The Bohr-Weisskopf effect and atomic parity violation

Jacinda Ginges

Australian Government

Australian Research Council

Students, collaborators

Ben Roberts (research fellow) Swaantje Grunefeld (postdoc) Perry Ranclaud (student) George Sanamyan (student) Andrey Volotka Stephan Fritzsche Magdalena Kowalska Jacek Dobaczewski

Motivation

To maximise the discovery potential of APV measurements

- Push state-of-the-art atomic calculations to 0.1% precision
 - Development of precision atomic theory
 - Improved benchmarking of atomic theory
- Remove *nuclear structure uncertainties* to enable atomic theory tests below 0.1%

Atomic parity violation

Cs 6S-7S APV amplitude, 0.35% uncertainty

Carl Wieman group (1997)

Parity-violating weak interaction,

 $E_{\rm PV} \propto Z^3$

mage: T. Andrews, University of Colorado

Atomic parity violation

Cs 6S-7S APV amplitude, 0.5% uncertainty

Most precise calculations:

- Dzuba, Flambaum, Ginges, PRD (2002);
 Flambaum, Ginges, PRA (2005)
- Porsev, Beloy, Derevianko, PRL (2009);
 Dzuba, Berengut, Flambaum, Roberts, PRL (2012)

Recent calculation: Sahoo and Das [Sahoo, Das, Spiesberger, PRD(L) (2021)]*

Working towards 0.1-0.2% precision:

- Precision Atomic Theory group @ UQ
- Derevianko's group [Tran Tan, Xiao, Derevianko, PRA (2022)]

Atomic parity violation

Experiments in preparation/progress include:

- Cs (Purdue)
- Fr (TRIUMF; Tokyo)
- Ba+ (Seattle)
- Ra+ (Groningen)

	G	roup 1 IA		At	omi	ic P	rope	erties	s of t	he E	leme	ents			N	5	Stand U.S. De	ards and 1 partment of	re of Technology Commerce	18 VIIIA
1	1 1 Hy	² S _{1/2} H (drogen 1.008	2		speed	FREQU 1 sec transit I of light in k constant	JENTLY USE cond = 9 192 63 ion between the vacuum	D FUNDAMEN 11 770 periods of two hyperfine le c h	Fradiation correst radiation correst evels of the grou 299 792 45 6.626 070 x	AL CONSTANT ponding to the ndistate of ¹³³ Cs 8 m s ⁻¹ (10 ⁻³⁴ J s	(exact)	s Fr valu	r the most accu ies of these and er constants, vis	rate I	Physical M Standard F 13	easureme Reference I 14	nt Laborato Data www.nis 15	D FY www.nist. t.gow/srd 16	gov/pml 17	2 'S ₀ He Helium 4.0026
2	2 3 2 3	15 3.5984 ² S _{1/2} Li ithium 6.94 15 ² 25 5.3917 ² S _{1/2}	IIA 4 19 Beryllium 9.0122 15 ² 25 ² 9.3227 12 19	δα δα	elemer electro proton fine-st Rydbe	elementary charge e electron mass m_e proton mass m_p fine-structure constant α Rydberg constant R_m $R_m c$ $R_m hc$ electron volt eV		e m _e c ² m _p α R _s c R _s c R _s hc eV	1.802 177 x 10 ⁻¹⁹ C 9.109 384 x 10 ⁻³¹ kg 0.510 999 MeV 1.872 622 x 10 ⁻²⁷ kg 1/137.035 999 10 973 731.569 m ⁻¹ 3.289 841 960 x 10 ¹⁵ Hz 13.605 693 eV 1.602 177 x 10 ⁻¹⁹ J			pmLnist.gov/constants. Solids Liquids Gases Artificially Prepared		IIIA 5 ² P [*] _{1/2} B Boron 10.81 1s ² 2s ² 2p 8.2980 13 ² P [*] _{1/2}	IVA 6 ³ P ₀ C Carbon 12.011 1s ² 2s ² 2 ² 11.2003 14 ³ P ₀	VA 7 ⁴ S ₃₇₂ N Nitrogen 14.007 1 ² 2 ² 2 ³ 14.5341 15 <u>4</u> S ₃₁₂	VIA 8 ³ P ₂ O 0xygen 15.999 13 ² 28 ² 29 ⁴ 13.0181 16 ³ P ₂	VIIA 9 ² P ₃₂ F Fluorine 18.998 18 ² 28 ² 29 17.4228 17 ² P ₃₂	18 ⁴ 24.5874 10 ¹ S ₀ Neon 20.180 18 ² 28 ² 29 21.5645 18 ¹ S ₀	
4	19 4	Na iodium 12.990 [Ne]3s 1.1391 ² S _{1/2} K	Magnesiu 24.305 [Ne]35 ² 7.6462 20 19	3 50 21	molar B ² D _{3/2} 22	4 IVB 2 ³ F ₂	5 VB 23 ⁴ F ₃₂	6 VIB 24 ⁷ s ₃	8.314 5 J m 7 VIIB 25 ⁶ S ₅₂ Mn	26 ⁵ D ₄	9 VIII 27 ⁴ F ₉₂	10 28 ³ F ₄ Ni	11 IB 29 ² S _{1/2}	12 IIB 30 ¹ %	Al Aluminum 26.982 [Ne]3s ² 3p 5.9858 31 ² P _{1/2} Ga	Silicon 28.085 [Ne]3s ² 3p ² 8.1517 32 ³ P ₀ Ge	Phosphorus 30.974 [Nei3s ² 3p ³ 10.4867 33 ⁴ S _{3/2} As	S Sulfur 32.06 [Ne]35 ² 39 ⁴ 10.3800 34 ³ P ₂ SP	Cl Chlorine 35.45 [Ne]35 ² 3p ⁵ 12.9878 35 ² P ^o ₃₂ Br	Ar Argon 39.948 [Ne]35 ² 39 ⁶ 15.7598 36 ¹ S ₀ Kr
	Po 3 4 37	Atassium 19.098 [Ar]4s 1.3407 2S ₁₁₂ Rb	Calcium 40.078 (Ar]4s ² 6.1132 38 ¹ 5 Sr	Scani 44.9 [Ar]3: 0.56	lium T 56 4 μs ² [Α 15 6 ² D _{3/2} 40	itanium 47.887 1/33 ² 45 ² 8.8281 0 ³ F ₂ Zr	Vanadium 50.942 [Ar]3d ³ 4s ² 6.7462 41 ⁶ D _{1/2} Nb	Chromium 51.996 [Argad ⁵ 4s 6.7085 42 ⁷ S ₃ MO	Manganese 54.938 [Ar]3d ⁵ 4s ² 7.4340 43 ⁵ S _{5/2} TC	lion 55.845 [Arj3d ⁴ 4s ² 7.9025 44 ⁵F₅ RU	Cobait 58.933 [Ar]33 ⁷ 45 ² 7.8810 45 ⁴ F _{5/2} Rh	Nickel 58.693 [Ar]3d ⁴ 4s ² 7.6399 46 ¹ S ₀ Pd	Copper 83.548 [Ar]3d [®] 4s 7.7284 47 ² S _{1/2} Ag	Zinc 65.38 [Ar]3d ¹⁰ 45 9.3942 48 ¹ S ₀ Cd	Gallium 69.723 [Ar]3d [®] 45 ² 4p 5.9993 49 ² P ₁₂ In	Germanium 72.630 [Art]3d ¹⁹ 45 ² 4p ² 7.8904 50 ³ P ₀ SN	Arsenic 74.922 [Ar]3d ¹⁹ 4s ² 4p ³ 9.7886 51 ⁴ S ^o ₃₂ Sb	Selenium 78.971 (Ar)3d ¹⁰ 4s ² 4p ⁴ 9.7524 52 ³ P ₂ TC	Bromine 79.904 [Ar]3d ¹⁰ 4s ² 4p ⁵ 11.8138 53 ² P ₃₂	Knypton 83.798 [Arj3d ¹⁰ 4s ² 4p ⁶ 13.9998 54 ¹ S ₀ Xe
e	55 55	ubidium 35.468 [Kr]5s 1771 ² S _{1/2} CS Sesium	Strontium 87.62 [Kr]55 5.6949 56 849 Barjum	Yttri 88.9 [Kr]44 6.2	um Zi 06 9 155 ² 1K 173 6 72	irconium 91.224 1rj4d ² 55 ² 8.6341 2 ³ F ₂ Hf	Niobium 92.906 [K144 ⁴ 55 6.7589 73 ⁴ F _{3/2} Ta	Molybdenum 95.95 [Kr]4d ⁵ ss 7.0924 74 ⁵ D ₀ W Tungsten	Technetium (98) [Krj4d 55 ² 7.1194 75 ⁶ S ₅₂ Re Bhenium	Ruthenium 101.07 [Kr)4d ⁷ 5s 7.3605 76 ⁵ D ₄ OS Osmium	Rhodium 102.91 [Kr]4d ⁸ 5s 7.4589 77 ⁴ F _{9/2} [r kridium	Palladium 106.42 [Kr)4d ¹⁰ 8.3369 78 ³ D ₃ Pt Platinum	Silver 107.87 [Kr]4d ¹⁰ 55 7.5762 79 ² S _{1/2} AU Gold	Cadmium 112.41 [Kr]4d ¹⁰ 5s ² 8.9938 80 ¹ S ₀ Hg Mercury	Indium 114.82 [Kr]4d ¹⁰ 5s ² 5p 5.7884 81 ² P ^o _{1/2} Thallium	Tin 118.71 [Kr]4d ¹⁰ 5s ² 5p ² 7.3439 82 ³ P ₀ Pb Lead	Antimony 121.76 [Kr]4d ¹⁰ 55 ² 5p ³ 8.6084 83 ⁴ S _{3/2} Bi Bismuth	Tellurium 127.60 [Kr]4d ¹⁰ 5s ² 5p 9.0097 84 ³ P ₂ PO Polonium	lodine 128.90 [Kr]4d ¹⁰ 5s ² 5p ⁵ 10.4513 85 ² P ^o ₃₂ At Astatine	Xenon 131.29 [Kr]4d ¹⁰ 55 ² 59 ⁰ 12.1298 86 ¹ S ₀ Rn Badon
7	87 7 Fr	132.91 (Xe)6s 3.8939 ² S _{1/2} Fr ancium	137.33 [Xej65 ² 5.2117 88 ¹ 5 Ra Radium	. Y	Diagonal dia	178.49 4f ¹⁴ 5d ² 65 ² 8.8251 4 ³ F ₂ Rf herfordium	180.95 [Xej4f ⁴⁵ sd ³ 6s ² 7.5498 105 ⁴ F ₃₂₂ Db Dubnium	183.84 [Xe]4 ^{4*} 5d ⁴ 6s ² 7.8040 106 0 Seaborgium	186.21 [Xe]4f ⁴⁵ d ⁵ 6s ² 7.8335 107 sr2 Bh Bohrium	190.23 [xej4f ⁴⁵ 5d ⁶ 65 ² 8.4382 108 4 HS Hassium	192.22 [Xe]4f ^M 5d ⁷ 65 ² 8.9670 109 Mt Meitnerium	195.08 [Xe]4f [*] 5d [*] 6s 8.9588 110 DS Darmstadtium	196.97 [xe)4f ⁴⁵ 5d ¹⁰ 65 9.2256 111 Rg Roentgenium	200.59 [Xej4f ⁴⁵ 5d ¹⁰ 65 10.4375 112 Cn Copernicium	204.38 [Hg]6p 6.1083 113 Nhonium	207.2 [Hg]6p ² 7.4167 114 Fl Flerovium	208.98 [Hg]6p ³ 7.2855 115 MC Moscovium	(209) [Hg]6p 8.414 116 LV Livermorium	(210) [Hg]6p ⁵ 9.3175 117 TS Tennessine	(222) [Hg]6p 10.7485 118 Og Oganesson
	Ate Nur	(223) Rn]7s 1.0727 omic mber	(220) [Rn]7s ² 5.2784 Ground State		sahides	⁽²⁰⁷⁾ ⁽²⁰⁷⁾ ⁽¹⁾ ⁽²⁾	(2007) (Fini)5f ¹⁴ 6d ³ 7s ² 8.8 58 ¹ G [*] ₄ Ce	(271) [Rn]5t ¹⁴ 6d ⁴ 75 ² 7.8 59 ⁴ T ₉₂ Pr	(270) [Rn]5f ¹⁴ 6d ⁵ 75 ² 7.7 60 ⁵I₄ Nd	(2009) [Rn]51 ¹⁴ 6d ⁴ 7s ² 7.8 61 ⁶ H ₅₂₂ Pm	62 ⁷ Fa Sm	63 ^s _m	64 ³ D ² Gd	(285) 65 ຳຕ _{ຳ522} Tb	(280) 66 ⁵ I ₈ Dy	(289) 67 ⁴ 1°52 HO	⁽²⁸⁹⁾ 68 ³ н ₆ Er	(283) 69 ² F ^o ₇₇₂ Tm	(294) 70 ¹ S ₀ Yb	(294) 71 ² 0 ₃₂ Lu
N Itar Ato	Symbo lame ndard omic ght [†] (Da		Cerium 140.12 e]4f5d6s ²		inides Lanth	nthanum 138.91 (e)5d65 ² 5.5789 ² D _{3/2}	Cerium 140.116 [Xe]4f5d6s ² 5.5388 90 ³ F ₂ Th	Praseodymium 140.91 [Xe]44 ³ 65 ² 5.4702 91 ⁴ K _{11/2} Pa	Neodymium 144.24 [xe]4f ⁴ 6s ² 5.5250 92 ⁵ L ^o U	Promethium (145) [Xe]4f ⁵ 65 ² 5.577 93 ⁶ L _{11/2} Np	Samarium 150.36 [xe)4 ⁷ 6s ² 5.6437 94 ⁷ F ₀ PU	Europium 151.96 [Xe]4 ⁷ 65 ² 5.6704 95 ⁸ S ^o _{7/2} Am	Gadolinium 157.25 [Xe]44 ⁷ 5d6s ² 6.1498 96 ⁹ D ₂ ² Cm	Terbium 158.93 [Xe)4f ⁶ 6s ² 5.8838 97 ⁶ H ⁶ 152 Bk	Dysprosium 162.50 [Xe]4t ¹⁰ 65 ² 5.9391 98 ⁵ L ₈ Cf	Holmium 164.93 [Xe)4f ¹⁶ 5 ² 6.0215 99 ⁴ T [*] ₁₅₂ ES	Erbium 167.26 [Xe]4t ¹² 6s ² 6.1077 100 ³ H ₆ Fm	Thulium 168.93 [Xe]4f ¹³ 6s ² 6.1843 101 ² F _{7/2} Md	Ytterbium 173.05 [Xe]4f ¹⁴ 65 ² 6.2542 102 ¹ S ₀ NO	Lutefium 174.97 [Xe]4f ⁴⁵ d6s ² 5.4259 103 ² P _{1/2} Lr
0	Groun	d-state	lonizat	on	TO V IR	(227) Rn]6d7s ²	232.04 [Rn]6d ² 7s ²	231.04 [Rn]5f ² 6d7s ²	238.03 [Rn]5f ³ 6d7s ²	(237) (Rn)5f ⁴ 6d7s ²	(244) (Rn)5/ ⁶ 75 ²	(243) (Rn)5f ⁷ 75 ²	(247) (Rn)5f ⁷ 6d7s ²	(247)	(251) [Rn]5f ¹⁰ 7s ²	(252) (Rn)5f ¹¹ 7s ²	(257) (Rn)5f ¹² 7s ²	Mendelevium (258) [Rn]5f ¹³ 75 ²	(259) (Rn)5f ¹⁴ 7s ²	(266) (Rn)5f ¹⁴ 7s ² 7p

Benchmarking atomic theory

Benchmarking atomic theory

$$E_{\rm PV} = \sum_{n} \frac{\langle 7S_{1/2} | D | nP_{1/2} \rangle \langle nP_{1/2} | H_{\rm PV} | 6S_{1/2} \rangle}{E_{6S_{1/2}} - E_{nP_{1/2}}} + \sum_{n} \frac{\langle 7S_{1/2} | H_{\rm PV} | nP_{1/2} \rangle \langle nP_{1/2} | D | 6S_{1/2} \rangle}{E_{7S_{1/2}} - E_{nP_{1/2}}} = \xi Q_W$$

Benchmarking atomic theory

$$E_{\rm PV} = \sum_{n} \frac{\langle 7S_{1/2} | D | nP_{1/2} \rangle \langle nP_{1/2} | H_{\rm PV} | 6S_{1/2} \rangle}{E_{6S_{1/2}} - E_{nP_{1/2}}} + \sum_{n} \frac{\langle 7S_{1/2} | H_{\rm PV} | nP_{1/2} \rangle \langle nP_{1/2} | D | 6S_{1/2} \rangle}{E_{7S_{1/2}} - E_{nP_{1/2}}} = \xi Q_W$$

NIST-F2 Atomic clock

Primary standard for the SI unit for time, the second

Hyperfine splitting in cesium

$$A = A_0(1+\epsilon) + \delta A^{\rm QED}$$

$$\begin{tabular}{l} \begin{tabular}{l} \end{tabular} \\ \end{tabular} Many-body \ result, \\ \end{tabular} finite \ nuclear \ charge \ effect \ included \end{tabular}$$

$$A = A_0(1 + \epsilon) + \delta A^{\text{QED}}$$

$$\uparrow$$
Bohr-Weisskopf (BW) effect –
finite nuclear magnetization contribution

$$A = A_0(1 + \epsilon) + \delta A^{\text{QED}}$$

$$\uparrow$$
Quantum electrodynamics
radiative correction

Hyperfine comparisons

$$A^{\text{expt}} \longleftrightarrow A_0(1+\epsilon) + \delta A^{\text{QED}}$$

Provides test of atomic many-body theory in the nuclear vicinity only if

- Nuclear magnetic moments $\,\mu$
- Bohr-Weisskopf effect ϵ
- QED radiative corrections $\delta A^{\rm QED}$

are known well (contributing < 0.1% uncertainty to hyperfine constants)

QED corrections

Self-energy and vacuum polarisation corrections evaluated for:

- lowest states of alkali-metal atoms;
- ground-states of Rb, Cs, Fr, Ba+, Ra+

QED corrections (%) to ground state hyperfine constants

Cs	Ba+	Fr	Ra+	Reference
-0.38(6)	-0.37(4)	-0.60(1)	-0.55(8)	Ginges, Volotka, Fritzsche, PRA (2017)
-0.42		-0.6		Sapirstein and Cheng, PRA (2003)

QED corrections

Self-energy and vacuum polarisation corrections evaluated for:

- lowest states of alkali-metal atoms;
- ground-states of Rb, Cs, Fr, Ba+, Ra+

QED corrections (%) to ground state hyperfine constants

Cs	Ba+	Fr	Ra+	Reference
-0.38(6)	-0.37(4)	-0.60(1)	-0.55(8)	Ginges, Volotka, Fritzsche, PRA (2017)
-0.42		-0.6		Sapirstein and Cheng, PRA (2003)

	133 Cs	¹³⁵ Ba+	211 Fr	²²⁵ Ra+	
Many-body	9229.5	7286.8	45374	-29113	
BW	-17.0(131)	-91.8(275)	-641(244)	1267(380)	
QED	-35.1(58)	-27.1(30)	-273(56)	159(23)	
Total theory	9177.4	7167.9	44460	-27687	
Experiment	9192.6	7183.3	43570	-27731	
Difference	-15.2	-15.4	890	44	
Difference (%)	-0.17(16)	-0.21(38)	2.0(6)(20)	-0.2(14)	

Calculations of hyperfine intervals and comparison with experiment. Units: MHz

7.7

7.6

7.5

207

208

209

 $\mathcal{A}_{7s}/\mathcal{A}_{7p}$

Nuclear magnetic moments

Our atomic theory uncertainty is better \Rightarrow can find $\mu(Fr)!$

$$A^{\text{expt}} \longleftrightarrow A^{\text{th}}(\mu_{\text{th}})(\mu/\mu_{\text{th}})$$

Test/control BW effect using:

- ratios of A for different states
- Empirical BW value extracted from H-like ²⁰⁹Bi

Determined µ with an uncertainty of 0.5%

211

210

A

212

213

Properties

Relative BW correction

$$\epsilon = \frac{\int_0^{r_m} dr f(r)g(r)[F(r) - 1]/r^2}{\int_0^\infty dr f(r)g(r)/r^2}$$

In the nuclear region, the electrons see the unscreened Coulomb field of the nucleus. Since the binding energies $\varepsilon \ll V(r)$, wave functions with the same angular dependence are proportional.

$$\begin{bmatrix} V(r) - \varepsilon & c(\kappa/r - \partial_r) \\ c(\kappa/r + \partial_r) & V(r) - \varepsilon - 2c^2 \end{bmatrix} \begin{bmatrix} f_{n\kappa} \\ g_{n\kappa} \end{bmatrix} = 0$$

BW effect is independent of principal quantum number!

 $\Rightarrow \epsilon_{n\kappa} = \epsilon_{n'\kappa}$

Also, in the nuclear region, for heavy systems:

$$f_{s_{1/2}} \propto g_{p_{1/2}}$$
 , $f_{p_{1/2}} \propto g_{s_{1/2}}$

BW effects in atoms related to BW matrix element for 1s state of H-like ion

To remove or extract?

Ratio method

By taking a ratio of two states with different principal quantum 입 number, the dependence on the BW effect may be removed!

$$A_{n\kappa}^{\rm th} = A_{0,n\kappa} \left(A_{n'\kappa}^{\rm exp} / A_{0,n'\kappa} \right)$$

Correlation corrections (%) to hyperfine intervals for states ns

		$A_{\rm hfs}~({ m MHz})$									
	Exp	periment	Theory								
State	This work	Prior expt.	Ref. [37]	Ref. [16]							
12s 13s	26.318 (15) 18.431 (10)	26.31 (10) [24] 18.40 (11) [25]	26.28	26.30 (2) 18.42 (1)							

This may be used to make high-precision predictions of the hyperfine constants!

Ratio method:Ginges and Volotka, PRA (2018)Ref. [16]Grunefeld, Roberts, Ginges, PRA (2019)Experiment:Quirk et al., PRA (2022)

Differential hyperfine anomaly

Ratio of hyperfine constants of different isotopes of the same element,

$$\mathcal{A}^{(1)}/\mathcal{A}^{(2)} = g_I^{(1)}/g_I^{(2)}(1+^1\Delta^2)$$
 ,

and typically for nuclei of different spin,

$$^{1}\Delta^{2} \approx \epsilon^{(1)} - \epsilon^{(2)}$$

Gives the difference in the BW effect for different isotopes.

		Isotope 1				Isotope 2				Differential anomaly ${}^{1}\Delta^{2}$ (%)		
		A	I^{π}	ϵ_{Ball} (%)	$\epsilon_{\mathrm{SP}}\left(\% ight)$	A	I^{π}	ϵ_{Ball} (%)	$\epsilon_{\mathrm{SP}}\left(\% ight)$	Ball	SP	Expt. [59]
₃₇ Rb	5 <i>s</i> _{1/2}	85	5/2-	-0.306	0.044	87 86	3/2 ⁻ 2 ⁻	$-0.306 \\ -0.306$	-0.278 -0.139	-0.001 0.000	0.323 0.183	0.35142(30) 0.17(9)
₄₇ Ag	5 <i>s</i> _{1/2}	107	$1/2^{-}$	-0.497	-4.20	103 109	7/2 ⁺ 1/2 ⁻	$-0.493 \\ -0.498$	$-0.347 \\ -3.78$	$-0.018 \\ 0.007$	-3.88 -0.431	-3.4(17) -0.41274(29)
55Cs	6 <i>s</i> _{1/2}	133	7/2+	-0.716	-0.209	131 135 134	$5/2^+$ $7/2^+$ 4^+	-0.716 -0.716 -0.716	-0.596 -0.247 -0.371	-0.001 0.002 0.000	0.389 0.039 0.163	0.45(5) ^a 0.037(9) ^b 0.169(30)
56Ba ⁺	$6s_{1/2}$	135	$3/2^{+}$	-0.747	-1.03	137	$3/2^{+}$	-0.747	-1.03	0.001	0.001	-0.191(5)

Roberts and Ginges, PRA (2021) Expt. data from: Persson, At. Data Nucl. Data Tables (2013)

From H-like experiments to heavy atom calculations

Accurate empirical BW effect from H-like ion measurements,

 $\mathcal{A}_{\mathrm{expt}}^{\mathrm{1s}} = \mathcal{A}_{0}^{\mathrm{1s}}(1 + \epsilon^{\mathrm{1s}}) + \delta \mathcal{A}_{\mathrm{QED}}^{\mathrm{1s}}.$

BW effect with $\sim 1\%\,$ precision from measurements with H-like $^{203,205}{\rm TI}$, $^{207}{\rm Pb}$, $^{209}{\rm Bi}$.

H-like ion result may be used to determine the BW effect in many-electron atoms!

$$\mathcal{A} = \mathcal{A}_0(1 + x_{\mathrm{scr}} \, \epsilon^{1s}) + \delta \mathcal{A}_{\mathrm{QED}}$$

screening factor

For s states, $x_{\rm scr} \approx 1$, the uncertainty is negligible, and $x_{\rm scr}$ is independent of the nuclear model!

Nuclear structure uncertainty is entirely removed from atomic calculations!

Summary

Accurate modelling of the finite magnetization distribution in atomic nuclei is important for

- Hyperfine comparisons
 - Tests of atomic wave functions in the nuclear region
 - Reducing APV theory uncertainty to 0.1%
- Nuclear structure theory
- Determination of nuclear moments
- Probing the neutron distribution
- Tests of quantum electrodynamics

