New physics directions from CEvNS

Dimitrios K. Papoulias

University of Athens, Greece MITP Topical Workshop, May 26 2022

National and Kapodistrian UNIVERSITY OF ATHENS

Operational Programme Human Resources Development, Education and Lifelong Learning

Co-financed by Greece and the European Union

Outline

1 CEvNS implications to WIMP searches

- The Neutrino floor
 - uncertainties in CEvNS cross section
 - data-driven analysis using COHERENT results

Axion-like particles (ALPs) @ CEvNS experiments

- Photon flux
- Production mechanisms and ALP flux
- Sensitivities

CEvNS implications to WIMP searches

Neutrino backgrounds at direct dark matter detection experiments

Irreducible background

Solar neutrinos

[W. C. Haxton, R. G. Hamish Robertson, and A. M. Serenelli, Ann. Rev. Astron. Astrophys. **51** (2013), 21]

Atmospheric neutrinos

(FLUKA simulations) [G. Battistoni, A. Ferrari, T. Montaruli, and P. R. Sala, Astropart. Phys. 23 (2005) 526]

Diffuse Supernova Neutrinos (DSN)

[Horiuchi, Beacom, Dwek, PR D79 (2009) 083013]

Туре	$E_{ u_{ m max}}$ [MeV]	$Flux \ [\mathrm{cm}^{-2} \mathrm{s}^{-1}]$
рр	0.423	$(5.98\pm0.006) imes10^{10}$
рер	1.440	$(1.44 \pm 0.012) imes 10^{\circ}$
hep	18.784	$(8.04\pm1.30) imes10^3$
$^{7}\mathrm{Be}_{\mathrm{low}}$	0.3843	$(4.84 \pm 0.48) imes 10^8$
$^{7}\mathrm{Be}_{\mathrm{high}}$	0.8613	$(4.35 \pm 0.35) imes 10^9$
^{8}B	16.360	$(5.58 \pm 0.14) imes 10^{6}$
^{13}N	1.199	$(2.97\pm 0.14) imes 10^{8}$
^{15}O	1.732	$(2.23 \pm 0.15) imes 10^8$
17 F	1.740	$(5.52\pm 0.17) imes 10^{6}$

CEvNS events @ dark matter direct detection exps

CEvNS vs. WIMP events

The neutrino floor

slide taken from: C. O'Hare Magnificent CEvNS 2020 Workshop

Statistical analysis

Likelihood

[Billard, Strigari, Figueroa-Feliciano PRD 89(2014)]

$$\mathcal{L}(m_{\chi},\sigma_{\chi-n},\Phi,\mathcal{P})=\prod_{i=1}^{n_{\text{bins}}} P(N_{\text{Exp}}^{i},N_{\text{Obs}}^{i}) \times \prod_{\alpha=1}^{n_{\nu}} G(\phi_{\alpha},\mu_{\alpha},\sigma_{\alpha})$$

• Poisson distribution
$$P(k,\lambda) = \frac{\lambda^k e^{-\lambda}}{k!}$$

• Gauss distribution
$$G(x, \mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

• $N_{\text{Exp}}^i = N_{\nu}^i(\Phi_{\alpha})$

•
$$N_{\text{Obs}}^{i} = \sum_{\alpha} N_{\nu}^{i}(\Phi_{\alpha}) + N_{W}^{i}$$

- $\lambda(0) = \frac{\mathcal{L}_0}{\mathcal{L}_1}$ where \mathcal{L}_0 is the minimized function
- statistical significance: Z = √-2 ln λ(0).
 e.g. Z = 3 corresponds to 90% C.L.

Neutrino flux normalizations & uncertainties						
Type Norm $[cm^{-2} \cdot s^{-1}]$			Туре	Norm $[\mathrm{cm}^{-2} \cdot \mathrm{s}^{-1}]$	Unc.	
⁷ Be (0.38 MeV)	$4.84 imes10^8$	3%	⁷ Be (0.86 MeV)	$4.35 imes10^9$	3%	
рер	$1.44 imes 10^{8}$	1%	pp	$5.98 imes10^{10}$	0.6%	
⁸ B	$5.25 imes10^{6}$	4%	hep	$7.98 imes10^3$	30%	
¹³ N	2.78×10^{8}	15%	¹⁵ 0	2.05×10^{8}	17%	
¹⁷ F	$5.29 imes 10^{6}$	20%	DSNB	86	50%	
Atm	10.5	20%	—	_	— 。/	

Statistical analysis

Likelihood

[Billard, Strigari, Figueroa-Feliciano PRD 89(2014)]

$$\mathcal{L}(m_{\chi},\sigma_{\chi-n},\Phi,\mathcal{P})=\prod_{i=1}^{n_{\text{bins}}} P(N_{\text{Exp}}^{i},N_{\text{Obs}}^{i})\times\prod_{\alpha=1}^{n_{\nu}} G(\phi_{\alpha},\mu_{\alpha},\sigma_{\alpha})$$

• Poisson distribution
$$P(k,\lambda) = \frac{\lambda^k e^{-\lambda}}{k!}$$

- Gauss distribution $G(x, \mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$
- $N_{\mathsf{Exp}}^i = N_{\nu}^i(\Phi_{\alpha})$
- $N_{\text{Obs}}^{i} = \sum_{\alpha} N_{\nu}^{i}(\Phi_{\alpha}) + N_{W}^{i}$
- $\lambda(0) = \frac{\mathcal{L}_0}{\mathcal{L}_1}$ where \mathcal{L}_0 is the minimized function
- statistical significance: Z = √-2 ln λ(0).
 e.g. Z = 3 corresponds to 90% C.L.

Discovery limit: smallest WIMP cross section for which a given experiment has a 90% probability of detecting a WIMP signal at $\geq 3\sigma$.

Profile likelihood ratio: test against the null hypothesis H_0 (CEvNS background only) vs. the alternative hypothesis H_1 (WIMP signal + CEvNS background).

Statistical analysis

introducing new nuisances

[Aristizabal, De Romeri, Flores, DKP: JCAP 01 (2022) 055]

$$\mathcal{L}(m_{\chi},\sigma_{\chi-n},\Phi,\mathcal{P}) = \prod_{i=1}^{n_{\text{bins}}} P(N_{\text{Exp}}^{i},N_{\text{Obs}}^{i}) \times \bigcirc G(\mathcal{P}_{i},\mu_{\mathcal{P}_{i}},\sigma_{\mathcal{P}_{i}}) \times \prod_{\alpha=1}^{n_{\nu}} G(\phi_{\alpha},\mu_{\alpha},\sigma_{\alpha})$$

• Poisson distribution
$$P(k,\lambda) = \frac{\lambda^k e^{-\lambda}}{k!}$$

• Gauss distribution
$$G(x, \mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

- $N_{\mathsf{Exp}}^i = N_{\nu}^i(\Phi_{\alpha}, \mathcal{P}_i)$
- $N_{\text{Obs}}^{i} = \sum_{\alpha} N_{\nu}^{i}(\Phi_{\alpha}, \mathcal{P}_{i}) + N_{W}^{i}(\mathcal{P}_{i})$
- $\lambda(0) = \frac{\mathcal{L}_0}{\mathcal{L}_1}$ where \mathcal{L}_0 is the minimized function
- statistical significance: Z = √-2 ln λ(0).
 e.g. Z = 3 corresponds to 90% C.L.

Parameter (\mathcal{P})	Normalization (μ)	Uncertainty		
R _n	4.78 fm	10%		
$\sin^2 \theta_W$	0.2387	10%		

Neutrino floor: SM uncertainties (weak mixing angle)

[Aristizabal, De Romeri, Flores, DKP: JCAP 01 (2022) 055]

Neutrino floor: SM uncertainties (nuclear physics)

Neutrino floor: uncertainties beyond the SM

A new vector boson mediating CEvNS ?

Neutrino floor: data-driven analysis

Utilize the measured $\text{CE}\nu\text{NS}$ cross section with its uncertainty

- what? extract the CEvNS cross section central values & standard deviations
- how? weigh the theoretical SM value of the CE ν NS differential cross section with a multiplicative factor *i.e.* $\sigma_{meas}^{i} = n_{\sigma}^{i} \sigma_{th}^{i}$ and use a spectral χ^{2} fit
- why? all possible uncertainties that the cross section can involve-independently of assumption-are encoded.

[Aristizabal, De Romeri, Flores, DKP: JCAP 01 (2022) 055]

Neutrino floor: data-driven analysis

Utilize the measured $\text{CE}\nu\text{NS}$ cross section with its uncertainty

• analysis of CsI data: WIMP discovery limits improve compared to the SM expectation (solid curves).

The measured CE ν NS cross section (central values) is smaller than the SM expectation, thus resulting in a background depletion.

• analysis of LAr data: Results behave differently.

[Aristizabal, De Romeri, Flores, DKP: JCAP 01 (2022) 055]

ALPs @ CEvNS experiments

ALP motivations

Axions: Nambu-Goldstone bosons from the breaking of a color anomalous global chiral U(1) symmetry which is spontaneously broken in the vacuum.

[Peccei & Quinn, PRL 38 (1977) 1440], [Weinberg, PRL 40 (1978) 223], [Wilczek, PRL 40 (1978) 279]

- solution to the strong CP problem
- dark matter candidate
- m_a and f_a are related $ightarrow m_a = 5.7 \left(10^{12} {
 m GeV}/f_a
 ight) \mu {
 m eV}$

Axion-like particles (ALPs): *Pseudo Nambu-Goldstone bosons of spontaneously broken global symmetries.*

- Lepton symmetry: Majoron [Chikashige et. al, PLB 98 (1981) 2651981]
- Family symmetry: Familon [Wilczek, PRL 49 (1982) 1549]
- Flavor symmetry: Flavon
- m_a and f_a are not related \rightarrow mass does not arise from QCD effects

Current status of ALP-related experimental searches

- helioscopes (CAST) & haloscopes (Abracadabra, ADMX, CASPEr...)
- interferometry (ADBC, DANCE) & polarization exps (PVLAS)
- beam dump & fixed target experiments (FASER, LDMX, NA62, NA64..)
- colliders & dark matter DD experiments (XENON, LUX, CDMS..)
- astrophysical observations (Stellar energy-losses)

plots from: C. O'Hare (https://github.com/cajohare/AxionLimits)
10.5281/zenodo.3932430 and references therein

Our goal: Explore ALPs in view of reactor neutrino experiments via nuclear and electron recoil measurements [Dent et al. PRL. 124 (2020) 21, 211804]

Nuclear reactors utilized as a high intensity photon flux

Continuous γ -flux

SM γ -fuel interactions

[https://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html]

Compton

N Ň

Rayleigh

N

$$\frac{\mathrm{d}\Phi_{\gamma}}{\mathrm{d}E_{\gamma}} = \frac{5.8 \times 10^{17}}{\mathrm{MeV} \cdot \mathrm{sec}} \left(\frac{\mathrm{P}}{\mathrm{MW}}\right) \mathrm{e}^{-1.1 \, E_{\gamma} / \mathrm{MeV}}$$

• P: reactor power in MW

[Bechteler et al., Technical Report, Inst. fuer Kernphysik (1984)]

Reactor Power P=1 GW

Nuclear reactors utilized as a high intensity photon flux

Monochromatic γ -flux from nuclear transitions

TEXONO Collab., Phys. Rev. D 75 (2007) 052004

- (mainly) M1 transition from the excited state to the ground state of ⁷Li
- M4 transitions from the excited to the ground state of ⁹¹Y, ⁹⁷Nb, ¹³⁵Xe and ¹³⁷Ba
- thermal neutron capture on proton in the cooling water, $p+n \rightarrow d+\gamma$. The deuteron ground state has magnetic dipole and electric quadrupole moments, the emitted γ is therefore mainly M1

a fraction of these photons can be converted into ALPs

ALP production mechanisms

Phenomenological parametrization via up to dim-5 effective operators

$$\mathcal{L} = -\frac{1}{4} g_{a\gamma\gamma} \, aF_{\mu\nu} \widetilde{F}^{\mu\nu} - i g_{aee} \, a \, \bar{e} \gamma_5 e - i a \bar{n} \gamma_5 \, \left(g_{ann}^{(0)} + \tau_3 g_{ann}^{(1)} \right) \, n$$

Continuous ALP flux

$$\frac{d\Phi_{a}^{\mathsf{P}}}{dE_{a}} = \mathcal{P}_{\mathsf{surv}} \int_{E_{\gamma',\mathsf{min}}}^{E_{\gamma',\mathsf{max}}} \frac{1}{\sigma_{\mathsf{Tot}}} \frac{d\sigma_{\mathsf{ALP}}^{\mathsf{prod}}}{dE_{a}} (E_{\gamma'}, E_{a}) \frac{d\Phi_{\gamma'}}{dE_{\gamma'}} \ dE_{\gamma'} \ , \quad \mathsf{with} \ \sigma_{\mathsf{Tot}} = \sigma_{\mathsf{SM}} + \sigma_{\mathsf{ALP}}^{\mathsf{prod}}$$

[Dent et al. PRL. 124 (2020) 21, 211804]

- Survival probability, assuring that the ALP flux reaches the detector: $\mathcal{P}_{surv} = e^{-LE_a/|\vec{p}_a|\tau}$
- L: distance between the reactor and detector
- τ: ALP lifetime in the fixed target frame

ALP production mechanisms

Phenomenological parametrization via up to dim-5 effective operators

$$\mathcal{L} = -\frac{1}{4} g_{a\gamma\gamma} \, aF_{\mu\nu} \widetilde{F}^{\mu\nu} - ig_{aee} \, a \, \bar{e}\gamma_5 e - ia\bar{n}\gamma_5 \, \left(g_{ann}^{(0)} + \tau_3 g_{ann}^{(1)}\right) \, n$$

Monochromatic ALP flux for the i-th transition

$$\left(\frac{\mathrm{d}\Phi_a^{\mathsf{MT}}}{\mathrm{d}E_a}\right)_i = \phi_a^i \, \delta(E_{\gamma'} - E_a) = R_f \Phi_\gamma^i \left(\frac{\Gamma_a}{\Gamma_\gamma}\right)_i \mathcal{P}_{\mathsf{surv}} \, \delta(E_{\gamma'} - E_a) \qquad (i = \mathsf{p}(\mathsf{n},\gamma)\mathsf{d}, \ \mathsf{MJ}) \; ,$$

- fission rate: R_f
- photon flux per fission: Φⁱ_γ
- branching ratio of ALP to photon emission in the nuclear transitions: $\left(\frac{\Gamma_a}{\Gamma_{\infty}}\right)$.

Typical ALP fluxes from a nuclear reactor

Experiment	Nuclear Reactor	Power [GW]
TEXONO [41]	Kuo-Sheng Nuclear Power Station	2.9
CONUS [37]	Brokdorf	3.9
νGeN [72]	Kalinin Nuclear Power Plant	~ 1
MINER [36]	TRIGA 1	10^{-3}
$\nu {\rm CLEUS}~[38]$	FRM2	4
Ricochet [39]	Chooz Nuclear Power Plant	8.54
RED-100 [40]	Kalinin Nuclear Power Plant	~ 1
SBC [73]	ININ (or Laguna Verde)	10^{-3} (2)
CONNIE [74] Angra 2		3.8
vIOLETA [75]	Atucha II	2
SoLid [76]	BR2	$(0.4,1) \times 10^{-1}$
NEON [77]	EON [77] Hanbit Nuclear Power Plant	

Detector	Experiment	Material	$\mathbf{m}_{\mathrm{det}}[\mathbf{kg}]$	L [m]
Semiconductor	TEXONO [41]	Ge	1.06	28
detectors	CONUS [37]	Ge	1	17.1
(ionization)	$\nu { m GeN}$ [72]	Ge	1.6-5	10-12
Low	MINER [36]	Ge, Si	4	1 - 2.5
temperature	$\nu {\rm CLEUS}~[38]$	$\mathrm{CaWO}_4,\mathrm{Al}_2\mathrm{O}_3$	10^{-2}	15-100
bolometers	Ricochet [39]	Ge, Zn	10	355/469
Liquid noble-gas	RED-100 [40]	Xe	100	19
detectors (TPC)	SBC [73]	LAr, Xe	10	3/30
CCD	CONNIE [74]	Si	~ 0.05	30
	vIOLETA [75]	Si	1	12
Scintillators	SoLid [76]	$^{6}\mathrm{LiF}:\mathrm{ZnS}(\mathrm{Ag})$	1600	~ 7.6
	NEON [77]	NaI[T1]	3.3-10	24

[Aristizabal, De Romeri, Flores, DKP, JHEP 03 (2021) 294]

Typical reactor

- P = 4 GW
- *L* = 10 m

Number of events

Probing the $g_{a\gamma\gamma}$ coupling

Assumed detector specifications: current vs. future

P[GW]	\mathbf{PM}	TM	$m_{ m det}[m kg]$	L[m]	$L_{ m det}[m cm]$	bkg [1/keV/day/kg]	
4	$^{235}\mathrm{U}$	Ge	10	10	50	10–100	
8	$^{235}\mathrm{U}$	Xe	10^{3}	10	140	1–10	

CEvNS implications to WIMP searches

- WIMP searches at next generation direct dark matter detection experiments require a precise understanding of WIMP discovery limits
- Revisited the neutrino floor exploiting actual data and considering subdominant uncertainties of the SM and new physics scenarios

Reactor experiments can be used as ALP factories:

- extend the physics reach of reactor neutrino programmes
- probe ALPs with $m_a \leq 10$ MeV utilizing their intense photon flux
- complementary information on ALPs in the low-energy frontier

Thank you for your attention !

The End Extras

WIMP-nucleus scattering

weakly interacting massive particles (WIMPs)

Differential event rate as a function of E_r

$$\frac{dR_W}{dE_r} = \varepsilon \frac{\rho_0 \sigma_{\mathsf{SI}}(q)}{2m_\chi \mu^2} \int_{|\boldsymbol{v}| > v_{\min}} d^3 v \, \frac{f(\boldsymbol{v})}{v}$$

[Lewin and Smith: Astropart. Phys. 6 (1996)]

- $ho_0 = 0.3 \ {
 m GeV/cm^2}$ local Halo DM density
- $\sigma_{SI}(q) = \frac{\mu^2}{\mu_n^2} [ZF_p(q) + (A Z)F_n(q)]^2 \sigma_{\chi-n}$ Spin-independent WIMP-nucleus scattering
- m_{χ} : WIMP mass

•
$$\mu = m_{\chi} m_N / (m_{\chi} + m_N)$$
: WIMP-nucleus reduced mass

•
$$f(v) = \begin{cases} \frac{1}{N_{esc}} \left(\frac{3}{2\pi\sigma_v^2}\right)^{3/2} e^{-3v^2/2\sigma_v^2} & \text{for } v < v_{esc} \\ 0 & \text{for } v > v_{esc} \end{cases}$$
 (Maxwell distribution)

ALP production cross sections

$g_{a\gamma\gamma}$ coupling

• Primakoff scattering: $\gamma + N \rightarrow a + N$ [Aloni et al. PRL 123 (2019) 7, 071801]

$$\frac{\mathrm{d}\sigma_{\text{Prim}}^{\text{prod}}}{\mathrm{d}t} = 2\alpha Z^2 F^2(t) g_{a\gamma\gamma}^2 \frac{M_N^4}{t^2 (M_N^2 - s)^2 (t - 4M_N^2)^2} \left\{ m_a^2 t (M_N^2 + s) - m_a^4 M_N^2 - t \left[(M_N^2 - s)^2 + st \right] \right\}$$

Primakoff scattering: $E_{\gamma} \simeq E_a$ photon energy is coherently converted into ALP energy

g_{aee} coupling

• Compton-like scattering: $\gamma + e^-
ightarrow a + e^-$ [Brodsky et al. PRL 56 (1986) 1763]

$$\frac{\mathrm{d}\sigma_{\mathsf{Compt}}^{\mathrm{prod}}}{\mathrm{d}E_{a}} = \frac{Z\pi g_{aee}^{2}\alpha x}{4\pi(s-m_{e}^{2})(1-x)E_{\gamma'}} \left[x - \frac{2m_{a}^{2}s}{(s-m_{e}^{2})^{2}} + \frac{2m_{a}^{2}}{(s-m_{e}^{2})^{2}} \left(\frac{m_{e}^{2}}{1-x} + \frac{m_{a}^{2}}{x} \right) \right] \,,$$

where $x = 1 - \frac{E_{a}}{E_{\gamma'}} + \frac{m_{a}^{2}}{2E_{\gamma'}m_{e}} \,.$

ALP production from MJ transitions

g_{ann} coupling

• neutron capture isovector M1 transitions (pn \rightarrow d γ) depend only on kinematics

$$\left(\frac{\Gamma_{a}}{\Gamma_{\gamma}}\right)_{pn} = \frac{1}{2\pi\alpha} \left(\frac{|\vec{p}_{a}|}{|\vec{p}_{\gamma}|}\right)^{3} \left(\frac{g_{ann}^{(1)}}{\mu_{1}}\right)^{2} \;,$$

[Barroso, Mukhopadhyay, PRC C24 (1981) 2382]

MJ transitions are nuclear structure dependent

$$\left(\frac{\Gamma_{a}}{\Gamma_{\gamma}}\right)_{\rm MJ} = \frac{1}{\pi\alpha} \left(\frac{1}{1+\delta^{2}}\right) \left(\frac{J}{J+1}\right) \left(\frac{|\vec{p}_{a}|}{|\vec{p}_{\gamma}|}\right)^{2J+1} \left(\frac{g_{ann}^{(0)}\kappa + g_{ann}^{(1)}}{(\mu_{0} - 1/2)\kappa + (\mu_{1} + \eta)}\right)^{2}$$

- Isovector magnetic moment: $\mu_1 = \mu_p \mu_n = 4.71 \ \mu_N$
- Isosinglet magnetic moment: $\mu_0 = \mu_p + \mu_n = 0.88 \ \mu_{
 m N}$
- δ, η, κ are nuclear structure dependent [TEXONO collab., PRD 75 (2007) 052004]
 [Avignone III et al., PRD 35 (1987) 2752]

~

ALP detection cross sections

$g_{a\gamma\gamma}$ coupling

 inverse Primakoff scattering: a + N → γ + N same as the production cross section but a factor 2 larger due to spin

g_{aee} coupling

• inverse Compton-like scattering: $a + e^- \rightarrow \gamma + e^-$ [Avignone et al. PRD 37 (1988) 618-630]

$$\begin{split} \frac{d\sigma_{\text{Compt}}^{\text{def}}}{dE_{\gamma}} &= \frac{Zg_{aee}^2 \alpha E_{\gamma}}{4m_e^2 |\vec{p}_a|} \left| \frac{2(E_a + m_e - |\vec{p}_a|\cos\theta)^2}{|\vec{p}_a|y} \right| \\ & \times \left(1 + \frac{4m_e^2 E_{\gamma}^2}{y^2} - \frac{4m_e E_{\gamma}}{y} - \frac{4m_e^2 |\vec{p}_a|^2 m_e E_{\gamma}(1 - \cos^2\theta)}{y^3} \right), \qquad y = 2m_e E_a + m_a^2 \end{split}$$

• axio-electric cross section: $a + e^- + Z \rightarrow e^- + Z$ [Derevianko et al. PRD 82 (2010) 065006]

$$\sigma_{\text{axioel}}^{\text{det}} = \frac{g_{aee}^2}{\beta} \frac{3E_a^2}{16\pi\alpha m_e^2} \left(1 - \frac{\beta^{2/3}}{3}\right) \sigma_{\text{PE}} \,, \qquad \beta = |\vec{p}_a|/E_a$$

$g_{a\gamma\gamma}$ coupling

• ALP diphoton decay:

$$\Gamma_{a\to 2\gamma} \equiv \Gamma(a\to \gamma\gamma) = \frac{g_{a\gamma\gamma}^2 m_a^3}{64\pi}$$

g_{aee} coupling

• ALP decay to electron pair:

$$\Gamma_{a \to e^+ e^-} = \frac{g_{aee}^2 m_a}{8\pi} \sqrt{1 - 4 \frac{m_e^2}{m_a^2}}$$

Number of ALP-induced events

scattering processes

$$\frac{\mathrm{d}\mathcal{N}_{\mathsf{X}}^{\mathrm{scatt}}}{\mathrm{d}E_{a}} = m_{\mathrm{det}} \frac{N_{T} \Delta t}{4\pi L^{2}} \int \frac{\mathrm{d}\Phi_{a}}{\mathrm{d}E_{a}} \frac{\mathrm{d}\sigma_{\mathsf{X}}^{\mathrm{det}}}{\mathrm{d}E_{\gamma}} \,\mathrm{d}E_{\gamma} , \quad \mathsf{X} = \{\mathsf{Prim., Compt.}\}$$

$$\frac{\mathrm{d}\mathcal{N}_{\mathsf{axioel}}}{\mathrm{d}\mathcal{E}_{\mathsf{a}}} = m_{\mathsf{det}} \frac{N_{T}\Delta t}{4\pi L^{2}} \frac{\mathrm{d}\Phi_{\mathsf{a}}}{\mathrm{d}\mathcal{E}_{\mathsf{a}}} \sigma_{\mathsf{axioel}}^{\mathsf{det}}(\mathcal{E}_{\gamma}, \mathcal{E}_{\mathsf{a}})$$

decay processes

$$\frac{d\mathcal{N}_{X}^{decay}}{dE_{a}} = \frac{\mathcal{A}\Delta t}{4\pi L^{2}} \frac{d\Phi_{a}}{dE_{a}} \mathcal{P}_{decay}^{X}, \quad X = \{\text{Prim., Compt.}\}$$

P_{decay}: probability that the decay occurs within the detector

$$\mathcal{P}_{\text{decay}}^{\mathsf{X}} = 1 - e^{-L_{\text{det}}E_a/|\vec{p}_a|\tau_{\mathsf{X}}}$$

• $\mathcal{A} = L_{det}^2$ denotes the detector transverse area.

[Dent et al. PRL. 124 (2020) 21, 211804]

Summary ALP production and detection mechanisms considered

	Scattering processes			
Pro	Coupling	Prod	Det	
Primakoff	$\gamma + N \leftrightarrow a + N$	$g_{a\gamma\gamma}$	~	~
Compton-like	$\gamma + e^- \leftrightarrow a + e^-$	g_{aee}	~	~
Nuclear de-excitation	$\gamma + N \leftrightarrow N^* \to a + N$	g_{ann}	~	~
Axio-electric	$a+e^-+Z\to e^-+Z$	g_{aee}	×	~
e-pair production in N	$a+N \rightarrow e^- + e^- + N$	g _{aee} X		~
e-pair production in e	$a+e^- \rightarrow e^- + e^+ + e^-$	g_{aee}	×	~
	Decay processes			
Pro	Coupling	Prod	Det	
γ -pair final state	$a \rightarrow \gamma + \gamma$	$g_{a\gamma\gamma}$	×	~
e-pair final state	$a \rightarrow e^- + e^+$	g_{aee}	×	~
<i>n</i> -pair final state	$a \rightarrow n + n$	g_{ann}	×	×

Reactor experiments can be used as ALP factories:

- extend the physics reach of reactor neutrino programmes
- probe ALPs with $m_a \leq 10$ MeV utilizing their intense photon flux
- complementary information on ALPs in the low-energy frontier