Electroweak Nuclear Responses with Controlled Theory Uncertainty

Joanna Sobczyk

In collaboration with
Sonia Bacca
Bijaya Acharya
Gaute Hagen

Precision Tests with Neutral-Current Coherent Interactions with Nuclei, 25/05/2022

Neutrino oscillations

Deep Underground Neutrino Experiment

Sanford Underground Research Facility

Fermilab

Aims \& challenges

DUNE

T2HK

Aims \& challenges

DUNE
From: Diwan et al, Ann. Rev.Nucl. Part. Sci 66 (2016)

T2HK

Aims \& challenges

Aims \& challenges

Systematic errors should be small since statistics will be high.

Motivation

Motivation

Motivation

Nuclear response

$$
\sigma \propto L^{\mu \nu} R_{\mu \nu}
$$

lepton nuclear
tensor responses

$$
R_{\mu \nu}(\omega, q)=\sum_{f}\langle\Psi| J_{\mu}^{\dagger}(q)\left|\Psi_{f}\right\rangle\left\langle\Psi_{f}\right| J_{\nu}(q)|\Psi\rangle \delta\left(E_{0}+\omega-E_{f}\right)
$$

Ab initio nuclear theory for neutrinos

Nuclear chiral Hamiltonian

$$
\mathscr{H}|\Psi\rangle=E|\Psi\rangle
$$

- order of expansion
- low energy constants fit to data

Ab initio nuclear theory for neutrinos

Nuclear chiral Hamiltonian

$$
\mathscr{H}|\Psi\rangle=E|\Psi\rangle
$$

- order of expansion
- low energy constants fit to data

Electroweak currents

$$
J^{\mu}=(\rho, \vec{j})
$$

- order of expansion
-2-body currents important

Ab initio nuclear theory for neutrinos

Nuclear chiral Hamiltonian

$$
\mathscr{H}|\Psi\rangle=E|\Psi\rangle
$$

- order of expansion
- low energy constants fit to data

Electroweak currents $\quad J^{\mu}=(\rho, \vec{j})$

- order of expansion
- 2-body currents important

Coupled cluster method

$$
\mathscr{A}=\left\langle\Psi_{m}\right| J_{\mu}\left|\Psi_{n}\right\rangle
$$

\Rightarrow truncation in correlations

- model space dependence

Quasielastic response

- Momentum transfer ~hundreds MeV
- Upper limit for ab initio methods
- Important mechanism for T2HK, DUNE
- Role of final state interactions
- Role of 1-body and 2-body currents

First step: analyse the longitudinal response

$$
\left.\frac{d \sigma}{d \omega d q}\right|_{e}=\sigma_{M}\left(v_{L} R_{L}+v_{T} R_{T}\right)
$$

charge operator $\hat{\rho}(q)=\sum_{j=1}^{Z} e^{i q z_{j}^{\prime}}$

Longitudinal response

Uncertainty band: inversion procedure

$$
R_{\mu \nu}(\omega, q)=\sum_{f_{f}}\langle\Psi| J_{\mu}^{\dagger}\left|\Psi_{f}\right\rangle\left\langle\Psi_{f}\right| J_{\nu}|\Psi\rangle \delta\left(E_{0}+\omega-E_{f}\right)
$$

Lorentz Integral Transform

$$
R_{\mu \nu}(\omega, q)=\sum_{f_{f}}\langle\Psi| J_{\mu}^{\dagger}\left|\Psi_{f}\right\rangle\left\langle\Psi_{f}\right| J_{\nu}|\Psi\rangle \delta\left(E_{0}+\omega-E_{f}\right)
$$

Integral
transform

$$
S_{\mu \nu}(\sigma, q)=\int d \omega K(\omega, \sigma) R_{\mu \nu}(\omega, q)=\langle\Psi| J_{\mu}^{\dagger} K\left(\mathscr{H}-E_{0}, \sigma\right) J_{\nu}|\Psi\rangle
$$

$$
\begin{gathered}
\text { Lorentzian kernel: } \\
K_{\Gamma}(\omega, \sigma)=\frac{1}{\pi} \frac{\Gamma}{\Gamma^{2}+(\omega-\sigma)^{2}}
\end{gathered}
$$

$S_{\mu \nu}$ has to be inverted to get access to $R_{\mu \nu}$

Lorentz Integral Transform

Longitudinal isoscalar response on ${ }^{4} \mathrm{He}$ at $\mathrm{q}=300 \mathrm{MeV}$

Longitudinal response ${ }^{40} \mathrm{Ca}$

Sum over multipoles

Underlying oscillator frequency

Longitudinal response ${ }^{40} \mathrm{Ca}$

JES, B. Acharya, S. Bacca, G. Hagen; PRL 127 (2021) 7, 072501
\checkmark CC singles \& doubles
\checkmark varying underlying harmonic oscillator frequency
\checkmark two different chiral Hamiltonians
\checkmark inversion procedure

First ab-initio results for many-body system of 40 nucleons

Transverse response

- This allows to predict electronnucleus cross-section
- Currently only 1-body current

2-body currents important for 4 He
\rightarrow more correlations needed?
\rightarrow 2-b currents strength depends on nucleus?

ChEK method

Chebyshev Expansion of integral Kernel

$$
R_{\mu \nu}(\omega, q)=\sum_{f}\langle\Psi| J_{\mu}^{\dagger}\left|\Psi_{f}\right\rangle\left\langle\Psi_{f}\right| J_{\nu}|\Psi\rangle \delta\left(E_{0}+\omega-E_{f}\right)
$$

integral transform

$$
S_{\mu \nu}(\sigma, q)=\int d \omega K(\omega, \sigma) R_{\mu \nu}(\omega, q)=\langle\Psi| J_{\mu}^{\dagger} K\left(\mathscr{H}-E_{0}, \sigma\right) J_{\nu}|\Psi\rangle
$$

expansion in Chebyshev polynomials

Gaussian kernel:
$K_{\Lambda}(\omega, \sigma)=\frac{1}{\sqrt{2 \pi \Lambda}} \exp \left(-\frac{(\omega-\sigma)^{2}}{2 \Lambda^{2}}\right)$

$$
K(\mathscr{H}, \sigma)=\sum_{k} c_{k}(\sigma) T_{k}(\mathscr{H})
$$

ChEK method

Chebyshev Expansion of integral Kernel

S. Bacca, N. Barnea, G. Hagen, G. Orlandini; Phys.Rev.C 90 (2014) 6
\Rightarrow No assumption about the shape of the response

- Rigorous error estimation
\Rightarrow Convenient when the response has a complicated structure

Low/high energies

Low/high energies

Electroweak responses

Low/high energies

$$
\hat{H}\left|\psi_{A}\right\rangle=E\left|\psi_{A}\right\rangle
$$

Many-body problem

$$
\left\langle\psi_{f}\right| \hat{j}\left|\psi_{A}\right\rangle
$$

Electroweak responses

Low/high energies

$\hat{H}\left|\psi_{A}\right\rangle=E\left|\psi_{A}\right\rangle$
Many-body problem

$\left\langle\psi_{f}\right| \hat{j}\left|\psi_{A}\right\rangle$
Electroweak responses

Impulse Approximation

Probability density of finding nucleon (E, \mathbf{p}) in ground state
nucleus

Spectral function

Coupled Cluster + ChEK method

JES, S. Bacca, G. Hagen, T. Papenbrock arXiv: 2205.03592

JES et al, in preparation (2022)

Spectral function for neutrinos

$$
\nu_{\mu}+{ }^{16} \mathrm{O} \rightarrow \mu^{-}+X
$$

- Comparison
with T2K long
baseline ν
oscillation
experiment
- $\mathrm{CC} 0 \pi$ events
- Spectral
function
implemented
into NuWro
Monte Carlo
generator

Outlook

- LIT-CC results for electron scattering \rightarrow we are ready to address electroweak processes
- Various sources of theoretical uncertainty taken into account
- Reconstruction of the nuclear response introduces an additional source of error
- Inversion procedure gives stable results for smooth responses
- ChEK \rightarrow way to go with complicated responses
- Spectral function \rightarrow relativistic regime, semi-inclusive reactions

Thank you for attention

BACKUP

Nuclear hamiltonian

$$
\mathscr{H}=\sum_{i} \frac{p_{i}^{2}}{2 m}+\sum_{i<j} v_{i j}+\sum_{i<j<k} V_{i j k}+\ldots
$$

$n=0 \quad$ LO

Electroweak currents

B. Acharya, S. Bacca Phys.Rev.C 101 (2020) 1, 015505

Coupled cluster method

Reference state (Hartree-Fock): $\quad|\Psi\rangle$

Include correlations through e^{T} operator

$$
e^{-T} \mathscr{H} e^{T}|\Psi\rangle \equiv \overline{\mathscr{H}}|\Psi\rangle=E|\Psi\rangle
$$

Expansion: $T=\sum t_{a}^{i} a_{a}^{\dagger} a_{i}+\sum t_{a b}^{i j} a_{a}^{\dagger} a_{b}^{\dagger} a_{i} a_{j}+\ldots$
\leftarrow coefficients obtained through coupled cluster equations

Details on inversion procedure

- Basis functions

$$
R_{L}(\omega)=\sum_{i=1}^{N} c_{i} \omega^{n_{0}} e^{-\frac{\omega}{\beta_{i}}}
$$

- Stability of the inversion procedure:
- Vary the parameters n_{0}, β_{i} and number of basis functions N (6-9)
- Use LITs of various width $\Gamma(5,10,20 \mathrm{MeV})$

ChEK method

$$
S_{\mu \nu}(\sigma, q)=\int d \omega K(\omega, \sigma) R_{\mu \nu}(\omega, q)=\langle\Psi| J_{\mu}^{\dagger} K(\mathscr{H}, \sigma) J_{\nu}|\Psi\rangle
$$

- Expansion in Chebyshev polynomials

$$
K(\mathscr{H}, \sigma)=\sum_{k=0}^{N} c_{k}(\sigma) T_{k}(\mathscr{H})
$$

- Recursive relations of Chebyshev polynomials

$$
\begin{aligned}
& T_{0}(x)=1 ; \quad T_{-1}(x)=T_{1}(x)=x \\
& T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x)
\end{aligned}
$$

Coulomb sum rule

$$
\left.m_{0}(q)=\int d \omega R_{L}(\omega, q)=\sum_{f \neq 0}\left|\left\langle\Psi_{f}\right| \hat{\rho}\right| \Psi\right\rangle\left.\right|^{2}=\langle\Psi| \hat{\rho}^{\dagger} \hat{\rho}|\Psi\rangle-\left|F_{e l}(q)\right|^{2}
$$

JES, B. Acharya, S.Bacca, G. Hagen Phys.Rev.C 102 (2020) 064312

PRL 127 (2021) 7, 072501 JES, B. Acharya, S. Bacca, G. Hagen

