Theoretical uncertainties count

Xavier Roca Maza Università degli studi di Milano & INFN

Precision Tests with Neutral-Current Coherent Interactions with Nuclei Mainz Institute for Theoretical Physics, Johannes Gutenberg University May 23 – 27, 2022

Table of contents

- Recent experimental results: PREx and CREx (JLab), α_D in ⁴⁸Ca and ²⁰⁸Pb (RCNP)
- Simple models for A_{PV} and α_D: hints for physical correlations
- Previous analysis based on correlations shown within different EDFs
- New analysis taking into account also theoretical error quantification within each EDF
- Conclusions

Recent experimental results

PREx: D. Adhikari et al. (PREX Collaboration) Phys. Rev. Lett. 126, 172502 (2021)

Our final results for A_{PV}^{meas} and F_W with the acceptance described by $\epsilon(\theta)$ and $\langle Q^2 \rangle = 0.00616 \text{ GeV}^2$ are

 $A_{\rm PV}^{\rm meas} = 550 \pm 16 \,({\rm stat}) \pm 8 \,({\rm syst}) \,\,{\rm ppb}$

 $F_W(\langle Q^2 \rangle) = 0.368 \pm 0.013 \,(\text{exp}) \pm 0.001 \,(\text{theo}),$

CREx: publication expected soon. Data below preliminary.

mean scattering angle:	$\overline{ heta}_{\mathrm{Ca}}$	4.51 ± 0.02	0.5 -
transferred momentum:	$\langle Q^2 \rangle$	$0.0297\pm 0.0002{\rm GeV^2}$	0.0
	q	$0.873\pm0.006{\rm fm}^{-1}$	0.0
beam energy:	$E_{\rm beam}$	$2182.5\pm1.5~{\rm MeV}$	10
weak charge:	Q_W	26.073 (26.074?)	_
parity viol. asymmetry:	$A_{ m PV}^{ m (Ca)}$	$2658.6\pm113.2\mathrm{ppb}$	Final value slightly
weak form factor at Q^2 :	$F_W^{(\mathrm{Ca})}$	$0.1297 \pm 4.3\%$	different: see KK's talk
			or check arXiv today

Parity Violating Asymmetry: definition and simple model (PWBA; $F_W \approx F_n$; and $F_{ch} \approx F_p$)

$$A_{p\nu} = \frac{d\sigma_{+}/d\Omega - d\sigma_{-}/d\Omega}{d\sigma_{+}/d\Omega + d\sigma_{-}/d\Omega}$$

$$A_{pv} = \frac{G_F q^2}{4\pi\alpha\sqrt{2}} \Big[4\sin^2\theta_W + \frac{F_n(q) - F_p(q)}{F_p(q)} \Big]$$

... which depends on $F_n(q) - F_p(q)$. For $q \to 0$, it is approximately,

$$\begin{split} -\frac{q^2}{6} \left(\langle r_n^2 \rangle - \langle r_p^2 \rangle \right) &= -\frac{q^2}{6} \left[\Delta r_{np} (\langle r_n^2 \rangle^{1/2} + \langle r_p^2 \rangle^{1/2}) \right] \\ &= -\frac{q^2}{6} \left(2 \langle r_p^2 \rangle^{1/2} \Delta r_{np} + \Delta r_{np}^2 \right) \end{split}$$

variation of A_{pv} at a fixed q dominated by the variation of Δr_{np} . $F_p(q)$ well fixed by experiment

Dipole Polarizability: definition

The **linear response** or dynamic polarizability of a **nuclear system excited** from its g.s., $|0\rangle$, to an excited state, $|v\rangle$, due to the **action of an external isovector oscillating field** (dipolar in our case) of the form (Fe^{iwt} + F[†]e^{-iwt}):

$$F_{JM} = \sum_{i}^{A} r^{J} Y_{JM}(\hat{r}) \tau_{z}(i) \ (\Delta L = 1 \rightarrow \text{Dipole})$$

is proportional to the **static polarizability** for small oscillations

$$\alpha = (8\pi/9)e^2 m_{-1} = (8\pi/9)e^2 \sum_{\nu} |\langle \nu | F | 0 \rangle|^2 / E \text{ where } m_{-1} \text{ is}$$

the inverse energy weighted moment of the strength function, defined as, $S(E) = \sum |\langle \nu | F | 0 \rangle|^2 \delta(E - E_{\nu})$

Dipole Polarizability: simple model

electric polarizability measures tendency of the nuclear charge distribution to be distorted ($\alpha \sim \frac{\text{electric dipole moment}}{\text{external electric field}}$)

 The dielectric theorem establishes that the m₋₁ moment can be computed from the expectation value of the Hamiltonian in the constrained ground state H' = H + λD.

Adopting the Droplet Model:

$$m_{-1} \approx \frac{A \langle r^2 \rangle^{1/2}}{48J} \left(1 + \frac{15}{4} \frac{J}{Q} A^{-1/3} \right)$$

within the same model, connection with the neutron skin thickness:

$$\alpha_{\rm D} \approx \frac{A \langle r^2 \rangle}{12J} \left[1 + \frac{5}{2} \frac{\Delta r_{\rm np} + \sqrt{\frac{3}{5}} \frac{e^2 Z}{70J} - \Delta r_{\rm np}^{\rm surface}}{\langle r^2 \rangle^{1/2} (I - I_{\rm C})} \right]$$

Analysis based on EDFs correlations between A_{pv}, ΔR_{ch} and L

EDFs callibrated to **reproduce** the **binding energy** and **charge radii** of some **selected nuclei**. In some cases pseudo-observables related to the EoS are also used

D. Adhikari et al. Phys. Rev. Lett. 126, 172502 (2021)

Analysis based on EDFs correlations between α_D, ΔR_{ch} and L

X. Roca-Maza, et al. Phys. Rev. C 88, 024316 (2013)

X. Roca-Maza, et al. Phys. Rev. C 92, 064304 (2015)

New analysis taking into account model error quantification

How to improve current analysis?

- Include theoretic statistical errors and correlations within a given EDF parametrization
- Fitting procedure including experimental data not only on **B** and R_{ch} but also on A_{Pv} and/or α_{D} ("informed" EDFs)
- Extension of available EDFs to account for missing systematic uncertainties and more flexibility
- Other issues related to theory?

. . .

PREx: theo. uncertainty budget for Apv

Uncertainties in the determination of the Form Factors is smaller than typical EDFs statistical uncertainties

Thin blue bars: statistical model uncertainties (related to neutron and proton densities)

Paul-Gerhard Reinhard, Xavier Roca-Maza, and Witold Nazarewicz Phys. Rev. Lett. 127, 232501 (2021)

EDF predictions with error ellipsoids for A_{PV} and α_{D} in ²⁰⁸Pb

Correlation ellipsoids within each **EDF** show **similar correlations** than the **systematic** study with many **EDFs** ↔ **have we learnt something**?

How these models perform for *B* and *R*_{ch} in ²⁰⁸Pb?

→ The **residuals** of the charge **radius** (a) and binding **energy** (b) of 208 Pb for the theoretical models.

→ The grey bands around the perfect match indicate the typical performance of EDFs (i.e. typical r.m.s. deviation taken over all nuclei where correlation effects are small)

Paul-Gerhard Reinhard, Xavier Roca-Maza, and Witold Nazarewicz Phys. Rev. Lett. 127, 232501 (2021)

A_{Pv} versus α_D in well callibarted EDFs

Fitting A_{PV} and α_D

Paul-Gerhard Reinhard, Xavier Roca-Maza, and Witold Nazarewicz (to be submitted 2022)

Are EDFs incompatible with experimental data?

Paul-Gerhard Reinhard, Xavier Roca-Maza, and Witold Nazarewicz (to be submitted 2022)

Does a richer EDF improve?

Paul-Gerhard Reinhard, Xavier Roca-Maza, and Witold Nazarewicz (to be submitted 2022)

Other example: minimal model assumptions and statistical analysis

Reed Essick, et al. Phys. Rev. Lett. 127, 192701 (2021)

Astro+PREx-II

Non-parametric equation of state representation derived from observations of neutron stars with minimal modeling assumptions.

The resulting **astrophysical** constraints from heavy pulsar masses, LIGO/Virgo, and NICER clearly favor "small" values of the **neutron skin** and L.

Combining astrophysical data with **PREX-II** and chiral effective field theory constraints yields

> J=33.0 ± 2.0 MeV I = 53 + 15 MeV $R_{skin} = 0.17 \pm 0.04 \text{ fm}$

Conclusions

- Current EDFs show strong systematic and statistic correlations between A_{PV} and ΔR_{np} or $\alpha_{D}J$ and ΔR_{np}
- Fitting masses and radii do not give enough information on A_{PV} , α_{PJ} and ΔR_{np} (additional reason for the strong correlation)
- Extending the fitting protocol to include A_{PV} and α_D do not change the correlations above since experimental errors on these observables are still large → model predictions remain biased by masses and radii
- More accurate measurements on A_{PV} could point to model deficiencies, while EDFs seem to accommodate better α_P
- **Current EDFs** are able to overlap within $\sim 1\sigma$ all experimental **data** (except A_{PV} in ⁴⁸Ca where SV-ext gives the best result being away $\sim 1.5\sigma$ from experiment)
- Ideally: measure A_{PV} at different kinematics or A_{PV} on different nuclei with same (or better) accuracy → better constraints to models

Collaborators

B. K. Agrawal¹ P. F. Bortignon, M. Brenna, G. Colò^{2,3} W. Nazarewicz^{4,5,6} N. Paar, D. Vretenar⁷ J. Piekarewicz⁸

P.-G. Reinhard⁹ Michal Warda¹⁰ Mario Centelles, Xavier Viñas¹¹