

"Flavour at the crossroads" workshop

Wed 20 Apr 2022

Electrons at LHCb

Martino Borsato University of Heidelberg How we do electrons
 What we do with them

Electrons at GPDs

Electrons for B physics

 In the energy range relevant for *B* physics at the LHC, the electron energy is measured with the tracker, not with the ECal

Electron identification

Int.J.Mod.Phys.A 30 (2015) 07, 1530022

- ECal used for electron identification and recovery of brem radiation

ECal electron ID

 At very low momentum Cherenkov light emission in RICH takes leading role

Tracking and trigger

- Electron tracking less efficient than muons
 - Track pattern recognition similar to muons
 - Electrons can get swept out of tracker acceptance due to brem energy loss (80% efficiency at $p_{\rm T} = 1$ GeV)
- Hardware trigger inefficient on electrons
 - Electron threshold (ECal) higher than muons
 - $p_{\rm T}(\mu^{\pm}) > 1.5 1.8 \text{ GeV}$
 - $E_{\rm T}(e^{\pm}) > 2.5 3.0 {\rm ~GeV}$
 - Cannot use *E*/*p* for electron ID (no tracking)

Martino Borsato - University of Heidelberg

Tracking and trigger

• Electron tracking less efficient than muons

- Track pattern recognition similar to muons
- Electrons can get swept out of tracker acceptance due to brem energy loss (80% efficiency at $p_{\rm T} = 1$ GeV)

Bremsstrahlung

- Bremsstrahlung radiation induced by interaction with detector material
- Probability goes with E/m^2 → mainly affecting electrons
- Energy loss due to bremsstrahlung rises linearly with e[±] energy
 → fractional loss roughly independent of e[±] energy (easier to model)

Brems emitted at LHCb

 $B^+ \to K^+ e^+ \mu^-$

Μ

- Most brem emission due to material interaction
- If emitted before the magnet can affect momentum measurement

Martino Borsato - University of Heidelberg

Nur Material-WW vor dem Magneten

Brem recovery at LHCb

- LHCb brem recovery algorithm:
 - Extrapolate upstream e^{\pm} track to the ECAL
 - Take all reconstructed neutral clusters with $E_{\rm T} > 75 \text{ MeV}$
 - Add them back to electron momentum
- Main shortcomings
 - ECAL energy resolution worse than tracking resolution
 - Brem can be out of ECAL or too soft
- Electrons with brem recovered:
 - Better momentum resolution (more symmetric)
 - Better particle identification (π^{\pm} don't emit brem)
- What if no brem is found?
 - \rightarrow most of the time it was missed

B mass resolution at LHCb

Improvements

Martino Borsato - Heidelberg U.

Publications involving electrons

What we do with electrons?

Why electrons at LHCb?

- Why **muons** rather than **electrons**?
 - Easier reconstruction at LHCb
 - SM gauge couplings are the same
 - Mass difference negligible $q^2 \gg m_{\mu}^2, m_e^2$
- Why **electrons** rather than **muons**?
 - Add stat to muons
 - New physics couplings are different?
 - Higher rate of virtual photons $\gamma^* \rightarrow \ell \ell$

LU tests in $b \rightarrow s\ell^+\ell^-$

- Results much more precise than previous experiments
- Measured in several $b \rightarrow s\ell\ell$ decay channels
 - Coherent pattern of deviations!
- If confirmed, it would be a clear sign of physics beyond the SM

What next?

Martino Borsato - University of Heidelberg

$b \rightarrow see$. angular analyses

Virtual photons $\gamma^* \rightarrow e^+e^-$

$b \rightarrow s\gamma$ with electrons

- $b \rightarrow s\gamma$ suppressed by SM symmetries
 - A golden channel of the precision frontier
 - Could receive large contributions from heavy particles

 $b \rightarrow s\gamma \text{ in } B^0 \rightarrow K^*e^+e^-$

- ✓ Use $\gamma^* \rightarrow e^+e^-$ to measure photon polarisation!
- ✓ Get nice $K^-\pi^+e^-e^+$ final state
- Rate lower by $\alpha_{e.m.}$

 $\rightarrow K^* \gamma^*$ analysis

- Select $B^0 \to K^* \gamma^*$ with $\gamma^* \to e^+ e^$ requiring m(ee) < 0.5 GeV
 - About 500 events with LHCb dataset despite BR $\sim 2 \times 10^{-7}$

$B^0 \to K^* \gamma^*$ analysis

- $B^0 \to K^+ \pi^- e^+ e^-$ described by 3 angles • Full 3D angular analysis performed
- $_{\odot}$ Photon polarisation measured with ϕ
 - $\cos 2\phi$ or $\sin 2\phi$ modulation would signal right-handed contribution

$B^0 \to K^* \gamma^*$ analysis

- $\begin{array}{c|c}
 & \mathcal{B}(B \to X_s \gamma) \\
 & B^0 \to K_S^0 \pi^0 \gamma \\
 & B_s^0 \to \phi \gamma \\
 & B^0 \to K^{*0} e^+ e^\end{array}$ Previous measurements
 - Virtual-photon technique much more precise than real-photon
 - Key part of the global $b \rightarrow s\ell\ell$ picture of anomalies
 - Made possible by developments in electron reconstruction at LHCb

Exploring $c \rightarrow u\gamma$

• Unique sensitivity to up sector

Future Prospects

- GIM suppressed \rightarrow very sensitive to NP
 - $C_7^{bs} \simeq -0.3$ while $C_7^{cu} \simeq -10^{-3}$
 - Large contributions from LQ and SUSY
- Measure $D^0 \to V\gamma$ polarisation
 - Never done before (only BRs by Belle and BaBar)
 - Can use virtual photon technique!
- Can use data-based approach to tackle theoretical uncertainties on chirality amplitudes:
 - \bar{K}^{*0} and ϕ are dominated by weak annichilation (WA)
 - Measure \bar{K}^{*0} and ϕ and infer chirality predictions for ρ^0 (assuming U-spin holds)
 - $A_{L,R}^{\text{SM}}(\rho^0) = A_{L,R}(\bar{K}^{*0}) \times [\text{ U-spin corrections }]$
 - Sizeable systematic related to procedure, but no measurement so far!

Anything here is NP (SM is GIM suppressed)

Gudrun Hiller and Stefan de Boer arXiv:1802.02769 propose an analysis similar to $B_s \rightarrow \phi \gamma$

A significantly different polarisation between \bar{K}^{*0} (or ϕ) and ρ^0 would be a clear sign of NP!

$c \rightarrow u\gamma$ at LHCb

- Can select $D^0 \rightarrow V\gamma^*(ee)$ efficienctly in Upgrade LHCb (no trigger bottleneck)
- Challenging $D^0 \rightarrow V \pi^0(ee\gamma)$ background
 - Can fight with $\cos \theta_V (F_L = 1 \text{ instead of } 0)$
 - Can play with Brem adding procedure

•
$$B(D^0 \to K^*(K^+\pi^-)e^+e^-)_{\text{low } q^2} \simeq 2 \times 10^{-6}$$

Expect thousands of events

FutureProspects

•
$$B(D^0 \to \rho(\pi^+\pi^-)e^+e^-)_{\text{low } q^2} \simeq 1 \times 10^{-7}$$

- Hundreds of signal events
- Hard to estimate amount of bkg

•
$$B(D^0 \to \phi(K^+K^-)e^+e^-)_{\text{low } q^2} \simeq 1 \times 10^{-7}$$

- Hundreds of signal events
- Less combinatorial thanks to narrow ϕ
- Less $\pi^0 \rightarrow ee\gamma$ according to Belle analysis

$B^+ \to \mu^+ \nu \gamma$

B⁺ → μ⁺νγ unique probe of *B* internal structure
 Crucial input to predictions (including those for *b* → *sℓℓ* anomalies)

• $B^+ \rightarrow \mu^+ \nu \gamma$ impossible at LHCb \rightarrow use virtual photon $B^+ \rightarrow \mu^+ \nu \gamma^*$

Eur.Phys.J.C 79 (2019) 8, 675

• LHCb searched $B \rightarrow \mu^+ \nu \mu^+ \mu^-$

Future Prospects

- BR($B^+ \to \mu^+ \nu \mu^+ \mu^-$) < 1.6 × 10⁻⁸
- Harder to interpret than $B \rightarrow \mu^+ \nu e^+ e^-$ (two identical μ^+ , large ρ, ω contribution)

• Expect $B \to \mu^+ \nu e^+ e^-$ to have 10 × larger BR → Could lead to first observation of $B^+ \to \mu^+ \nu \gamma$

Br
$$\left(B^+ \to \mu^+ \mu^- \mu^+ \bar{\nu}_{\mu}\right) = \left(3.5 \pm 0.4_{\lambda_b} \pm 2.0_{\text{weak ffs}}\right) 10^{-8}$$

Br $\left(B \to e^+ e^- \mu \nu_{\mu}\right) = \left(4.5 \pm 0.2_{\lambda_b} \pm 0.27_{\text{weak ffs}}\right) 10^{-7}$

M.A.Ivanov and D.Melikhov, Phys.Rev.D 105 (2022) 1, 014028

Martino Borsato - Heidelberg U.

Recent theory developments:

- * Bharucha, Kindra, Mahajan *arXiv*:2102.03193
- * Beneke, Böer, Rigatos, Keri Vos Eur.Phys.J.C 81 (2021) 638
- * Janowski, Pullin, Zwicky JHEP 12 (2021) 008

$B^+ \to \mu^+ \nu \gamma$

Analysis strategy

FutureProspects

- Use corrected mass technique
 - missing brem energy should not matter
- Require m(ee) > 20 MeV to veto photon conversions
 - Could also search channel with converted photon, but worse vertex
- Require $q^2 < 0.25 \text{ GeV}^2$
 - Removes most contributions from light mesons
- Normalise to $B^0 \to K^* \gamma$

Martino Borsato - University of Heidelberg

Light new physics particles

Visible Dark photons

Dark Photons below $2m_{\mu}$

Ilten, Thaler, Williams, Xue PRD 92 no.11, 115017 (2015)

- Can cover region below $2m_{\mu}$ using charm decays $D^{*0} \rightarrow D^{0}A'(ee)$
 - Requires upgraded trigger to select efficiently soft final state
 - Get 300×10⁹ $D^{*0} \rightarrow D^0 \gamma$ per fb⁻¹
 - Can use D^(*) mass constraint to correct bremsstrahlung losses
 - At these *p* electrons emit light in RICH while pions don't \rightarrow excellent PID
 - Both displaced and prompt searches

$$\tau_{A'} \propto \frac{1}{\epsilon^2 m_{A'}}$$

Martino Borsato - Heidelberg U.

Heavy neutral leptons

I.Boiarska, K.Bondarenko et al, arXiv:1902.04535

•
$$B \to D^{(*)}eN(e\pi)$$
 and $B_{(c)} \to eN(e\mu\nu_e)$

Conclusions

- Doing electrons at LHCb
 - Challenging due to ID and brem
 - Great improvements in analysis techniques
 - Trigger bottleneck removed in LHCb Upgrade

