

Ab-initio Form Factors for Coherent Elastic Neutrino-Nucleus Scattering

Baishan Hu - TRIUMF (2022/5/26)

Precision Tests with Neutral-Current Coherent Interactions with Nuclei

Bai-Shan Hu (胡柏山) bhu@triumf.ca May 26, 2022 @ MITP (virtual)

Introduction to CEvNS

VS-IMSRG calculation for **CEvNS** (Chiral EFT: NN+3N interactions, 1b + 2b currents)

Outlook: BSM constrains

EW precision tests

Baishan Hu - TRIUMF (2022/5/26)

Weak mixing angle

COHERENT experiment

CEvNS differential cross section

$$\frac{\mathrm{d}\sigma_{A}}{\mathrm{d}T}(E_{\nu},T) = \frac{G_{F}^{2}M_{A}}{4\pi} \left(1 - \frac{M_{A}T}{2E_{\nu}^{2}} - \frac{T}{E_{\nu}}\right) Q_{w}^{2} \left|F_{w}\left(\mathbf{q}^{2}\right)\right|^{2} + \frac{G_{F}^{2}M_{A}}{4\pi} \left(1 + \frac{M_{A}T}{2E_{\nu}^{2}} - \frac{T}{E_{\nu}}\right) F_{A}\left(\mathbf{q}^{2}\right)$$

$$q = \sqrt{2M_{A}E_{\nu}T/(E_{\nu}-T)} \approx \sqrt{2M_{A}T}$$

Radiative corrections ?

Axial-vector form factor F_A J Negligible ?

Baishan Hu - TRIUMF (2022/5/26)

Nuclear weak form factor F_W

Phenomenological Helm and Klein-Nystrand

$$F_{\text{Helm}}(q^2) = \frac{3j_1(qR)}{qR} e^{-q^2s^2/2}$$

$$F_{\rm KN}(q^2) = \frac{3j_1(qR_A)}{qR_A} \frac{1}{1 + q^2 a_{kn}^2}$$

Chiral EFT: Systematic expansion of nuclear forces and electroweak currents

Nuclear response functions \mathscr{F}^{M}_{τ} : mainl $\mathscr{F}^{\Phi''}_{\tau}$: spin- $\mathscr{F}^{\Sigma'}_{\tau}$: axial-

Baishan Hu - TRIUMF (2022/5/26)

$$F_{A}\left(\mathbf{q}^{2}\right) =$$

$$\left[\mathscr{F}_{P}^{M}\left(\mathbf{q}^{2}\right)\right] = \frac{8\pi}{2J+1} \left[\left(g_{A}^{s,N}\right)^{2} S_{00}^{\mathcal{F}}\left(\mathbf{q}^{2}\right) - g_{A}g_{A}^{s,N}S_{01}^{\mathcal{F}}\left(\mathbf{q}^{2}\right) + \left(g_{A}\right)^{2} S_{00}^{\mathcal{F}}\left(\mathbf{q}^{2}\right)\right] = \sum_{L} \left[\mathscr{F}_{+}^{\Sigma_{L}^{\prime}}\left(\mathbf{q}^{2}\right)\right]^{2},$$

$$\left(\mathbf{q}^{2}\right) \qquad S_{11}^{\mathcal{F}} = \sum_{L} \left[\left[\mathscr{F}_{+}^{\Sigma_{L}^{\prime}}\left(\mathbf{q}^{2}\right)\right]\mathscr{F}_{-}^{\Sigma_{L}^{\prime}}\left(\mathbf{q}^{2}\right)\right]^{2},$$

$$S_{01}^{\mathcal{F}} = \sum_{L} 2\left[1 + \delta^{\prime}\left(\mathbf{q}^{2}\right)\right]\mathscr{F}_{+}^{\Sigma_{L}^{\prime}}\left(\mathbf{q}^{2}\right)\mathscr{F}_{-}^{\Sigma_{L}^{\prime}}\left(\mathbf{q}^{2}\right).$$

Details:

- M. Hoferichter et al., PRD 102 (2020) 074018
- L.A. Ruso et al., arXiv:2203.09030 (2022)
- \mathscr{F}^{M}_{τ} : mainly from neutron distribution
- $\mathscr{F}^{\Phi''}_{\tau}$: spin-orbit correction
 - axial-vector contribution; two-body currents important

Ab initio form factors ???

Workflow of ab-initio nuclear calculation

SM/BSM

QCD+ Electroweak

Realistic nuclear force (NN+NNN)

•Reproduce the **NN** scattering data

 Reproduce few**body properties**

> Chiral EFT, CD-Bonn, Nijmegen, AV18, ...

Currents, $0v\beta\beta$, dark matter, ...

Renormalization scheme

Baishan Hu - TRIUMF (2022/5/26)

Update

•Deal with the strong shortrange correlations

•Speed up the convergence

SRG, $V_{\text{low}-k}$, OLS, UCOM, **G-matrix**

Ab-initio many-body theory

•From the beginning

•Without any additional parameters or uncontrolled approximations

NCSM, GFMC, SCGF. CC, M-SRG, MBPT, ...

Describe /predict experimental data

CC qq CV νν VQ

< ij| H(s = 0) | kl >Baishan Hu - TRIUMF (2022/5/26) Valence-Space In-Medium Similarity Renormalization Group drive the Hamiltonian towards a band- or block-diagonal form via continuous unitary transformation dH(s)Step1: Decouple core ds Step2: Decouple valence space $H(s) = U(s)HU^{-1}(s)$ Step3: Decouple additional $\eta(s) = \frac{dU(s)}{dU(s)}U^{\dagger}(s)$ operators CV CC CC CV νν VQ 8 -ò-S 20 2 3 -ò- $\mathbf{0}$

D $\left(\right)$ qq

 $\langle ij | H(s) | kl \rangle$

$$= [\eta(s), H(s)]$$

$$\mathcal{O}(s) = U(s)\mathcal{O}U^{-1}(s)$$

$$= -\eta^{\dagger}(s)$$
 $U(s) = e^{\Omega(s)}$

 $\langle ij | H(s) | kl \rangle$

Ab initio results for ²⁰⁸Pb region

Ab initio predictions for ⁴⁸Ca, ²⁰⁸Pb and nuclear matter

Baishan Hu - TRIUMF (2022/5/26)

-	Nuclear 1	matter properti	es
Observable	median	68% CR	$90\% \ \mathrm{CR}$
E_0/A	-15.2	[-16.3, -14.0]	[-17.2, -13.5]
$ ho_0$	0.163	[0.147, 0.175]	[0.140, 0.186]
S	29.1	[26.6, 31.3]	[25.132.8]
L	50.3	[37.2, 68.1]	[22.6, 75.8]
K	264	[227, 297]	[210, 328]
Neutron skins			
Observable	median	68% CR	90% CR
$R_{\rm skin}(^{48}{\rm Ca})$	0.164	[0.141, 0.187]	[0.123, 0.199]
$R_{\rm skin}(^{208}{\rm Pb})$	0.171	[0.139, 0.200]	$\left[0.120, 0.221\right]$

BS Hu, WG Jiang, T Miyagi, ZH Sun, *et al.*, arXiv:2112.01125v1 (2021)

Ab initio coupled-cluster calculations of CEvNS in ⁴⁰Ar

C.G. Payne, S. Bacca, G. Hagen, W.G. Jiang and T. Papenbrock, Phys. Rev. C 100 (2019) 061304(R)

Heavy nuclei is challenging current ab-initio approaches

New 3N storage scheme developed by T. Miyagi et al.

BS Hu, et al., in prep (2022)

Need larger E_{3max} for heavy nuclei! E_{3max}=14 in most *ab-initio* calculations! Natural orbital offers significant computational savings, and opens *ab-initio* calculations for heavy nuclei!

Baishan Hu - TRIUMF (2022/5/26)

J. Hoppe, et al., PRC 103 (2021) 014321

VS-IMSRG convergence for elastic spin-dependent WIMP scattering off heavy nuclei

B.S. Hu, et al, Phys. Rev. Lett 128 (2022) 072502

Baishan Hu - TRIUMF (2022/5/26)

Tensor operators are heavy tasks 8 for IMSRG transformation

Many q points need to calculate many operators

Large E_{3max} and natural orbital allow VS-IMSRG possible for heavy nuclei!

VS-IMSRG structure factors for spin-dependent dark matter direct detection

B.S. Hu, et al, Phys. Rev. Lett 128 (2022) 072502

Convergence of nuclear response functions within NAT basis

Baishan Hu - TRIUMF (2022/5/26)

 $\mathscr{F}^M_{\tau}, \mathscr{F}^{\Phi''}_{\tau}, \mathscr{F}^{\Sigma'}_{\tau}$

BS Hu, et al., In preparation (2022)

Baishan Hu - TRIUMF

BS Hu, et al.,

Baishan Hu - TRIUMF (2022/5/26)

Baishan Hu - TRIUMF

D. Akimov et al. (COHERENT). arXiv:2110.07730 (2021)

 $\frac{dR}{dT} = \sum_{i} \left[N_{\text{target}} X_{i} \mathcal{N}_{\nu} \int_{E_{\nu}^{\text{min}}}^{E_{\nu}^{\text{max}}} \phi(E_{\nu}) \frac{d\sigma_{i}}{dT} dE_{\nu} \right]$

Cross-section averaged over the SNS spectrum

BS Hu, et al., In preparation (2022)

Baishan Hu - TRIUMF (2022/5/26)

Helm form factor reproduces ab initio results within NNLOsat well:

less than 0.3% in heavy nuclei, about 1% in light nuclei

$$F_{\text{Helm}}(q^2) = \frac{3j_1(qR)}{qR} e^{-q^2s^2/2}$$

 $R^2 = c^2 + \frac{7}{3}\pi^2 a^2 - 5s^2$ $c = (1.23A^{1/3} - 0.60)$ fm

a = 0.52 fm, s = 0.9 fm

Weak charges: 1.5% level $Q_{\rm w}^p = 0.0714, \ Q_{\rm w}^n = -0.9900$ $Q_{w}^{n} = -1, \ Q_{w}^{p} = 1 - 4\sin^{2}\theta_{W} \quad \sin^{2}\theta_{W} = 0.23122 \pm 0.00003$

Spin-orbit current $\mathscr{F}_{\tau}^{\Phi''}$: less than 10^(-6)%

Axial-vector form factor *F*_A:

3%(¹⁹F), 0.1%(²³Na), 0.03%(⁷³Ge), less than 0.007%(1271 and 133Cs)

Baishan Hu - TRIUMF (2022/5/26)

Ab initio form factors for ¹⁹F, ²³Na, ²⁷Al, Si, ⁴⁰Ar, Ge, ¹²⁷I, ¹³³Cs, Xe

VS-IMSRG: from light to heavy nuclei Chiral EFT 1b + 2b currents

Inelastic scattering **BSM constrains**

IMSRG gives converged calculation in heavy nuclei;

Collaborators:

Jason Holt (TRIUMF) **Chalmers UT: Gaute Hagen (ORNL)** Weiguang Jiang Zhonghao Sun (ORNL) Andreas Ekström Takayuki Miyagi (TU Darmstadt) **Christian Forssén Ragnar Stroberg (Argonne NL) Thomas Papenbrock (U Tennessee) U** Durham: Mathieu Bruneault (UBC) lan Vernon José Padua (Perimeter Inst.) **Samuel Leutheusser (MIT)**

> Thank you Merci

