

Latest news from LHCb - LFU

Flavour at the crossroads 2022

Paula Álvarez Cartelle, University of Cambridge

The LHCb detector

Flavour at the crossroads 2022

- General purpose detector in the forward direction [flavour, EW, QCD, heavy ions...]
- Large $b\bar{b}$ and $c\bar{c}$ production at the LHC
 - 25% of the total $pp \rightarrow b\bar{b}$ cross-section in the LHCb acceptance
- Excellent tracking, vertexing and PID capabilities
 - Versatile and efficient trigger

The LHCb dataset

Lepton Flavour Universality

- In the Standard Model the couplings of the gauge bosons are lepton universal \Rightarrow provides a clean probe for New Physics
- Tests in B-meson decays show some anomalies
 - Flavour Changing Charged Current
 - $b \rightarrow c\ell v$ decays (tree-level)

$$J/\psi \rightarrow ee/J/\psi \rightarrow \mu\mu$$

$$\tau \rightarrow \mu\nu_e\nu_\tau/\mu \rightarrow e\nu_e\nu_\mu : g_\tau/g_\mu$$

$$(A. Pich, PPNP 75)$$

$$\tau \rightarrow e\nu_e\nu_\tau/\mu \rightarrow e\nu_e\nu_mu : g_\tau/g_\mu$$

$$W \rightarrow \tau\nu_\tau/W \rightarrow \mu\nu_\mu$$

$$W \rightarrow \tau\nu_\tau/W \rightarrow e\nu_e$$

$$W \rightarrow e\nu_e/W \rightarrow \mu\nu_\mu$$

$$Z \rightarrow \tau\tau/Z \rightarrow ee$$

$$Z \rightarrow \mu\mu/Z \rightarrow ee$$

$$(PDG, PRD 98, 0300)$$

$$0.85 \qquad 0.90 \qquad 0.95 \qquad 1.00 \qquad 1.05$$

$$R_{\Gamma}$$

P. Álvarez Cartelle (Cambridge)

8,Z°

W

Neutral currents

 $b \rightarrow s \ell^+ \ell^- decays$

Suppressed in the SM

- Effects of new physics can be relatively large
- Access high mass scales, due to virtual contributions

FCNC transitions, such as $b \rightarrow s(d) \ell \ell$ decays, are excellent candidates for indirect NP searches

Rare *B* decays offer rich phenomenology:

Branching ratios, angular observables, LFU ratios...

Flavour at the crossroads 2022

W

LQ

b

b

s

The di-lepton spectrum

Flavour at the crossroads 2022

Ratios of muons/electrons are extremely well predicted in the SM

- Hadronic uncertainties of O(10-4)
- QED uncertainties can be O(10-2)
- Any statistically significant deviation from 1 is a sign of New Physics

K, *K*^{*}, *φ*, *pK*... $\frac{\int \frac{\mathrm{d}\Gamma(B \to H_s \mu^+ \mu^-)}{\mathrm{d}q^2} \,\mathrm{d}q^2}{\int \frac{\mathrm{d}\Gamma(B \to H_s e^+ e^-)}{\mathrm{d}q^2} \,\mathrm{d}q^2} \stackrel{SM}{\cong} 1$

Electrons vs Muons at LHCb

- Electrons lose a large fraction of their energy through Bremsstrahlung radiation
 - Bremsstrahlung recovery: Look for photon clusters in the calorimeter $(E_T > 75 \text{ MeV})$ compatible with electron direction before magnet
- After this correction electrons still have
 - Lower reconstruction/trigger/PID efficiency
 - ► Worse mass and q² resolution (more background)

See Martino's talk tomorrow for more details

Electrons vs Muons at LHCb

P. Álvarez Cartelle (Cambridge)

The double ratio

- Measure R_H as a double ratio, relative to equivalent ratio for $B \to H_s J/\psi(\ell \ell)$ decays reduces impact of the differences in efficiency between electrons and muons

$$R_{K} = \frac{\mathcal{B}(B^{+} \to K^{+}\mu^{+}\mu^{-})}{\mathcal{B}(B^{+} \to K^{+}J/\psi(\mu^{+}\mu^{-}))} / \frac{\mathcal{B}(B^{+} \to K^{+}e^{+}e^{-})}{\mathcal{B}(B^{+} \to K^{+}J/\psi(e^{+}e^{-}))}$$
$$= \frac{N(K^{+}\mu^{+}\mu^{-})}{N(K^{+}J/\psi(\mu^{+}\mu^{-}))} \cdot \frac{N(K^{+}J/\psi(e^{+}e^{-}))}{N(K^{+}e^{+}e^{-})}$$
$$\cdot \frac{\varepsilon(K^{+}J/\psi(\mu^{+}\mu^{-}))}{\varepsilon(K^{+}\mu^{+}\mu^{-})} \cdot \frac{\varepsilon(K^{+}e^{+}e^{-})}{\varepsilon(K^{+}J/\psi(e^{+}e^{-}))}$$

-))

LFU tests at LHCb

 $B^0 \to K^{*0}\ell^+\ell^-$

New measurements of R_{K^*+} and R_{KS}

Flavour at the crossroads 2022

LHCb [arXiv:2110.09501]

- Isospin partners of RK and RK*

First observation of electron modes!

Analysis validation

- Analysis uses double ratios w.r.t. $B \to K^{(*)} J/\psi(\ell \ell)$ to cancel most μ/e differences
- Single ratios, $r_{J/\psi K^{(*)}}$, are used to check the understanding of the efficiencies (*)

$$r_{J/\psi K^{(*)}}^{-1} = \frac{B \to K^{(*)} J/\psi}{B_{\chi} \to K^{(*)} J/\psi}$$

 $r_{J/\psi K_S}^{-1} = 0.977 \pm 0.008 \text{ (stat)} \pm 0.027 \text{ (syst)}$ $r_{J/\psi K^{*+}}^{-1} = 0.965 \pm 0.011 \text{ (stat)} \pm 0.045 \text{ (syst)}$

Also checks vs variables relevant to the detector response and double ratios using $B \to K^{(*)} \psi(2S)(\ell \ell)$ decays

[LHCb, arXiv:2110.09501]

LHCb **9** fb^{-1} 1.2 0.9 Lepton opening angle 0.8 $\psi(ee)$ 0.15 $p(\mu\mu)$ $\alpha(l^+, l^-)$ [rad] $r_{J/\psi K^{*+}}^{-1}$ (normalised) LHCb $9 \, {\rm fb}^{-1}$ 1.0 0.9 MVA trained to separate 0.8 resonant and rare modes 0.7 0.2 0.4 0.6 0.8 0.0 **MVA** Output

P. Álvarez Cartelle (Cambridge)

Results for R_Ks and R_{K*+}

$$R_{K_S}^{-1} = 1.51 \stackrel{+0.40}{_{-0.35}} \text{(stat)} \stackrel{+0.09}{_{-0.04}} \text{(syst)}$$
$$R_{K^{*+}}^{-1} = 1.44 \stackrel{+0.32}{_{-0.29}} \text{(stat)} \stackrel{+0.09}{_{-0.06}} \text{(syst)}$$

Compatible with the SM prediction at ~1.5 σ

Flavour at the crossroads 2022

[LHCb, <u>arXiv:2110.09501</u>]

$b \rightarrow s \ell^+ \ell^- anomalies$

Pattern of tensions with the SM predictions in several observables

$b \rightarrow s \ell^+ \ell^- \text{ anomalies}$

Pattern of tensions with the SM predictions in several observables

$b \rightarrow s \ell^+ \ell^- anomalies$

Flavour at the crossroads 2022

Critical to improve the precision in all of these measurements to clarify this picture

[Similar fits by and many others]

$B^{0}(s) \rightarrow \mu^{+}\mu^{-}$ at LHCb

• Full Run1+2 LHCb sample

- Find $B_s \rightarrow \mu^+ \mu^-$ with significance >10 σ , but no evidence yet for $B^0 \rightarrow \mu^+ \mu^-$ (1.7 σ)
- Updated effective lifetime $\tau_{eff}(B_s^0 \rightarrow \mu^+ \mu^-) = 2.07 \pm 0.29 \pm 0.03$ ps

Flavour at the crossroads 2022

[PRL 128, (2022) 041801]

• Set a limit also for the radiative decay (ISR) $\mathscr{B}(B_s^0 \to \mu^+ \mu^- \gamma)_{m_{\mu^+\mu^-} > 4.9 \text{GeV}} < 2.0 \times 10^{-10} \text{ (95 \% CL)}$

• Main BR systematics from f_s/f_d (3%) improved from an updated hadronisation fraction [LHCb, <u>arXiv:2103.06810</u>]

Charged currents

LFU in $b \rightarrow c \ell v$ transitions

- Tree level transition already in the SM
 - NP scale could be order few TeV
- LFU tests measure ratios between τ and μ (LHCb) or $e+\mu$ (B-factories)

LFU in $b \rightarrow c \ell v$ transitions at LHCb

- the presence of multiple neutrinos
- multiple backgrounds

Flavour at the crossroads 2022

P. Álvarez Cartelle (Cambridge)

 $H(\Lambda_{c}^{+})$

- LFU test using baryonic decays $\Lambda_h^0 \to \Lambda_c^+ \ell^- \nu_\ell$
 - Complementary NP sensitivity compared $R(D^{(*)})$
- Measure the BR of the tau decay mode and normalise to $\Lambda_h^0 \to \Lambda_c^+ 3\pi$
 - Run I dataset (3/fb)
 - Reconstruct the tau in hadronic mode

$$R(\Lambda_c^+) = \frac{B(\Lambda_b^0 \to A)}{B(\Lambda_b^0 \to A)}$$

Flavour at the crossroads 2022

[LHCb, arXiv:2201.03497]

external input

 $H(\Lambda_{c}^{+})$

• Template fit in 3-dimensions: t_{τ} , q^2 and BDT

[LHCb, arXiv:2201.03497]

BDT trained using kinematic distributions to exploit resonant structure of the 3π system in τ decays

 $R(\Lambda_c^+) = 0.242 \pm 0.026 \pm 0.040 \pm 0.059$ **Statistical** Systematics: - background fit templates $B(\Lambda_{h}^{0} \rightarrow \Lambda_{c} \mu \nu_{\mu})$

Result compatible with SM prediction at 1σ

LFU in $b \rightarrow c \ell v$ transitions

Flavour at the crossroads 2022

Common origin?

- Effective Field Theory fits can accommodate both sets of anomalies (left-handed, semi-leptonic operators) Simplified models, such as leptoquarks, usually point to Lepton Flavour Violation too

Lepton flavour violation at LHCb

Decay	Limit @ 90% C.L.	Luminosity	Reference	
$B^0 \rightarrow e \mu$	1.0 x 10 ⁻⁹	3 fb ⁻¹ (Run1)	JHEP 03 (2018) 078	
$B_s \rightarrow e \mu$	5.4 x 10 ⁻⁹			
$B^+ \rightarrow K^+ e^+ \mu^-$	7.0 x 10 ⁻⁹	3 fb ⁻¹ (Run1)	Phys. Rev. Lett. 123 (2019) 241802	
$B^+ \rightarrow K^+ e^- \mu^+$	6.4 x 10 ⁻⁹			
B ⁰ → K ^{*0} μ [±] e	9.9 x 10⁻ ⁹	9 fb ⁻¹ (Run1+2)	LHCb-PAPER-2022-008 (preliminary)	
$B^{0} \rightarrow K^{*0} \mu^{-} e^{+}$	6.7 x 10 ⁻⁹			
B ⁰ → K ^{*0} μ ⁺ e ⁻	5.7 x 10 ⁻⁹			
$B_s \rightarrow \phi \mu^{\pm} e$	1.6 x 10⁻ ⁸			
$B^{0} \rightarrow \tau \mu$	1.2 x 10 ⁻⁵	3 fb ⁻¹ (Run1)	Phys. Rev. Lett. 123 (2019) 211801	
$B_s \rightarrow \tau \mu$	3.4 x 10 ⁻⁵			
$B^+ \rightarrow K^+ \tau \mu$	3.9 x 10 ⁻⁵	9 fb ⁻¹ (Run1+2)	JHEP 06 (2020) 129	

Also: $BR(\tau \rightarrow \mu \mu \mu \mu) < 4.6 \times 10^{-8} at 90\% C.L.$ with 3 fb⁻¹ (Run1)[JHEP 02 (2015) 121]

22 QCD Polci, Moriond þ Compilation

More data is on its way!

From LHCb many results still to come from Run1+2 data

- LFU test in different channels/kinematic regions $[R_{K^{*}0}, R_{\Phi}, high-q^2, R(D), ...]$
- Angular observables of b \rightarrow sµ+µ- decays [parameterising hadronic contributions, LFU...]
- Measurements of b \rightarrow stt processes and LFV involving t's

[LHCb, <u>arXiv:1808.08865</u>]

R_X precision	$9{ m fb}^{-1}$
R_K	0.043
$R_{K^{*0}}$	0.052
R_{ϕ}	0.130
R_{pK}	0.105
R_π^-	0.302

P. Álvarez Cartelle (Cambridge)

More data is on its way!

The LHCb Upgrade I in Run3 and Run4

- Almost brand new detector
- Full software trigger [readout at 30 MHz]
- Accumulate at least 50/fb

LFU with LHCb Upgrade I

[LHCb, arXiv:1808.08865]

R_X precision	$9{ m fb}^{-1}$	$23{ m fb}^{-1}$	$50{ m fb}^{-1}$
R_K	0.043	0.025	0.017
$R_{K^{*0}}$	0.052	0.031	0.020
R_{ϕ}	0.130	0.076	0.050
R_{pK}	0.105	0.061	0.041
R_π^-	0.302	0.176	0.117

Significant increase in data opens the door to a very significant jump in precision and access to 'rarer' processes

For $b \rightarrow c \ell v$ transitions, apart from the statistical gain, many systematics expected to scale with luminosity [background templates, normalisation BRs,...]

LHCb Upgrade II

- [new technologies, adding timing information]
- Expect to collect 10x more data than phase I

Flavour at the crossroads 2022

LHCb Upgrade II

Flavour at the crossroads 2022

Clearly distinguish New Physics scenarios

LHCb Upgrade I: incremental improvements/prototype detectors

Summary

anomalies

Understanding what these mean requires more data

 Luckily, many results expected with the full exploitation of LHC's Run2 dataset, and Run3 just started!

Flavour at the crossroads 2022

LHCb's Run1+2 dataset leaves us with an interesting pattern of

Backup