Electroweak Nuclear Responses with Controlled Theory Uncertainty

Joanna Sobczyk

In collaboration with Sonia Bacca Bijaya Acharya Gaute Hagen

Precision Tests with Neutral-Current Coherent Interactions with Nuclei, 25/05/2022

Alexander von Humboldt Stiftung/Foundation

Neutrino oscillations

3

DUNE T2HK From: Diwan et al, Ann. Rev.Nucl. Part. Sci 66 (2016) 0.15 0.15 v_{μ} flux (AU) v_{μ} flux (AU) $\delta_{CP} = 0^{\circ}, \text{NH}$ $\delta_{CP} = 0^{\circ}, \text{NH}$ $\delta_{CP} = 0^{\circ}, \text{IH}$ $\delta_{CP} = 0^{\circ}, IH$ Height of the ${\sf P}(
u_\mu o
u_e)$ 0.10 $\delta_{CP} = 90^{\circ}, \text{NH}$ 0.10 $P(\nu_{\mu} \rightarrow \nu_{e})$ oscillation peak $\delta_{CP} = 270^\circ$, NH (event rate) \propto total cross 0.05 0.05 section 0.00 0.00 2.5 4 6 8 10 0.0 0.5 1.0 1.5 2.0 3.0 E_v (GeV) E_v (GeV)

Position of the oscillation peak depends on energy reconstruction

DUNE aims at uncertainties < 1% meaning O(25 MeV) precision of energy reconstruction

3

Position of the oscillation peak depends on energy reconstruction

DUNE aims at uncertainties < 1% meaning O(25 MeV) precision of energy reconstruction

Systematic errors should be small since statistics will be high.

Motivation

Motivation

Motivation

Nuclear response

Ab initio nuclear theory for neutrinos

Nuclear chiral Hamiltonian

$$\mathcal{H} | \Psi \rangle = E | \Psi \rangle$$

➡ order of expansion

Iow energy constants fit to data

Ab initio nuclear theory for neutrinos

Nuclear chiral Hamiltonian

$$\mathcal{H} \left| \Psi \right\rangle = E \left| \Psi \right\rangle$$

order of expansion
low energy constants fit to data

Electroweak currents

$$J^{\mu} = (\rho, \vec{j})$$

order of expansion2-body currents important

6

Ab initio nuclear theory for neutrinos

Nuclear chiral Hamiltonian

order of expansion
low energy constants fit to data

Electroweak currents

order of expansion
 2-body currents important

Coupled cluster method

- truncation in correlations
- model space dependence

$$\mathscr{A} = \langle \Psi_m | J_\mu | \Psi_n \rangle$$

$$J^{\mu} = (\rho, \vec{j})$$

Quasielastic response

- Momentum transfer ~hundreds MeV
- Upper limit for ab initio methods
- Important mechanism for T2HK, DUNE
- Role of final state interactions
- Role of 1-body and 2-body currents

First step: analyse the longitudinal response

$$\frac{d\sigma}{d\omega dq}\Big|_{e} = \sigma_{M} \left(v_{L}R_{L} + v_{T}R_{T} \right)$$
charge operator $\hat{\rho}(q) = \sum_{j=1}^{Z} e^{iqz'_{j}}$

Longitudinal response

Lorentz Integral Transform

$$R_{\mu\nu}(\omega,q) = \int_{f} \langle \Psi | J_{\mu}^{\dagger} | \Psi_{f} \rangle \langle \Psi_{f} | J_{\nu} | \Psi \rangle \delta(E_{0} + \omega - E_{f})$$

continuum spectrum
Integral
transform

$$S_{\mu\nu}(\sigma,q) = \int d\omega K(\omega,\sigma) R_{\mu\nu}(\omega,q) = \langle \Psi | J_{\mu}^{\dagger} K(\mathscr{H} - E_{0},\sigma) | J_{\nu} | \Psi \rangle$$

Lorentzian kernel: $K_{\Gamma}(\omega, \sigma) = \frac{1}{\pi} \frac{\Gamma}{\Gamma^2 + (\omega - \sigma)^2}$

 $S_{\mu
u}$ has to be inverted to get access to $R_{\mu
u}$

Lorentz Integral Transform

Longitudinal response ⁴⁰Ca

Longitudinal response ⁴⁰Ca

JES, B. Acharya, S. Bacca, G. Hagen; PRL 127 (2021) 7, 072501

- ✓ CC singles & doubles
- ✓ varying underlying harmonic oscillator frequency
- ✓ two different chiral Hamiltonians
- \checkmark inversion procedure

First ab-initio results for many-body system of 40 nucleons

Transverse response

- This allows to predict electronnucleus cross-section
- Currently only 1-body current

2-body currents important for 4He
→ more correlations needed?
→ 2-b currents strength depends on nucleus?

ChEK method

Chebyshev Expansion of integral Kernel

$$R_{\mu\nu}(\omega, q) = \sum_{f} \langle \Psi | J_{\mu}^{\dagger} | \Psi_{f} \rangle \langle \Psi_{f} | J_{\nu} | \Psi \rangle \delta(E_{0} + \omega - E_{f})$$

integral transform

$$S_{\mu\nu}(\sigma, q) = \int d\omega K(\omega, \sigma) R_{\mu\nu}(\omega, q) = \langle \Psi | J_{\mu}^{\dagger} K(\mathcal{H} - E_{0}, \sigma) J_{\nu} | \Psi \rangle$$

expansion in Chebyshev polynomials

$$K(\mathcal{H}, \sigma) = \sum_{k} c_{k}(\sigma) T_{k}(\mathcal{H})$$

A Bonero Phys Rev A 102 (2020)

Response reconstruction as histogram

ChEK method

Chebyshev Expansion of integral Kernel

- ➡ No assumption about the shape of the response
- Rigorous error estimation
- Convenient when the response has a complicated structure

 $\hat{H} | \psi_A \rangle = E | \psi_A \rangle$

Many-body problem

16

$$\hat{H} | \psi_A \rangle = E | \psi_A \rangle$$

Many-body problem

Electroweak responses

$$\hat{H} | \psi_A \rangle = E | \psi_A \rangle$$

Many-body problem

Electroweak responses

Spectral function

Coupled Cluster + ChEK method

JES, S. Bacca, G. Hagen, T. Papenbrock arXiv: 2205.03592

JES et al, in preparation (2022)

Spectral function for neutrinos

- Comparison with T2K long baseline ν oscillation experiment
- CC 0π events
- Spectral function implemented into NuWro Monte Carlo generator

 $\nu_{\mu} + {}^{16}\text{O} \rightarrow \mu^- + X$

Outlook

- LIT-CC results for electron scattering → we are ready to address electroweak processes
- Various sources of theoretical uncertainty taken into account
- Reconstruction of the nuclear response introduces an additional source of error
 - Inversion procedure gives stable results for smooth responses
 - ChEK \rightarrow way to go with complicated responses
- Spectral function \rightarrow relativistic regime, semi-inclusive reactions

Thank you for attention

BACKUP

Nuclear hamiltonian

$$\mathscr{H} = \sum_{i} \frac{p_i^2}{2m} + \sum_{i < j} v_{ij} + \sum_{i < j < k} V_{ijk} + \dots$$

Electroweak currents

known to give significant contribution for neutrinonucleus scattering

Current decomposition into multipoles needed for various ab initio methods: CC, No Core Shell Model, In-Medium Similarity Renormalization Group

Multipole decomposition for 1and 2-body EW currents

> B. Acharya, S. Bacca Phys.Rev.C 101 (2020) 1, 015505

Coupled cluster method

Reference state (Hartree-Fock): $|\Psi\rangle$

Include correlations through e^{T} operator

similarity transformed Hamiltonian (non-Hermitian)

$$e^{-T}\mathcal{H}e^{T}|\Psi\rangle \equiv \bar{\mathcal{H}}|\Psi\rangle = E|\Psi\rangle$$

Expansion:
$$T = \sum t_a^i a_a^{\dagger} a_i + \sum t_{ab}^{ij} a_a^{\dagger} a_b^{\dagger} a_i a_j + \dots$$

singles doubles

←coefficients obtained through coupled cluster equations

Details on inversion procedure

Basis functions

$$R_L(\omega) = \sum_{i=1}^N c_i \omega^{n_0} e^{-\frac{\omega}{\beta_i}}$$

- Stability of the inversion procedure:
 - Vary the parameters n_0 , β_i and number of basis functions N (6-9)
 - Use LITs of various width Γ (5, 10, 20 MeV)

ChEK method

$$S_{\mu\nu}(\sigma,q) = \int d\omega K(\omega,\sigma) R_{\mu\nu}(\omega,q) = \langle \Psi | J_{\mu}^{\dagger} K(\mathcal{H},\sigma) J_{\nu} | \Psi \rangle$$

Expansion in Chebyshev polynomials

Recursive

$$K(\mathcal{H},\sigma) = \sum_{k=0}^{N} c_k(\sigma) T_k(\mathcal{H})$$
 relations of Chebyshev polynomials

$$T_0(x) = 1; \quad T_{-1}(x) = T_1(x) = x$$
$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$$

Coulomb sum rule

$$m_0(q) = \int d\omega R_L(\omega, q) = \sum_{f \neq 0} |\langle \Psi_f | \hat{\rho} | \Psi \rangle|^2 = \langle \Psi | \hat{\rho}^{\dagger} \hat{\rho} | \Psi \rangle - |F_{el}(q)|^2$$

PRL 127 (2021) 7, 072501 JES, B. Acharya, S. Bacca, G. Hagen