## Nuclear Polarizability

Corrections to the Lamb-Shift

- Muionic atoms beyond $\mu \mathrm{H}$ -


## Sonia Bacca

Johannes Gutenberg University, Mainz

## Hydrogen-like muonic atoms

Ordinary atoms


Muonic atoms
muon more sensitive to the nucleus

## Hydrogen-like muonic atoms

Ordinary atoms


Muonic atoms
muon more sensitive to the nucleus

Can be used as a precision probe for the nucleus

## Lamb Shift



Bohr

## Lamb Shift



## Lamb Shift



## Lamb Shift



## Concept of polarizability



## Beyond $\mu \mathrm{H}$

Strong experimental program at PSI (Switzerland) from the CREMA collaboration to unravel the mystery by studying the Lamb shift in other muonic atoms than $\mu \mathrm{H}$ :


$$
\Delta E_{2 S-2 P}=\delta_{\mathrm{QED}}+\frac{m_{r}^{4}(Z \alpha)^{4}}{12}\left\langle r_{c}^{2}\right\rangle+\delta_{\mathrm{TPE}}
$$

## Beyond $\mu \mathrm{H}$

Strong experimental program at PSI (Switzerland) from the CREMA collaboration to unravel the mystery by studying the Lamb shift in other muonic atoms than $\mu \mathrm{H}$ :


$$
\Delta E_{2 S-2 P}=\delta_{\mathrm{QED}}+\frac{m_{r}^{4}(Z \alpha)^{4}}{12}\left\langle r_{c}^{2}\right\rangle+\delta_{\mathrm{TPE}}
$$

$$
\varangle
$$

what is measured

## Beyond $\mu \mathrm{H}$

Strong experimental program at PSI (Switzerland) from the CREMA collaboration to unravel the mystery by studying the Lamb shift in other muonic atoms than $\mu \mathrm{H}$ :


$$
\Delta E_{2 S-2 P}=\delta_{\mathrm{QED}}+\frac{m_{r}^{4}(Z \alpha)^{4}}{12}\left\langle r_{c}^{2}\right\rangle+\delta_{\mathrm{TPE}}
$$


what is measured
what you want to extract

## Beyond $\mu \mathrm{H}$

Strong experimental program at PSI (Switzerland) from the CREMA collaboration to unravel the mystery by studying the Lamb shift in other muonic atoms than $\mu \mathrm{H}$ :


$$
\Delta E_{2 S-2 P}=\delta_{\mathrm{QED}}+\frac{m_{r}^{4}(Z \alpha)^{4}}{12}\left\langle r_{c}^{2}\right\rangle+\delta_{\mathrm{TPE}}
$$

## Beyond $\mu \mathrm{H}$

Strong experimental program at PSI (Switzerland) from the CREMA collaboration to unravel the mystery by studying the Lamb shift in other muonic atoms than $\mu \mathrm{H}$ :


$$
\begin{aligned}
\Delta E_{2 S-2 P} & =\delta_{\mathrm{QED}}+\frac{m_{r}^{4}(Z \alpha)^{4}}{12}\left\langle r_{c}^{2}\right\rangle+\delta_{\mathrm{TPE}} \\
& \text { well known }
\end{aligned}
$$

## Beyond $\mu \mathrm{H}$

Strong experimental program at PSI (Switzerland) from the CREMA collaboration to unravel the mystery by studying the Lamb shift in other muonic atoms than $\mu \mathrm{H}$ :


$$
\begin{aligned}
\Delta E_{2 S-2 P} & =\delta_{\mathrm{QED}}+\frac{m_{r}^{4}(Z \alpha)^{4}}{12}\left\langle r_{c}^{2}\right\rangle+\delta_{\mathrm{TPE}} \\
& \text { well known } \quad \text { not well known }
\end{aligned}
$$

## Beyond $\mu \mathrm{H}$

Strong experimental program at PSI (Switzerland) from the CREMA collaboration to unravel the mystery by studying the Lamb shift in other muonic atoms than $\mu \mathrm{H}$ :


$$
\begin{aligned}
\Delta E_{2 S-2 P} & =\delta_{\mathrm{QED}}+\frac{m_{r}^{4}(Z \alpha)^{4}}{12}\left\langle r_{c}^{2}\right\rangle+\delta_{\mathrm{TPE}} \\
& \text { well known } \quad \text { not well known }
\end{aligned}
$$

Experimental Campaign $\quad$ e $\mu \mathrm{D} \quad \rightarrow$ Science 353, 669 (2016)

- $\mu^{4} \mathrm{He}^{+} \longrightarrow$ Nature 589, 527 (2021)
- $\mu^{3} \mathrm{He}^{+} \rightarrow$ measured

Q $\mu^{3} \mathrm{H} \quad \rightarrow$ impossible because triton is radioactive

- $\mu^{6} \mathrm{Li}^{2+} \rightarrow$ future plan
- $\mu^{7 \mathrm{Li}^{2+}} \rightarrow$ future plan


## Theoretical derivation of TPE

$$
\begin{aligned}
H & =H_{N}+H_{\mu}+\Delta V \\
H_{\mu} & =\frac{p^{2}}{2 m_{r}}-\frac{Z \alpha}{r}
\end{aligned}
$$



## Theoretical derivation of TPE

$$
\begin{aligned}
H & =H_{N}+H_{\mu}+\Delta V \\
H_{\mu} & =\frac{p^{2}}{2 m_{r}}-\frac{Z \alpha}{r}
\end{aligned}
$$



Perturbative potential:
correction to the bulk Coulomb

$$
\Delta V=\sum_{a}^{Z} \alpha\left(\frac{1}{r}-\frac{1}{\left|\vec{r}-\vec{R}_{a}\right|}\right)
$$

## Theoretical derivation of TPE

$$
\begin{aligned}
H & =H_{N}+H_{\mu}+\Delta V \\
H_{\mu} & =\frac{p^{2}}{2 m_{r}}-\frac{Z \alpha}{r}
\end{aligned}
$$



Perturbative potential:
correction to the bulk Coulomb

$$
\Delta V=\sum_{a}^{Z} \alpha\left(\frac{1}{r}-\frac{1}{\left|\vec{r}-\vec{R}_{a}\right|}\right)
$$

Using perturbation theory at second order one obtains the expression for TPE up to order $(Z \alpha)^{5}$


$$
P=\left\langle N_{0} \mu\right| \Delta V G \Delta V\left|N_{0} \mu\right\rangle
$$

## Theoretical derivation of TPE

C.Ji et al., JPG: Part. Nucl. 45, 093002 (2018)

$$
\delta_{\mathrm{TPE}}=\delta_{\mathrm{Zem}}^{A}+\delta_{\mathrm{Zem}}^{N}+\delta_{\mathrm{pol}}^{A}+\delta_{\mathrm{pol}}^{N}
$$



- Non relativistic term

$$
\begin{aligned}
& \delta_{\mathrm{pol}}^{A}= \sum_{N \neq N_{0}} \int d^{3} R d^{3} R^{\prime} \rho_{N}^{p}(\mathbf{R}) W\left(\mathbf{R}, \mathbf{R}^{\prime}, \omega_{N}\right) \rho_{N}^{p}\left(\mathbf{R}^{\prime}\right) \\
& \rho_{N}^{p}(\mathbf{R})=\langle N| \frac{1}{Z} \sum_{i=1}^{A} \delta\left(\mathbf{R}-\mathbf{R}_{\mathbf{i}}\right) \hat{e}_{i}^{p}\left|N_{0}\right\rangle
\end{aligned}
$$

## Theoretical derivation of TPE

## C.Ji et al., JPG: Part. Nucl. 45, 093002 (2018)

$$
\delta_{\mathrm{TPE}}=\delta_{\mathrm{Zem}}^{A}+\delta_{\mathrm{Zem}}^{N}+\delta_{\mathrm{pol}}^{A}+\delta_{\mathrm{pol}}^{N}
$$



Nucleus
Q Non relativistic term

$$
\begin{aligned}
\delta_{\mathrm{pol}}^{A}= & \sum_{N \neq N_{0}} \int d^{3} R d^{3} R^{\prime} \rho_{N}^{p}(\mathbf{R}) W\left(\mathbf{R}, \mathbf{R}^{\prime}, \omega_{N}\right) \rho_{N}^{p}\left(\mathbf{R}^{\prime}\right) \\
& \rho_{N}^{p}(\mathbf{R})=\langle N| \frac{1}{Z} \sum_{i=1}^{A} \delta\left(\mathbf{R}-\mathbf{R}_{\mathbf{i}}\right) \hat{e}_{i}^{p}\left|N_{0}\right\rangle \\
& W\left(\mathbf{R}, \mathbf{R}^{\prime}, \omega_{N}\right)=\frac{\pi}{6 m_{r}}(Z \alpha)^{2} \phi^{2}(0)\left(\frac{2 m_{r}}{\omega_{N}}\right)^{\frac{3}{2}}\left[\eta^{2}-\frac{1}{4} \eta^{3}+\frac{1}{20} \eta^{4}+\ldots\right] \\
& \eta=\sqrt{2 m_{r} \omega}\left|\boldsymbol{R}-\boldsymbol{R}^{\prime}\right| \sim \sqrt{\frac{m_{r}}{m_{N}}}=0.33
\end{aligned}
$$

## Theoretical derivation of TPE

## C.Ji et al., JPG: Part. Nucl. 45, 093002 (2018)

$$
\delta_{\mathrm{TPE}}=\delta_{\mathrm{Zem}}^{A}+\delta_{\mathrm{Zem}}^{N}+\delta_{\mathrm{pol}}^{A}+\delta_{\mathrm{pol}}^{N}
$$



Nucleus

- Non relativistic term

$$
\begin{aligned}
\delta_{\mathrm{pol}}^{A}= & \sum_{N \neq N_{0}} \int d^{3} R d^{3} R^{\prime} \rho_{N}^{p}(\mathbf{R}) W\left(\mathbf{R}, \mathbf{R}^{\prime}, \omega_{N}\right) \rho_{N}^{p}\left(\mathbf{R}^{\prime}\right) \\
& \rho_{N}^{p}(\mathbf{R})=\langle N| \frac{1}{Z} \sum_{i=1}^{A} \delta\left(\mathbf{R}-\mathbf{R}_{\mathbf{i}}\right) \hat{e}_{i}^{p}\left|N_{0}\right\rangle \\
& W\left(\mathbf{R}, \mathbf{R}^{\prime}, \omega_{N}\right)=\frac{\pi}{6 m_{r}}(Z \alpha)^{2} \phi^{2}(0)\left(\frac{2 m_{r}}{\omega_{N}}\right)^{\frac{3}{2}}\left[\eta^{2}-\frac{1}{4} \eta^{3}+\frac{1}{20} \eta^{4}+\ldots\right] \\
& \eta=\sqrt{2 m_{r} \omega}\left|\boldsymbol{R}-\boldsymbol{R}^{\prime}\right| \sim \sqrt{\frac{m_{r}}{m_{N}}}=0.33
\end{aligned} \underbrace{}_{i} \begin{aligned}
& \delta_{\mathrm{pol}}^{A} \rightarrow \\
& \sum_{i} C_{i} \int d \omega f\left(\omega / m_{r}\right) R_{O_{i}}(\omega) \quad \begin{array}{l}
\text { Special sum rules of electromagnetic } \\
\text { response functions }
\end{array}
\end{aligned}
$$

## Theoretical derivation of TPE

## C.Ji et al., JPG: Part. Nucl. 45, 093002 (2018)

$$
\delta_{\mathrm{TPE}}=\delta_{\mathrm{Zem}}^{A}+\delta_{\mathrm{Zem}}^{N}+\delta_{\mathrm{pol}}^{A}+\delta_{\mathrm{pol}}^{N}
$$



Nucleus

$$
\begin{aligned}
\delta_{\mathrm{pol}}^{A}= & \delta_{D 1}^{(0)}+\delta_{R 3}^{(1)}+\delta(/ 23 \\
& +\delta_{L}^{(0)}+\delta_{R}^{(2)}+\delta_{R}^{(0)}+\delta_{M}^{(0)}+\delta_{R 1}^{(1)}+\delta_{Z 1}^{(2)}+\delta_{D 1 D 3}^{(2)}+\delta_{N S}^{(0)} \\
& \\
\delta_{\mathrm{Zem}}^{A}= & -\delta_{\mathrm{Z3}}^{(1)}-\delta_{11}^{(1)} \quad \text { Friar an Payne (‘97) }
\end{aligned}
$$

## Extraction from experimental data


S.B. and Saori Pastore, Journal of Physics G.: Nucl. Part. Phys. 41, 123002 (2014)

## Theory is more precise


S.B. and Saori Pastore, Journal of Physics G.: Nucl. Part. Phys. 41, 123002 (2014)

## A matter of precision

The uncertainty of the extracted radius depends on the precision of the TPE

$$
\begin{array}{cccc}
\Delta E_{2 S-2 P}= & \delta_{\mathrm{QED}}+\mathcal{A}_{\mathrm{OPE}}\left\langle r_{c}^{2}\right\rangle+\delta_{\mathrm{TPE}} \\
\text { Roughly: } & 95 \% & 4 \% & 1 \%
\end{array}
$$

TPE needs to be know precisely, in order to exploit the experimental precision.

## A matter of precision

The uncertainty of the extracted radius depends on the precision of the TPE

$$
\begin{array}{rccc}
\Delta E_{2 S-2 P}= & \delta_{\mathrm{QED}}+\mathcal{A}_{\mathrm{OPE}}\left\langle r_{c}^{2}\right\rangle+\delta_{\mathrm{TPE}} \\
\text { Roughly: } & 95 \% & 4 \% & 1 \%
\end{array}
$$

TPE needs to be know precisely, in order to exploit the experimental precision.

## Uncertainties comparison

| Atom | Exp uncertainty on $\Delta \mathrm{E}_{2 \mathrm{~S}-2 \mathrm{P}}$ | Uncertainty on TPE prior to the discovery <br> of the proton radius puzzle |
| :---: | :---: | :---: |
| $\mu^{2} \mathrm{H}$ | 0.003 meV | $0.03 \mathrm{meV}^{*}$ |
| $\mu^{3} \mathrm{He}^{+}$ | 0.08 meV | 1 meV |
| $\mu^{4} \mathrm{He}^{+}$ | 0.06 meV | 0.6 meV |
| $\mu^{6,7 \mathrm{Li}^{++}}$ | 0.7 meV | 4 meV |

*Leidemann, Rosenfelder '95 using few-body methods

## Ab Initio Nuclear Theory

- Solve the Schrödinger equation for few-nucleons

$$
\begin{aligned}
& H_{N}\left|\psi_{i}\right\rangle=E_{i}\left|\psi_{i}\right\rangle \\
& H_{N}=T+V_{N N}(\Lambda)+V_{3 N}(\Lambda)+\ldots
\end{aligned}
$$



## Ab Initio Nuclear Theory

- Solve the Schrödinger equation for few-nucleons

$$
\begin{aligned}
& H_{N}\left|\psi_{i}\right\rangle=E_{i}\left|\psi_{i}\right\rangle \\
& H_{N=T}+V_{N N}(\Lambda)+V_{3 N}(\Lambda)+\ldots
\end{aligned}
$$

Hyper-spherical harmonics expansions for $A=3,4,6,7$


Barnea, Leidemann, Orlandini PRC 61 (2000) 054001

For $\mathrm{A}=2$ we use an harmonic oscillator expansion

## Ab Initio Nuclear Theory

- Solve the Schrödinger equation for few-nucleons

$$
\begin{aligned}
& H_{N}\left|\psi_{i}\right\rangle=E_{i}\left|\psi_{i}\right\rangle \\
& H_{N=T}+V_{N N}(\Lambda)+V_{3 N}(\Lambda)+\ldots
\end{aligned}
$$

Hyper-spherical harmonics expansions for $A=3,4,6,7$


Barnea, Leidemann, Orlandini PRC 61 (2000) 054001

For $\mathrm{A}=2$ we use an harmonic oscillator expansion

- To compute TPE terms we use the Lanczos sum rule method Nevo-Dinur, Ji, SB, Barnea, Phys.Rev.C 89 (2014) 6, 064317


## Ab Initio Nuclear Theory

- Solve the Schrödinger equation for few-nucleons

$$
\begin{aligned}
& H_{N}\left|\psi_{i}\right\rangle=E_{i}\left|\psi_{i}\right\rangle \\
& H_{N=T}+V_{N N}(\Lambda)+V_{3 N}(\Lambda)+\ldots
\end{aligned}
$$

Hyper-spherical harmonics expansions for $A=3,4,6,7$


Barnea, Leidemann, Orlandini PRC 61 (2000) 054001

For $\mathrm{A}=2$ we use an harmonic oscillator expansion

- To compute TPE terms we use the Lanczos sum rule method

Nevo-Dinur, Ji, SB, Barnea, Phys.Rev.C 89 (2014) 6, 064317

- We will use traditional potentials (AV18/UIX) or interactions derived from chiral effective filed theory (at various orders)


## Muonic Deuterium

|  |  |
| :--- | :--- |
| $\delta_{D 1}^{(0)}$ |  |
| $\delta_{L}^{(0)}$ |  |
| $\delta_{T}^{(0)}$ |  |
| $\delta_{M}^{(0)}$ |  |
| $\delta_{C}^{(0)}$ |  |
| $\delta_{R 3}^{(1)}$ |  |
| $\delta_{Z 3}^{(1)}$ |  |
| $\delta_{R^{2}}^{(2)}$ |  |
| $\delta_{Q}^{(2)}$ |  |
| $\delta_{D 1 D 3}^{(2)}$ |  |
| $\delta_{R 1}^{(1)}$ |  |
| $\delta_{Z 1}^{(1)}$ |  |
| $\delta_{N S}^{(2)}$ |  |


| AV18 | $\chi$ EFT |
| :---: | :---: |
| -1.907 | -1.912 |
| 0.029 | 0.029 |
| -0.012 | -0.012 |
| 0.003 | 0.003 |
| 0.262 | 0.262 |
| - | - |
| 0.357 | 0.359 |
| 0.042 | 0.041 |
| 0.061 | -0.139 |
| -0.139 | 0.017 |
| 0.017 | 0.064 |
| 0.064 | -0.021 |

## Muonic Deuterium


J. Hernandez et al, Phys. Lett. B 736, 344 (2014)

AV18 in agreement with Pachucki (2011)+ Pachucki, Wienczek (2015)

## Deuteron charge radius

Pohl et al, Science 353, 669 (2016)


$$
\Delta E_{2 S-2 P}=\delta_{\mathrm{QED}}+\mathcal{A}_{\mathrm{OPE}}\left\langle r_{c}^{2}\right\rangle+\delta_{\mathrm{TPE}}
$$

Hernandez et al., PLB 736, 334 (2014)
Pachucki (2011)+ Pachucki, Wienczek (2015)

## Deuteron charge radius

Pohl et al, Science 353, 669 (2016)


$$
\Delta E_{2 S-2 P}=\delta_{\mathrm{QED}}+\mathcal{A}_{\mathrm{OPE}}\left\langle r_{c}^{2}\right\rangle+\delta_{\mathrm{TPE}}
$$

$\mu \mathrm{H}+$ iso: $\mathrm{r}_{\mathrm{p}}$ from $\mu \mathrm{H}$ and deuterium isotopic shift $\mathrm{r}^{2} \mathrm{~d}-\mathrm{r}_{\mathrm{p}}$ : Parthey et al., PRL 104233001 (2010)

## Deuteron charge radius

Pohl et al, Science 353, 669 (2016)


$$
\Delta E_{2 S-2 P}=\delta_{\mathrm{QED}}+\mathcal{A}_{\mathrm{OPE}}\left\langle r_{c}^{2}\right\rangle+\delta_{\mathrm{TPE}}
$$

$\mu \mathrm{H}+$ iso: $\mathrm{r}_{\mathrm{p}}$ from $\mu \mathrm{H}$ and deuterium isotopic shift $\mathrm{r}^{2} \mathrm{~d}-\mathrm{r}_{\mathrm{p}}$ : Parthey et al., PRL 104233001 (2010)

## Order-by-order chiral expansion

J. Hernandez et al, Phys. Lett. B 778, 377 (2018)


Only sightly mitigate the "small" proton radius puzzle (2.6 to $2 \sigma$ )

## Higher order corrections in $\alpha$



Pachucki et al., Phys. Rev. A 97062511 (2018)
$(Z \alpha)^{6}$ correction

## Higher order corrections in $\alpha$



Pachucki et al., Phys. Rev. A 97062511 (2018)
(Z $\alpha)^{6}$ correction


One the many $\alpha^{6}$ corrections, supposedly the largest Kalinowski, Phys. Rev. A 99030501 (2019)
$\delta_{\mathrm{TPE}}=-1.750_{-16}^{+14} \mathrm{meV}$ Theory
$\delta_{\mathrm{TPE}}=-1.7638(68) \mathrm{meV} \operatorname{Exp}$

Consistent within $1 \sigma$
solves the deuteron-radius puzzle

## Options for estimation of TPE

Q From experimental data
© From theoretical calculations
Q Dispersion relations (see F. Hagelstein's talk)

## Hybrid Approach

Use chiral EFT to calculate response functions and feed dispersion relations
B. Acharya, V. Lensky, M.Gorchtein, SB, M. Vanderhaghen, PRC 103 (2021) 2, 024001



## Hybrid Approach

Use chiral EFT to calculate response functions and feed dispersion relations
B. Acharya
B. Acharya, V. Lensky, M.Gorchtein, SB, M. Vanderhaghen, PRC 103 (2021) 2, 024001

$\omega$

$\omega$

| muonic deuterium | $\delta_{\text {TPE }}[\mathrm{meV}]$ |
| :--- | :--- |
| This work $-1 \mathrm{~B}+2 \mathrm{~B}$ | $-1.695(13)$ |

Precision is dramatically improved

## Muonic ${ }^{4} \mathrm{He}^{+}$

C.Ji et al., JPG: Part. Nucl. 45, 093002 (2018)


* Reduction of uncertainties in polarizability
* Results used in experiment, no puzzle Nature 589, 527 (2021)


## Reduction of Uncertainties

| Atom | Exp uncertainty <br> on $\Delta E_{2 S-2 P}$ | Uncertainty on TPE prior to <br> the discovery of the puzzle | Uncertainty on TPE: ab initio |
| :---: | :---: | :---: | :---: |
| $\mu^{2} \mathrm{H}$ | 0.003 meV | 0.03 meV | 0.02 meV |
| $\mu^{3} \mathrm{He}^{+}$ | 0.08 meV | 1 meV | 0.3 meV |
| $\mu^{4} \mathrm{He}^{+}$ | 0.06 meV | 0.6 meV | 0.4 meV |
| $\mu^{6,7 \mathrm{Li}^{++}}$ | 0.7 meV | 4 meV | Lower bound $0.4 \mathrm{meV}^{*}$ |

*Li Muli, Poggialini, SB, SciPost Phys.Proc. 3 (2020) 028

## Uncertainties quantifications

$$
\begin{aligned}
\text { Sources } & \text { - Numerical } \\
& \text { • Nuclear model } \\
& \text { • Isospin symmetry breaking } \\
& \text { - Nucleon-size } \\
& \text { - Truncation of multiples } \\
& \text { - } \eta \text {-expansion } \\
& \text { - expansion in } \mathrm{Z} \alpha
\end{aligned}
$$

C.Ji et al., JPG: Part. Nucl. 45, 093002 (2018)

|  | $\mu^{2} \mathrm{H}$ |  |  | $\mu^{3} \mathrm{H}$ |  |  | $\mu^{3} \mathrm{He}^{+}$ |  |  | $\mu^{4} \mathrm{He}^{+}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\delta_{\text {pol }}^{\text {A }}$ | $\delta_{\text {Zem }}^{A}$ | $\delta_{\text {TPE }}^{A}$ | $\delta_{\text {pol }}^{A}$ | $\delta_{\text {Zem }}^{A}$ | $\delta_{\text {TPE }}^{A}$ | $\delta_{\text {pol }}^{A}$ | $\delta_{\text {Zem }}^{A}$ | $\delta_{\text {TPE }}^{A}$ | $\delta_{\text {pol }}^{\text {A }}$ | $\delta_{\text {Zem }}^{A}$ | $\delta_{\text {TPE }}^{A}$ |
| Numerical | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.1 | 0.4 | 0.1 | 0.1 | 0.4 | 0.3 | 0.4 |
| Nuclear-model | 0.3 | 0.5 | 0.4 | 1.3 | 2.4 | 1.7 | 0.7 | 1.8 | 1.5 | 3.9 | 4.6 | 4.4 |
| ISB | 0.2 | 0.2 | 0.2 | 0.7 | 0.2 | 0.5 | 1.8 | 0.2 | 0.5 | 2.2 | 0.5 | 0.5 |
| Nucleon-size | 0.3 | 0.8 | 0.0 | 0.6 | 0.9 | 0.2 | 1.2 | 1.3 | 0.9 | 2.7 | 2.0 | 1.2 |
| Relativistic | 0.0 | - | 0.0 | 0.1 | - | 0.1 | 0.4 | - | 0.1 | 0.1 | - | 0.0 |
| Coulomb | 0.4 | - | 0.3 | 0.5 | - | 0.3 | 3.0 | - | 0.9 | 0.4 | - | 0.1 |
| $\eta$-expansion | 0.4 | - | 0.3 | 1.3 | - | 0.9 | 1.1 | - | 0.3 | 0.8 | - | 0.2 |
| Higher $\mathrm{Z} \alpha$ | 0.7 | - | 0.5 | 0.7 | - | 0.5 | 1.5 | - | 0.4 | 1.5 | - | 0.4 |
| Total | 1.0 | 0.9 | 0.8 | 2.3 | 2.2 | 2.0 | 4.2 | 2.2 | 2.1 | 5.5 | 5.1 | 4.6 |

## Uncertainties quantifications

$$
\begin{aligned}
\text { Sources } & \text { - Numerical } \\
& \text { • Nuclear model } \\
& \text { • Isospin symmetry breaking } \\
& \text { - Nucleon-size } \\
& \text { - Truncation of multiples } \\
& \text { - } \eta \text {-expansion } \\
& \text { - expansion in } \mathrm{Z} \alpha
\end{aligned}
$$

C.Ji et al., JPG: Part. Nucl. 45, 093002 (2018)

|  | $\mu^{2} \mathrm{H}$ |  |  | $\mu^{3} \mathrm{H}$ |  |  | $\mu^{3} \mathrm{He}^{+}$ |  |  | $\mu^{4} \mathrm{He}^{+}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\delta_{\text {pol }}^{A}$ | $\delta_{\text {Zem }}^{A}$ | $\delta_{\text {TPE }}^{A}$ | $\delta_{\text {pol }}^{A}$ | $\delta_{\text {Zem }}^{A}$ | $\delta_{\text {TPE }}^{A}$ | $\delta_{\text {pol }}^{A}$ | $\delta_{\text {Zem }}^{A}$ | $\delta_{\text {TPE }}^{A}$ | $\delta_{\text {pol }}^{A}$ | $\delta_{\text {Zem }}^{A}$ | $\delta_{\text {TPE }}^{A}$ |
| Numerical | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.1 | 0.4 | 0.1 | 0.1 | 0.4 | 0.3 | 0.4 |
| Nuclear-model | 0.3 | 0.5 | 0.4 | 1.3 | 2.4 | 1.7 | 0.7 | 1.8 | 1.5 | 3.9 | 4.6 | 4.4 |
| ISB | 0.2 | 0.2 | 0.2 | 0.7 | 0.2 | 0.5 | 1.8 | 0.2 | 0.5 | 2.2 | 0.5 | 0.5 |
| Nucleon-size | 0.3 | 0.8 | 0.0 | 0.6 | 0.9 | 0.2 | 1.2 | 1.3 | 0.9 | 2.7 | 2.0 | 1.2 |
| Relativistic | 0.0 | - | 0.0 | 0.1 | - | 0.1 | 0.4 | - | 0.1 | 0.1 | - | 0.0 |
| Coulomb | 0.4 | - | 0.3 | 0.5 | - | 0.3 | 3.0 | - | 0.9 | 0.4 | - | 0.1 |
| $\eta$-expansion | 0.4 | - | 0.3 | 1.3 | - | 0.9 | 1.1 | - | 0.3 | 0.8 | - | 0.2 |
| Higher $\mathrm{Z} \alpha$ | 0.7 | - | 0.5 | 0.7 | - | 0.5 | 1.5 | - | 0.4 | 1.5 | - | 0.4 |
| Total | 1.0 | 0.9 | 0.8 | 2.3 | 2.2 | 2.0 | 4.2 | 2.2 | 2.1 | 5.5 | 5.1 | 4.6 |

## $\mu^{4} \mathrm{He}^{+}$order-by-order chiral expansion

## Using local chiral forces (Gezerlis et al.)

SS Li Muli, SB, N Barnea, Front.in Phys. 9 (2021) $214 \rightarrow$ Benchmark of HH with GFMC

Simone Li Muli


| $r_{0}=1.2$ | $r_{0}=1.0$ |
| :--- | :--- |
| -4.386 | -4.373 |
| 0.272 | 0.287 |
| -0.124 | -0.125 |
| 0.517 | 0.514 |
| 0.011 | 0.011 |
| -3.422 | -3.477 |
| - | - |
| 0.267 | 0.285 |
| 0.484 | 0.505 |
| -0.668 | -0.69 |
| -0.846 | -0.856 |
| - | - |
| -0.272 | -0.277 |
| - | - |
| - | -8.196 |
| -8.174 |  |

SS Li Muli, SB, N Barnea, in preparation (2022)


Uncertainties become slightly larger Need to go to N3LO to improve uncertainties

## Bayesian estimates of the n -expansion uncertainty

SS Li Muli, B Acharya, OJ Hernandez, SB, arXiv:2203.10792

Starting from reasonable choices of the Bayesian priors for the $\eta$ distribution, we derive the Bayesian posteriors for the values of $\eta$, and estimate the uncertainties due to truncation of the $\eta$-expansion.


|  | $\mu^{2} \mathrm{H}$ | $\mu^{3} \mathrm{H}$ | $\mu^{3} \mathrm{He}^{+}$ | $\mu^{4} \mathrm{He}^{+}$ |
| :---: | :---: | :---: | :---: | :---: |
| [1] | $0.4 \%$ | $1.3 \%$ | $1.1 \%$ | $0.8 \%$ |
| This | $0.8 \%$ | $1.5 \%$ | $4.8 \%$ | $0.9 \%$ |
| work |  |  |  |  |

[1] C. Ji, et al. J. Phys. G: Nucl. Part. Phys. 45 (2018)

## Summary and Outlook

- Ab initio calculations have allowed to substantially reduce uncertainties in TPE
- These calculations are needed to support any spectroscopic measurement with muonic atoms
- Future perspectives: hyperfine splitting; three-photon exchange


## Thanks to my collaborators

N.Barnea, B. Acharya, M.Gorchteyn, V. Lensky, O.J. Hernandez, C.Ji, S.Li Muli, N.Nevo Dinur, M.Vanderhaghen,...

## Summary and Outlook

- Ab initio calculations have allowed to substantially reduce uncertainties in TPE
- These calculations are needed to support any spectroscopic measurement with muonic atoms
- Future perspectives: hyperfine splitting; three-photon exchange


## Thanks to my collaborators

N.Barnea, B. Acharya, M.Gorchteyn, V. Lensky, O.J. Hernandez, C.Ji, S.Li Muli, N.Nevo Dinur, M.Vanderhaghen,...

## Thank you for your attention!

## Backup Slides

## Proton Radius Puzzle

- Today's situation -


Possibly explained by unaccounted systematic uncertainties...

## $\mu^{4} \mathrm{He}^{+}$order-by-order chiral expansion -Bayesian Analysis-



## Chiral Effective Field Theory



Allows for a systematic expansion of nuclear forces.

Details of short distance physics not resolved, but captured in low energy constants (LEC)

## Chiral Effective Field Theory



Allows for a systematic expansion of nuclear forces.

Details of short distance physics not resolved, but captured in low energy constants (LEC)

