Probabilistic Models Trainable parameters $p_{\theta}(x)$ which enables • Fitting to $p_{\text{data}}(x)$ A likelihood estimation - Likelihood evaluation $p_{\theta}(x_i)$ - Sampling $x \sim p_{\theta}(x)$ #### What would I like from a model - Expressivity - Efficiency Can fit complicated $p_{\text{data}}(x)$ Fast sampling & likelihood evaluation ### Gaussian distribution $$p_{\theta}(x) = \mathcal{N}(x \mid \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{1}{2} \left(\frac{x - \mu}{\sigma}\right)^2\right)$$ ### Parameters: μ, σ Not very expressive.... ## **Latent Variable Models** More expressive models by combining simple ones Latent variable $z \rightarrow p(x, z)$ Dropping the θ notation Interested only in marginal $$p(x) = \int_{\mathcal{Z}} dz \, p(x, z) = \int_{\mathcal{Z}} dz \, p(z) \, p(x | z)$$ Sampling is still simple $$z \sim p(z)$$ $$x \sim p(x \mid z)$$ ### Gaussian mixture model (discrete latent) $$p(x) = \sum_{i=1}^{K} p_i \mathcal{N}(x \mid \mu_i, \sigma_i)$$ ### Parameters: p_i, μ_i, σ_i Much better! But doesn't scale well to higher dims... ### **Latent Variable Models** Marginal likelihood is usually intractable $$p(x) = \int_{\mathcal{Z}} dz \, p(x, z) = \int_{\mathcal{Z}} dz \, p(z) \, p(x | z)$$ Too hard to compute efficiently We would *really* like to have acces to the exact likelihood - Training through maximum likelihood estimation - Use for anomaly detection, likelihood-free inference, etc Other generative models actually also fit this latent variable description, and you can even combine then RV: 2205.01697 ### Gaussian mixture model (discrete latent) $$p(x) = \sum_{i=1}^{K} p_i \mathcal{N}(x | \mu_i, \sigma_i)$$ ### Parameters: p_i, μ_i, σ_i Much better! But doesn't scale well to higher dims... # Normalizing Flows $$p(x) = \int_{\mathcal{Z}} dz \, p(x, z) = \int_{\mathcal{Z}} dz \, p(z) \, p(x | z)$$ Fix intractability by removing stochastic component from $p(x \mid z)$ $$p(x | z) \rightarrow \delta(x - f(z))$$ Parametric bijection $$\log p(x) = \log \int_{\mathcal{Z}} dz \, p(z) \, \delta(x - f(z)) = \log p(z) + \log |J(x)|$$ $$\dim(z) = \dim(x)$$ Flow: Repeat a few times $$\log p(x) = \log p(z_0) + \sum_{i=1}^{\infty} \log |J_i(z_i)|.$$ # Two Normalizing Flow Architectures $|J_i(x)|$ must be easy to evaluate Coupling layers $p(z) = p(z^A)p(z^B | z^A)$ Split into two pieces $z \rightarrow z^A, z^B$ - Fast in both directions - Simple Jacobian $$|J| = \left| \frac{dz_{i+1}}{dz_i} \right| = \left| \frac{\overrightarrow{1}}{d\theta} \frac{\overrightarrow{0}}{dz_i^B} \frac{\overrightarrow{d}\theta}{dz_i^B} \right| = \left| \frac{df_i}{dz_i^B} \right|$$ Autoregressive layers $p(z) = \prod_{j=1}^{D} p\left(z^{j} \mid z^{1:j-1}\right)$ Split into D 1-d transforms - Fast in only one direction - Lower-triangular Jacobian \square $\mathcal{O}(d)$ instead of $\mathcal{O}(d^3)$ determinant ## Flow Transforms ### Some requirements: - Bijective functions $f_i(z) \leftrightarrow f_i^{-1}(x)$ - As expressive as possible ### Rational Quadratic Spline ## Example Application: Negative Weights Stienen, RV: 2011.13445 Common in ME/PS matching (MC@NLO) Require more events for same statistics - Train normalizing flow on weighted events - Generate unweighted events ## **Example Application: Anomaly Detection** Caron, Hendriks, RV: 2011.13445 Search for out-of-distribution events Identify regions of phase space for further study # Dark Machines Anomaly Detection Challenge 1. > 1B SM events: Four channels - Channel 1: Hadronic activity with lots of missing energy (214k events) - Channel 2a: At least three identified leptons (20k events) - Channel 2b: At least two identified leptons (340k events) - Channel 3: Inclusive with moderate missing energy (8.5M events) - 2. Validation set: Events from various BSM models (Z', SUSY, etc.) 3. Test set: Secret dataset with labels not known to model authors The Dark Machines Anomaly Score Challenge: Benchmark Data and Model Independent Event Classification for the Large Hadron Collider Figure of merit: Max SI = $$\max_{\epsilon_B} \epsilon_S(\epsilon_B) / \sqrt{\epsilon_B}$$ where $\epsilon_B \in \{10^{-2}, 10^{-3}, 10^{-4}\}$ T. Aarrestad a M. van Beekveld b M. Bona c A. Boveia e S. Caron d J. Davies c A. De Simone f,g C. Doglioni h J. M. Duarte i A. Farbin j H. Gupta k L. Hendriks d L. Heinrich a J. Howarth l P. Jawahar m,a A. Jueid n J. Lastow h A. Leinweber o J. Mamuzic p E. Merényi q A. Morandini r P. Moskvitina d C. Nellist d J. Ngadiuba s , B. Ostdiek u , M. Pierini a B. Ravina l R. Ruiz de Austri p S. Sekmen w M. Touranakou x , M. Vaškevičiūte l R. Vilalta y J.-R. Vlimant t R. Verheyen z M. White o E. Wulff h E. Wallin h K.A. Wozniak a , Z. Zhang d ## Discussion - Applications in physics - Event generation/numerical integration - Anomaly detection - Likelihood-free inference - ??? - Differences with other generative models - Easy to train - Not as flexible - How to obtain the best performance? - Architecture/loss function - Discriminator-assisted training - Not nearly as flexible as a MC event generator - Cuts/sharp features in phase space - Physical parameters