Bridge between Classical & Quantum Machine Learning

Based on JHEP 08 (2021) 112; arXiv: 2106.08334 [hep-ph] & arXiv: 2202.10471 [quant-ph] with Michael Spannowsky

> Mainz Institute for Theoretical Physics June 29th, 2022

Sales pitch of the talk!

- We more or less know how to get a well-performing Neural Network
- What we don't know is what this network learns.
- Can we use Quantum Mechanics to have more insight into the learning process?
 - What has a model learned?
 - What is learning?
 - How do we develop "insightful" algorithms?
 - + How to perform this on a Quantum device?

All comes together with Tensor Networks!

Introduction

- Representing a problem as a quantum many-body system
- Hello world of HEP-ML: Top Tagging
- Quantum Machine Learning on a Quantum device
- Conclusion

Introduction

Tensor Networks: Origins

Throwback linear algebra: Singular Value Decomposition

 λ_i also known as Schmidt values

Singular Value Decomposition

Singular Value Decomposition

Computational cost is $\mathcal{O}(d^{N-1}\chi^2)$!!!

Types of Tensor Networks (some of them)

Types of Tensor Networks (some of them)

Multiscale Entanglement **Renormalisation Ansatz**

Matrix Product States for Classification

University

 $\mathbf{X} = \left\{ x_1, x_2, \cdots, x_n \right\} \in \mathbb{R} \quad , \quad \phi(x) := \forall x \in \mathbb{R} \to \mathbb{C}^m$ $\Phi^{p_1 \cdots p_n}(\mathbf{x}) = \bigotimes_{p_i=0}^N \phi^{p_i}(x_i) \qquad \phi^{p_i}(x_i) = \sum_{j=0}^{m-1} \alpha_j | j \rangle$ $\bigcup \bigcup \bigcup \bigcup \bigcup \bigcup \bigcup \bigcup \bigcup \bigoplus \bigoplus \phi^{p_1 \cdots p_n}(\mathbf{x})$

$$\left. \begin{array}{l} = \Phi^{p_1 \dots p_n}(\mathbf{x}) \\ = \mathcal{W}^l_{p_1 \dots p_n} \end{array} \right\} \left. \begin{array}{l} = f^l(\mathbf{x}) = \mathcal{W}^l_{p_1 \dots p_n} \Phi^{p_1 \dots p_n}(\mathbf{x}) \\ l \end{array} \right.$$

Matrix Product States for Classification

p

Sub-Outline

How to embed the data?

How to form a network?

How to train the network?

 $\underset{\theta_i \in \mathcal{W}}{\operatorname{arg min}} \mathscr{L}\left(q(x^{(i)}), p(x^{(i)}; \theta)\right)$

Traditionally NNs are trained with SGD, but MPS is trained with Density Matrix Renormalisation Group Algorithm

$$\mathcal{L} = \frac{1}{N} \sum_{x \in \mathbf{x}^{N}} q^{\text{truth}} \log \left(p(x^{(i)}; \theta) \right)$$

$$= \Phi^{p_{1} \dots p_{n}} \left\{ \begin{array}{c} \mathbf{x} = f^{l}(\mathbf{x}) = \mathcal{W}^{l}_{p_{1} \dots p_{n}} \Phi^{p_{1} \dots p_{n}} \\ \mathbf{x} = f^{l}(\mathbf{x}) = \mathcal{W}^{l}_{p_{1} \dots p_{n}} \\ \mathbf{x} = f^{l}(\mathbf{x}) = f^{l}(\mathbf{x}) \\ \mathbf{x} = f^{l}(\mathbf{x}) \\ \mathbf{x} = f^{l}(\mathbf{x}) = f^{l}(\mathbf{x}) \\ \mathbf{x} = f^{l}(\mathbf{x}) \\ \mathbf{x} = f^{l}(\mathbf{x}) \\ \mathbf{x} = f^{l}(\mathbf{x})$$

Density Matrix Renormalisation Group Algorithm

Durham University

Density Matrix Renormalisation Group Algorithm

University

Why TNs "might" perform well in classification tasks?

Not in this talk

Garipov, Podoprikhin, Novikov, Vetrov arXiv:1611.03214

- The range of a node in a Tensor Network bounded by its bond dimension.
- Tensor Networks can capture local "anomalies".
- Jets can produce localized clusters!!

Hello World of HEP-ML: Top Tagging

Why Top Quarks?

Data from:

Similar preprocess, based on CNN:

University

If I give you a trained network and no data, what can you tell me about the data?

Ouestion:

\tilde{p}_T^3	\tilde{p}_T^4	\tilde{p}_T^5	
\tilde{p}_T^8	\tilde{p}_T^7	\tilde{p}_T^6	
\tilde{p}_T^{13}	\tilde{p}_T^{14}	\tilde{p}_T^{15}	
\tilde{p}_T^{18}	\tilde{p}_T^{17}	\tilde{p}_T^{16}	
\tilde{p}_T^{23}	\tilde{p}_T^{24}	\tilde{p}_T^{25}	

	Entanglement	ору		
$\mathcal{S}(\rho) = -$	$\operatorname{Tr}[\rho \log_2 \rho]$	• ?	$\rho :=$	$ \Psi\rangle\langle\Psi $

How about good old SGD?

University

Quantum Machine Leating Yes, up to now, it was "classical"...

Introduction Vol. III: Quantum Circuits

Introduction Vol. III: Quantum Circuits

 $|0\rangle$ –

 $R_x |0\rangle = e^{-i\phi\sigma_x} |0\rangle =$

$$R_{y}(\phi) = e^{-i\phi\sigma_{y}} = \begin{bmatrix} \cos\left(\frac{\phi}{2}\right) & -\sin\left(\frac{\phi}{2}\right) \\ \sin\left(\frac{\phi}{2}\right) & \cos\left(\frac{\phi}{2}\right) \end{bmatrix}$$

$$R_{x}(\phi_{1}) \qquad R_{y}(\phi_{2}) \qquad \swarrow \langle \sigma_{z} \rangle$$

$$|\Phi\rangle = R_{y}(\phi_{1}) \left\{ R_{x}(\phi_{2}) |0\rangle \right\}$$

$$\int \left[\cos\left(\frac{\phi}{2}\right) -i\sin\left(\frac{\phi}{2}\right) \\ -i\sin\left(\frac{\phi}{2}\right) & \cos\left(\frac{\phi}{2}\right) \right] \left[1 \\ 0 \right] = \cos\left(\frac{\phi}{2}\right) |0\rangle - i\sin\left(\frac{\phi}{2}\right)$$

 $\langle \Phi | \sigma_z | \Phi \rangle = \langle 0 | R_x^{\dagger}(\phi_2) R_y^{\dagger}(\phi_1) \sigma_z R_y(\phi_1) R_x(\phi_2) | 0 \rangle$

Introduction Vol. III: Quantum Variational Circuits

PennyLane: Variational Circuits

$$\begin{split} \mathbf{M}_{\theta}(\Phi^{\beta_{1}\cdots\beta_{n}}(\mathbf{x})) &= \langle \Phi \mid \hat{\mathcal{U}}_{\mathrm{QC}}^{\dagger}(U_{i}(\theta_{j})) \ \hat{\mathbf{M}} \ \hat{\mathcal{U}}_{\mathrm{QC}}(U_{i}(\theta_{j})) \mid \Phi \rangle \\ p\left(\mathbf{x}^{(i)};\theta\right) &= \left| \mathbf{M}_{\theta}\left(\Phi^{\beta_{1}\cdots\beta_{n}}\left(\mathbf{x}^{(i)}\right)\right) \right|^{2} \end{split}$$

Experimenting with 4-Qubits

Experimenting with 4-Qubits

Experimenting with 6-Qubits

Experimenting with 6-Qubits

Experimenting with 6-Qubits

Ansatz	D	χ	# Parameters	AU
TTN	2	5	235	0.75
	2	10	1320	0.80
	2	20	9040	0.84
	5	10	1950	0.87
	10 20 14800	14800	0.89	
	2	5	230	0.81
MPS	2	10	860	0.81
	2	20	3320	0.81
	5	10	2150	0.89
MERA	2	5	1225	0.85
	2	10	13400	0.84
	2	20	181600	0.84
	5	10	18200	0.90
Q-TTN	-	-	9	0.89
Q-MPS	-	-	9	0.88
Q-MERA	-	-	17	0.91

Loss landscape for classical TNs becomes exponentially flat!

Jack Y. Araz - Classical vs Quantum

6

Conclusion

Conclusion

Classical

- Tensor Networks opens up the entire world of techniques developed for Quantum Mechanics to ML applications.
- A linear network allows a more straightforward interpretation.
- The perfect tool to do linear algebra in higher-dimensional spaces.

Main Drawbacks

- Cost to train can be high
- Choice of architecture is still a research area.

Jack Y. Araz - Classical vs Quantum ~(Ip3)~

Conclusion

Classical

- Tensor Networks opens up the entire world of techniques developed for Quantum Mechanics to ML applications.
- A linear network allows a more straightforward interpretation.
- The perfect tool to do linear algebra in higherdimensional spaces.
- The optimisation landscape becomes exponentially flat with increasing bond dimensions and Hilbert space mapping.

Quantum

- Natural quantum systems have more representation capacity.
- Quantum Natural Gradient Descent allows faster optimization compared to classical networks.
- BUT near term quantum devices are still very much limited to a few qubits.

Matrix Product States for Classification

Data Embedding

$$\Phi^{p_1 \cdots p_n}(\mathbf{x}) = \phi^{p_1}(x_1) \otimes \phi^{p_2}(x_2) \otimes \cdots \otimes \phi^{p_n}(x_n)$$
$$\phi^{p_i}(x_i) = \begin{bmatrix} \cos(x_i \ \pi/2) \\ \sin(x_i \ \pi/2) \end{bmatrix} \text{ or } \phi^{p_i}(x_i) = \begin{bmatrix} 1 \\ x_i \\ x_i^2 \end{bmatrix} \text{ or } \cdots$$

$$\sum_{i}^{\chi} \lambda_{\alpha} | \alpha \rangle_{A} | \alpha \rangle_{B} \rightarrow \lambda_{\alpha} := \text{Schmidt values}$$

$$\sum_{i}^{\chi} \lambda_i^2 \log \lambda_i^2$$

Fisher Information & Effective Dimensions

$$\hat{d}_{\text{eff}} = \frac{2 \log \left(\frac{1}{V_{\Theta}} \int_{\Theta} \sqrt{\det \left(1 + \frac{|\mathbf{X}|}{2\pi \log |\mathbf{X}|} \hat{F}(\theta) \right)} d\theta \right)}{d \log \left(\frac{|\mathbf{X}|}{2\pi \log |\mathbf{X}|} \right)} \qquad 0.1$$

$$\bar{F}(\theta) = \frac{1}{|\mathbf{X}|} \sum_{x \in \mathbf{X}} \partial_{\theta} \log p(x; \theta) \ \partial_{\theta} \log p^{\mathsf{T}}(x; \theta)$$

