\ \mathcal{O}_{q^2e^2H^2}^{(2)} \\ \mathcal{O}_{e^2u^2H^2}^{(2)} \\ $	$(\bar{e}_{\alpha}\gamma^{\mu}D^{\nu}e_{\beta})(d_{i}\gamma_{\mu}D_{\nu}d_{j})$ $\psi^{4}H^{2}$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{q}_{i}\gamma_{\mu}q_{j})(H^{\dagger}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}l_{\beta})(\bar{q}_{i}\gamma_{\mu}q_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}l_{\beta})(\bar{q}_{i}\gamma_{\mu}\tau^{I}q_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{q}_{i}\gamma_{\mu}\tau^{J}q_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{q}_{i}\gamma_{\mu}u_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{d}_{i}\gamma_{\mu}u_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{d}_{i}\gamma_{\mu}d_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}l_{\beta})(\bar{d}_{i}\gamma_{\mu}d_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{q}_{i}\gamma^{\mu}\tau^{I}q_{j})(\bar{e}_{\alpha}\gamma_{\mu}e_{\beta})(H^{\dagger}\tau^{I}H)$ $(\bar{q}_{i}\gamma^{\mu}e_{\beta})(\bar{u}_{i}\gamma_{\mu}u_{j})(H^{\dagger}H)$ $(\bar{e}_{\alpha}\gamma^{\mu}e_{\beta})(\bar{u}_{i}\gamma_{\mu}u_{j})(H^{\dagger}H)$	$ \begin{array}{c} \checkmark \\ pp \rightarrow \ell \ell \\ \checkmark \\ \checkmark$	$ \begin{array}{c} - \\ - \\ - \\ \\ - \\ \\ - \\ \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $

d=8	$\psi^2 H^2 D^3$	$pp ightarrow \ell\ell$	$\ell pp o \ell u$
$\mathcal{O}_{l^{2}H^{2}D^{3}}^{(1)}$	$i(ar{l}_lpha\gamma^\mu D^ u l_eta) (D_{(\mu}D_{ u)}H)^\dagger H$	\checkmark	_
$\mathcal{O}_{l^2 H^2 D^3}^{(2)}$	$i(ar{l}_lpha\gamma^\mu D^ u l_eta) H^\dagger(D_{(\mu}D_{ u)}H)$	\checkmark	_
$\mathcal{O}_{l^2 H^2 D^3}^{(3)}$	$i(ar{l}_lpha\gamma^\mu au^I D^ u l_eta) \left(D_{(\mu}D_{ u)}H ight)^\dagger au^I H ight)$	\checkmark	\checkmark
$\mathcal{O}_{l^2 H^2 D^3}^{(4)}$	$i(\bar{l}_{lpha}\gamma^{\mu}\tau^{I}D^{ u}l_{eta}) H^{\dagger}\tau^{I}(D_{(\mu}D_{ u)}H)$	\checkmark	✓
$\mathcal{O}_{e^{2}_{*}H^{2}D^{3}}^{(1)}$	$i(ar{e}_lpha\gamma^\mu D^ u e_eta) \left(D_{(\mu}D_{ u)}H ight)^\dagger H ight)$	\checkmark	-
$\mathcal{O}_{e^{2}H^{2}D^{3}}^{(2)}$	$i(ar{e}_lpha\gamma^\mu D^ u e_eta) H^\dagger(D_{(\mu}D_{ u)}H)$	\checkmark	_
$\mathcal{O}_{q^2H^2D^3}^{(1)}$	$i(ar q_i\gamma^\mu D^ u q_j)(D_{(\mu}D_{ u)}H)^\dagger H$	\checkmark	-
${\cal O}^{(2)}_{q^2 H^2 D^3}$	$i(ar q_i\gamma^\mu D^ u q_j) H^\dagger(D_{(\mu}D_{ u)}H)$	\checkmark	-
${\cal O}_{a^2H^2D^3}^{(3)}$	$i(ar q_i\gamma^\mu au^ID^ u q_j)(D_{(\mu}D_{ u)}H)^\dagger au^IH$	\checkmark	\checkmark
${\cal O}_{q^2 H^2 D^3}^{(4)}$	$i(\bar{q}_i\gamma^\mu\tau^I D^ u q_j) H^\dagger au^I (D_{(\mu}D_{ u)}H)$	\checkmark	\checkmark
$\mathcal{O}_{u^2 H^2 D^3}^{(1)}$	$i(\bar{u}_i\gamma^\mu D^ u u_j) \left(D_{(\mu}D_{ u)}H\right)^\dagger H$	\checkmark	_
$\mathcal{O}_{u^{2}H^{2}D^{3}}^{(2)}$	$i(ar{u}_i\gamma^\mu D^ u u_j)H^\dagger(D_{(\mu}D_{ u)}H)$	\checkmark	_
$\mathcal{O}_{d^2H^2D^3}^{(1)}$	$i(ar{d}_i\gamma^\mu D^ u d_j)(D_{(\mu}D_{ u)}H)^\dagger H$	\checkmark	_
$\mathcal{O}_{d^{2}H^{2}D^{3}}^{(2)}$	$i(ar{d}_i\gamma^\mu D^ u d_j) H^\dagger(D_{(\mu}D_{ u)}H)$	\checkmark	_
	· 2 -=4 -=		
$\frac{d=8}{(1)}$	$\psi^2 H^4 D$	<i>pp</i> -	$ ightarrow \ell\ell pp ightarrow \ell u$
$\mathcal{O}_{l^{2}H^{4}D}^{(1)}$ -	$i(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(H^{\dagger}D_{\mu}H)(H^{\dagger}H)$	v	-
$\mathcal{O}_{l^2H^4D}^{(2)} i(l_{lpha}$	$\gamma^{\mu}\tau^{I}l_{\beta})[(H^{\dagger}D_{\mu}^{I}H)(H^{\dagger}H) + (H^{\dagger}D_{\mu}H)(H^{\dagger}\tau)]$	[H]	(1
$\mathcal{O}_{l^2H^4D}^{(3)}$	$\epsilon^{IJK} (l_{\alpha} \gamma^{\mu} \tau^{I} l_{\beta}) (H^{\dagger} D_{\mu}^{J} H) (H^{\dagger} \tau^{K} H)$	-	- 🗸
$\mathcal{O}_{l^2H^4D}^{(4)}$	$\frac{\epsilon^{IJK}(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}l_{\beta})(H^{\dagger}\tau^{J}H)(D_{\mu}H)^{\dagger}\tau^{K}H}{}$		- 🗸
$\mathcal{O}_{q^2H^4D}^{(1)}$	$i(ar q_i\gamma^\mu q_j)(H^\dagger D_\mu H)(H^\dagger H)$	v	(–
$\mathcal{O}^{(2)}_{q^2H^4D}$ $i(ar{q}_i$	$\gamma^{\mu}\tau^{I}q_{j})[(H^{\dagger}\overleftarrow{D}_{\mu}^{I}H)(H^{\dagger}H) + (H^{\dagger}\overleftarrow{D}_{\mu}H)(H^{\dagger}\tau)]$	[H]	(1
$\mathcal{O}^{(3)}_{a^2H^4D}$	$i\epsilon^{IJK}(ar{q}_i\gamma^\mu au^Iq_j)(H^\dagger\overleftrightarrow{D}^J_\mu H)(H^\dagger au^K H)$	-	- 🗸
$\mathcal{O}_{q^2H^4D}^{(4)}$	$\epsilon^{IJK}(ar{q}_i\gamma^\mu au^Iq_j)(H^\dagger au^JH)(D_\mu H)^\dagger au^KH$	-	- 🗸
$\mathcal{O}_{e^2H^4D}$	$i(ar{e}_lpha\gamma^\mu e_eta)(H^\dagger\overleftrightarrow{D}_\mu H)(H^\dagger H)$	~	(_
$\mathcal{O}_{u^2H^4D}$	$i(ar{u}_i\gamma^\mu u_j)(H^\dagger\overleftrightarrow{D}_\mu H)(H^\dagger H)$	v	(_
$\mathcal{O}_{d^2H^4D}$	$i(ar{d}_i\gamma^\mu d_j)(H^\dagger \overleftrightarrow{D}_\mu H)(H^\dagger H)$	v	(–
_		_	

EFT contributions

• Feynman diagrams for Drell-Yan in the SMEFT to $\mathcal{O}(\Lambda^{-4})$

EFT operator counting and energy scaling

Dimension		d=6			d = 8			
Operator classes		ψ^4	$\psi^2 H^2 D$	$\psi^2 X H$	$\psi^4 D^2$	$\psi^4 H^2$	$\psi^2 H^4 D$	$\psi^2 H^2 D^3$
Amplitude scaling		E^2/Λ^2	v^2/Λ^2	vE/Λ^2	E^4/Λ^4	$v^2 E^2/\Lambda^4$	v^4/Λ^4	$v^2 E^2/\Lambda^4$
Parameters	# ℝe	456	45	48	132	123	48	52
	# Im	399	25	48	18	18	18	12

549 + 472 parameters

355 + 66 parameters

(only flavor diagonal contributions, except for quark flavor violation in CC)

• Example: vector form-factors

$$F_{V} = F_{V(0,0)} + F_{V(1,0)} \frac{\hat{s}}{v^{2}} + F_{V(0,1)} \frac{\hat{t}}{v^{2}} + \sum_{a}^{NC: a \in \{\gamma, Z\}} \frac{v^{2}}{\hat{s} - M_{a}^{2} + iM_{a}\Gamma_{A}} \left(\mathscr{S}_{(a,SM)} + \delta\mathscr{S}_{(a)}\right)$$

- Schematic form-factor matching to $\mathcal{O}(\Lambda^{-4})$:

$$F_{V(0,0)} = \frac{v^2}{\Lambda^2} C_{\psi^4}^{(6)} + \frac{v^4}{\Lambda^4} C_{\psi^4 H^2}^{(8)} + \frac{v^2 m_a^2}{\Lambda^4} C_{\psi^2 H^2 D^3}^{(8)} + \cdots$$

$$F_{V(1,0)} = \frac{v^4}{\Lambda^4} C_{\psi^4 D^2}^{(8)} + \cdots$$

$$F_{V(0,1)} = \frac{v^4}{\Lambda^4} C_{\psi^4 D^2}^{(8)} + \cdots$$

$$\delta \mathcal{S}_{(a)} = \frac{m_a^2}{\Lambda^2} C_{\psi^2 H^2 D}^{(6)} + \frac{v^2 m_a^2}{\Lambda^4} \left(\left[C_{\psi^2 H^2 D}^{(6)} \right]^2 + C_{\psi^2 H^4 D}^{(8)} \right) + \frac{m_a^4}{\Lambda^4} C_{\psi^2 H^2 D^3}^{(8)} + \cdots$$

• Example: vector form-factors

$$F_{V} = F_{V(0,0)} + F_{V(1,0)} \frac{\hat{s}}{v^{2}} + F_{V(0,1)} \frac{\hat{t}}{v^{2}} + \sum_{a}^{NC: a \in \{\gamma, Z\}} \frac{v^{2}}{\hat{s} - M_{a}^{2} + iM_{a}\Gamma_{A}} \left(\mathcal{S}_{(a,SM)} + \delta \mathcal{S}_{(a)} \right)$$

• Schematic form-factor matching to $\mathcal{O}(\Lambda^{-4})$:

$$F_{V(0,0)} = \frac{v^2}{\Lambda^2} C_{\psi^4}^{(6)} + \frac{v^4}{\Lambda^4} C_{\psi^4 H^2}^{(8)} + \frac{v^2 m_a^2}{\Lambda^4} C_{\psi^2 H^2 D^3}^{(8)} + \cdots$$

$$\mathcal{S}_{(\gamma,\text{SM})} = 4\pi\alpha_{\text{em}}Q_lQ_q$$
$$\mathcal{S}_{(Z,\text{SM})} = \frac{4\pi\alpha_{\text{em}}}{c_W^2 s_W^2}g_l^X g_q^Y$$
$$\mathcal{S}_{(W,\text{SM})} = \frac{1}{2}g_2^2$$

$$F_{V(1,0)} = \frac{v^4}{\Lambda^4} C_{\psi^4 D^2}^{(8)} + \cdots$$

$$F_{V(0,1)} = \frac{v^4}{\Lambda^4} C_{\psi^4 D^2}^{(8)} + \cdots$$

$$\delta \mathcal{S}_{(a)} = \frac{m_a^2}{\Lambda^2} C_{\psi^2 H^2 D}^{(6)} + \frac{v^2 m_a^2}{\Lambda^4} \left(\left[C_{\psi^2 H^2 D}^{(6)} \right]^2 + C_{\psi^2 H^4 D}^{(8)} \right) + \frac{m_a^4}{\Lambda^4} C_{\psi^2 H^2 D^3}^{(8)} + \cdots$$

Explicit NP models

• Explicit NP models: colorless and colorful mediators

		SM rep.	Spin	$\mathcal{L}_{ ext{int}}$
	Z'	(1 , 1 ,0)	1	$\mathcal{L}_{Z'} = \sum_{\psi} [g_1^{\psi}]^{ab} ar{\psi}_a Z' \psi_b \;\;, \;\; \psi \in \{u,d,e,q,l\}$
Colorless	W'	(1 , 3 ,0)	1	$\mathcal{L}_{W'} = [g_3^q]^{ij} ar{q}_i W' q_j + [g_3^l]^{lpha eta} ar{l}_lpha W' l_eta$
mediators	\widetilde{Z}	(1 , 1 ,1)	1	$\mathcal{L}_{\widetilde{Z}} = [\widetilde{g}_1^q]^{ij} \bar{u}_i \widetilde{Z} d_j + [\widetilde{g}_1^\ell]^{lpha eta} \bar{e}_lpha \widetilde{Z} u_eta$
	$\Phi_{1,2}$	$({f 1},{f 2},1/2)$	0	$\mathcal{L}_{2\text{HDM}} = [\lambda_2^u]^{ij} \bar{q}_i u_j \Phi_2^c + [\lambda_2^d]^{ij} \bar{q}_i d_j \Phi_1 + [\lambda_2^e]^{\alpha\beta} \bar{l}_\alpha e_\beta \Phi_1 + \text{h.c.}$
	S_1	$(\bar{3},1,1/3)$	0	$\mathcal{L}_{S_1} = [y_1^L]^{i\alpha} S_1 \bar{q}_i^c \epsilon l_\alpha + [y_1^R]^{i\alpha} S_1 \bar{u}_i^c e_\alpha + [\bar{y}_1^R]^{i\alpha} S_1 \bar{d}_i^c \nu_\alpha + \text{h.c.}$
	\widetilde{S}_1	$(\bar{3},1,4/3)$	0	$\mathcal{L}_{\widetilde{S}_1} = [\widetilde{y}_1^R]^{ilpha} \widetilde{S}_1 ar{d}_i^c e_lpha + ext{h.c.}$
	U_1	(3 , 1 ,2/3)	1	$\mathcal{L}_{U_1} = [x_1^L]^{i\alpha} \bar{q}_i \not\!\!U_1 l_\alpha + [x_1^R]^{i\alpha} \bar{d}_i \not\!\!U_1 e_\alpha + [\bar{x}_1^R]^{i\alpha} \bar{u}_i \not\!\!U_1 \nu_\alpha + \text{h.c.}$
	\widetilde{U}_1	(3 , 1 ,5/3)	1	$\mathcal{L}_{\widetilde{U}_1} = [\widetilde{x}_1^R]^{ilpha} ar{u}_i \widetilde{U}_1 e_lpha + ext{h.c.}$
Loptoquarka	R_2	$({f 3},{f 2},7/6)$	0	$\mathcal{L}_{R_2} = -[y_2^L]^{ilpha} ar{u}_i R_2 \epsilon l_lpha + [y_2^R]^{ilpha} ar{q}_i e_lpha R_2 + ext{h.c.}$
Leptoquarks	\widetilde{R}_2	$({f 3},{f 2},1/6)$	0	$\mathcal{L}_{\widetilde{R}_2} = -[\widetilde{y}_2^L]^{ilpha} ar{d}_i \widetilde{R}_2 \epsilon l_lpha + [\widetilde{y}_2^R]^{ilpha} ar{q}_i u_lpha \widetilde{R}_2 + ext{h.c.}$
	V_2	$(\bar{3},2,5/6)$	1	$\mathcal{L}_{V_2} = [x_2^L]^{ilpha} ar{d}_i^c oldsymbol{V}_2 \epsilon l_lpha + [x_2^R]^{ilpha} ar{q}_i^c \epsilon oldsymbol{V}_2 e_lpha + ext{h.c.}$
	\widetilde{V}_2	$(\bar{3},2,-1/6)$	1	$\mathcal{L}_{\widetilde{V}_{2}} = [\widetilde{x}_{2}^{L}]^{i\alpha} \bar{u}_{i}^{c} \widetilde{V}_{2} \epsilon l_{\alpha} + [\widetilde{x}_{2}^{R}]^{i\alpha} \bar{q}_{i}^{c} \epsilon \widetilde{V}_{2} \nu_{\alpha} + \text{h.c.}$
	S_3	$(\mathbf{\bar{3}},3,1/3)$	0	$\mathcal{L}_{S_3} = [y_3^L]^{ilpha}ar{q}_i^c \epsilon S_3 l_lpha + ext{h.c.}$
	U_3	(3 , 3 ,2/3)	1	$\mathcal{L}_{U_3} = [x_3^L]^{ilpha} ar{q}_i ot\!$

Some NP contributions to $F_{I, \text{Poles}}(\hat{s}, \hat{t})$

 \blacksquare Straight forward matching to pole form-factors in *s*, *t*, *u* channel

Amplitude parametrization

$$\begin{split} [\mathcal{A}]_{ij}^{\alpha\beta} &\equiv \mathcal{A}\left(\bar{q}_{i}q_{j}' \rightarrow \bar{\ell}_{\alpha}\ell_{\beta}'\right) \\ &= \frac{1}{v^{2}}\sum_{X,Y} \left\{ \left(\bar{\ell}_{\alpha}\mathbb{P}_{X}\ell_{\beta}'\right) \left(\bar{q}_{i}\mathbb{P}_{Y}q_{j}'\right) \left[\mathcal{F}_{S}^{XY,qq'}(\hat{s},\hat{t})\right]_{ij}^{\alpha\beta} \\ &+ \left(\bar{\ell}_{\alpha}\gamma_{\mu}\mathbb{P}_{X}\ell_{\beta}'\right) \left(\bar{q}_{i}\gamma^{\mu}\mathbb{P}_{Y}q_{j}'\right) \left[\mathcal{F}_{V}^{XY,qq'}(\hat{s},\hat{t})\right]_{ij}^{\alpha\beta} \\ &+ \left(\bar{\ell}_{\alpha}\sigma_{\mu\nu}\mathbb{P}_{X}\ell_{\beta}'\right) \left(\bar{q}_{i}\sigma^{\mu\nu}\mathbb{P}_{Y}q_{j}'\right) \delta^{XY} \left[\mathcal{F}_{T}^{XY,qq'}(\hat{s},\hat{t})\right]_{ij}^{\alpha\beta} \\ &+ \left(\bar{\ell}_{\alpha}\gamma_{\mu}\mathbb{P}_{X}\ell_{\beta}'\right) \left(\bar{q}_{i}\sigma^{\mu\nu}\mathbb{P}_{Y}q_{j}'\right) \frac{ik_{\nu}}{v} \left[\mathcal{F}_{Dq}^{XY,qq'}(\hat{s},\hat{t})\right]_{ij}^{\alpha\beta} \\ &+ \left(\bar{\ell}_{\alpha}\sigma_{\mu\nu}\mathbb{P}_{X}\ell_{\beta}'\right) \left(\bar{q}_{i}\gamma^{\mu}\mathbb{P}_{Y}q_{j}'\right) \frac{ik^{\nu}}{v} \left[\mathcal{F}_{D\ell}^{XY,qq'}(\hat{s},\hat{t})\right]_{ij}^{\alpha\beta} \\ &\text{Dipole} \end{split}$$

Amplitude parametrization

$$\begin{split} \left[\mathcal{A}\right]_{ij}^{\alpha\beta} &\equiv \mathcal{A}\left(\bar{q}_{i}q_{j}^{\prime} \rightarrow \bar{\ell}_{\alpha}\ell_{\beta}^{\prime}\right) \\ &= \frac{1}{v^{2}}\sum_{X,Y} \left\{ \left(\bar{\ell}_{\alpha}\mathbb{P}_{X}\ell_{\beta}^{\prime}\right) \left(\bar{q}_{i}\mathbb{P}_{Y}q_{j}^{\prime}\right) \left[\mathcal{F}_{S}^{XY,qq^{\prime}}\left(\hat{s},\hat{t}\right)\right]_{ij}^{\alpha\beta} \right. \\ &+ \left(\bar{\ell}_{\alpha}\gamma_{\mu}\mathbb{P}_{X}\ell_{\beta}^{\prime}\right) \left(\bar{q}_{i}\gamma^{\mu}\mathbb{P}_{Y}q_{j}^{\prime}\right) \left[\mathcal{F}_{V}^{XY,qq^{\prime}}\left(\hat{s},\hat{t}\right)\right]_{ij}^{\alpha\beta} \right. \\ &+ \left(\bar{\ell}_{\alpha}\sigma_{\mu\nu}\mathbb{P}_{X}\ell_{\beta}^{\prime}\right) \left(\bar{q}_{i}\sigma^{\mu\nu}\mathbb{P}_{Y}q_{j}^{\prime}\right) \delta^{XY} \left[\mathcal{F}_{T}^{XY,qq^{\prime}}\left(\hat{s},\hat{t}\right)\right]_{ij}^{\alpha\beta} \right. \\ &+ \left(\bar{\ell}_{\alpha}\sigma_{\mu\nu}\mathbb{P}_{X}\ell_{\beta}^{\prime}\right) \left(\bar{q}_{i}\gamma^{\mu}\mathbb{P}_{Y}q_{j}^{\prime}\right) \frac{ik_{\nu}}{v} \left[\mathcal{F}_{D_{q}}^{XY,qq^{\prime}}\left(\hat{s},\hat{t}\right)\right]_{ij}^{\alpha\beta} \right. \\ &\left. \left. \left(\bar{\ell}_{\alpha}\sigma_{\mu\nu}\mathbb{P}_{X}\ell_{\beta}^{\prime}\right) \left(\bar{q}_{i}\gamma^{\mu}\mathbb{P}_{Y}q_{j}^{\prime}\right) \frac{ik^{\nu}}{v} \left[\mathcal{F}_{D_{\ell}}^{XY,qq^{\prime}}\left(\hat{s},\hat{t}\right)\right]_{ij}^{\alpha\beta} \right\} \end{split}$$

Hadronic cross-section

$$\sigma_{\mathcal{B}}(pp \to \ell_{\alpha}^{-}\ell_{\beta}^{+}) = \frac{1}{48\pi v^{2}} \sum_{XY,IJ} \sum_{ij} \int_{m_{\ell\ell_{0}}^{2}}^{m_{\ell\ell_{1}}^{2}} \frac{\mathrm{d}\hat{s}}{s} \int_{-\hat{s}}^{0} \frac{\mathrm{d}\hat{t}}{v^{2}} M_{IJ}^{XY} \mathcal{L}_{ij} \left[\mathcal{F}_{I}^{XY,qq}\right]_{ij}^{\alpha\beta} \left[\mathcal{F}_{J}^{XY,qq}\right]_{ij}^{\alpha\beta*}$$

Amplitude parametrization

$$\begin{split} \left[\mathcal{A}\right]_{ij}^{\alpha\beta} &\equiv \mathcal{A}\left(\bar{q}_{i}q_{j}' \rightarrow \bar{\ell}_{\alpha}\ell_{\beta}'\right) \\ &= \frac{1}{v^{2}}\sum_{X,Y} \left\{ \left(\bar{\ell}_{\alpha}\mathbb{P}_{X}\ell_{\beta}'\right) \left(\bar{q}_{i}\mathbb{P}_{Y}q_{j}'\right) \left[\mathcal{F}_{S}^{XY,qq'}(\hat{s},\hat{t})\right]_{ij}^{\alpha\beta} \\ &+ \left(\bar{\ell}_{\alpha}\gamma_{\mu}\mathbb{P}_{X}\ell_{\beta}'\right) \left(\bar{q}_{i}\gamma^{\mu}\mathbb{P}_{Y}q_{j}'\right) \left[\mathcal{F}_{V}^{XY,qq'}(\hat{s},\hat{t})\right]_{ij}^{\alpha\beta} \\ &+ \left(\bar{\ell}_{\alpha}\sigma_{\mu\nu}\mathbb{P}_{X}\ell_{\beta}'\right) \left(\bar{q}_{i}\sigma^{\mu\nu}\mathbb{P}_{Y}q_{j}'\right) \delta^{XY} \left[\mathcal{F}_{T}^{XY,qq'}(\hat{s},\hat{t})\right]_{ij}^{\alpha\beta} \\ &+ \left(\bar{\ell}_{\alpha}\sigma_{\mu\nu}\mathbb{P}_{X}\ell_{\beta}'\right) \left(\bar{q}_{i}\gamma^{\mu}\mathbb{P}_{Y}q_{j}'\right) \frac{ik_{\nu}}{v} \left[\mathcal{F}_{D_{\ell}}^{XY,qq'}(\hat{s},\hat{t})\right]_{ij}^{\alpha\beta} \\ &+ \left(\bar{\ell}_{\alpha}\sigma_{\mu\nu}\mathbb{P}_{X}\ell_{\beta}'\right) \left(\bar{q}_{i}\gamma^{\mu}\mathbb{P}_{Y}q_{j}'\right) \frac{ik^{\nu}}{v} \left[\mathcal{F}_{D_{\ell}}^{XY,qq'}(\hat{s},\hat{t})\right]_{ij}^{\alpha\beta} \\ &\text{Dipole} \end{split}$$

Interference matrix

$$M_{SS} = 1/4 \,,$$

 $M_{VV}(x) = (1+2x)\delta^{XY} + x^2 \,,$
 $M_{TT}(x) = 4(1+2x)^2\delta^{XY} \,,$
 $M_{DD}(x) = -x(1+x) \,,$
 $M_{ST}(x) = -(1+2x)\delta^{XY} \,,$

Hadronic cross-section

$$\sigma_{\mathcal{B}}(pp \to \ell_{\alpha}^{-}\ell_{\beta}^{+}) = \frac{1}{48\pi v^{2}} \sum_{XY,IJ} \sum_{ij} \int_{m_{\ell\ell_{0}}^{2}}^{m_{\ell\ell_{1}}^{2}} \frac{\mathrm{d}\hat{s}}{s} \int_{-\hat{s}}^{0} \frac{\mathrm{d}\hat{t}}{v^{2}} M_{IJ}^{XY} \mathcal{L}_{ij} \left[\mathcal{F}_{I}^{XY,qq}\right]_{ij}^{\alpha\beta} \left[\mathcal{F}_{J}^{XY,qq}\right]_{ij}^{\alpha\beta*}$$

Amplitude parametrization

$$\begin{split} \left[\mathcal{A} \right]_{ij}^{\alpha\beta} &\equiv \mathcal{A} \left(\bar{q}_i q'_j \to \bar{\ell}_{\alpha} \ell'_{\beta} \right) \\ &= \frac{1}{v^2} \sum_{X,Y} \left\{ \left(\bar{\ell}_{\alpha} \mathbb{P}_X \ell'_{\beta} \right) \left(\bar{q}_i \mathbb{P}_Y q'_j \right) \left[\mathcal{F}_S^{XY,qq'}(\hat{s}, \hat{t}) \right]_{ij}^{\alpha\beta} \\ &+ \left(\bar{\ell}_{\alpha} \gamma_{\mu} \mathbb{P}_X \ell'_{\beta} \right) \left(\bar{q}_i \gamma^{\mu} \mathbb{P}_Y q'_j \right) \left[\mathcal{F}_V^{XY,qq'}(\hat{s}, \hat{t}) \right]_{ij}^{\alpha\beta} \\ &+ \left(\bar{\ell}_{\alpha} \sigma_{\mu\nu} \mathbb{P}_X \ell'_{\beta} \right) \left(\bar{q}_i \sigma^{\mu\nu} \mathbb{P}_Y q'_j \right) \delta^{XY} \left[\mathcal{F}_T^{XY,qq'}(\hat{s}, \hat{t}) \right]_{ij}^{\alpha\beta} \\ &+ \left(\bar{\ell}_{\alpha} \sigma_{\mu\nu} \mathbb{P}_X \ell'_{\beta} \right) \left(\bar{q}_i \gamma^{\mu} \mathbb{P}_Y q'_j \right) \frac{ik_{\nu}}{v} \left[\mathcal{F}_{D_{\ell}}^{XY,qq'}(\hat{s}, \hat{t}) \right]_{ij}^{\alpha\beta} \\ &+ \left(\bar{\ell}_{\alpha} \sigma_{\mu\nu} \mathbb{P}_X \ell'_{\beta} \right) \left(\bar{q}_i \gamma^{\mu} \mathbb{P}_Y q'_j \right) \frac{ik^{\nu}}{v} \left[\mathcal{F}_{D_{\ell}}^{XY,qq'}(\hat{s}, \hat{t}) \right]_{ij}^{\alpha\beta} \\ &\text{Dipole} \end{split}$$

Interference matrix

$$M_{SS} = 1/4 \,,$$

 $M_{VV}(x) = (1+2x)\delta^{XY} + x^2 \,,$
 $M_{TT}(x) = 4(1+2x)^2\delta^{XY} \,,$
 $M_{DD}(x) = -x(1+x) \,,$
 $M_{ST}(x) = -(1+2x)\delta^{XY} \,,$

Hadronic cross-section

$$\sigma_{\mathcal{B}}(pp \to \ell_{\alpha}^{-}\ell_{\beta}^{+}) = \frac{1}{48\pi v^{2}} \sum_{XY,IJ} \sum_{ij} \int_{m_{\ell\ell_{0}}^{2}}^{m_{\ell\ell_{1}}^{2}} \frac{\mathrm{d}\hat{s}}{s} \int_{-\hat{s}}^{0} \frac{\mathrm{d}\hat{t}}{v^{2}} M_{IJ}^{XY} \mathcal{L}_{ij} \left[\mathcal{F}_{I}^{XY,qq}\right]_{ij}^{\alpha\beta} \left[\mathcal{F}_{J}^{XY,qq}\right]_{ij}^{\alpha\beta*}$$

Parton luminosity functions: $\mathcal{L}_{ij}(\hat{s}) = \int_{\frac{\hat{s}}{s}}^{1} \frac{\mathrm{d}x}{x} \left[f_{\bar{q}_i}(x,\mu) f_{q_j}\left(\frac{\hat{s}}{sx},\mu\right) + (\bar{q}_i \leftrightarrow q_j) \right]$

HighPT

High- p_T Tails A Mathematica code for high energy flavor physics

HighPT - functionalities

HighPT: High- P_T Tails

A Mathematica package for setting limits on generic NP in semileptonic transitions at high energies

Any NP scenario

- Consider SMEFT (d = 6, 8) and/or UV mediators by including the appropriate form-factors
- Computes cross-section as function of Wilson coefficients / coupling constants for bins of invariant mass $(m_{\ell\ell})$ or transverse momentum (p_T)
- Translates cross-sections in estimates of event yields for the bins of the available experimental searches
- Construct likelihood for the NP model
 - Can be further analyzed within Mathematica or exported as a python file using WCxf format Aebischer et al [1712.05298]
- Extract bound on form-factors / Wilson coefficients / NP coupling constants

From cross-sections to event yields

• High- p_T tail distributions:

- Particle-level distribution $\frac{d\sigma}{dx}$ computed from final state particles e, μ, τ, ν
- Detector-level distribution $\frac{d\sigma}{dx_{obs}}$ measured by experiments from reconstructed objects (isolated leptons, tagged jets, missing energy, ...)
- Both related by a kernel function encoding: object reconstruction efficiencies, detector response, phase-space mismatch

- K_{pq} extracted using MC simulations (MadGraph + Pythia + Delphes)
- Each combination of form-factors has its own kernel function

Universität Zürich^{uz}

LHC searches

Experimental searches available in **HighPT** (full LHC run-2 data sets):

ATLAS

Process	Experiment	Luminosity	$x_{ m obs}$	x	
$pp \rightarrow \tau \tau$	ATLAS	$139{ m fb}^{-1}$	$m_T^{ ext{tot}}(au_h^1, au_h^2, ot\!\!\!\!E_T)$	$m_{ au au}$	[2002.12223]
$pp ightarrow \mu \mu$	CMS	$140{\rm fb}^{-1}$	$m_{\mu\mu}$	$m_{\mu\mu}$	[2103.02708]
$pp \to ee$	CMS	$137{\rm fb}^{-1}$	m_{ee}	m_{ee}	[2103.02708]
$pp \rightarrow \tau \nu$	ATLAS	$139{ m fb}^{-1}$	$m_T(au_h, ot\!\!\!E_T)$	$p_T(au)$	[ATLAS-CONF-2021-025]
$pp ightarrow \mu u$	ATLAS	$139{ m fb}^{-1}$	$m_T(\mu,, ot\!\!\!E_T)$	$p_T(\mu)$	[1906.05609]
$pp \to e\nu$	ATLAS	$139{ m fb}^{-1}$	$m_T(e, { ot \! E}_T)$	$p_T(e)$	[1906.05609]
$pp \rightarrow \tau \mu$	CMS	$137.1{\rm fb}^{-1}$	$m^{ m col}_{ au_h \mu}$	$m_{ au\mu}$	[CMS-PAS-EXO-19-014]
$pp \to \tau e$	\mathbf{CMS}	$137.1{\rm fb}^{-1}$	$m^{ m col}_{ au_h e}$	$m_{ au e}$	[CMS-PAS-EXO-19-014]
$pp ightarrow \mu e$	CMS	$137.1{\rm fb}^{-1}$	$m_{\mu e}$	$m_{\mu e}$	[CMS-PAS-EXO-19-014]

*more to be included

Code and σ plots

Extracting likelihoods:

ChiSquareLHC["di-tau-ATLAS",

OperatorDimension -> 8,

EFTorder -> 4

];

Computing observable for di-tau-ATLAS search: arXiv:2002.12223

PROCESS	:	$pp \rightarrow \tau^- \tau^+$
EXPERIMENT	:	ATLAS
RXIV	:	2002.12223
SOURCE	:	hepdata
DBSERVABLE	:	m _T ^{tot}
SINNING m _T tot [GeV]	:	$\{150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000, 1150, 1500\}$
EVENTS OBSERVED	:	{1167., 1568., 1409., 1455., 1292., 650., 377., 288., 92., 57., 27., 14
UMINOSITY [fb ⁻¹]	:	139
SINNING $\sqrt{\hat{s}}$ [GeV]	:	$\{150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000, 1150, 1500\}$
BINNING p _T [GeV]	:	$\{0, \infty\}$

Flavor fitsSMEFT | NP models

SMEFT fits $C_{lq}^{(3)} = (\bar{\ell}_{\alpha} \gamma^{\mu} \tau^{I} \ell_{\beta}) (\bar{q}_{i} \gamma_{\mu} \tau^{I} q_{j})$

LHC limits on Wilson coefficients computing the cross-section to $\mathcal{O}(\Lambda^{-4})$ keeping only a single coefficient at a time

Felix Wilsch

Semileptonic transitions at high- p_T – MITP

SMEFT fits for $Q_{ledq} = (\bar{\ell}_{\alpha} e_{\beta})(\bar{d}_i q_j)$

Bounds on NP scenarios

Example:

LQ models for $R_{D^{(*)}}$

- Consider flavor indices: $\alpha\beta ij \in \{3333, 3323\}$
- Relevant experimental searches:
 - $pp \rightarrow \tau \tau$
 - $pp \rightarrow \tau \nu$
- Perform fits for:
 - Wilson coefficients
 - NP couplings

 $\begin{aligned} \mathcal{L}_{S_{1}} &= [y_{1}^{L}]^{i\alpha} \, S_{1} \bar{q}_{i}^{c} \epsilon l_{\alpha} + [y_{1}^{R}]^{i\alpha} \, S_{1} \bar{u}_{i}^{c} e_{\alpha} + [\bar{y}_{1}^{R}]^{i\alpha} \, S_{1} \bar{d}_{i}^{c} \nu_{\alpha} + \text{h.c.} \\ \mathcal{L}_{R_{2}} &= -[y_{2}^{L}]^{i\alpha} \, \bar{u}_{i} R_{2} \epsilon l_{\alpha} + [y_{2}^{R}]^{i\alpha} \, \bar{q}_{i} e_{\alpha} R_{2} + \text{h.c.} \\ \mathcal{L}_{U_{1}} &= [x_{1}^{L}]^{i\alpha} \, \bar{q}_{i} \psi_{1} l_{\alpha} + [x_{1}^{R}]^{i\alpha} \, \bar{d}_{i} \psi_{1} e_{\alpha} + [\bar{x}_{1}^{R}]^{i\alpha} \, \bar{u}_{i} \psi_{1} \nu_{\alpha} + \text{h.c.} \end{aligned}$

SMEFT matching @ tree-level

Field	S_1	R_2	U_1	
Quantum Numbers	$(ar{3},1,1/3)$	$({f 3},{f 2},7/6)$	$({f 3},{f 1},2/3)$	
$\left[\mathcal{C}_{ledq} ight]_{lphaeta ij}$	_	_	$2[x_1^L]^{ilpha^*}[x_1^R]^{jeta}$	
$\left[\mathcal{C}_{lequ}^{(1)} ight] _{lphaeta ij}$	$rac{1}{2}[y_1^L]^{ilpha^*}[y_1^R]^{jeta}$	$-\tfrac{1}{2}[y_2^R]^{i\beta}[y_2^L]^{j\alpha^*}$	_	
$\left[{\cal C}^{(3)}_{lequ} ight]_{lphaeta ij}$	$-\tfrac{1}{8}[y_1^L]^{i\alpha^*}[y_1^R]^{j\beta}$	$-\tfrac{1}{8}[y_2^R]^{i\beta}[y_2^L]^{j\alpha^*}$	_	
$[\mathcal{C}_{eu}]_{lphaeta ij}$	$rac{1}{2}[y_1^R]^{jeta}[y_1^R]^{ilpha^*}$	—	—	
$[\mathcal{C}_{ed}]_{lphaeta ij}$	_	_	$-[x_1^R]^{i\beta}[x_1^R]^{j\alpha^*}$	
$[\mathcal{C}_{\ell u}]_{lphaeta ij}$	_	$-\tfrac{1}{2}[y_2^L]^{i\beta}[y_2^L]^{j\alpha^*}$	_	
$\left[\mathcal{C}_{qe} ight]_{ijlphaeta}$	—	$-\tfrac{1}{2}[y_2^R]^{i\beta}[y_2^R]^{j\alpha^*}$	—	
$\left[\mathcal{C}_{lq}^{(1)} ight] _{lphaeta ij}$	$rac{1}{4}[y_1^L]^{ilpha^*}[y_1^L]^{jeta}$	_	$-rac{1}{2}[x_1^L]^{ieta}[x_1^L]^{jlpha^*}$	
$\left[\mathcal{C}_{lq}^{(3)} ight] _{lphaeta ij}$	$-\tfrac{1}{4}[y_1^L]^{i\alpha^*}[y_1^L]^{j\beta}$	_	$-rac{1}{2}[x_1^L]^{ieta}[x_1^L]^{jlpha^*}$	

U_1 Leptoquark

•
$$U_1$$
 benchmark: $m_{U_1} = 2 \text{ TeV}$ $\mathcal{L}_{U_1} = [x_1^L]^{i\alpha} \bar{q}_i \mathcal{V}_1 l_\alpha + [x_1^R]^{i\alpha} \bar{d}_i \mathcal{V}_1 e_\alpha + [\bar{x}_1^R]^{i\alpha} \bar{u}_i \mathcal{V}_1 \nu_\alpha + \text{h.c.}$

R₂ Leptoquark

$$\mathcal{L}_{R_2} = -[y_2^L]^{i\alpha} \,\bar{u}_i R_2 \epsilon l_\alpha + [y_2^R]^{i\alpha} \,\bar{q}_i e_\alpha R_2 + \text{h.c.}$$

S_1 Leptoquark

• S_1 benchmark: $m_{S_1} = 2 \text{ TeV}$ $\mathcal{L}_{S_1} = [y_1^L]^{i\alpha} S_1 \bar{q}_i^c \epsilon l_\alpha + [y_1^R]^{i\alpha} S_1 \bar{u}_i^c e_\alpha + [\bar{y}_1^R]^{i\alpha} S_1 \bar{d}_i^c \nu_\alpha + \text{h.c.}$

SMEFT expansion: d = 6 versus d = 8

Validity of the EFT expansion

EFT validity

- High- p_T tails: events with highest invariant mass are around $\sqrt{\hat{s}} \lesssim 4 \, {\rm TeV}$
- → Validity of EFT approach for relatively light NP mediators (~*few* TeV) ???
 - Option 1: drop highest bins of all searches
 - Option 2: include higher dimensional operators
 - How sizable is the effect of d = 8 operators compared to d = 6?
 - Option 3: simulate with explicit NP mediator rather than EFT
 - How does the explicit model compare to d = 6, 8 EFT operators?

see e.g.: Boughezal, Mereghetti, Petriello [2106.05337] Alioli, Boughezal, Mereghetti, Petriello [2003.11615] Kim, Martin [2203.11976]

Heavy resonance: Z'

• UV model:

$$\mathscr{L}_{Z'} = -\frac{1}{4} Z'_{\mu\nu} Z'^{\mu\nu} + \frac{1}{2} M_{Z'}^2 Z'_{\mu} Z'^{\mu} + J^{\mu} Z'_{\mu}$$

- Only couplings to ℓ , q for simplicity: $J^{\mu} = [g^{\ell}]_{\alpha\beta}(\bar{\ell}_{\alpha}\gamma^{\mu}\ell_{\beta}) + [g^{q}]_{ij}(\bar{q}_{i}\gamma^{\mu}q_{j})$
- SMEFT matching d = 6:

$$[C_{lq}^{(1)}]_{ij}^{\alpha\beta} = -\frac{1}{M_{Z'}^2} [g^{\ell}]_{\alpha\beta} [g^q]_{ij}$$

• SMEFT matching d = 8:

$$[C_{l^2q^2D^2}^{(1)}]_{ij}^{\alpha\beta} = -\frac{1}{M_{Z'}^4} [g^{\ell}]_{\alpha\beta} [g^q]_{ij}$$

- Consider as example: $\alpha\beta ij = 3322$, 3311
- Analyze relevance of d = 8 at $\Lambda = 1 \text{ TeV}$, 2 TeV

Conclusions & Outlook

Future prospects

- Extension of mediator mode in HighPT
 - Version 1: only one mass/width possible
 - Future: any mass/width
- Inclusion of further observables in HighPT: flavor, EW pole, Higgs
- Proper treatment of NP corrections to the input scheme (G_F , CKM, ...)
- CLs likelihood for better treatment of bin with low event count
 - For the χ^2 bins with only few events need to be combined
- Additional flavor structures (e.g. $U(2)^3$ quark flavor symmetry)
- Improved compatibility with other codes (for pheno and matching)

- Construction of full flavor likelihood for high- p_T Drell-Yan production at LHC
 - Form-factor parametrization for SMEFT and NP models
 - Consistent cross-section computation at $\mathcal{O}(\Lambda^{-4})$
 - Inclusion of (energy-enhanced) d = 8 operators
- Automated in Mathematica package HighPT
- Bounds on all semileptonic SMEFT Wilson coefficients (one at a time)
- Complementarity of LHC with low-energy observables for $b \rightarrow c \tau \nu$ anomaly
- EFT validity: d = 6 vs. d = 8 operators