Probabilistic Models

Trainable parameters

po(x) which enables S— _
» Fitting to Pyata¥)

* Likelihood evaluation py(x;)
* Sampling x ~ py(x)

What would | like from a model

* EXpressivity
Can fit complicated Pgata(*)

* Efficiency

Fast sampling & likelihood evaluation

Gaussian distribution

po(x) = N (x|p,0) =
9

Parameters: u,o

p(x) o< (1 +sin(3z)) x exp(— cosh(x)) x sin(4x)

n True
Gaussian

Not very expressive....



*UCL

Latent Variable Models GaussianKmixture model (discrete latent)
px) = Zpi/’/(x‘l/tia c;)
=

More expressive models by combining simple ones

Latent variable z — p(x, 2) Parameters: p;, 4> 0;

\ Dropping the 0 notation

Interested only in marginal

px) =[ dz p(x, z) =J dz p(z) p(x|z)
F* F*

p(x) o (1 +sin(3z)) x exp(— cosh(x)) x sin(4x)

True A
Gaussian Mixture (K=10)

Sampling is still simple

z ~ p(z)
x ~ p(x|z)
Much better!

> But doesn’t scale well to higher dims...




Latent Variable Models

Marginal likelihood is usually intractable

dzp(x,z) = J dzp(z) p(x|z)
F*

px) = J

Z

Too hard to compute efficiently

We would really like to have acces to the exact likelihood

* Training through maximum likelihood estimation
* Use for anomaly detection, likelihood-free inference, etc

. Normalizing flows

Other generative models actually also fit this latent variable description,
and you can even combine then

RV: 2205.01697

Parameters: p;, i;, 0;

*UCL

Gaussian mixture model (discrete latent)

K
px) = ZP;’ N (x| p;, 0;)
i=1

p(x) o (1 +sin(3z)) x exp(— cosh(x)) x sin(4x)

True
Gaussian Mixture (K=10)

ﬂ

Much better!

But doesn’t scale well to higher dims...



dh

Normalizing Flows () =[

dzp(x,z) = J dzp(z) p(x|z)
* F*

Fix intractability by removing stochastic component from p(x|z)

px|z) = ox — f(2)) :> log p(x) = logJ dz p(z) 6(x — f(z)) = logp(z) + log | J(x) |
* rmmm

fi(zi—1) fiv1(z

fl(Zo) (
OS ONS ()
Flow: Repeat a few times R X

log p(x) = log p(zy) + Z log|Ji(z) | . /\/
i=1

> > >

zo ~ Unif (0, 1) zi ~ pi(2;) Zn ~ Pn(2n)
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dh

Two Normalizing Flow Architectures acobian |/x)| must be easy to evaluate
D

Coupling layers p(z) = p(z")p(z®|z*)

Split into two pieces z — z4,7”

A

l
<

0(z)

A

7
>z+1

Y [ £(2550EY) )

e

l

e Fast in both directions

e Simple Jacobian

dz;y

| /]| =
dZi

df; do

do dzp

e

l

df
dzP

+1

|

Autoregressive layers p(z) = HP (Zj |21 _1)

Split into D 1-d transforms

1 1
2 ' . 2
2 ) ;\ziﬂ
J . J.nj J
Z; e i ol Zi+1
Forward

* Fast in only one direction
* |Lower-triangular Jacobian

j=1

6i(..

|

0

Inverse

)

/ 0
\

:> O(d) instead of O(d’) determinant




Flow Transforms

Some requirements;
» Bijective functions fi(z) < f7'(x)

* As expressive as possible

1:9—1

Rational Quadratic Spline

Derivatives 7,

/

Zi+1

NN

— Bin heights 6,

N\

Bin widths 6/




x 1072

— True
—— No Weights
= Bhlow

Relative cost

[pb/GeV]

Fraction of events with negative weight (f)

Example Application: Negative Weights ... 7200 e
Common in ME/PS matching (MC@NLO)

——> Require more events for same statistics

pp — tt, f = 0.239

0.12

0.10

0
0

§0.04

0.02

* Train normalizing flow on weighted events
* Generate unweighted events

08|
.06 |

— True

—— No Weights

— Flow

1.21

1.0 -




Example Application: Anomaly Detection Caron, Hendriks, RV 2011.13445

Search for out-of-distribution events

:> |dentify regions of phase space for further study

Background (SM)

log p(x)
.

Signal (BSM)




> 1B SM events:

Four channels

 Channel 1: Hadronic activity with lots of missing energy (214k events)

Channe
Channe
Channe

2a. At least three identified leptons (20k events)
2b: At least two identified leptons (340k events)
3: Inclusive with moderate missing energy (8.5M events)

Validation set:

Events from various BSM models (Z’, SUSY, etc.)

Test set:

Secret dataset with labels not known to model authors

The Dark Machines Anomaly Score Challenge:
Benchmark Data and Model Independent Event
Classification for the Large Hadron Collider
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Dark Machines Anomaly Detection Challenge

Figure of merit:

Max SI = max es(ep)/y/€p
where €5 € {1()‘2 1072,107%}

Latent Space ¢ Planar A KDE Q
ALAD B SNF 4 VAE > Deep Set
DAGMM ~ ® IAF (%) Flow ® CNN(B)VAE
ConvVAE e ConvF B Combined © SimpleAE

Deep SVDD



Discussion

* Applications in physics * How to obtain the best performance?

- Event generation/numerical integration - Architecture/loss function
- Anomaly detection - Discriminator-assisted training

- Likelihood-free inference

- 777
 Differences with other generative models * Not nearly as flexible as a MC event generator
- Easy to train - Cuts/sharp features in phase space

- Not as flexible - Physical parameters
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