

Probabilistic Models

Trainable parameters $p_{\theta}(x)$ which enables

• Fitting to $p_{\text{data}}(x)$ A likelihood estimation

- Likelihood evaluation $p_{\theta}(x_i)$
- Sampling $x \sim p_{\theta}(x)$

What would I like from a model

- Expressivity
- Efficiency

Can fit complicated $p_{\text{data}}(x)$

Fast sampling & likelihood evaluation

Gaussian distribution

$$p_{\theta}(x) = \mathcal{N}(x \mid \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{1}{2} \left(\frac{x - \mu}{\sigma}\right)^2\right)$$

Parameters: μ, σ

Not very expressive....

Latent Variable Models

More expressive models by combining simple ones

Latent variable $z \rightarrow p(x, z)$

Dropping the θ notation

Interested only in marginal

$$p(x) = \int_{\mathcal{Z}} dz \, p(x, z) = \int_{\mathcal{Z}} dz \, p(z) \, p(x | z)$$

Sampling is still simple

$$z \sim p(z)$$
$$x \sim p(x \mid z)$$

Gaussian mixture model (discrete latent)

$$p(x) = \sum_{i=1}^{K} p_i \mathcal{N}(x \mid \mu_i, \sigma_i)$$

Parameters: p_i, μ_i, σ_i

Much better!

But doesn't scale well to higher dims...

Latent Variable Models

Marginal likelihood is usually intractable

$$p(x) = \int_{\mathcal{Z}} dz \, p(x, z) = \int_{\mathcal{Z}} dz \, p(z) \, p(x | z)$$

Too hard to compute efficiently

We would *really* like to have acces to the exact likelihood

- Training through maximum likelihood estimation
- Use for anomaly detection, likelihood-free inference, etc

Other generative models actually also fit this latent variable description, and you can even combine then

RV: 2205.01697

Gaussian mixture model (discrete latent)

$$p(x) = \sum_{i=1}^{K} p_i \mathcal{N}(x | \mu_i, \sigma_i)$$

Parameters: p_i, μ_i, σ_i

Much better!

But doesn't scale well to higher dims...

Normalizing Flows

$$p(x) = \int_{\mathcal{Z}} dz \, p(x, z) = \int_{\mathcal{Z}} dz \, p(z) \, p(x | z)$$

Fix intractability by removing stochastic component from $p(x \mid z)$

$$p(x | z) \rightarrow \delta(x - f(z))$$
Parametric bijection

$$\log p(x) = \log \int_{\mathcal{Z}} dz \, p(z) \, \delta(x - f(z)) = \log p(z) + \log |J(x)|$$

$$\dim(z) = \dim(x)$$

Flow: Repeat a few times

$$\log p(x) = \log p(z_0) + \sum_{i=1}^{\infty} \log |J_i(z_i)|.$$

Two Normalizing Flow Architectures $|J_i(x)|$ must be easy to evaluate

Coupling layers $p(z) = p(z^A)p(z^B | z^A)$

Split into two pieces $z \rightarrow z^A, z^B$

- Fast in both directions
- Simple Jacobian

$$|J| = \left| \frac{dz_{i+1}}{dz_i} \right| = \left| \frac{\overrightarrow{1}}{d\theta} \frac{\overrightarrow{0}}{dz_i^B} \frac{\overrightarrow{d}\theta}{dz_i^B} \right| = \left| \frac{df_i}{dz_i^B} \right|$$

Autoregressive layers $p(z) = \prod_{j=1}^{D} p\left(z^{j} \mid z^{1:j-1}\right)$ Split into D 1-d transforms

- Fast in only one direction
- Lower-triangular Jacobian

 \square $\mathcal{O}(d)$ instead of $\mathcal{O}(d^3)$ determinant

Flow Transforms

Some requirements:

- Bijective functions $f_i(z) \leftrightarrow f_i^{-1}(x)$
- As expressive as possible

Rational Quadratic Spline

Example Application: Negative Weights Stienen, RV: 2011.13445

Common in ME/PS matching (MC@NLO)

Require more events for same statistics

- Train normalizing flow on weighted events
- Generate unweighted events

Example Application: Anomaly Detection

Caron, Hendriks, RV: 2011.13445

Search for out-of-distribution events

Identify regions of phase space for further study

Dark Machines Anomaly Detection Challenge

1. > 1B SM events:

Four channels

- Channel 1: Hadronic activity with lots of missing energy (214k events)
- Channel 2a: At least three identified leptons (20k events)
- Channel 2b: At least two identified leptons (340k events)
- Channel 3: Inclusive with moderate missing energy (8.5M events)
- 2. Validation set:

Events from various BSM models (Z', SUSY, etc.)

3. Test set:

Secret dataset with labels not known to model authors

The Dark Machines Anomaly Score Challenge: Benchmark Data and Model Independent Event Classification for the Large Hadron Collider Figure of merit:

Max SI =
$$\max_{\epsilon_B} \epsilon_S(\epsilon_B) / \sqrt{\epsilon_B}$$

where $\epsilon_B \in \{10^{-2}, 10^{-3}, 10^{-4}\}$

T. Aarrestad a M. van Beekveld b M. Bona c A. Boveia e S. Caron d J. Davies c A. De Simone f,g C. Doglioni h J. M. Duarte i A. Farbin j H. Gupta k L. Hendriks d L. Heinrich a J. Howarth l P. Jawahar m,a A. Jueid n J. Lastow h A. Leinweber o J. Mamuzic p E. Merényi q A. Morandini r P. Moskvitina d C. Nellist d J. Ngadiuba s , B. Ostdiek u , M. Pierini a B. Ravina l R. Ruiz de Austri p S. Sekmen w M. Touranakou x , M. Vaškevičiūte l R. Vilalta y J.-R. Vlimant t R. Verheyen z M. White o E. Wulff h E. Wallin h K.A. Wozniak a , Z. Zhang d

Discussion

- Applications in physics
 - Event generation/numerical integration
 - Anomaly detection
 - Likelihood-free inference
 - ???
- Differences with other generative models
 - Easy to train
 - Not as flexible

- How to obtain the best performance?
 - Architecture/loss function
 - Discriminator-assisted training

- Not nearly as flexible as a MC event generator
 - Cuts/sharp features in phase space
 - Physical parameters