Experimental Normal Spin Asymmetry across the Nuclear Chart

Dr. Anselm Esser for the A1-Collaboration MITP Workshop 23.05.22

Transverse Asymmetry in Short

Measurements in Mainz - Accelerator

- MAMI: Continuous wave electron beam
 - Beam energy: 185 1600 MeV (energy used: 570 MeV)
 - 20 μA polarized beam ~ 80 % polarization
 - Available polarimeters: Møller, Mott, Compton
- Previous A4 Experiment
 - Experience with polarized & highly stabilized beams
 - Active stabilization of:
 - Current
 - Energy
 - Position & angle

Polarimetry

- No direct measurement of vertical polarization
- Wien-filter setting:
 - Maximization and measurement of absolute degree of polarization in longitudinal direction using Mott and Møller
 - Maximization of horizontal transverse polarization at Mott polarimeter
- Solenoid setting & fine tuning
 - Minimization of horizontal components in all polarimeters
 - Variation of spin precession by changing beam Energy

https://doi.org/10.1016/j.nima.2017.01.024

Spectrometer Facility

- High resolution magnetic spectrometers
- Fused silica Čerenkov detectors
 - Selection of elastic Events
- A4 luminosity monitor electronics
 - Integration of PMT current
 - Control of beam polarity

Systematic Uncertainties

Source of Error	Typical Value [%]	Typical Value [ppb]	Maximum Value [ppb]
Beam polarization	1.862	384	523
<u></u> <i>σ</i> / <i>∂</i> x	0.023	5	23
<i>∂</i> σ/ <i>∂</i> y	0.023	5	136
∂σ/∂x'	0.013	3	120
∂σ/∂y'	0.064	14	343
∂σ/∂Ε	0.044	9	321
PMT gain	0.288	62	1100
Current asymmetry	0.050	11	13
Gate length asymmetry	0.044	8	13
Inversion	0.395	92	500
Beam profile	0 *)	0 *)	28
Current dips	0.111	17	31
Signal tails	0.751	149	405

*) Typically no error contribution

Previous Measurements

Our Experiences with 90Zr

⁹⁰Zr target

- High background radiation
 - \rightarrow Leaks in vacuum seals
- Brittle oxide
 - → Contamination of scattering chamber

- Direct Production of ⁸⁸Y ($T_{1/2}=107d$) ⁹⁰Zr \rightarrow ⁸⁸Y + n + p

→ 17 mSv/h residual radiation after several weeks of decaying

88Nb 14.55 M	89Nb 2.03 H	90Nb 14.60 Н	91Nb 6.8E+2 Y	92Nb 3.47E+7 Y	93Nb STABLE 100%
e: 100.00%	e: 100.00%	€: 100.00%	e: 100.00%	ε: 100.00% β− < 0.05%	
87Zr 1.68 H	88Zr 83.4 D	89Zr 78.41 H	90Zr STABLE 51.45%	91Zr STABLE 11.22%	92Zr STABLE 17.15%
e: 100.00%	e: 100.00%	€: 100.00%			
86Y 14.74 H	87Y 79.8 H	88¥ 106.626 D	89Y STABLE 100%	90Y 64.053 H	91Y 58.51 D
e: 100.00%	e: 100.00%	€: 100.00%		β-: 100.00%	β-: 100.00%
85Sr 64.84 D	86Sr STABLE 9.86%	87Sr STABLE 7.00%	88Sr STABLE 82 58%	89Sr 50.57 D	90Sr 28.90 Y
e: 100.00%	0.0070	1.0070	02.00%	β-: 100.00%	β-: 100.00%

Before

Nickel 58 as Target

- 58**Ni**
 - Brittle oxide (probably)
 - Direct production possible:
 - ${}^{58}Ni \rightarrow {}^{56}Co + n + p (T_{1/2} = 77d)$
 - ${}^{58}Ni \rightarrow {}^{57}Co + p$ (T_{1/2}=272d)
 - ${}^{58}Ni + n \rightarrow {}^{58}Co + p (T_{1/2} = 71d)$
- Improvements in vacuum seals
 - Radiation resistant metal seals
 - Require more compacting pressure
 - New scattering chamber constructed

Nickel oxide

Comparison to other Experiments

Comparison to other Experiments

	MAMI	PREX / CREX	QWeak
Beam Energy	570 MeV	950 – 2180 MeV	1158 MeV
Scattering Angle	15 – 30 °	4 – 5 °	7.7 °
Q ²	0.02 – 0.05 GeV²/c²	0.006 – 0.033 GeV ² /c ²	0.02437 GeV ² /c ²
Targets	¹² C, ²⁸ Si, ⁹⁰ Zr	¹² C, ⁴⁰ Ca, ⁴⁸ Ca, ²⁰⁸ Pb	¹² C, ²⁷ AI

New DAQ - Features to Maintain

- Fused silica Čerenkov detectors
- Integration window synchronized to power grid frequency
- Polarity patterns:
 - <mark>+ - +</mark> or <mark>- + + -</mark>
 - Pseudo-random sequence
- Monitoring of:
 - PIMO (current)
 - ENMO (energy)
 - XYMO (position)
- Inversion of general sign ~ once per day

Improved DAQ Approach

Weak points of previous set-up

- Limited resolution at low counting rates
- Polarity bit generation in close proximity to analog integrators
- Variation of integration window length within event
- Improvements in new set-up
- Counting of PMT Pulses
- Voltage Frequency converters for beam monitors
- Pseudo-random generation of sets of patterns with identical amount of + - - + & - + -
- Equal length of "integration gates" in one quadruplett

DAQ Scheme (very simplified)

PMT Readout

- Asymmetric splitter for analog signal
- Parallel discrimination with fixed threshold
- Counting of signals in integration gate using FPGA

Current Status & Future Plans

- Status:
 - Electronics for beam diagnostics in final development phase
 - PMT readout under investigation
 - Beam polarization control electronics under development
- Planned experiments
 - July 2022: Parasitic tests of beam diagnostics
 - Late 2022: Commissioning run for new electronics
 - 2023: Measurement of A_n on ²⁰⁸Pb
 - Later:
 - Measurement of A_{PV} on ²⁰⁸Pb
 - Other targets?

Thank you for your attention!