"Light" new physics at colliders

Tania Robens

based on work with

A. Ilnicka, M. Krawczyk, (D. Sokolowksa); A. Ilnicka, T. Stefaniak; J. Kalinowski, W. Kotlarski, D.

Sokolowsa, A. F. Zarnecki; D. Dercks

Rudjer Boskovic Institute

MITP Virtual Workshop: Light New Physics: From Table-Top Experiments to the LHC 10.12.21

Tania Robens

"Light" new physics at colliders

Disclaimer

- "Light" new physics: for me, refers to DM masses $\leq 1 \, {\rm TeV}$ [thanks to email exchange w Caterina in September...]
- obviously, very large theory model space ⇒ impossible to cover all in a 15 minute talk
- \Rightarrow will try to make some general remarks, then discuss 2 specific models, then open questions

Lets get started...

Tania Robens

"Light" new physics at colliders

MITP: Light New Physics, 10.12.21

< □ > < A > >

General/ typical features of BSM scenarios with dark matter

- ν s cannot correctly describe DM content of the universe
- ⇒ need new particle content, aka BSM physics
 - typical setup: add **new scalar/ fermionic/** ... **states**, which transform as singlets/ doublets/ ... under $SU(2) \otimes U(1)$
- ⇒ introduce new unbroken symmetry, which renders the lightest BSM particle(s) stable ⇒ dark matter candidate(s)
 - side remark: this typically also leads to additional unstable new matter states !

\Rightarrow DM models constrained from various directions \Leftarrow

A "typical" plot

- in general: strong constraints from relic density and direct detection
- typical: relic density annihilation mediated via s-channel resonance (often: "Higgs funnel")

color coding: m_{χ}

⇒ strong relation between mediator and dark matter mass !

Tania Robens

"Light" new physics at colliders

IDM and THDMa - mini-introduction

• both models extend scalar sector of SM, lead to novel particle states and non-SM signatures

IDM: Inert Doublet Model

Two-Higgs-Doublet Model with an exact Z_2 symmetry \Rightarrow H, A, H^{\pm} states, one of these is dark matter

THDMa: Two-Higgs-Doublet Model + a

Two-Higgs-Doublet Model + pseudoscalar + fermionic dark matter, \Rightarrow *H*, *a*, *A*, *H*[±], χ states, χ is dark matter

 signatures: as in THDM, + many states with ∉⊥ (h/Z/tt̄/...)

Tania Robens

"Light" new physics at colliders

Constraints

• Theory

minimization of vacuum (tadpole equations), vacuum stability, positivity, perturbative unitarity, perturbativity of couplings

Experiment

provide viable candidate @ 125 GeV (coupling strength/ width/ ...); agree with null-results from additional searches and ew gauge boson measurements (widths); agree with electroweak precision tests (typically via S,T,U); agree with B-physics constraints (e.g. $B \rightarrow X_s \gamma$, ...); agree with astrophysical observations (if feasible)

tools used: HiggsBounds, HiggsSignals, 2HDMC, micrOMEGAs, ...

Tania Robens

"Light" new physics at colliders

MITP: Light New Physics, 10.12.21

イロト イヨト イヨト イヨト

2 Higgs Doublet Model: 4 new scalars H, A, H^{\pm} Z_2 symmetry \rightarrow DM candidate(s) (here: choose H) free parameters: masses, λ_2 , λ_{345} (couplings in V) signatures: EW gauge boson(s) + MET \Rightarrow so far: no LHC analysis \Leftarrow

Production and decay

• *Z*₂ symmetry:

only pair-production of dark scalars H, A, H^{\pm}

o production modes:

```
pp \rightarrow HA, HH^{\pm}, AH^{\pm}, H^{+}H^{-}
```

 $e^+e^- \rightarrow HA, H^+H^-$

• decays:

A \rightarrow Z H : 100%, \textbf{H}^{\pm} \rightarrow $\textbf{W}^{\pm}\textbf{H}$: dominant

signature: electroweak gauge boson(s) + MET

Tania Robens

"Light" new physics at colliders

MITP: Light New Physics, 10.12.21

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Parameters tested at colliders: mainly masses

- side remark: all couplings involving gauge bosons determined by electroweak SM parameters
- relevant couplings follow from ew parameters (+ derivative couplings)
- hXX couplings: determined by λ_{345} (constrained from direct detection), and mass differences $M_X^2 M_H^2$ ($x \in [A, H^{\pm}]$)

important interplay between astroparticle physics and collider searches

in the end kinematic test

(holds for $M_H \geq \frac{M_h}{2}$)

Tania Robens

"Light" new physics at colliders

Production cross sections [Symmetry 13 (2021) 6, 991]

lines: 1000 events for design luminosity

after HL-LHC: in general mass scales ($\sum M_i$ for pair-production) up to 1 TeV, in AA channel 200-600 GeV (500-600 including VBF)

collider	all others	AA	AA +VBF
HE-LHC	2 TeV	400-1400 GeV	800-1400 GeV
FCC-hh	2 TeV	600-2000 GeV	1600-2000 GeV
CLIC, 3 TeV	2 TeV ^{1),2)}	_ 3)	300-600 GeV
$\mu\mu$, 10 TeV	2 TeV ¹⁾	-	400-1400 GeV
$\mu\mu$, 30 TeV	2 TeV ¹⁾	-	1800-2000 GeV

1) only HA, H^+H^- ;

2) detailed investigation including background, beam strahlung, etc [JHEP 07 (2019) 053, CERN Yellow Rep. Monogr. Vol. 3 (2018)]
3) also including *Zh* mediation

Tania Robens

"Light" new physics at colliders

THDMa [arXiv:2105.06231, arXiv:2106.02962, arXiv:2110.07294]

setup: 2 Higgs Doublet Model (Type II), + pseudoscalar a (mixing with A), + dark matter candidate χ (fermionic)

- DM couples to additional field in gauge-eigenstates
- ⇒ promoted by LHC Dark Matter Working group in Phys.Dark Univ. 27 (2020) 100351

THDMa scalar sector particle content: $h, H, H^{\pm}, a, A, \chi$

parameters:

 $v, m_h, m_H, m_a, m_A, m_{H^{\pm}}, m_{\chi}; \cos(\beta - \alpha), \tan\beta, \sin\theta; y_{\chi}, \lambda_3, \lambda_{P_1}, \lambda_{P_2}$

Tania Robens

"Light" new physics at colliders

Example: Dark matter constraints

color coding: m_{χ}

dominant channels: $\chi \bar{\chi} \rightarrow t \bar{t}, b \bar{b}$, depending on m_a main result: $|m_a - 2 m_{\chi}| \le 300 \,\text{GeV}$

Tania Robens

"Light" new physics at colliders

a priori: as standard THDM

- new feature: new scalar *a*; mixing: both *a*/*A* can decay invisibly
- interesting channels: ha, hA, Ha, HA
- $\bullet\,$ mass ranges: between $200 {\rm GeV}$ and $2\,{\rm TeV}$
- most promising: HA, Ha at 3 TeV
- \Rightarrow cross sections up to 1 fb

Tania Robens

"Light" new physics at colliders

Can the $\not\models$ channel ever be dominant ?

bottom line: can find regions where $t\bar{t} + \not\in$ dominates

Tania Robens

"Light" new physics at colliders

MITP: Light New Physics, 10.12.21

< • • • **•**

Open questions: general

Questions one can ask...

- ask discussed, many BSM DM models have a large number of additional signatures, not necessarily containing DM candidates ⇒ what can be learned from these ? Can there be a generic correlation, or is it model by model ?
- due to large number of parameters, very often many parameters fixed and only 2-d planes presented ⇒ might lead to many regions that are missed (obvious solution: be recast-friendly ! LHC BSM reinterpretation forum)
- how well do "simplified models" work/ map to more complete ones ?

• any other questions ?

Tania Robens

Open questions: astrophysical uncertainties for direct detection bounds

dependence on velocity distributions (including uncertainties) for Xenon1T and DarkSide-50; dependence on different halo models for DM-electron scattering in semiconductors (taken from G. Belanger, A. Mjallal, A. Pukhov, Eur.Phys.J.C 81 (2021) 3, 239; A. Radick, A.-M. Taki, T.-T. Yu,

(taken from G. Belanger, A. Mjalial, A. Puknov, Eur.Phys.J.C 81 (2021) 3, 239; A. Radick, A.-M. Taki, T.-T. Yu, JCAP 02 (2021) 004)

Open questions: Non-equilibrium freezout, relic density calculation

[taken from T. Binder, T. Bringmann, M. Gustaffson, A. Hryczuk, Phys.Rev.D 96 (2017) 11, 115010, Phys.Rev.D 101 (2020) 9, 099901 (erratum); see also Eur.Phys.J.C 81 (2021) 577]

case study: chemical and kinematic departure from equilibrium happen "simultaneously" / at similar scales

 λ_S in various approaches that leads to Ω_h^{Planck} ; Ω_h rescaled using that value in different calculations

Tania Robens

"Light" new physics at colliders

MITP: Light New Physics, 10.12.21

Summary and Outlook

- DM at colliders: typically signatures w SM + missing (transverse) energy
- interplay between astrophysical and collider bounds, especially for models with large additional particle content

taking DM constraints at face value can lead to too strong constraints on BSM parameter spaces

Thanks for listening Hope to see you in person soon

[copyright_Landeshauptstadt_Mainz] = ers MITP: Light New Physics, 10.12.21

Tania Robens

"Light" new physics at colliders

Appendix

Tania Robens

"Light" new physics at colliders

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Inert doublet model: The model

• idea: take two Higgs doublet model, add additional Z₂ symmetry

$$\phi_D \rightarrow -\phi_D, \phi_S \rightarrow \phi_S, SM \rightarrow SM$$

 $(\Rightarrow \text{ implies CP conservation})$

- ⇒ obtain a 2HDM with (a) dark matter candidate(s)
 - potential

$$V = -\frac{1}{2} \left[m_{11}^2 (\phi_5^{\dagger} \phi_S) + m_{22}^2 (\phi_D^{\dagger} \phi_D) \right] + \frac{\lambda_1}{2} (\phi_5^{\dagger} \phi_S)^2 + \frac{\lambda_2}{2} (\phi_D^{\dagger} \phi_D)^2 + \lambda_3 (\phi_5^{\dagger} \phi_S) (\phi_D^{\dagger} \phi_D) + \lambda_4 (\phi_5^{\dagger} \phi_D) (\phi_D^{\dagger} \phi_S) + \frac{\lambda_5}{2} \left[(\phi_5^{\dagger} \phi_D)^2 + (\phi_D^{\dagger} \phi_S)^2 \right],$$

 only one doublet acquires VeV v, as in SM (⇒ implies analogous EWSB)

Tania Robens

"Light" new physics at colliders

MITP: Light New Physics, 10.12.21

Number of free parameters and theory constraints

Model has 7 free parameters

choose e.g.

 $\mathbf{v}, \, \mathbf{M_h}, \, \mathbf{M_H}, \, \mathbf{M_A}, \, \mathbf{M_{H^\pm}}, \lambda_2, \, \lambda_{345} \left[= \, \lambda_3 + \lambda_4 + \lambda_5 \right]$

• v, M_h fixed \Rightarrow left with 5 free parameters

Constraints: Theory

- vacuum stability, positivity, constraints to be in inert vacuum
- perturbative unitarity, perturbativity of couplings
- choosing M_H as dark matter: $M_H \leq M_A, M_{H^{\pm}}$

Tania Robens

"Light" new physics at colliders

 $M_h = 125.1 \,\mathrm{GeV}, \, v = 246 \,\mathrm{GeV}$

- total width of $M_h \, (\Gamma_h < 9 \, {
 m MeV})$ (CMS, 80 ${
 m fb}^{-1}$) [Phys. Rev. D 99, 112003 (2019)]
- total width of W, Z
- collider constraints from signal strength/ direct searches;
- electroweak precision through S, T, U
- unstable H^{\pm}
- reinterpreted/ recastet LEP/ LHC SUSY searches

(Lundstrom ea 2009; Belanger ea, 2015)

- dark matter relic density (upper bound)
- dark matter direct search limits (XENON1T)
- ⇒ tools used: 2HDMC, HiggsBounds, HiggsSignals, MicrOmegas

Tania Robens

"Light" new physics at colliders

Results of generic scan [Phys.Rev.D 93 (2016) 5, 055026; JHEP 12 (2018) 081]

Updated constraints [XENON1T] [Phys.Rev.Lett. 121 (2018) no.11, 111302]

LUX

XENON

Exact relic density ??

Depends on dark matter mass

- lower mass bound: $m_H \le 55 \,\mathrm{GeV}$ excluded by combination of signal strength and relic density
- $m_H \sim M_h/2$: exact relic density possible, $b \bar{b}$ and WW final states, $|\lambda_{345}| \lesssim 0.006$
- $m_H \in [65; 500 \, {
 m GeV}]$ no points with exact relic density
- above $m_H = 500 \,\text{GeV}$: possible for small mass splittings $\Delta m \leq 10 \,\text{GeV}$, dominantly into $W^+ W^-$ final states

Tania Robens

"Light" new physics at colliders

MITP: Light New Physics, 10.12.21

Collider parameters

collider	cm energy [TeV]	$\int \mathcal{L}$	1000 events [fb]
HL-LHC	13/ 14	$3 \mathrm{ab}^{-1}$	0.33
HE-LHC	27	$15\mathrm{ab}^{-1}$	0.07
FCC-hh	100	$20 \mathrm{ab}^{-1}$	0.05
ee	3	$5 \mathrm{ab}^{-1}$	0.2
$\mu\mu$	10	$10\mathrm{ab}^{-1}$	0.1
$\mu\mu$	30	$90 {\rm ab}^{-1}$	0.01

Tania Robens

"Light" new physics at colliders

▲日 ▶ ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ MITP: Light New Physics, 10.12.21

3

Dominant enhancements e.g. from H^+A production (offshell) / WW fusion diagrams

Tania Robens

"Light" new physics at colliders

Results for CLIC studies [JHEP 1812 (2018) 081; JHEP 1907 (2019) 053]

For selected benchmark points...

Recast of LHC Run II results

(in collaboration w D. Dercks, Eur.Phys.J.C 79 (2019) 11, 924)

• so far:

no dedicated searches at the LHC

 however, dominant final states: jet(s) + MET, EW gauge boson(s) + MET

 \Rightarrow same final states appear in other BSM searches \Leftarrow

- idea: **use recasting methods** to give (preliminary) exclusion limits if feasible
- many tools around; here: CheckMATE [Drees ea '13, Dercks ea '16]

Tania Robens

"Light" new physics at colliders

IDM recast

- considered a long list of processes at 13 TeV
- most sensitive:

VBF + invisible Higgs decay (by far), Monojet

- ⇒ implemented in CheckMATE [currently: private version]
- \Rightarrow applied to IDM

VBF: Search for invisible decays of a Higgs boson produced through vector boson fusion in proton-proton collisions at \sqrt{s} = 13 TeV, CMS, arXiv:1809.05937 [35.9fb⁻¹]

 $\label{eq:Monojet: Search for dark matter and other new phenomena in events with an energetic jet and large missing transverse momentum using the ATLAS detector, ATLAS, ATLAS-CONF-2017-060 [36.1 {\rm fb}^{-1}]$

Tania Robens

"Light" new physics at colliders

IDM at LHC (in collaboration w D. Dercks, Eur.Phys.J.C 79 (2019) 11, 924)

VBF recast; test of dilepton sensitivity

Search for invisible decays of a Higgs boson produced through vector boson fusion in proton-proton collisions at $\sqrt{s} = 13 \text{ TeV}$, CMS, arXiv:1809.05937 [35.9fb⁻¹]

current searches at LHC need to be modified

Tania Robens

"Light" new physics at colliders

Brief comments on null-results for other channels

experiments need to venture into low $\not\!\!\!\!/ \!\!\!/_{\perp}$ region

(first discussions: The 15th Workshop of the LHC Higgs Cross Section Working Group, CERN, 12/18; cf

e.g. summary talk by D. Sperka)

Tania Robens

"Light" new physics at colliders

MITP: Light New Physics, 10.12.21

Image: A math a math

Backup slide

Low mass IDM benchmark points

	No.	M _H	M _A	M _{H±}	λ_2	λ_{345}	$\Omega_c h^2$	
	BP1	72.77	107.8	114.6	1.445	-0.004407	0.1201	
	BP2	65	71.53	112.8	0.7791	0.0004	0.07081	
	BP3	67.07	73.22	96.73	0	0.00738	0.06162	
	BP4	73.68	100.1	145.7	2.086	-0.004407	0.08925	
	BP5	55.34	115.4	146.6	0.01257	0.0052	0.1196	
	BP6	72.14	109.5	154.8	0.01257	-0.00234	0.1171	
	BP7	76.55	134.6	174.4	1.948	0.0044	0.0314	
	BP8	70.91	148.7	175.9	0.4398	0.0051	0.124	
	BP9	56.78	166.2	178.2	0.5027	0.00338	0.08127	
	BP10	76.69	154.6	163	3.921	0.0096	0.02814	
	BP11	98.88	155	155.4	1.181	-0.0628	0.002737	
	BP12	58.31	171.1	173	0.5404	0.00762	0.00641	
	BP13	99.65	138.5	181.3	2.463	0.0532	0.001255	
	BP14	71.03	165.6	176	0.3393	0.00596	0.1184	
	BP15	71.03	217.7	218.7	0.7665	0.00214	0.1222	
	BP16	71.33	203.8	229.1	1.03	-0.00122	0.1221	
	BP17	55.46	241.1	244.9	0.289	-0.00484	0.1202	
	BP18	147	194.6	197.4	0.387	-0.018	0.001772	
	BP19	165.8	190.1	196	2.768	-0.004	0.002841	
	BP20	191.8	198.4	199.7	1.508	0.008	0.008494	
	BP21	57.48	288	299.5	0.9299	0.00192	0.1195	
	BP22	71.42	247.2	258.4	1.043	-0.00406	0.1243	
	BP23	62.69	162.4	190.8	2.639	0.0056	0.06404	
_								

A.F.Żarnecki (University of Warsa

Inert Scalars @ CLIC

August 28, 2018 21 / 21

Tania Robens

"Light" new physics at colliders

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ↓ □ ▶ ↓ □ ♥ ∩ Q ○
 MITP: Light New Physics, 10.12.21

Backup slide

High mass IDM benchmark points

	No.	M _H	MA	M _{H±}	λ_2	λ_{345}	$\Omega_c h^2$
	HP1	176	291.4	312	1.49	-0.1035	0.0007216
	HP2	557	562.3	565.4	4.045	-0.1385	0.07209
	HP3	560	616.3	633.5	3.38	-0.0895	0.001129
	HP4	571	676.5	682.5	1.98	-0.471	0.0005635
	HP5	671	688.1	688.4	1.377	-0.1455	0.02447
	HP6	713	716.4	723	2.88	0.2885	0.03515
	HP7	807	813.4	818	3.667	0.299	0.03239
	HP8	933	940	943.8	2.974	-0.2435	0.09639
	HP9	935	986.2	988	2.484	-0.5795	0.002796
	HP10	990	992.4	998.1	3.334	-0.051	0.1248
	HP11	250.5	265.5	287.2	3.908	-0.1501	0.00535
	HP12	286.1	294.6	332.5	3.292	0.1121	0.00277
	HP13	336	353.3	360.6	2.488	-0.1064	0.00937
	HP14	326.6	331.9	381.8	0.02513	-0.06267	0.00356
	HP15	357.6	400	402.6	2.061	-0.2375	0.00346
	HP16	387.8	406.1	413.5	0.8168	-0.2083	0.0116
	HP17	430.9	433.2	440.6	3.003	0.08299	0.0327
	HP18	428.2	454	459.7	3.87	-0.2812	0.00858
	HP19	467.9	488.6	492.3	4.122	-0.252	0.0139
	HP20	505.2	516.6	543.8	2.538	-0.354	0.00887
ooki (Liniversity of	f Marcaud)		Inort Cool	are @ CLIC		August 29

A.F.Żarnecki (University of Warsaw)

t Scalars @ CLIC

August 28, 2018 21 / 21

Tania Robens

"Light" new physics at colliders

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

THDMa

setup: 2 Higgs Doublet Model (Type II), + pseudoscalar a (mixing with A), + dark matter candidate χ (fermionic)

• DM couples to additional field in gauge-eigenstates

⇒ promoted by LHC Dark Matter Working group in Phys.Dark Univ. 27 (2020) 100351

original literature: S. Ipek ea, [Phys. Rev. D90 (2014), no. 5 055021]; J. M. No, [Phys. Rev. D93 (2016),

no. 3 031701]; D. Goncalves ea, [Phys. Rev. D95 (2017)]; M. Bauer ea, [JHEP 05 (2017) 138]; P. Tunney

ea, [Phys. Rev. D96 (2017)]

\Rightarrow highly scrutinized by LHC experiments

Tania Robens

"Light" new physics at colliders

$$\begin{split} \mathbf{V}_{\mathsf{THDM}} &= \mu_1 H_1^{\dagger} H_1 + \mu_2 H_2^{\dagger} H_2 + \lambda_1 (H_1^{\dagger} H_1)^2 + \lambda_2 (H_2^{\dagger} H_2)^2 \\ &+ \lambda_3 (H_1^{\dagger} H_1) (H_2^{\dagger} H_2) + \lambda_4 (H_1^{\dagger} H_2) (H_2^{\dagger} H_1) + \left[\mu_3 H_1^{\dagger} H_2 + \lambda_5 (H_1^{\dagger} H_2)^2 + h.c. \right] \\ \mathbf{V} &= \frac{1}{2} m_P^2 P^2 + \lambda_{P_1} H_1^{\dagger} H_1 P^2 + \lambda_{P_2} H_2^{\dagger} H_2 P^2 + (\imath b_P H_1^{\dagger} H_2 P + h.c.) \\ &\qquad \mathbf{V}_{\chi} = \imath y_{\chi} P \bar{\chi} \gamma_5 \chi \end{split}$$

THDMa scalar sector particle content: $h, H, H^{\pm}, a, A, \chi$

parameters:

 $v, m_h, m_H, m_a, m_A, m_{H^{\pm}}, m_{\chi}; \cos(\beta - \alpha), \tan\beta, \sin\theta; y_{\chi}, \lambda_3, \lambda_{P_1}, \lambda_{P_2}$

Tania Robens

"Light" new physics at colliders

THDMa: Implemented constraints

[see also Abe ea, JHEP, 01:114, 2020; Arcadi ea, JHEP, 06:098, 2020]

Theory

- boundedness of potential from below
- perturbativity of couplings
- perturbative unitarity

Experiment

- $v, m_{h/H}$: input
- electroweak precision through S, T, U
- $B \rightarrow X_s \gamma, \ B \rightarrow \mu^+ \mu^-, \ \Delta M_s$
- **Г**₁₂₅
- direct searches and 125 GeV signal strength through HiggsBounds/ HiggsSignals
- upper limit on relic density, direct detection [Phys. Rev., D90(5):055021]
- (pseudo) recast from current LHC searches

also using: own codes, Spheno, Sarah, MadDM,, Madgraph and an analysis at colliders MITP: Light New Physics, 10.12.21

Parameter ranges

WG recommendation:

$$m_H = m_A = m_{H^{\pm}}, m_{\chi} = 10 \,\text{GeV},$$

 $\cos(\beta - \alpha) = 0, \tan \beta = 1, \sin \theta = 0.35,$
 $y_{\chi} = 1, \lambda_3 = \lambda_{P_1} = \lambda_{P_2} = 3$

\Rightarrow effectively 2-d scan

• here; let everything float

Scan ranges:

$$\begin{split} &\sin \theta \, \in \, [-1; 0.8] \,, \, \cos \left(\beta - \alpha \right) \, \in \, [-0.08; 0.1] \,, \, \tan \beta \, \in \, [0.52; 9] \,, \\ & m_H \, \in \, [500; 1000] \, \text{GeV}, \, \, m_A \, \in \, [600; 1000] \, \text{GeV}, \\ & m_{H^{\pm}} \, \in \, [800; 1000] \, \text{GeV}, \, \, m_a \, \in \, [5 \, \text{GeV}; \, m_A] \,, \, m_\chi \, \in \, [0 \, \text{GeV}, \, m_a/2] \\ & y_\chi \, \in \, [-\pi; \pi] \,, \, \lambda_{P_1} \, \in \, [0; 10] \,, \, \lambda_{P_2} \, \in \, [0; 4 \, \pi] \,, \, \lambda_3 \, \in \, [-2; 4 \, \pi] \,. \end{split}$$

Example: B-physics constraints

Constraints from
$$B \rightarrow X_s \gamma, B_s \rightarrow \mu^+ \mu^-, \Delta M_s$$

- $B \rightarrow X_s \gamma$: use fit from updated calculation of Misiak ea, [JHEP 2006 (2020) 175, Eur.Phys.J. C77 (2017) no.3, 201], $\Rightarrow \tan \beta_{\min} (m_{H^{\pm}})$
- $B_s \rightarrow \mu^+ \mu^-$, ΔM_s : via SPheno, compare to LHC combination [ATLAS-CONF-2020-049], HFLAV value [arXiv:1909.12524]

$$\begin{split} & \mathcal{R}_{\gamma}^{\text{exp}} \; \equiv \; \frac{\mathcal{B}_{(s+d)\gamma}}{\mathcal{B}_{\mathcal{C}\ell\nu}} \; = \; (3.22 \pm 0.15) \times 10^3, \\ & \Delta M_s \; (\text{ps}^{-1}) \; = \; 17.757 \; \pm \; 0.020 \; \pm \; 0.007, \\ & \left(\mathcal{B}_s \to \mu^+ \mu^-\right)^{\text{comb}} \; = \; \left[2.69^{+0.37}_{-0.35}\right] \times \; 10^{-9} \end{split}$$

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Tania Robens

"Light" new physics at colliders

Oblique parameters via SPheno, compare to GFitter [Eur. Phys. J., C78(8):675]

Direct searches and signal strength

Via HiggsBounds/ HiggsSignals

Relevant BSM searches:

 $\begin{array}{l} H/A \rightarrow \tau \tau \text{ [ATLAS Run II, Phys.Rev.Lett. 125 (2020) no.5, 051801],} \\ H \rightarrow h_{125}h_{125} \text{ [ATLAS 2018 data, JHEP 1901 (2019) 030],} \\ A \rightarrow H/h_{125}Z \text{ [ATLAS 2018/ full Run 2 data, Phys.Lett. B783 (2018) 392-414, ATLAS-CONF_2020-043]} \\ \text{Tania Robens} \quad \text{``Light'' new physics at colliders} \qquad \text{MITP: Light New Physics, 10.12.21} \end{array}$

LHC searches

Model widely promoted by LHC Dark matter working group

- \Rightarrow searches considered:
 - $h + \not{\!\! E}_{\perp}$: ATLAS, Run II dataset [ATLAS-CONF-2021-006]
 - ② ℓℓ + ∉⊥: CMS, Run II dataset [Eur. Phys. J. C 81 (2021) 13]
 - **(3)** $W^+\bar{t}/W^-t + \not\models_{\perp}$: ATLAS, Run II dataset [arXiv:2011.09308]
 - $H^+ \bar{t}b, H^+ \rightarrow t \bar{b}$: ATLAS, Run II dataset [JHEP, 06:151; arXiv:2102.10076]
 - **◎** $t \bar{t}, b\bar{b} + \not{\!\!\!E}_{\perp}$: ATLAS, Run II dataset [Eur.Phys.J. C78 (2018) no.1, 18; JHEP 2104 (2021) 174; JHEP 2105 (2021) 093; JHEP, 04:165, 2021]
 - 6 $A \rightarrow Z H$: ATLAS, Run II dataset [Eur. Phys. J., C81(5):396, 2021]
 - (4), (5) not relevant due to tan eta \gtrsim 1, m_b small
 - (6) also not relevant (large masses $m_A, \ m_H \gtrsim \ m_a)$

 - **but:** all parameter float \Rightarrow no 2-dim clear distinction

Tania Robens

"Light" new physics at colliders