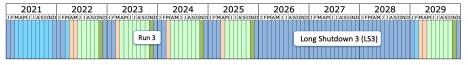
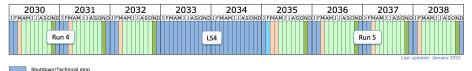
Fast Calorimeter Simulation Challenge 2022 — DLEP at MITP —

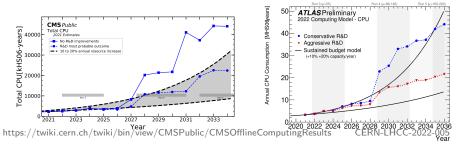
Claudius Krause


Rutgers, The State University of New Jersey


June 28, 2022

With Michele Faucci Giannelli, Gregor Kasieczka, Ben Nachman, Dalila Salamani, David Shih and Anna Zaborowska https://calochallenge.github.io/homepage/

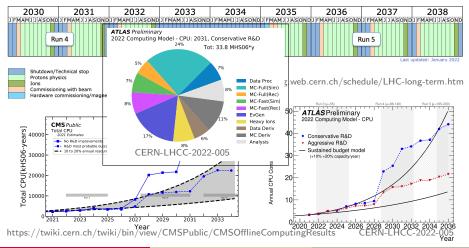
The LHC will need a lot of computing ressources.



https://lhc-commissioning.web.cern.ch/schedule/LHC-long-term.htm

Commissioning with beam Hardware commissioning/magnet training

Protons physics


Ions

Claudius Krause (Rutgers)

The LHC will need a lot of computing ressources.

Claudius Krause (Rutgers)

There was a lot of progress in the last years.

- The immense progress of ML in the past decade led to awesome results for calorimeter simulation surrogates!
- ⇒ We have seen the use of GANs, VAEs, Normalizing Flows, and their derivates on a variety of datasets.
 - Examples (biased towards us organizers and non-exhaustive):

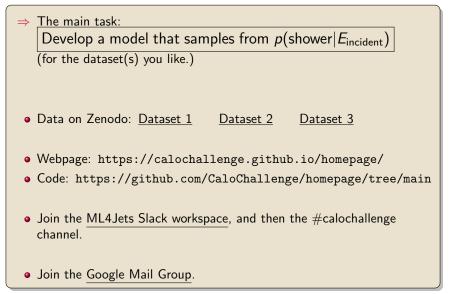
CaloGAN: 1712.10321 PRD; 1705.02355 PRL

Erdmann et al.: 1802.03325 CSBS; 1807.01954 CSBS

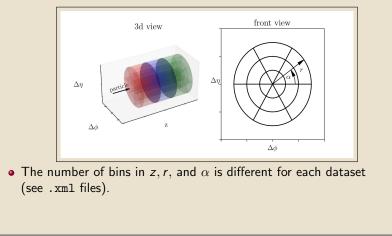
Belayneh et al.: 1912.06794 EPJC

BIB-AE: 2005.05334 CSBS; 2112.09709

AtlFast3: 2109.02551; FastCaloGAN: ATL-SOFT-PUB-2020-006


CaloFlow: 2106.05285; 2110.11377

⇒ No systematic comparison of methods available!


Why a Challenge?

- A challenge compares a variety of models on the same dataset.
- The datasets will also be benchmarks in the future, once new models become available.
- Winners are strong candidates for the new generation of FastSim.
- A challenge creates a survey of existing models with pros and cons.
- A challenge also collects ideas and approaches for preprocessing etc.
- Previous challenges on top tagging and anomaly detection were very successful.

Introducing: Fast Calorimeter Simulation Challenge 2022

- The 3 datasets have the same format, but differ in size/complexity ("easy" \rightarrow "medium" \rightarrow "hard").
- The geometry is based on segmented, concentric cylinders.

- The 3 datasets have the same format, but differ in size/complexity ("easy" \rightarrow "medium" \rightarrow "hard").
- The geometry is based on segmented, concentric cylinders.

- The number of bins in z, r, and α is different for each dataset (see .xml files).
- In the files, all voxels are flattened, with counting order $r \alpha z$.

The datasets come in .hdf5 format. (can be read with h5py)
Each file has 2 "hdf5-datasets" in it: "incident_energies" of shape (num_events, 1) contains *E_{inc}* in MeV "showers" of shape (num_events, num_voxels) contains the flattened energy depositions of each voxel in MeV

Bins> <bin etahax="130" etahin="0" name="photon" pid="22"></bin>	The dataset-specific geometry is stored in binning_dataset_*.xml:		
<pre>classer id="r_edges="0", 10, 30, 50, 100, 200, 400, 600", 0.101, 31, 000, 200, 100, 100, 100, 100, 100, 10</pre>	<pre>stin pic***22 etatin*** "etatws=130" name="photon"></pre>		

Dataset 1 ("easy"):

- comes in 2 "flavors": photons (368-dim.) and pions (533-dim.)
- uses the ATLAS detector and is based on the dataset of AtlFast3: 2109.02551: FastCaloGAN: ATL-SOFT-PUB-2020-006

```
Dataset 2 ("medium"):
```

- electron showers (6480-dim.)
- uses detector made of alternating active (silicon) and passive (tungsten) layers based on the par04 GEANT4 example.

Dataset 3 ("hard"):

- electron showers (40500-dim.)
- same detector as dataset 2, but voxelization to much higher granularity

The Structure of the Data and High-Level Features — Code

💭 Jupyter	HighLevelFeatures Last Checkpoint: 16.03.2022 (suttoraised)	ne Lopert
File Edit	View Insert Cell Kernel Widgets Help Not Trusted	Python 3 (lpykeme): O
B + 34 0	1 15 ↑ ↓ ▶ Ran ■ C ≫ Code ~ III O gR mbdff	
50 (1)	CaloChallenge 2022 - Dataset Loading and Usage	
	All 3 datasets have a similar structure and the helper functions are designed to work on all of them. Below are a low examples on how to load data, compute and join high-level features, and look at average/individual showers for each dataset.	d and access the
	Dataset 1	
In [2]:	# creating instance of HighlevelFeatures class to havele geometry based on binning file HLT_lphotens = HLT(photen; filenmentbinning dataset_lphotens.uxl') HLF_lpions = HLF(pion', filenmentbinning dataset_lpions.uxl')	
In [3]:	<pre># loading the .hdf5 detasets photon file = hdpy.file('/dataset_l_photons 1.hdf5', 'r') pion_file = hdpy.File('/dataset_l_pions_l.hdf5', 'r')</pre>	
In (4)	<pre># sub file contains one dataset for the incident energy and one for the showers.</pre>	
	dataset name: incident energies dataset singe: (121006, 1) dataset name: showers dataset singe: (121006, 340)	
	dataset name: incident energies dataset singe: (120236, 1) detaset name: singer: dataset singe: (120236, 533)	
In [5]:	# incident energies are discrete, starting at 256 MeV and increasing in powers of 2. At high energies, # there are fear than 100k events per energy energies = photon_file[incident_energies][i] here = per hereaf1 = 31. Association.	
	RAR - R. ARRENT - I - REPORT	

The Structure of the Data and High-Level Features

Points for discussion:

- Any other high-level features needed / relevant?
- Any other histograms needed?
- Any other plots / visualizations wished for?
- ⇒ Send a pull-request if you have some!

The surrogates should be fast and faithful!

We will be looking at:

⇒ Sampling time, (training time, memory usage)

The surrogates should be fast and faithful!

We will be looking at:

- ⇒ Sampling time, (training time, memory usage)
- \Rightarrow Histograms of high-level features, and their separation power:

$$\langle S^2
angle = rac{1}{2} \sum_{i=1}^{h_{ ext{bins}}} rac{(h_{1,i} - h_{2,i})^2}{h_{1,i} + h_{2,i}}$$

Diefenbacher et al. 2009.03796

The surrogates should be fast and faithful!

We will be looking at:

- ⇒ Sampling time, (training time, memory usage)
- \Rightarrow Histograms of high-level features, and their separation power:

$$\langle S^2
angle = rac{1}{2} \sum_{i=1}^{h_{
m bins}} rac{(h_{1,i}-h_{2,i})^2}{h_{1,i}+h_{2,i}}$$
 Diefenbacher et al. 2009.03796

 \Rightarrow Interpolation capabilities of datasets 1: $\langle S^2 \rangle$ at an $E_{\rm inc}$ left out in training.

The surrogates should be fast and faithful!

We will be looking at:

- \Rightarrow Sampling time, (training time, memory usage)
- ⇒ Histograms of high-level features, and their separation power: $\langle S^2 \rangle = \frac{1}{2} \sum_{i=1}^{n_{\text{bins}}} \frac{(h_{1,i} - h_{2,i})^2}{h_{1,i} + h_{2,i}}$ Diefenbacher et al. 2009.03796
- \Rightarrow Interpolation capabilities of datasets 1: $\langle S^2 \rangle$ at an $E_{\rm inc}$ left out in training.
- \Rightarrow A binary classifier to distinguish samples from GEANT4, based on high-level features.

The surrogates should be fast and faithful!

We will be looking at:

- \Rightarrow Sampling time, (training time, memory usage)
- ⇒ Histograms of high-level features, and their separation power: $\langle S^2 \rangle = \frac{1}{2} \sum_{i=1}^{n_{\text{bins}}} \frac{(h_{1,i} - h_{2,i})^2}{h_{1,i} + h_{2,i}}$ Diefenbacher et al. 2009.03796
- \Rightarrow Interpolation capabilities of datasets 1: $\langle S^2 \rangle$ at an $E_{\rm inc}$ left out in training.
- \Rightarrow A binary classifier to distinguish samples from GEANT4, based on high-level features.
- \Rightarrow A binary classifier to distinguish samples from GEANT4, based on voxel information.

The surrogates should be fast and faithful!

We will be looking at:

- \Rightarrow Sampling time, (training time, memory usage)
- \Rightarrow Histograms of high-level features, and their separation power:

 $\langle S^2
angle = rac{1}{2} \sum_{i=1}^{n_{\text{bins}}} rac{(h_{1,i} - h_{2,i})^2}{h_{1,i} + h_{2,i}}$ Diefenbacher et al. 2009.03796

- \Rightarrow Interpolation capabilities of datasets 1: $\langle S^2 \rangle$ at an $E_{\rm inc}$ left out in training.
- \Rightarrow A binary classifier to distinguish samples from GEANT4, based on high-level features.
- \Rightarrow A binary classifier to distinguish samples from GEANT4, based on voxel information.

Note:

- Almost all of these require the distributions of E_{inc} to agree.
- Data needs to be written in the same .hdf5 format as the training data.

Claudius Krause (Rutgers)

CaloChallenge 2022

Evaluating the Models — Code

💭 Jupyter	Evaluation-visualization Last Checkpoint: 18.03.2022 (autoawed)	Coput
File Esk	Vew Insert Cell Kernel Widgets Help Not Trusted	Python 3 (pykeme). O
B + ×	2 15 + + Pan E C H Markdown v 💷 O gR nbdff	
	Evaluation of showers submitted to the Fast Calorimeter Challenge 2022	
	This is an interactive version of the file evaluate.py . It can also be run directly using:	
	python evaluate.py -i INPUT_FILE -r REFERENCE_FILE -m MODE -d DATASEToutput_dir GUTPUT_DIRs- URCE_DIR	ource_dir 50
	where the arguments are:	
	 IPMUTFLIE is in ARD for the constants the densets is be evaluated. IPMUTFLIES, TELE is the ARD for the constants are densets in the process the access the process of the process and ensets the process of t	E plots the average ce fortween the cety saves the
In [1]	lagert a Lagert arguine Lagert higher the Lagert highers no Lagert highers as NLF	
In [2]	# specify to your needs:	
	<pre>LNMT Title - 'destant J. LNMT' + REFLACE THE NUTH THM EXCEPTION THAT' METRICATINE - 'destant J.J.MT' + REFLACE THE NUTH THM EXCEPTION THAT are provided an ADDEDWER TILE - 'destant J.J.MT' + Reflace the defaultion evolution evolution that are provided an ADDEDWER TILE - 'Source default because the de is interactive COMPT OF - 'relation results' SOURT 10 - 'source default results'</pre>	
In [3]	<pre># emulating the argument parser of evaluate.py parser replacement = { import file: BUMFFILE, 'reference file': REFERENCE FILE, 'mode': MODE, 'dataset': DATAGET, 'outprid': OUTPHEDED, 'movies dir': DATAGED,) argument Association's argument (Dataset) argument Association's argument (Dataset) </pre>	
In (5)	<pre># reading in source_file source_file = h5py.File(args.input_file, 'r')</pre>	
	# shashing if it has execut show	

We don't expect to have a single clear winner!

Instead, we are looking forward to a diversity of approaches with a plethora of new ideas.

Points for discussion:

• Any other high-level features for histograms / classifier?

- What kind of preprocessing should be used for low-level classifier?
- Any other metrics?

Looking Ahead

- Watch the arXiv for contributions: the first one was Mikuni/Nachman [2206.11898]
- We will add more plot features.
- We will add the code for the classifiers and other missing metrics.
- We are discussing adding a leaderboard to the website.

- There will be a dedicated session at ML4Jets @ Rutgers, November 1-4, this year. Please send us your samples ahead of time (tbd when), so we can run them through our common pipeline.
- There will be a summary paper at the very end.

Fast Calorimeter Simulation Challenge 2022

- Webpage: https://calochallenge.github.io/homepage/
- Code: https://github.com/CaloChallenge/homepage/tree/main
- Data on Zenodo: <u>Dataset 1</u> <u>Dataset 2</u> <u>Dataset 3</u>
- Join the ML4Jets Slack workspace, and then the $\#\mbox{calochallenge}$ channel.
- Join the Google Mail Group.