

Nuclear Polarizability Corrections to the Lamb-Shift – Muonic atoms beyond µH –

Sonia Bacca

Johannes Gutenberg University, Mainz

Hydrogen-like muonic atoms

Hydrogen-like muonic atoms

Can be used as a precision probe for the nucleus

Bohr

Bohr

Courtesy of V. Pascalutsa

$$\Delta E_{2S-2P} = \delta_{\text{QED}} + \frac{m_r^4 (Z\alpha)^4}{12} \langle r_c^2 \rangle + \delta_{\text{TPE}}$$

$$\Delta E_{2S-2P} = \delta_{\text{QED}} + \frac{m_r^4 (Z\alpha)^4}{12} \langle r_c^2 \rangle + \delta_{\text{TPE}}$$

Strong experimental program at PSI (Switzerland) from the CREMA collaboration to unravel the mystery by studying the Lamb shift in other muonic atoms than μ H:

$$\Delta E_{2S-2P} = \delta_{\text{QED}} + \frac{m_r^4 (Z\alpha)^4}{12} \langle r_c^2 \rangle + \delta_{\text{TPE}}$$

well known

Strong experimental program at PSI (Switzerland) from the CREMA collaboration to unravel the mystery by studying the Lamb shift in other muonic atoms than μ H:

$$\Delta E_{2S-2P} = \delta_{\text{QED}} + \frac{m_r^4 (Z\alpha)^4}{12} \langle r_c^2 \rangle + \delta_{\text{TPE}}$$

well known

not well known

Strong experimental program at PSI (Switzerland) from the CREMA collaboration to unravel the mystery by studying the Lamb shift in other muonic atoms than μ H:

$$\Delta E_{2S-2P} = \delta_{\rm QED} + \frac{m_r^4 (Z\alpha)^4}{12} \langle r_c^2 \rangle + \delta_{\rm TPE}$$
well known not well known

Experimental Campaign

 $\begin{array}{l} \bigcirc \ \mu \mathsf{D} \quad \longrightarrow \text{ Science 353, 669 (2016)} \\ \bigcirc \ \mu^4 \mathsf{He^+} \longrightarrow \text{Nature 589, 527 (2021)} \\ \bigcirc \ \mu^3 \mathsf{He^+} \longrightarrow \text{ measured} \\ \bigcirc \ \mu^3 \mathsf{H} \quad \longrightarrow \text{ impossible because triton is radioactive} \\ \bigcirc \ \mu^6 \mathsf{Li}^{2+} \longrightarrow \text{ future plan} \\ \bigcirc \ \mu^7 \mathsf{Li}^{2+} \longrightarrow \text{ future plan} \end{array}$

$$H = H_N + H_\mu + \Delta V$$
$$H_\mu = \frac{p^2}{2m_r} - \frac{Z\alpha}{r}$$

$$H = H_N + H_\mu + \Delta V$$
$$H_\mu = \frac{p^2}{2m_r} - \frac{Z\alpha}{r}$$

Perturbative potential: correction to the bulk Coulomb

$$H = H_N + H_\mu + \Delta V$$

$$H_{\mu} = \frac{p^2}{2m_r} - \frac{Z\alpha}{r}$$

Perturbative potential: correction to the bulk Coulomb $\Delta V = \sum_{a}^{Z} \alpha \left(\frac{1}{r} - \frac{1}{|\vec{r} - \vec{R}_{a}|} \right)$

Using perturbation theory at second order one obtains the expression for TPE up to order $\ (Z\alpha)^5$

$$P = \langle N_0 \mu | \Delta V G \Delta V | N_0 \mu \rangle$$

7

C.Ji et al., JPG: Part. Nucl. 45, 093002 (2018)

$$\delta_{\rm TPE} = \delta_{\rm Zem}^A + \delta_{\rm Zem}^N + \delta_{\rm pol}^A + \delta_{\rm pol}^N$$

Non relativistic term

$$\delta_{\text{pol}}^{A} = \sum_{N \neq N_{0}} \int d^{3}R \ d^{3}R' \rho_{N}^{p}(\mathbf{R}) W(\mathbf{R}, \mathbf{R}', \omega_{N}) \rho_{N}^{p}(\mathbf{R}')$$
$$\rho_{N}^{p}(\mathbf{R}) = \langle N | \frac{1}{Z} \sum_{i=1}^{A} \delta(\mathbf{R} - \mathbf{R_{i}}) \ \hat{e}_{i}^{p} \ |N_{0}\rangle$$

C.Ji et al., JPG: Part. Nucl. 45, 093002 (2018)

$$\delta_{\rm TPE} = \delta_{\rm Zem}^A + \delta_{\rm Zem}^N + \delta_{\rm pol}^A + \delta_{\rm pol}^N$$

JGU

Non relativistic term

$$\begin{split} \delta_{\text{pol}}^{A} &= \sum_{N \neq N_{0}} \int d^{3}R \ d^{3}R' \rho_{N}^{p}(\mathbf{R}) W(\mathbf{R}, \mathbf{R}', \omega_{N}) \rho_{N}^{p}(\mathbf{R}') \\ &\rho_{N}^{p}(\mathbf{R}) = \langle N | \frac{1}{Z} \sum_{i=1}^{A} \delta(\mathbf{R} - \mathbf{R}_{i}) \ \hat{e}_{i}^{p} \ |N_{0}\rangle \\ &W(\mathbf{R}, \mathbf{R}', \omega_{N}) = \frac{\pi}{6m_{r}} \ (Z\alpha)^{2} \ \phi^{2}(0) \ \left(\frac{2m_{r}}{\omega_{N}}\right)^{\frac{3}{2}} \left[\ \eta^{2} - \frac{1}{4} \ \eta^{3} + \frac{1}{20} \ \eta^{4} + \ \dots \right] \\ &\eta = \sqrt{2m_{r}\omega} |\mathbf{R} - \mathbf{R}'| \sim \sqrt{\frac{m_{r}}{m_{N}}} = 0.33 \end{split}$$

C.Ji et al., JPG: Part. Nucl. 45, 093002 (2018)

$$\delta_{\rm TPE} = \delta_{\rm Zem}^A + \delta_{\rm Zem}^N + \delta_{\rm pol}^A + \delta_{\rm pol}^N$$

Non relativistic term

$$\delta_{\text{pol}}^{A} = \sum_{N \neq N_{0}} \int d^{3}R \ d^{3}R' \rho_{N}^{p}(\mathbf{R}) W(\mathbf{R}, \mathbf{R}', \omega_{N}) \rho_{N}^{p}(\mathbf{R}')$$

$$\rho_{N}^{p}(\mathbf{R}) = \langle N | \frac{1}{Z} \sum_{i=1}^{A} \delta(\mathbf{R} - \mathbf{R}_{i}) \ \hat{e}_{i}^{p} | N_{0} \rangle$$

$$W(\mathbf{R}, \mathbf{R}', \omega_{N}) = \frac{\pi}{6m_{r}} (Z\alpha)^{2} \ \phi^{2}(0) \left(\frac{2m_{r}}{\omega_{N}}\right)^{\frac{3}{2}} \left[\eta^{2} - \frac{1}{4} \ \eta^{3} + \frac{1}{20} \ \eta^{4} + \dots \right]$$

$$\eta = \sqrt{2m_{r}\omega} |\mathbf{R} - \mathbf{R}'| \sim \sqrt{\frac{m_{r}}{m_{N}}} = 0.33$$

$$\delta_{\text{pol}}^A \to \sum_i C_i \int d\omega f(\omega/m_r) R_{O_i}(\omega)$$

Special sum rules of electromagnetic response functions

C.Ji et al., JPG: Part. Nucl. 45, 093002 (2018)

$$\delta_{\text{TPE}} = \delta_{\text{Zem}}^{A} + \delta_{\text{Zem}}^{N} + \delta_{\text{pol}}^{A} + \delta_{\text{pol}}^{N}$$

$$\sum_{\text{Nucleus}} \delta_{\text{pol}}^{A} = \delta_{D1}^{(0)} + \delta_{R3}^{(1)} + \delta_{Z3}^{(2)} + \delta_{R2}^{(2)} + \delta_{Q}^{(2)} + \delta_{D1D3}^{(2)} + \delta_{C}^{(0)} + \delta_{L}^{(0)} + \delta_{T}^{(0)} + \delta_{M}^{(0)} + \delta_{R1}^{(1)} + \delta_{Z1}^{(1)} + \delta_{NS}^{(2)}$$

$$\delta_{\text{Zem}}^{A} = -\delta_{Z3}^{(1)} - \delta_{Z1}^{(1)}$$
Friar an Payne ('97)

Extraction from experimental data

S.B. and Saori Pastore, Journal of Physics G.: Nucl. Part. Phys. 41, 123002 (2014)

10

Theory is more precise

S.B. and Saori Pastore, Journal of Physics G.: Nucl. Part. Phys. 41, 123002 (2014)

11

A matter of precision

The uncertainty of the extracted radius depends on the precision of the TPE

 $\Delta E_{2S-2P} = \delta_{\text{QED}} + \mathcal{A}_{\text{OPE}} \langle r_c^2 \rangle + \delta_{\text{TPE}}$

Roughly: 95% 4% 1%

TPE needs to be know precisely, in order to exploit the experimental precision.

A matter of precision

The uncertainty of the extracted radius depends on the precision of the TPE

 $\Delta E_{2S-2P} = \delta_{\text{QED}} + \mathcal{A}_{\text{OPE}} \langle r_c^2 \rangle + \delta_{\text{TPE}}$

Roughly: 95% 4% 1%

TPE needs to be know precisely, in order to exploit the experimental precision.

Uncertainties comparison

Atom	Exp uncertainty on ΔE_{2S-2P}	Uncertainty on TPE prior to the discovery of the proton radius puzzle
μ^2 H	0.003 meV	0.03 meV*
µ³He⁺	0.08 meV	1 meV
µ⁴He⁺	0.06 meV	0.6 meV
µ ^{6,7} Li++	0.7 meV	4 meV

*Leidemann, Rosenfelder '95 using few-body methods

• Solve the Schrödinger equation for few-nucleons

 $H_N |\psi_i\rangle = E_i |\psi_i\rangle$ $H_N = T + V_{NN}(\Lambda) + V_{3N}(\Lambda) + \dots$

13

• Solve the Schrödinger equation for few-nucleons

 $H_N |\psi_i\rangle = E_i |\psi_i\rangle$ $H_N = T + V_{NN}(\Lambda) + V_{3N}(\Lambda) + \dots$

Hyper-spherical harmonics expansions for A=3,4,6,7

For A=2 we use an harmonic oscillator expansion

Barnea, Leidemann, Orlandini PRC **61** (2000) 054001

- Solve the Schrödinger equation for few-nucleons
 - $H_N |\psi_i\rangle = E_i |\psi_i\rangle$ $H_N = T + V_{NN}(\Lambda) + V_{3N}(\Lambda) + \dots$

Hyper-spherical harmonics expansions for A=3,4,6,7

For A=2 we use an harmonic oscillator expansion

• To compute TPE terms we use the Lanczos sum rule method Nevo-Dinur, Ji, SB, Barnea, Phys.Rev.C 89 (2014) 6, 064317

Barnea, Leidemann, Orlandini PRC 61 (2000) 054001

Solve the Schrödinger equation for few-nucleons

 $H_N |\psi_i\rangle = E_i |\psi_i\rangle$ $H_N = T + V_{NN}(\Lambda) + V_{3N}(\Lambda) + \dots$

Hyper-spherical harmonics expansions for A=3,4,6,7

For A=2 we use an harmonic oscillator expansion

- To compute TPE terms we use the Lanczos sum rule method Nevo-Dinur, Ji, SB, Barnea, Phys.Rev.C 89 (2014) 6, 064317
- We will use traditional potentials (AV18/UIX) or interactions derived from chiral effective filed theory (at various orders)

Barnea, Leidemann, Orlandini PRC 61 (2000) 054001

Muonic Deuterium

	AV18	χEFT
$\delta_{D1}^{(0)}$	-1.907	-1.912
$\delta_L^{(0)}$	0.029	0.029
$\delta_T^{(0)}$	-0.012	-0.012
$\delta_M^{(0)}$	0.003	0.003
$\delta_C^{(0)}$	0.262	0.262
$\delta^{(1)}_{R3}$	-	-
$\delta^{(1)}_{Z3}$	0.357	0.359
$\delta_{R^2}^{\ (2)}$	0.042	0.041
$\delta_Q^{(2)}$	0.061	0.061
$\delta^{(2)}_{D1D3}$	-0.139	-0.139
$\delta^{(1)}_{R1}$	0.017	0.017
$\delta^{(1)}_{Z1}$	0.064	0.064
$\delta_{NS}^{(2)}$	-0.020	-0.021
1		

Muonic Deuterium

J. Hernandez et al, Phys. Lett. B **736**, 344 (2014) AV18 in agreement with Pachucki (2011)+ Pachucki, Wienczek (2015)

Sonia Bacca

Deuteron charge radius

Sonia Bacca

15

Deuteron charge radius

 μ H+iso: r_p from μ H and deuterium isotopic shift r²_d -r²_p: Parthey et al., PRL **104** 233001 (2010)

16

Deuteron charge radius

 μ H+iso: r_p from μ H and deuterium isotopic shift r²_d -r²_p: Parthey et al., PRL **104** 233001 (2010)

16

Order-by-order chiral expansion

Only sightly mitigate the "small" proton radius puzzle (2.6 to 2 σ)

Higher order corrections in α

Pachucki et al., Phys. Rev. A **97** 062511 (2018) $(Z\alpha)^6$ correction

Higher order corrections in α

Pachucki et al., Phys. Rev. A **97** 062511 (2018) $(Z\alpha)^6$ correction

One the many α^6 corrections, supposedly the largest Kalinowski, Phys. Rev. A **99** 030501 (2019)

 $\delta_{\rm TPE} = -1.750^{+14}_{-16}~{
m meV}~{
m Theory}$ $\delta_{\rm TPE} = -1.7638(68)~{
m meV}~{
m Exp}$

Consistent within 1σ solves the deuteron-radius puzzle

Options for estimation of TPE

- From experimental data
- From theoretical calculations
- Dispersion relations (see F. Hagelstein's talk)

Hybrid Approach

Use chiral EFT to calculate response functions and feed dispersion relations

B. Acharya B. Acharya, V. Lensky, M.Gorchtein, SB, M.Vanderhaghen, PRC 103 (2021) 2, 024001

Hybrid Approach

Use chiral EFT to calculate response functions and feed dispersion relations

B. Acharya

B. Acharya, V. Lensky, M.Gorchtein, SB, M.Vanderhaghen, PRC 103 (2021) 2, 024001

Carlson, Gorchtein, Vanderhaeghen, Phys. Rev. A 89, 022504 (2014) -2.011(740)

Muonic ⁴He⁺

C.Ji et al., JPG: Part. Nucl. 45, 093002 (2018)

- * Reduction of uncertainties in polarizability
- * Results used in experiment, no puzzle Nature 589, 527 (2021)

22

Reduction of Uncertainties

Atom	Exp uncertainty on ΔE _{2S-2P}	Uncertainty on TPE prior to the discovery of the puzzle	Uncertainty on TPE: ab initio
μ^2 H	0.003 meV	0.03 meV	0.02 meV
µ³He⁺	0.08 meV	1 meV	0.3 meV
µ⁴He⁺	0.06 meV	0.6 meV	0.4 meV
µ ^{6,7} Li++	0.7 meV	4 meV	Lower bound 0.4 meV*

* Li Muli, Poggialini, SB, SciPost Phys.Proc. 3 (2020) 028

Uncertainties quantifications

Sources • Numerical

- Nuclear model
- Isospin symmetry breaking
- Nucleon-size
- Truncation of multiples
- η-expansion
- expansion in $Z\alpha$

C.Ji et al., JPG: Part. Nucl. 45, 093002 (2018)

	$\mu^2 \mathrm{H}$			μ^{3} H			μ^{3} He ⁺			$\mu^4 { m He^+}$		
	$\delta^A_{ m pol}$	$\delta^A_{ m Zem}$	$\delta^A_{ ext{TPE}}$	$\delta^A_{ m pol}$	$\delta^A_{ m Zem}$	$\delta^A_{ ext{TPE}}$	$\overline{\delta^A_{ ext{pol}}}$	$\delta^A_{ m Zem}$	$\delta^A_{ ext{TPE}}$	$\delta^A_{ m pol}$	$\delta^A_{ m Zem}$	$\delta^A_{ ext{TPE}}$
Numerical	0.0	0.0	0.0	0.1	0.0	0.1	0.4	0.1	0.1	0.4	0.3	0.4
Nuclear-model	0.3	0.5	0.4	1.3	2.4	1.7	0.7	1.8	1.5	3.9	4.6	4.4
ISB	0.2	0.2	0.2	0.7	0.2	0.5	1.8	0.2	0.5	2.2	0.5	0.5
Nucleon-size	0.3	0.8	0.0	0.6	0.9	0.2	1.2	1.3	0.9	2.7	2.0	1.2
Relativistic	0.0		0.0	0.1		0.1	0.4		0.1	0.1		0.0
Coulomb	0.4		0.3	0.5		0.3	3.0		0.9	0.4		0.1
η -expansion	0.4		0.3	1.3		0.9	1.1		0.3	0.8		0.2
Higher $Z\alpha$	0.7		0.5	0.7	—	0.5	1.5	—	0.4	1.5	—	0.4
Total	1.0	0.9	0.8	2.3	2.2	2.0	4.2	2.2	2.1	5.5	5.1	4.6

24

Uncertainties quantifications

Sources • Numerical

- Nuclear model
- Isospin symmetry breaking
- Nucleon-size
- Truncation of multiples
- η-expansion
- expansion in $Z\alpha$

C.Ji et al., JPG: Part. Nucl. 45, 093002 (2018)

	$\mu^2 \mathrm{H}$			μ^{3} H			μ^{3} He ⁺			$\mu^4 { m He^+}$		
	$\delta^A_{ m pol}$	$\delta^A_{ m Zem}$	$\delta^A_{ ext{TPE}}$	$\delta^A_{ m pol}$	$\delta^A_{ m Zem}$	$\delta^A_{ ext{TPE}}$	$\overline{\delta^A_{ m pol}}$	$\delta^A_{ m Zem}$	$\delta^A_{ ext{TPE}}$	$\overline{\delta^A_{ m pol}}$	$\delta^A_{ m Zem}$	$\delta^A_{ ext{TPE}}$
Numerical	0.0	0.0	0.0	0.1	0.0	0.1	0.4	0.1	0.1	0.4	0.3	0.4
Nuclear-model	0.3	0.5	0.4	1.3	2.4	1.7	0.7	1.8	1.5	3.9	4.6	4.4
ISB	0.2	0.2	0.2	0.7	0.2	0.5	1.8	0.2	0.5	2.2	0.5	0.5
Nucleon-size	0.3	0.8	0.0	0.6	0.9	0.2	1.2	1.3	0.9	2.7	2.0	1.2
Relativistic	0.0		0.0	0.1		0.1	0.4		0.1	0.1		0.0
Coulomb	0.4		0.3	0.5		0.3	3.0		0.9	0.4		0.1
η -expansion	0.4		0.3	1.3		0.9	1.1		0.3	0.8		0.2
Higher $Z\alpha$	0.7		0.5	0.7		0.5	1.5		0.4	1.5		0.4
Total	1.0	0.9	0.8	2.3	2.2	2.0	4.2	2.2	2.1	5.5	5.1	4.6

In %

24

µ⁴He⁺ order-by-order chiral expansion

Using local chiral forces (Gezerlis et al.)

SS Li Muli, SB, N Barnea, Front.in Phys. 9 (2021) 214→Benchmark of HH with GFMC

Bayesian estimates of the n-expansion uncertainty

SS Li Muli, B Acharya, OJ Hernandez, SB, arXiv:2203.10792

Starting from reasonable choices of the Bayesian priors for the η distribution, we derive the Bayesian posteriors for the values of η , and estimate the uncertainties due to truncation of the η -expansion.

Summary and Outlook

- Ab initio calculations have allowed to substantially reduce uncertainties in TPE
- These calculations are needed to support any spectroscopic measurement with muonic atoms
- Future perspectives: hyperfine splitting; three-photon exchange

Thanks to my collaborators

N.Barnea, B. Acharya, M.Gorchteyn, V. Lensky, O.J. Hernandez, C.Ji, S.Li Muli, N.Nevo Dinur, M.Vanderhaghen,...

Summary and Outlook

- Ab initio calculations have allowed to substantially reduce uncertainties in TPE
- These calculations are needed to support any spectroscopic measurement with muonic atoms
- Future perspectives: hyperfine splitting; three-photon exchange

Thanks to my collaborators

N.Barnea, B. Acharya, M.Gorchteyn, V. Lensky, O.J. Hernandez, C.Ji, S.Li Muli, N.Nevo Dinur, M.Vanderhaghen,...

Thank you for your attention!

Backup Slides

Proton Radius Puzzle

- Today's situation -

Possibly explained by unaccounted systematic uncertainties...

μ^4 He⁺ order-by-order chiral expansion -Bayesian Analysis-

SS Li Muli, SB, N Barnea, in preparation (2022)

— C. Ji, et al. J. Phys. G: Nucl. Part. Phys. 45 (2018)

Chiral Effective Field Theory

Allows for a systematic expansion of nuclear forces.

Details of short distance physics not resolved, but captured in low energy constants (LEC)

Chiral Effective Field Theory

Allows for a systematic expansion of nuclear forces.

Details of short distance physics not resolved, but captured in low energy constants (LEC)