Precise Atomic Spectra and Neutral Weak Charges

B. K. Sahoo

Atomic, Molecular and Optical Physics Division
Physical Research Laboratory, Ahmedabad, India
Precision Tests with Neutral-Current Coherent Interactions with Nuclei, May 23-27, 2022, Mainz

Outline

- Objective of the study
- General approach to atomic calculations
- Coupled-cluster theory ansaetz
- Atomic parity violation and neutral weak charge
- Sum-over-states vs. linear response approaches
- Accuracy test
- Results and Summary

Multi-electron atomic systems

Electromagnetic interaction (long-range):

- Mediated by photon (massless)
- Strength scales ~ Z
- Parity is a good quantum number
- Requires many-body methods to solve

In typical approach Hamiltonian: $\boldsymbol{H}_{\boldsymbol{a t}}\left(\boldsymbol{M}_{\boldsymbol{N}}, \boldsymbol{R}_{\boldsymbol{N}}, \boldsymbol{r}_{\boldsymbol{e}}\right)=\boldsymbol{H}_{\boldsymbol{n u c}} \oplus \boldsymbol{H}_{\boldsymbol{a t}}$

Non-relativistic: $\boldsymbol{H}_{a t}^{N R}=\sum_{i}\left[\frac{p_{i}^{2}}{2 m_{e}}+V_{N}\left(\boldsymbol{r}_{i}\right)\right]+\frac{1}{2} \sum_{i, j} \frac{1}{\left|\vec{r}_{i}-\vec{r}_{j}\right|}$
Relativistic: $H_{a t}^{R e l}=\sum_{i}\left[c \vec{\alpha}_{i} \cdot \vec{p}_{i}+\beta_{i} m_{e} c^{2}+V_{N}\left(r_{i}\right)\right]+\frac{1}{2} \sum_{i, j} \frac{1}{\left|\vec{r}_{i}-\vec{r}_{j}\right|}$

General approaches to atomic calculations

In precision studies: $\boldsymbol{H}_{\boldsymbol{a t}}=\boldsymbol{H}_{a t}^{D C}+\boldsymbol{H}_{a t}^{B r e i t}+\boldsymbol{H}_{a t}^{l o-Q E D}($ model $)$

Atomic Hamiltonian: $\boldsymbol{H}_{\boldsymbol{a t}}=\boldsymbol{F}+\boldsymbol{G}$

EOM: $\boldsymbol{H}_{\boldsymbol{a t}}\left|\Psi_{\mathbf{0}}\right\rangle=\boldsymbol{E}_{\mathbf{0}}\left|\Psi_{0}\right\rangle$

Perturbative approach: $\boldsymbol{H}_{\boldsymbol{a t}}=\boldsymbol{H}_{\boldsymbol{M F}}+\lambda \boldsymbol{V}_{\text {res }}$

$$
\begin{aligned}
& \left|\Psi_{0}\right\rangle=\left|\Phi_{0}^{(0)}\right\rangle+\lambda\left|\Phi_{0}^{(1)}\right\rangle+\lambda^{2}\left|\Phi_{0}^{(2)}\right\rangle+\lambda^{3}\left|\Phi_{0}^{(3)}\right\rangle+\cdots \\
& E_{0}=E_{0}^{(0)}+\lambda E_{0}^{(1)}+\lambda^{2} E_{0}^{(2)}+\cdots
\end{aligned}
$$

All-order atomic calculations

$\left|\Psi_{0}\right\rangle=\left|\Phi_{0}^{(0)}\right\rangle+\lambda_{1}\left|\Phi_{0}^{(1)}\right\rangle+\lambda_{1}^{2}\left|\Phi_{0}^{(2)}\right\rangle+\lambda_{1}^{2}\left|\Phi_{0}^{(3)}\right\rangle+\cdots$
Fock space P-space --------------------------s-space
i.e. $\quad\left|\Phi_{0}^{(n)}\right\rangle=\sum_{k \neq 0}^{N}\left|\Phi_{k}^{(0)}\right\rangle C_{0 k}^{(n)}$

In terms of level of excitations \rightarrow Configuration Interaction (CI)

$$
\Rightarrow\left|\Psi_{0}\right\rangle=\left|\Phi_{0}^{(0)}\right\rangle+C_{I}^{(\infty)}\left|\Phi_{I}^{(0)}\right\rangle+C_{I I}^{(\infty)}\left|\Phi_{I I}^{(0)}\right\rangle+\cdots
$$

Further: $\left|\Phi_{k}^{(0)}\right\rangle \equiv\left|\Phi_{a b c \ldots \ldots}^{p q r \ldots}\right\rangle=a_{p}^{+} a_{q}^{+} a_{r}^{+} \ldots a_{a} a_{b} a_{c}\left|\Phi_{0}^{(0)}\right\rangle$
Coupled-cluster (CC) method:

$$
\begin{aligned}
\Rightarrow\left|\Psi_{0}\right\rangle & =\left|\Phi_{0}^{(0)}\right\rangle+T_{I}\left|\Phi_{0}^{(0)}\right\rangle+\left(T_{I I}+\frac{1}{2} T_{I}^{2}\right)\left|\Phi_{0}^{(0)}\right\rangle+\cdots+T_{N}\left|\boldsymbol{\Phi}_{0}^{(0)}\right\rangle \\
& =e^{T}\left|\Phi_{0}^{(0)}\right\rangle \quad \text { where } \mathrm{T}=\mathrm{T}_{\mathrm{I}}+\mathrm{T}_{\mathrm{II}}+\cdots+T_{N}
\end{aligned}
$$

Calculating properties using standard CC theory

Property: $\langle 0\rangle_{f i}=\frac{\left\langle\Psi_{f}\right| O\left|\Psi_{i}\right\rangle}{\sqrt{\left\langle\Psi_{f} \mid \Psi_{f}\right\rangle\left\langle\Psi_{i} \mid \Psi_{i}\right\rangle}}$
Also, here: $\mathbf{0}=\boldsymbol{O}^{N R}+\boldsymbol{O}^{\text {Rel }}+\boldsymbol{O}^{\text {QED }}($ model $)$
In RCC theory: $\langle 0\rangle_{f i}=\frac{\left\langle\Phi_{f}\right| e^{T_{f}^{+}} O e^{T_{i}}\left|\Phi_{i}\right\rangle}{\sqrt{\left\langle\Phi_{f}\right| e^{T_{f}^{+}} e^{T_{f}}\left|\Phi_{f}\right\rangle\left\langle\Phi_{i}\right| e^{T_{i}^{+}} e^{T_{i}}\left|\Phi_{i}\right\rangle}}$

Points to be noted:

- Possesses two non-terminating series.
- Unmanageable with two-body operators like SMS operator. It does not satisfy the Hellmann-Feynman theorem.
But any property can be evaluated.

Atomic parity violation and neutral weak charge

$C_{1 u}=-\frac{1}{2}+\frac{4}{3} \sin ^{2}\left(\theta_{W}\right) \approx-0.19$
$C_{1 d}=\frac{1}{2}-\frac{2}{3} \sin ^{2}\left(\theta_{W}\right) \approx 0.35$
$C_{2 u}=-\frac{1}{2}+2 \sin ^{2}\left(\theta_{W}\right) \approx-0.04$
$C_{2 d}=\frac{1}{2}-2 \sin ^{2}\left(\theta_{W}\right) \approx 0.04$.

where θ_{w} is the Weinberg angle.

NSI: $C_{1 q}=2 g_{A}^{e} g_{V}^{q}$

NSD: $C_{2 q}=2 g_{V}^{e} g_{A}^{q}$

Standard Model (SM) scenario:

In NSI interaction, couplings are added coherently:

$$
\begin{aligned}
Q_{W}^{S M}= & (2 Z+N) C_{1 u}+(Z+2 N) C_{1 d} \\
& =-N+Z\left(1-4 \operatorname{Sin}^{2} \theta_{W}\right)
\end{aligned}
$$

Inclusion of radiative corrections:

$$
Q_{W} \approx Q_{W}^{S M}-0.008 S
$$

Probing BSM physics from APV

Beyond SM scenario:

$$
\begin{aligned}
& C_{1 u}=-\frac{1}{2}+\frac{4}{3} \sin ^{2}\left(\theta_{W}\right) \approx-0.19 \\
& C_{1 d}=\frac{1}{2}-\frac{2}{3} \sin ^{2}\left(\theta_{W}\right) \approx 0.25 \\
& C_{2 u}=-\frac{1}{2}+2 \sin ^{2}\left(\theta_{W}\right) \approx-0.04 \\
& C_{2 d}=\frac{1}{2}-2 \sin ^{2}\left(\theta_{W}\right) \approx 0.04 .
\end{aligned}
$$

Thus, we can have: $Q_{W}=Q_{W}^{S M}+\Delta \mathbf{Q}_{W}=Q_{W}^{S M}+\Delta Q_{W}^{R a d}+\Delta Q_{W}^{B S M}$
New physics:
PHYSICAL REVIEW D 82, 036008 (2010)

$$
\begin{aligned}
& Q_{W}=376 g_{A V}^{e u}+422 g_{A V}^{e d} \\
& \Delta Q_{W}\left(Z_{x}\right) \simeq 0.4(Z+2 N) \frac{M_{Z_{0}}^{2}}{M_{Z_{x}}^{2}} \\
& \Delta \operatorname{Sin}^{2} \Theta_{W}(\mu) \simeq-0.43 \epsilon \delta \frac{M_{Z_{0}}}{M_{Z_{d}}} \\
& \quad \text { Phys. Rev. D 103, L111303(2021) }
\end{aligned}
$$

Additional interaction Hamiltonian

Weak interaction (short-range)

- Mediated by Z_{0} bosons (heavy mass)
- Strength scales $\sim Z^{3}$
- Mixes spectra of different parities
- Nucleus gets nuclear weak charge (Q_{w})

$$
\mathrm{e}
$$

บi.

Periodic Table of Elements

$$
\begin{aligned}
H_{P N C} & =H_{P N C}^{N S I}+H_{P N C}^{N S D} \\
& =\frac{G_{F}}{\sqrt{2}}\left[-\frac{Q_{W}}{2} \gamma_{5}+\kappa \vec{\alpha} \cdot \vec{I}\right] \rho_{n}\left(r_{e}\right) \\
& \simeq Q_{W} G_{F} H_{w}
\end{aligned}
$$

\Rightarrow Sensitive to electronic wave functions in nuclear region.

Precise measurement in ${ }^{133} \mathrm{Cs}(\sim 0.35 \%)$

C. S. Wood et al, Science 275, 1759 (1997).

NSI amplitude:
$\operatorname{Im}\left(\frac{E 1_{P N C}^{N S I}}{\beta}\right)=-1.5935(56) \mathrm{mV} / \mathrm{cm}$
NSD amplitude:

$$
\operatorname{Im}\left(\frac{E 1_{P N C}^{N S D}}{\beta}\right)=-0.077(11) \mathrm{mV} / \mathrm{cm}
$$

where β is the Stark induced vector polarizability.

$$
\begin{gathered}
\operatorname{Im}\left(\frac{\boldsymbol{E} 1_{P N C}^{N S I}}{\boldsymbol{\beta}}\right)^{\text {expt }}=\boldsymbol{Q}_{W} \times\left(\frac{\boldsymbol{E} 1_{P N C}^{N S I}}{\boldsymbol{Q}_{W}}\right)^{\text {theory }} \times\left(\frac{\mathbf{1}}{\boldsymbol{\beta}}\right)^{\text {expt/theory }} \\
\leq 0.5 \% \\
\leq 0.5 \% \\
\leq 0.5 \%
\end{gathered}
$$

Challenges in the calculation

Total Hamiltonian:

$$
\begin{gathered}
H=H_{a t}+H_{P N C}^{N S I}=H_{a t}+G_{F} H_{w} \\
\left(\frac{E 1_{P N C}^{N S I}}{Q_{W}}\right)^{\text {theory }}=\frac{\left\langle\Psi_{f}\right| D\left|\Psi_{i}\right\rangle}{\sqrt{\left\langle\Psi_{f} \mid \Psi_{f}\right\rangle\left\langle\Psi_{i} \mid \Psi_{i}\right\rangle}}
\end{gathered}
$$

However, $[\boldsymbol{H}, \boldsymbol{P}] \neq \mathbf{0}$

Do not treat parity as a good quantum number:

* Result obtained in one step, but amount of computation cost will multiply.
* Will be difficult to estimate accuracy of the result.

A perturbative approach (NSI)

Here: $\quad H=H_{a t}+G_{F} H_{w}$ with $G_{F} \approx 2.2 \times \mathbf{1 0}^{-14}$ a.u.

Since electromagnetic interactions dominates strongly:

$$
\left|\Psi_{n}(n, J)\right\rangle=\left|\Psi_{n}^{(0)}(n, J, \pi)\right\rangle+G_{F}\left|\Psi_{n}^{(1)}\left(n, J, \pi^{\prime}\right)\right\rangle+O\left(G_{F}^{2}\right)
$$

And $O\left(G_{F}^{2}\right) \approx 10^{-28}, \quad\left|\Psi_{n}(n, J)\right\rangle \approx\left|\Psi_{n}^{(0)}(n, J, \pi)\right\rangle+G_{F}\left|\Psi_{n}^{(1)}\left(n, J, \pi^{\prime}\right)\right\rangle$
Thus: $\left(\frac{E 1_{P N C}^{\text {NSI }}}{Q_{W}}\right)^{\text {theory }}=\frac{\left\langle\Psi_{f}\right| \boldsymbol{D}\left|\Psi_{i}\right\rangle}{\sqrt{\left.\left|\Psi_{f}\right| \Psi_{f}\right\rangle\left\langle\Psi_{i} \mid \Psi_{i}\right\rangle}} \simeq \frac{\left[\left\langle\Psi_{f}^{(0)}\right| D\left|\Psi_{i}^{(1)}\right\rangle+\left\langle\Psi_{f}^{(1)}\right| D\left|\Psi_{i}^{(0)}\right\rangle\right]}{\sqrt{\left\langle\Psi_{f}^{(0)} \mid \Psi_{f}^{(0)}\right\rangle\left\langle\Psi_{i}^{(0)} \mid \Psi_{i}^{(0)}\right\rangle}}$
$>$ Requirements are:

- Determination of the zeroth- and first-order wave functions.
- Equal treatment of both the wave functions using a single theory.

Sum-over-states approach and accuracy test

In sum-over-states approach: $\left|\Psi_{n}^{(1)}\right\rangle=\sum_{I \neq n}\left|\Psi_{I}^{(0)}\right\rangle \frac{\left\langle\Psi_{I}^{(0)}\right| H_{w}\left|\Psi_{n}^{(0)}\right\rangle}{E_{n}^{(0)}-E_{I}^{(0)}}$

Which leads to:

$$
E 1_{P N C}^{N S I} \simeq \sum_{I \neq i} \frac{\left\langle\Psi_{f}^{(0)}\right| D\left|\Psi_{I}^{(0)}\right\rangle\left\langle\Psi_{I}^{(0)}\right| H_{w}\left|\Psi_{i}^{(0)}\right\rangle}{E_{i}^{(0)}-E_{I}^{(0)}}+\sum_{f \neq i} \frac{\left\langle\Psi_{f}^{(0)}\right| H_{w}\left|\Psi_{I}^{(0)}\right\rangle\left\langle\Psi_{I}^{(0)}\right| D\left|\Psi_{i}^{(0)}\right\rangle}{E_{f}^{(0)}-E_{I}^{(0)}}
$$

where Q_{W} is absorbed in defining unit of the $E 1_{P N C}^{N S I}$ amplitude.

Accuracy test:

- $\left\langle\Psi_{I}\right| D\left|\Psi_{J}\right\rangle \rightarrow$ comparing calculated E 1 matrix elements with expt values.
- $\left\langle\Psi_{I}\right| H_{W}\left|\Psi_{J}\right\rangle \rightarrow\left\langle\Psi_{I}\right| H_{h y f}\left|\Psi_{J}\right\rangle \approx \sqrt{\left\langle\Psi_{I}\right| H_{h y f}\left|\Psi_{I}\right\rangle\left\langle\Psi_{J}\right| H_{h y f}\left|\Psi_{J}\right\rangle} \quad$ (expt values).
- $E_{I}^{(0)}-E_{J}^{(0)} \rightarrow$ comparing calculated excitation energies with expt values.

Calculations for Cs and Shortcomings

$$
E 1_{P N C}^{N S I}(6 S \rightarrow 7 S)=\sum_{n p_{1 / 2}} \frac{\langle 7 S| D\left|n p_{1 / 2}\right\rangle\left\langle n p_{1 / 2}\right| H_{W}|6 S\rangle}{E_{6 S}^{(0)}-E_{n P_{1 / 2}}^{(0)}}
$$

$$
+\sum_{n p_{1 / 2}} \frac{\langle 7 S| H_{W}\left|n p_{1 / 2}\right\rangle\left\langle n p_{1 / 2}\right| D|6 S\rangle}{E_{7 S}^{(0)}-E_{n p_{1 / 2}}^{(0)}}
$$

$=$ Core $(\mathrm{n}<6)+$ Main $(\mathrm{n}=6-9)+$ Tail

Limitations:

- Core, Main and Tail contributions cannot be treated on equal footing.
- Correlations among the Core and Valence electrons not treated aptly.
- Correlations among weak and electromagnetic ints. are not on same level. So it misses double-core-polarization (DCP) effects.

Linear response approach using RCC theory

$$
\begin{aligned}
& \boldsymbol{H}_{a t}\left|\Psi_{n}^{(\mathbf{0})}\right\rangle=\boldsymbol{E}_{n}^{(\mathbf{0})}\left|\Psi_{n}^{(\mathbf{0})}\right\rangle \quad \text { and } \\
& \left(\boldsymbol{H}_{a t}-\boldsymbol{E}_{n}^{(\mathbf{0})}\right)\left|\boldsymbol{\Psi}_{n}^{(\mathbf{1})}\right\rangle=\left(\boldsymbol{E}_{n}^{(1)}-\boldsymbol{H}_{\boldsymbol{w}}\right)\left|\boldsymbol{\Psi}_{n}^{(\mathbf{0})}\right\rangle \quad \text { with } E_{n}^{(1)} \approx 0
\end{aligned}
$$

In (R)CC ansatz: $\quad\left|\Psi_{n}\right\rangle=e^{S}\left|\widetilde{\Phi}_{n}\right\rangle=e^{T}\left|\Phi_{n}\right\rangle$
By expanding: $\quad \boldsymbol{T}=\boldsymbol{T}^{(0)}+\boldsymbol{G}_{\boldsymbol{F}} \boldsymbol{T}^{(\mathbf{1})}+\boldsymbol{O}\left(\boldsymbol{G}_{\boldsymbol{F}}^{2}\right)$
$\Rightarrow \quad\left|\Psi_{n}^{(0)}\right\rangle=e^{T^{(0)}}\left|\Phi_{n}\right\rangle \quad$ and $\quad\left|\Psi_{n}^{(1)}\right\rangle=e^{T^{(0)}}\left(\mathbf{1}+\boldsymbol{T}^{(1)}\right)\left|\Phi_{n}\right\rangle$
$\Rightarrow E 1_{P N C}^{N S I}=\left\langle\Phi_{f}\right| \boldsymbol{e}^{T^{(0)+}} \boldsymbol{D} e^{T^{(0)}} \boldsymbol{T}^{(1)}\left|\Phi_{i}\right\rangle+\left\langle\Phi_{f}\right| T^{(1)+} e^{T^{(0)+}} \boldsymbol{D} e^{T^{(0)}}\left|\Phi_{i}\right\rangle$
Using singles and doubles RCC theory ($\times \mathbf{1 0}^{\mathbf{- 1 1}}\left(-Q_{w} / N\right)$ iea a_{0}):

1. $6 s^{2} S_{1 / 2} \rightarrow 5 d^{2} D_{3 / 2}$ transition in ${ }^{137} \mathrm{Ba}^{+}: \mathbf{2 . 4 6 (2)}$ ($\sim 1 \%$) Phys. Rev. Lett. 96, 163003 (2006)
2. $7 s^{2} S_{1 / 2} \rightarrow 6 d^{2} D_{3 / 2}$ transition in ${ }^{226}$ Ra' $^{+}: 46.4$ ($\sim 1 \%$) Phys. Rev. A 78, 050501(R) (2008)
3. $6 s^{2} S_{1 / 2} \rightarrow 5 d^{2} D_{3 / 2}$ transition in ${ }^{171} \mathrm{Yb}^{+}: 8.5(5)(\sim 5 \%)$ Phys. Rev. A 84, 010502(R) (2011)

TABLE III. The "core", "main," and "tail" contributions to the $E 1_{\mathrm{PV}}$ amplitude [in units of $-i\left(Q_{W} / N\right) e a_{0} \times 10^{-11}$] using the DiracCoulomb Hamiltonian in the DHF, RCCSD, and RCCSDT methods. The "main" contribution is determined using the $n p^{2} P_{1 / 2}$ intermediate states with $n=6,7$, and 8 . Contributions from Breit and QED interactions are quoted separately. Contributions from "extra," the neutral weak interactions among electrons $(e-e)$, and the NSKIN effect are also mentioned. The final results (final) from different works show significant differences.

Method	Core	Main	Tail	Breit	QED	Extra	$e-e$	$\delta E 1_{\text {PV }}^{\text {NS }}$	Final
DHF	-0.0017	0.7264	0.0137						
RCCSD	-0.0019	0.8623	0.0357						
RCCSDT	-0.0018	0.8594	0.0391^{a}	-0.0055	-0.0028	0.0026	0.0003^{b}	$-0.00377(39)$	$0.8893(27)$
						$-0.0018(5)^{\mathrm{b}}$	$0.8977(40)$		
Ref. [23]	$0.0018(8)$	$0.8823(17)^{\mathrm{a}, \mathrm{b}}$	$0.0238(35)$	$-0.0055(1)^{\mathrm{b}}$	$-0.0029(3)^{\mathrm{b}}$				
Ref. [22]	-0.0020	$0.8823(17)^{\mathrm{a}}$	0.0195	-0.0054^{b}	-0.0024^{b}	-0.00006	0.0003^{b}	-0.0017^{b}	$0.8906(24)$
Ref. [47]		0.9078		-0.0055	0.0036			-0.0018	$0.904(1 \pm 0.5)$
Ref. [48]	$-0.002(2)$	$0.893(7)^{\mathrm{a}}$	$0.018(5)$	$-0.002(2)$				-0.0006	$0.907(9)$
Ref. [49]		0.908							$0.91(1)$

${ }^{\text {a }}$ Contains additional contribution from the $9 p^{2} P_{1 / 2}$ state.
${ }^{\mathrm{b}}$ Taken from previous calculation [51].
[This work] B. K. Sahoo, B. P. Das and H. Spiesberger, Phys. Rev. D 103, 111303(L) (2021).
[22] S. G. Porsev, K. Beloy and A. Derevianko, Phys. Rev. Lett. 102, 181601 (2009).
[23] V. A. Dzuba, J. C. Berengut, V. V. Flambaum and B. Roberts, Phys. Rev. Lett. 109, 203003 (2012).
[48] S. A. Blundell, W. R. Johnson and J. Sapirstein, Phys. Rev. Lett. 65, 1411 (1990).
[23] V. A. Dzuba, V. V. Flambaum and O. P. Sushkov, Phys. Lett. A 141, 147 (1989.

Leading-order non-RPA Core Correlations

$$
\text { PHYS. REV. D 105, } 018302 \text { (2022) }
$$

Method	Approach	Core	Virtual	Reference
HF	$a b$ initio	-0.00174		[1]
RPA	$a b$ initio	0.00170		[1]
RPA	Scaled	0.00259		[1]
$\mathrm{BO}+\mathrm{RPA}$	$a b$ initio	0.00181		[1]
$\mathrm{BO}+\mathrm{RPA}$	Scaled	0.00181		[1]
HF	$a b$ initio	-0.0017	0.7401	[2]
RCCSD	$a b$ initio	-0.0019	0.9006	[2]
RCCSDT	$a b$ initio	-0.0018	0.9011	[2]
Lower order		-0.0020		[3]
RCCSDT	sum-over		0.9073	[3]
RCCSDT	sum-over + scaled		0.9018	[3]
HF	$a b$ initio	-0.00174		[4]
RPA	Scaled	0.00259		[4]
$\mathrm{BO}+\mathrm{RPA}$	$a b$ initio	0.00170	0.8949	[4]
$\mathrm{BO}+\mathrm{RPA}$	Scaled	0.00182	0.8920	[4]
Earlier reported Core contributions				
RCCSD	$a b$ initio	-0.002		[8]
RCCSD	$a b$ initio	-0.002		[9]
RCCSD	$a b$ initio	-0.0019		[10]
Lower order		-0.002(2)		[13]

New physics constraints from atomic parity violation in ${ }^{133} \mathrm{Cs}$

B. K. Sahoo ${ }^{(\cdot),}{ }^{1, *}$ B. P. Das, ${ }^{2,3}$ and H. Spiesberger© ${ }^{4}$

TABLE I. Comparison of the calculated energies (in cm^{-1}) and $A_{\text {hyf }}$ values (in MHz) from the present work with the NIST data and experimental results. Since the uncertainties of the experimental (Expt) results are below the significant digits, they are not quoted here.

Method	$6 S$	$6 P_{1 / 2}$	$7 S$	$7 P_{1 / 2}$	$8 P_{1 / 2}$
Energy values					
This work	$31357(50)$	$20243(20)$	$12861(15)$	$9641(10)$	$5697(10)$
Expt [31]	31406.47	20229.21	12871.94	9642.12	5698.63
$A_{\text {hyf }}$ values					
This work	$2306(10)$	$291(2)$	$547(2)$	$94(1)$	$42(1)$
Expt	2298.16^{a}	291.91^{b}	545.82^{c}	94.40^{d}	42.97^{c}

PHYS. REV. D 105, 018302 (2022)

TABLE VI. Comparison of contributions from the Breit and QED interactions to the $E 1_{\mathrm{PV}}$ amplitude [in $-i\left(Q_{W} / N\right) e a_{0} \times$ $\left.10^{-11}\right]$) of the $6 s^{2} S_{1 / 2}-7 s^{2} S_{1 / 2}$ transition in ${ }^{133} \mathrm{Cs}$ from various methods employed in different works.

Breit	QED	Method	Reference
$-0.0055(5)$	$-0.0028(3)$	RCCSDT	$[2]$
	$-0.0029(3)$	Correlation potential	$[26]$
-0.0054		RMP(3)	$[17]$
-0.0045	$-0.27(3) \%$	Local DHF potential	$[31]$
-0.004		Optimal energy	$[19]$
	$-0.33(4) \%$	Radiative potential	$[33]$
-0.0055		Correlation potential	$[34]$

PHYS. REV. D 103, L111303 (2021)

TABLE II. Matrix elements of the operators E1 (in a.u.) and $H_{\mathrm{APV}}^{\mathrm{NSI}}$ [in units of $-i\left(Q_{W} / N\right) \times 10^{-11}$], respectively, from our calculations. We also list the precise E1 values inferred from various measurements of lifetimes and Stark shifts of atomic states.

Transition	E1 amplitude		$H_{\text {APV }}^{\text {NSI }}$ amplitude
	This work	Experiment	This work
$6 P_{1 / 2} \leftrightarrow 6 S$	4.5067(40)	4.5097(74) [37]	$1.2648(15)$
		$4.4890(65)$ [38]	
		$4.505(2)$ [39]	
		4.508(4) [40]	
$7 P_{1 / 2} \leftrightarrow 6 S$	0.2805(20)	0.2825 (20) [41]	0.7210 (15)
		0.2789 (16) [42]	
		$0.27810(45)$ [43]	
$8 P_{1 / 2} \leftrightarrow 6 S$	0.0824(10)		0.4783(10)
$6 P_{1 / 2} \leftrightarrow 7 S$	4.2559(30)	4.233(22) [44]	$0.6161(15)$
		4.249(4) [45]	
$7 P_{1 / 2} \leftrightarrow 7 S$	$10.2915(100)$	10.308(15) [46]	0.3464(10)
$8 P_{1 / 2} \leftrightarrow 7 S$	0.9623(20)		0.2296(05)

BSM physics from Cs PNC study

Measurement + calculations: $Q_{W}^{Z, N}=-73.71(26)_{e x}(23)_{t h}$
In the SM: $\boldsymbol{Q}_{W}^{S M}=-\mathbf{7 3 . 2 3 (1)}$ with $\sin ^{2} \bar{\theta}_{W}(2.4 \mathrm{MeV})=0.23857(5)$

From the difference of nuclear weak charge, we infer:

$$
\sin ^{2} \bar{\theta}_{W}(2.4 \mathrm{MeV})=0.2408(16)
$$

and the isospin conserving oblique parameter: $S=\mathbf{0 . 0 6 0 (4 4)}$
By using the relation: $376 g_{A V}^{e u}+422 g_{A V}^{e d}=73.71(35)$
$\boldsymbol{g}_{A V}^{e u}=\mathbf{- 0 . 1 8 7 7 (9)}$ for $g_{A V}^{e d}=0.3419$ and $g_{A V}^{e d}=\mathbf{3 4 2 9}(8)$ for $g_{A V}^{e u}=-0.1888$.
Mass of a dark-boson: $\delta \epsilon \frac{M_{Z}}{M_{Z_{d}}} \simeq-\mathbf{0 . 0 0 5 1 (3 7)}$.
Mass of an extra boson: $\boldsymbol{M}_{Z_{x}} \geq 2.36 \mathrm{TeV}$.
Phys. Rev. D 103, 111303(L) (2021)

Summary \& Outlook

Our RCC method treats the "Core", "Main" and "Tail" contributions to $E 1_{P N C}$ on an equal footing.
It also accounts for DCP contributions implicitly.
Our calculation demonstrates "Core" contribution is agreeing with Porsev et al (2009 \& 2010).
It estimates uncertainties to "Core", "Main" and "Tail" in a consistent manner.
$>$ We are developing RCC methods to remove nonterminating series in the calculations.
> The method has to be extended for NSD interactions.
> It is also necessary to calculate $\boldsymbol{\beta}$ using a similar approach.

Collaborators \& Facility

H. Spiesberger

B. P. Das

A. Chakraborty

