

Constraints on dimension-6 SMEFT operators

Vigneshwaran Palaniappan

Master thesis Advisor: Prof.Dr. Jens Erler Institut für Kernphysik, Johannes Gutenberg University, Mainz

Overview

- Motivation
- Introduction to SMEFT
- P2(*A_{RL}*)
- SoLID(A_{RL})
- LHC(Drell-Yan)(A_{FB})

Motivation

- for P2,SoLID and LHC(Drell-Yan process)
- SMEFT coefficients

Constrain the linear combination of dim.6 SMEFT Operators that contributes

Look how P2, SoLID and LHC(Drell-Yan) can improve the current bounds on

Introduction

Standard Model Effective Field Theory: low-energy limit of UV-complete theories at high energies

$$\mathscr{L}_{SMEFT} = \mathscr{L}_{SM}^{(4)} + \frac{1}{\Lambda_L} \sum_k c_k^{(5)} \mathcal{O}_k^{(5)} + \frac{1}{\Lambda^2} \sum_k c_k^{(6)} \mathcal{O}_k^{(6)} + \frac{1}{\Lambda_L^3} \sum_k c_k^{(7)} \mathcal{O}_k^{(7)} + \frac{1}{\Lambda^4} \sum_k c_k^{(8)} \mathcal{O}_k^{(8)} + \frac{1}{\Lambda^4} \sum_k c_k^{($$

• • •

Introduction

Standard Model Effective Field Theory: low-energy limit of UV-complete theories at high energies

$$\mathscr{L}_{SMEFT} = \mathscr{L}_{SM}^{(4)} + \frac{1}{\Lambda_L} \sum_k c_k^{(5)} \mathscr{O}_k^{(5)} + \frac{1}{\Lambda^2} \sum_k c_k^{(5)} + \frac{1}{\Lambda^2} \sum_k c_k^{(5)$$

 $\int_{k} c_{k}^{(6)} \mathcal{O}_{k}^{(6)} + \frac{1}{\Lambda_{L}^{3}} \sum_{k} c_{k}^{(7)} \mathcal{O}_{k}^{(7)} + \frac{1}{\Lambda^{4}} \sum_{k} c_{k}^{(8)} \mathcal{O}_{k}^{(8)} + \dots$ BSM physics are encoded in the higher dim. Operators

Introduction

Standard Model Effective Field Theory: low-energy limit of UV-complete theories at high energies

$$\mathscr{L}_{SMEFT} = \mathscr{L}_{SM}^{(4)} + \underbrace{\frac{1}{\Lambda_L} \sum_k c_k^{(5)} \mathcal{O}_k^{(5)} + \frac{1}{\Lambda^2} \sum_k c_k^{(6)} \mathcal{O}_k^{(6)} + \frac{1}{\Lambda_L^3} \sum_k c_k^{(7)} \mathcal{O}_k^{(7)} + \frac{1}{\Lambda^4} \sum_k c_k^{(8)} \mathcal{O}_k^{(8)} + .}$$
Effects of BSM physics are encoded in the higher dim. Operators

$$v < < \Lambda$$

B-L conserving new physics scale B-L - (Baryon number - Lepton number)

$$<$$
 \bigwedge_{L} \bigwedge_{L} B-L violating new physics scale $\Lambda_L \sim \mathcal{O}(10^{15} GeV)$

• • _

	$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$		X^3		$arphi^6$ and $arphi^4 D^2$		$\psi^2 arphi^3$
Q_{ll}	$(ar{l}_p \gamma_\mu l_r) (ar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(ar{e}_p \gamma_\mu e_r) (ar{e}_s \gamma^\mu e_t)$	Q_{le}	$(ar{l}_p \gamma_\mu l_r) (ar{e}_s \gamma^\mu e_t)$	Q_G	$f^{ABC}G^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	Q_{arphi}	$(arphi^\dagger arphi)^3$	Q_{earphi}	$(arphi^{\dagger}arphi)(ar{l}$
$Q_{qq}^{\left(1 ight)}$	$(ar{q}_p \gamma_\mu q_r) (ar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(ar{u}_p \gamma_\mu u_r) (ar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(ar{l}_p \gamma_\mu l_r) (ar{u}_s \gamma^\mu u_t)$	$Q_{\tilde{c}}$	$f^{ABC}\widetilde{G}^{A u}_{\mu}G^{B ho}_{\mu}G^{C\mu}_{ ho}$	$Q_{\omega \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{\mu\omega}$	$(\varphi^{\dagger}\varphi)(\bar{q}$
$Q_{qq}^{(3)}$	$(ar{q}_p \gamma_\mu au^I q_r) (ar{q}_s \gamma^\mu au^I q_t)$	Q_{dd}	$(ar{d}_p \gamma_\mu d_r) (ar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(ar{l}_p\gamma_\mu l_r)(ar{d}_s\gamma^\mu d_t)$	Q_W	$\varepsilon^{IJK}W^{I\nu}W^{J\rho}W^{K\mu}$		$(\varphi^{\dagger}D^{\mu}\varphi)^{\star}(\varphi^{\dagger}D_{\mu}\varphi)$	Q _{dva}	$(\omega^{\dagger}\omega)(\bar{a}$
$Q_{lq}^{\left(1 ight) }$	$(ar{l}_p \gamma_\mu l_r) (ar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(ar{e}_p \gamma_\mu e_r) (ar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(ar{q}_p\gamma_\mu q_r)(ar{e}_s\gamma^\mu e_t)$	$Q \approx$	$\left \varepsilon^{IJK} \widetilde{W}^{I\nu} W^{J\rho} W^{K\mu} \right $		$(r - r) (r - \mu r)$	$\neg u \varphi$	
$Q_{lq}^{(3)}$	$(ar{l}_p \gamma_\mu au^I l_r) (ar{q}_s \gamma^\mu au^I q_t)$	Q_{ed}	$(ar{e}_p \gamma_\mu e_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(ar{q}_p \gamma_\mu q_r) (ar{u}_s \gamma^\mu u_t)$	\$\$W	$\frac{c}{rr^2} \frac{r}{\rho}$		(2.75		(2.25
		$Q_{ud}^{(1)}$	$(ar{u}_p \gamma_\mu u_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$\left (\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t) \right $		$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$
		$Q_{ud}^{(8)}$	$\left((\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t) \right)$	$Q_{ad}^{(1)}$	$(ar{q}_p \gamma_\mu q_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{arphi G}$	$arphi^\dagger arphi G^A_{\mu u} G^{A\mu u}$	Q_{eW}	$(ar{l}_p \sigma^{\mu u} e_r) au^I arphi W^I_{\mu u}$	$Q^{(1)}_{arphi l}$	$\Big (arphi^\dagger i \overleftrightarrow{D}_\mu arphi)$
				$\left egin{array}{c} Q_{qd}^{(8)} \ Q_{qd}^{(8)} \end{array} ight $	$\left(ar{q}_p \gamma_\mu T^A q_r) (ar{d}_s \gamma^\mu T^A d_t) ight)$	$Q_{arphi \widetilde{G}}$	$arphi^\dagger arphi \widetilde{G}^A_{\mu u} G^{A\mu u}$	Q_{eB}	$(ar{l}_p \sigma^{\mu u} e_r) arphi B_{\mu u}$	$Q^{(3)}_{arphi l}$	$\left(arphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}arphi)(ert$
$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		B-viol	ating	1	$Q_{arphi W}$	$arphi^\dagger arphi W^I_{\mu u} W^{I\mu u}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu u} T^A u_r) \widetilde{\varphi} G^A_{\mu u}$	$Q_{arphi e}$	$\left(arphi^{\dagger}i\overleftrightarrow{D}_{\mu}arphi ight)$
Q_{ledq}	$(ar{l}_p^j e_r)(ar{d}_s q_t^j)$	Q_{duq}	$arepsilon^{lphaeta\gamma}arepsilon_{jk}\left[(d_p^lpha) ight.$	$^{T}Cu_{r}^{\beta}$	$\left[(q_s^{\gamma j})^T C l_t^k ight]$	$\left\ ~~ Q_{arphi \widetilde{W}} ight.$	$arphi^\dagger arphi \widetilde{W}^I_{\mu u} W^{I\mu u}$	Q_{uW}	$(ar{q}_p \sigma^{\mu u} u_r) au^I \widetilde{arphi} W^I_{\mu u}$	$Q^{(1)}_{arphi q}$	$\left \begin{array}{c} (arphi^\dagger i \overleftrightarrow{D}_\mu arphi) \end{array} ight.$
$Q_{quqd}^{(1)}$	$(ar{q}_p^j u_r) arepsilon_{jk} (ar{q}_s^k d_t)$	Q_{qqu}	$arepsilon^{lphaeta\gamma}arepsilon_{jk}\left[(q_p^{lpha j}) ight.$	$^{T}Cq_{r}^{\beta k}$	$\left[(u_s^{\gamma})^T C e_t \right]$	$Q_{arphi B}$	$arphi^\dagger arphi B_{\mu u} B^{\mu u}$	Q_{uB}	$(ar q_p \sigma^{\mu u} u_r) \widetilde arphi B_{\mu u}$	$Q^{(3)}_{arphi q}$	$\left(arphi^{\dagger}i \overset{\leftrightarrow}{D}{}^{I}_{\mu} arphi) (arphi^{\dagger} arphi) ight)$
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	Q_{qqq}	$arepsilon^{lphaeta\gamma}arepsilon_{jn}arepsilon_{km}\left[(q_p^{lpha_j}) ight]$	$(j)^T C q_r^{eta}$	${}^{Bk}]\left[(q_s^{\gamma m})^T C l_t^n ight]$	$Q_{arphi \widetilde{B}}$	$arphi^\dagger arphi \widetilde{B}_{\mu u} B^{\mu u}$	Q_{dG}	$(ar{q}_p \sigma^{\mu u} T^A d_r) arphi G^A_{\mu u}$	$Q_{arphi u}$	$(arphi^\dagger i \overleftrightarrow{D}_\mu arphi)$
$Q_{lequ}^{(1)}$	$(ar{l}_p^j e_r) arepsilon_{jk} (ar{q}_s^k u_t)$	Q_{duu}	$arepsilon^{lphaeta\gamma}\left[(d_p^lpha)^T ight]$	$Cu_r^{\beta}]$	$\left[(u_s^\gamma)^T C e_t ight]$	$Q_{arphi WB}$	$arphi^\dagger au^I arphi W^I_{\mu u} B^{\mu u}$	Q_{dW}	$(ar{q}_p \sigma^{\mu u} d_r) au^I arphi W^I_{\mu u}$	$Q_{arphi d}$	$\left(arphi^{\dagger}i\overleftrightarrow{D}_{\mu}arphi ight)$
$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu u} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu u} u_t)$					$Q_{arphi \widetilde{W}B}$	$arphi^\dagger au^I arphi \widetilde{W}^I_{\mu u} B^{\mu u}$	Q_{dB}	$(ar{q}_p \sigma^{\mu u} d_r) arphi B_{\mu u}$	$Q_{arphi u d}$	$ig i(\widetilde{arphi}^{\dagger}D_{\mu}arphi)($

$$\begin{split} D_{\mu} &= \partial_{\mu} - ig_{L}T^{I}W_{\mu}^{I} - ig_{Y}YB_{\mu} - ig_{s}C^{A}G_{\mu}^{A} \\ \varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi &= i\varphi^{\dagger}(D_{\mu}\varphi) - i(D_{\mu}\varphi)^{\dagger}\varphi \\ \varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi &= i\varphi^{\dagger}\tau^{I}(D_{\mu}\varphi) - i(D_{\mu}\varphi)^{\dagger}\tau^{I}\varphi \end{split}$$

arXiv:1008.4884 B. Grzadkowski, M. Iskrzyński, M. Misiak and J. Rosiek

	$(\bar{L}L)(\bar{L}L)$		Four fermion		$(\bar{L}L)(\bar{R}R)$		X^3		$arphi^6$ and $arphi^4 D^2$		$\psi^2 arphi^3$
Q_{ll}	$(ar{l}_p\gamma_\mu l_r)(ar{l}_s\gamma^\mu l_t)$	Q_{ee}	operators	Q_{le}	$(ar{l}_p \gamma_\mu l_r) (ar{e}_s \gamma^\mu e_t)$	Q_G	$\int f^{ABC} G^{A u}_{\mu} G^{B ho}_{ u} G^{C\mu}_{ ho}$	Q_{arphi}	$(arphi^\dagger arphi)^3$	Q_{earphi}	$(arphi^{\dagger}arphi)(ar{l}$
$Q_{qq}^{(1)}$	$(ar{q}_p \gamma_\mu q_r) (ar{q}_s \gamma^\mu q_t)$	$Q_{\gamma u}$	$(ar{u}_p\gamma_\mu u_r)(ar{u}_s\gamma^\mu u_t)$	Q_{lu}	$(ar{l}_p\gamma_\mu l_r)(ar{u}_s\gamma^\mu u_t)$	$Q_{\widetilde{G}}$	$f^{ABC}\widetilde{G}^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	$Q_{arphi\square}$	$(arphi^\dagger arphi) \Box (arphi^\dagger arphi)$	Q_{uarphi}	$\left ~~(arphi^{\dagger}arphi)(ar{q} ight.$
$Q_{qq}^{(3)}$	$(ar{q}_p \gamma_\mu au^I q_r) (ar{q}_s \gamma^\mu au^I q_t)$	Q_{dd}	$(ar{d}_p\gamma_\mu d_r)(ar{d}_s\gamma^\mu d_t)$	Q_{ld}	$(ar{l}_p\gamma_\mu l_r)(ar{d}_s\gamma^\mu d_t)$	Q_W	$\varepsilon^{IJK}W^{I u}_{\mu}W^{J ho}_{ u}W^{K\mu}_{ ho}$	$Q_{arphi D}$	$\left(arphi^{\dagger}D^{\mu}arphi ight)^{\star}\left(arphi^{\dagger}D_{\mu}arphi ight)$	Q_{darphi}	$\left \qquad (arphi^{\dagger}arphi)(ar{q} ight.$
$Q_{lq}^{(1)}$	$(ar{l}_p\gamma_\mu l_r)(ar{q}_s\gamma^\mu q_t)$	Q_{eu}	$(ar{e}_p\gamma_\mu e_r)(ar{u}_s\gamma^\mu u_t)$ _	Q_{qe}	$(ar{q}_p\gamma_\mu q_r)(ar{e}_s\gamma^\mu e_t)$	$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$				
$Q_{lq}^{(3)}$	$(l_p \gamma_\mu au^I l_r) (ar q_s \gamma^\mu au^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r) (d_s \gamma^\mu d_t)$	$\left\ \begin{array}{c}Q_{qu}^{(1)}\\ Q_{qu}^{(8)}\end{array}\right\ $	$\left \begin{array}{c} (\bar{q}_p \gamma_\mu q_r) (\bar{u}_s \gamma^\mu u_t) \\ (\bar{q}_p \gamma_\mu q_r) (\bar{u}_s \gamma^\mu u_t) \end{array} \right $		$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$
		$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (d_s \gamma^\mu d_t)$	$Q_{qu}^{(0)}$	$\left \begin{array}{c} (\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t) \\ (\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t) \end{array}\right $		$(o^{\dagger}(o G^{A} G^{A} \mu \nu$	0	$(\bar{l} \sigma^{\mu\nu} e) \tau^{I} \phi W^{I}$	$O^{(1)}$	$(\alpha^{\dagger}i\overleftrightarrow{D},\alpha)$
		$Q_{ud}^{(0)}$	$(ar{u}_p\gamma_\mu T^{\prime A}u_r)(d_s\gamma^\mu T^{\prime A}d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (d_s \gamma^\mu d_t)$		$\varphi \varphi G_{\mu\nu}G$	Qew O	$(\overline{l} - \mu\nu) = D$	$O^{(3)}$	$(\varphi \ i D_{\mu} \varphi)$
				$Q_{qd}^{(0)}$	$\left[(\bar{q}_p \gamma_\mu T^A q_r) (d_s \gamma^\mu T^A d_t) \right]$	$\left \begin{array}{c} Q_{\varphi \widetilde{G}} \end{array} \right $	$\varphi'\varphi G_{\mu\nu}^{\mu\nu}G^{\mu\nu}$	Q_{eB}	$(\iota_p \sigma^{\mu\nu} e_r) \varphi D_{\mu\nu}$	$Q_{arphi l}$	$(\varphi'^{i}D_{\mu}^{-}\varphi)($
$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		<i>B</i> -vio	lating		$Q_{arphi W}$	$arphi^\dagger arphi W^I_{\mu u} W^{I\mu u}$	Q_{uG}	$(ar{q}_p \sigma^{\mu u} T^A u_r) \widetilde{\varphi} G^A_{\mu u}$	$Q_{arphi e}$	$(arphi^\dagger i D_\mu arphi)$
Q_{ledq}	$(ar{l}_p^j e_r) (ar{d}_s q_t^j)$	Q_{duq}	$arepsilon^{lphaeta\gamma}arepsilon_{jk}\left[(d_p^lpha) ight]$	$)^T C u_r^{\beta}]$	$\left[(q_s^{\gamma j})^T C l_t^k ight]$	$\left\ \begin{array}{c} Q_{arphi \widetilde{W}} \end{array} ight.$	$arphi^\dagger arphi \widetilde{W}^I_{\mu u} W^{I\mu u}$	Q_{uW}	$(ar{q}_p \sigma^{\mu u} u_r) au^I \widetilde{arphi} W^I_{\mu u}$	$Q^{(1)}_{arphi q}$	$\left \begin{array}{c} (\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi) \end{array} \right.$
$Q_{quqd}^{(1)}$	$(ar{q}_p^j u_r) arepsilon_{jk} (ar{q}_s^k d_t)$	Q_{qqu}	$arepsilon^{lphaeta\gamma}arepsilon_{jk}\left[(q_p^{lpha j}$	$)^{T}Cq_{r}^{\beta k}$	$\left[(u_s^{\gamma})^T C e_t ight]$	$Q_{arphi B}$	$arphi^\dagger arphi B_{\mu u} B^{\mu u}$	Q_{uB}	$(ar q_p \sigma^{\mu u} u_r) \widetilde arphi B_{\mu u}$	$Q^{(3)}_{arphi q}$	$\left \ (arphi^\dagger i \overleftrightarrow{D}^I_\mu arphi) (arphi^\dagger i arphi) ight $
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	Q_{qqq}	$arepsilon^{lphaeta\gamma}arepsilon_{jn}arepsilon_{km}\left[(q_p^{lpha}) ight]$	$^{(j)})^T C q_r^{eta}$	$\left[(q_s^{\gamma m})^T C l_t^n \right]$	$Q_{arphi \widetilde{B}}$	$arphi^\dagger arphi \widetilde{B}_{\mu u} B^{\mu u}$	Q_{dG}	$(ar{q}_p \sigma^{\mu u} T^A d_r) arphi G^A_{\mu u}$	$Q_{arphi u}$	$\left \begin{array}{c} (\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi) \end{array} \right.$
$Q_{lequ}^{(1)}$	$(ar{l}_p^j e_r) arepsilon_{jk} (ar{q}_s^k u_t)$	Q_{duu}	$arepsilon^{lphaeta\gamma}\left[(d_p^lpha)^T ight]$	$\left[Cu_{r}^{\beta} ight] \left[\left[\left[\left[u_{r}^{\beta} ight] + \left[\left[\left[\left[\left[\left[\left[u_{r}^{\beta} ight] + \left[$	$\left[(u_s^{\gamma})^T C e_t\right]$	$Q_{\varphi WB}$	$arphi^\dagger au^I arphi W^I_{\mu u} B^{\mu u}$	Q_{dW}	$(ar{q}_p \sigma^{\mu u} d_r) au^I arphi W^I_{\mu u}$	$Q_{arphi d}$	$\left \begin{array}{c} (arphi^{\dagger}i\overleftrightarrow{D}_{\mu}arphi) \end{array} ight.$
$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$					$\left\ Q_{\varphi \widetilde{W}B} \right\ $	$arphi^\dagger au^I arphi \widetilde{W}^I_{\mu u} B^{\mu u}$	Q_{dB}	$(ar{q}_p \sigma^{\mu u} d_r) arphi B_{\mu u}$	$Q_{arphi u d}$	$ig i(\widetilde{arphi}^{\dagger}D_{\mu}arphi)(arphi)$

$$\begin{split} D_{\mu} &= \partial_{\mu} - ig_{L}T^{I}W_{\mu}^{I} - ig_{Y}YB_{\mu} - ig_{s}C^{A}G_{\mu}^{A} \\ \varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi &= i\varphi^{\dagger}(D_{\mu}\varphi) - i(D_{\mu}\varphi)^{\dagger}\varphi \\ \varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi &= i\varphi^{\dagger}\tau^{I}(D_{\mu}\varphi) - i(D_{\mu}\varphi)^{\dagger}\tau^{I}\varphi \end{split}$$

arXiv:1008.4884 B. Grzadkowski, M. Iskrzyński, M. Misiak and J. Rosiek

	$(\bar{L}L)(\bar{L}L)$		Four fermion		$(\bar{L}L)(\bar{R}R)$		X^3		$arphi^6$ and $arphi^4 D^2$		$\psi^2 arphi^3$
Q_{ll}	$(ar{l}_p\gamma_\mu l_r)(ar{l}_s\gamma^\mu l_t)$	Q_{ee}	operators	Q_{le}	$(ar{l}_p \gamma_\mu l_r) (ar{e}_s \gamma^\mu e_t)$	Q_G	$\int f^{ABC} G^{A u}_{\mu} G^{B ho}_{ u} G^{C\mu}_{ ho}$	Q_{arphi}	$(arphi^\dagger arphi)^3$	Q_{earphi}	$(arphi^{\dagger}arphi)(ar{l}$
$Q_{qq}^{(1)}$	$(ar{q}_p \gamma_\mu q_r) (ar{q}_s \gamma^\mu q_t)$	Q_{1u}	$(ar{u}_p \gamma_\mu u_r) (ar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(ar{l}_p\gamma_\mu l_r)(ar{u}_s\gamma^\mu u_t)$	$Q_{\widetilde{G}}$	$\int f^{ABC} \widetilde{G}^{A u}_{\mu} G^{B ho}_{ u} G^{C\mu}_{ ho}$	$Q_{arphi\square}$	$(arphi^\dagger arphi) \Box (arphi^\dagger arphi)$	$Q_{u\varphi}$	$\left ~~(arphi^{\dagger}arphi)(ar{q} ight.$
$Q_{qq}^{(3)}$	$(ar{q}_p \gamma_\mu au^I q_r) (ar{q}_s \gamma^\mu au^I q_t)$	Q_{dd}	$(ar{d}_p \gamma_\mu d_r) (ar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(ar{l}_p\gamma_\mu l_r)(ar{d}_s\gamma^\mu d_t)$	Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{arphi D}$	$\left(arphi^{\dagger} D^{\mu} arphi ight)^{\star} \left(arphi^{\dagger} D_{\mu} arphi ight)$	Q_{darphi}	$\left \qquad (arphi^{\dagger}arphi)(ar{q} ight.$
$Q_{lq}^{(1)}$	$(ar{l}_p\gamma_\mu l_r)(ar{q}_s\gamma^\mu q_t)$	Q_{eu}	$(ar{e}_p\gamma_\mu e_r)(ar{u}_s\gamma^\mu u_t)$ _	Q_{qe}	$(ar{q}_p\gamma_\mu q_r)(ar{e}_s\gamma^\mu e_t)$	$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$				Corroo
$Q_{lq}^{(3)}$	$(l_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(ar{e}_p \gamma_\mu e_r) (d_s \gamma^\mu d_t)$	$\left \begin{array}{c}Q_{qu}^{(1)}\\ Q_{qu}^{(2)}\end{array}\right $	$(ar{q}_p\gamma_\mu q_r)(ar{u}_s\gamma^\mu u_t)$		$\frac{\mu}{X^2 \omega^2}$		$\frac{1}{2} \frac{1}{2} \frac{1}$		formion_
		$Q_{ud}^{(1)}$	$(ar{u}_p \gamma_\mu u_r) (d_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$\left (\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t) \right $		γ		$\varphi \Pi \varphi$	(1)	
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{ad}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{\varphi G}$	$arphi^{\dagger} arphi G^A_{\mu u} G^{A\mu u}$	Q_{eW}	$(l_p \sigma^{\mu u} e_r) \tau^I \varphi W^I_{\mu u}$	$Q_{arphi l}^{(1)}$	$\left \left(arphi^{\dagger}iD_{\mu}arphi ight) ight $
				$\left \begin{array}{c} Q_{qd}^{(8)} \\ Q_{qd}^{(8)} \end{array} \right $	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{arphi \widetilde{G}}$	$arphi^\dagger arphi \widetilde{G}^A_{\mu u} G^{A\mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu u} e_r) arphi B_{\mu u}$	$Q^{(3)}_{arphi l}$	$\left(arphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}arphi)(ert$
$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		B-vio	lating		$\left\ \begin{array}{c} Q_{arphi W} \end{array} ight.$	$arphi^\dagger arphi W^I_{\mu u} W^{I\mu u}$	Q_{uG}	$(ar{q}_p \sigma^{\mu u} T^A u_r) \widetilde{arphi} G^A_{\mu u}$	$Q_{arphi e}$	$\Big \ (arphi^\dagger i \overleftrightarrow{D}_\mu arphi)$
Q_{ledq}	$(ar{l}_p^j e_r)(ar{d}_s q_t^j)$	Q_{duq}	$arepsilon^{lphaeta\gamma}arepsilon_{jk}\left[\left(d_p^lpha ight) ight]$	$)^T C u_r^{\beta}]$	$\left[(q_s^{\gamma j})^T C l_t^k ight]$	$\left\ \begin{array}{c} Q_{arphi \widetilde{W}} \end{array} ight.$	$arphi^\dagger arphi \widetilde{W}^I_{\mu u} W^{I\mu u}$	Q_{uW}	$(ar{q}_p \sigma^{\mu u} u_r) au^I \widetilde{arphi} W^I_{\mu u}$	$Q^{(1)}_{arphi q}$	$\left egin{array}{c} (arphi^\dagger i \overleftrightarrow{D}_\mu arphi) ight. ight.$
$Q_{quqd}^{(1)}$	$(ar{q}_p^j u_r) arepsilon_{jk} (ar{q}_s^k d_t)$	Q_{qqu}	$arepsilon^{lphaeta\gamma}arepsilon_{jk}\left[(q_p^{lpha j}) ight]$	$)^T C q_r^{\beta k}$	$\left[(u_s^{\gamma})^T C e_t \right]$	$Q_{arphi B}$	$arphi^\dagger arphi B_{\mu u} B^{\mu u}$	Q_{uB}	$(ar q_p \sigma^{\mu u} u_r) \widetilde arphi B_{\mu u}$	$Q^{(3)}_{arphi q}$	$\left(arphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}arphi)(arphi^{\dagger}arphi arphi arp$
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	Q_{qqq}	$arepsilon^{lphaeta\gamma}arepsilon_{jn}arepsilon_{km}\left[(q_p^lpha$	$^{(j)})^T C q_r^{eta}$	$\left[(q_s^{\gamma m})^T C l_t^n ight]$	$\left\ \begin{array}{c} Q_{arphi \widetilde{B}} \end{array} ight.$	$arphi^\dagger arphi \widetilde{B}_{\mu u} B^{\mu u}$	Q_{dG}	$(ar{q}_p \sigma^{\mu u} T^A d_r) arphi G^A_{\mu u}$	$Q_{arphi u}$	$\left egin{array}{c} (arphi^\dagger i \overleftrightarrow{D}_\mu arphi) ight. ight.$
$Q_{lequ}^{(1)}$	$(ar{l}_p^j e_r) arepsilon_{jk} (ar{q}_s^k u_t)$	Q_{duu}	$arepsilon^{lphaeta\gamma}\left[(d_p^lpha)^T ight]$	$\left[Cu_{r}^{\beta} ight] \left[\left[\left[\left[u_{r}^{\beta} \right] \right] \left[\left[\left[\left[\left[\left[\left[u_{r}^{\beta} \right] \left[$	$\left[(u_s^{\gamma})^T C e_t ight]$	$\left\ \begin{array}{c} Q_{arphi WB} \end{array} ight.$	$arphi^\dagger au^I arphi W^I_{\mu u} B^{\mu u}$	Q_{dW}	$(ar{q}_p \sigma^{\mu u} d_r) au^I arphi W^I_{\mu u}$	$Q_{arphi d}$	$\left egin{array}{c} (arphi^\dagger i \overleftrightarrow{D}_\mu arphi) ight. ight.$
$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu u} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu u} u_t)$					$\left\ Q_{\varphi \widetilde{W}B} \right\ $	$arphi^\dagger au^I arphi \widetilde{W}^I_{\mu u} B^{\mu u}$	Q_{dB}	$(ar{q}_p \sigma^{\mu u} d_r) arphi B_{\mu u}$	$Q_{arphi u d}$	$i(\widetilde{arphi}^{\dagger}D_{\mu}arphi)($

$$\begin{split} D_{\mu} &= \partial_{\mu} - ig_{L}T^{I}W_{\mu}^{I} - ig_{Y}YB_{\mu} - ig_{s}C^{A}G_{\mu}^{A} \\ \varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi &= i\varphi^{\dagger}(D_{\mu}\varphi) - i(D_{\mu}\varphi)^{\dagger}\varphi \\ \varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi &= i\varphi^{\dagger}\tau^{I}(D_{\mu}\varphi) - i(D_{\mu}\varphi)^{\dagger}\tau^{I}\varphi \end{split}$$

arXiv:1008.4884 B. Grzadkowski, M. Iskrzyński, M. Misiak and J. Rosiek

	$(\bar{L}L)(\bar{L}L)$		Four fermion		$(\bar{L}L)(\bar{R}R)$		X^3		$arphi^6 \;\; { m and} \;\; arphi^4 D^2$		$\psi^2 arphi^3$
Q_{ll}	$(ar{l}_p\gamma_\mu l_r)(ar{l}_s\gamma^\mu l_t)$	Q_{ee}	operators	Q_{le}	$(ar{l}_p\gamma_\mu l_r)(ar{e}_s\gamma^\mu e_t)$	Q_G	$f^{ABC}G^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	Q_{arphi}	$(arphi^\dagger arphi)^3$	Q_{earphi}	$(arphi^\daggerarphi)(ar l$
$Q_{qq}^{(1)}$	$(ar{q}_p \gamma_\mu q_r) (ar{q}_s \gamma^\mu q_t)$	Q_{1u}	$(ar{u}_p \gamma_\mu u_r) (ar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(ar{l}_p\gamma_\mu l_r)(ar{u}_s\gamma^\mu u_t)$	$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A u}_{\mu} G^{B ho}_{ u} G^{C\mu}_{ ho}$	$Q_{arphi \Box}$	Correction to M_{τ}	Q_{uarphi}	$(arphi^\daggerarphi)(ar q$
$Q_{qq}^{(3)}$	$(ar{q}_p \gamma_\mu au^I q_r) (ar{q}_s \gamma^\mu au^I q_t)$	Q_{dd}	$(ar{d}_p\gamma_\mu d_r)(ar{d}_s\gamma^\mu d_t)$	Q_{ld}	$(ar{l}_p\gamma_\mu l_r)(ar{d}_s\gamma^\mu d_t)$	Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{arphi D}$	$\left(arphi^{\dagger}D^{\mu}arphi ight)^{\star}\left(arphi^{\dagger}D_{\mu}arphi ight)$	Q_{darphi}	$(arphi^\daggerarphi)(ar q$
$Q_{lq}^{(1)}$	$(ar{l}_p\gamma_\mu l_r)(ar{q}_s\gamma^\mu q_t)$	Q_{eu}	$(ar{e}_p\gamma_\mu e_r)(ar{u}_s\gamma^\mu u_t)$ _	Q_{qe}	$(ar{q}_p\gamma_\mu q_r)(ar{e}_s\gamma^\mu e_t)$	$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$				Corro
$Q_{lq}^{(3)}$	$(l_p \gamma_\mu au^I l_r) (ar q_s \gamma^\mu au^I q_t)$	Q_{ed}	$(ar{e}_p \gamma_\mu e_r) (d_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(ar{q}_p \gamma_\mu q_r) (ar{u}_s \gamma^\mu u_t)$		$\frac{\mu}{X^2 \omega^2}$		$a/v^2 X_{(2)}$		formion_
		$\left \begin{array}{c} Q_{ud}^{(1)} \end{array} \right $	$(ar{u}_p \gamma_\mu u_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(ar{q}_p \gamma_\mu T^A q_r) (ar{u}_s \gamma^\mu T^A u_t)$		$X \varphi$		$\varphi X \varphi$	(1)	
		$Q_{ud}^{(8)}$	$(ar{u}_p \gamma_\mu T^A u_r) (ar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(ar{q}_p \gamma_\mu q_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{arphi G}$	$arphi^{\dagger} arphi G^A_{\mu u} G^{A\mu u}$	Q_{eW}	$(ar{l}_p \sigma^{\mu u} e_r) au^I arphi W^I_{\mu u}$	$Q^{(1)}_{arphi l}$	$(arphi^\dagger i D_\mu arphi)$
				$Q_{qd}^{(8)}$	$(ar{q}_p \gamma_\mu T^A q_r) (ar{d}_s \gamma^\mu T^A d_t)$	$Q_{arphi \widetilde{G}}$	$arphi^\dagger arphi \widetilde{G}^A_{\mu u} G^{A\mu u}$	Q_{eB}	$(ar{l}_p \sigma^{\mu u} e_r) arphi B_{\mu u}$	$Q^{(3)}_{arphi l}$	$(arphi^\dagger i \overleftrightarrow{D}^I_\mu arphi) ($
$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		B-vio	lating		$\left\ \begin{array}{c} Q_{arphi W} \end{array} ight\ $	$arphi^\dagger arphi W^I_{\mu u} W^{I\mu u}$	Q_{uG}	$(ar{q}_p \sigma^{\mu u} T^A u_r) \widetilde{arphi} G^A_{\mu u}$	$Q_{arphi e}$	$(arphi^\dagger i \overleftrightarrow{D}_\mu arphi)$
Q_{ledq}	$(ar{l}_p^j e_r) (ar{d}_s q_t^j)$	Q_{duq}	$arepsilon^{lphaeta\gamma}arepsilon_{jk}\left[(d_p^lpha) ight]$	$)^T C u_r^{\beta}]$	$\left[(q_s^{\gamma j})^T C l_t^k ight]$	$\left\Vert { ight\Vert } Q_{arphi \widetilde{W}}$	$arphi^{\dagger} arphi \widetilde{W}^{I}_{\mu u} W^{I\mu u}$	Q_{uW}	$(ar{q}_p \sigma^{\mu u} u_r) au^I \widetilde{arphi} W^I_{\mu u}$	$Q^{(1)}_{arphi q}$	$(arphi^\dagger i \overleftrightarrow{D}_\mu arphi)$
$Q_{quqd}^{(1)}$	$(ar{q}_p^j u_r)arepsilon_{jk}(ar{q}_s^k d_t)$	Q_{qqu}	$arepsilon^{lphaeta\gamma}arepsilon_{jk}\left[(q_p^{lpha j}) ight]$	$)^{T}Cq_{r}^{\beta k}$	$\left[(u_s^\gamma)^T C e_t ight]$	$Q_{arphi B}$	Correction to kineti	Q_{uB}	$(ar{q}_p \sigma^{\mu u} u_r) \widetilde{arphi} B_{\mu u}$	$Q^{(3)}_{arphi q}$	$(arphi^\dagger i \overleftrightarrow{D}^I_\mu arphi) (arphi$
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	Q_{qqq}	$arepsilon^{lphaeta\gamma}arepsilon_{jn}arepsilon_{km}\left[(q_p^{lpha}) ight]$	$(a^j)^T C q_r^{eta}$	$^{Bk} \big] \left[(q_s^{\gamma m})^T C l_t^n ight]$	$Q_{arphi \widetilde{B}}$	term($Z_{\mu u}Z^{\mu u}$)	Q_{dG}	$(ar{q}_p \sigma^{\mu u} T^A d_r) arphi G^A_{\mu u}$	$Q_{arphi u}$	$(arphi^\dagger i \overleftrightarrow{D}_\mu arphi)$
$Q_{lequ}^{(1)}$	$(ar{l}_p^j e_r) arepsilon_{jk} (ar{q}_s^k u_t)$	Q_{duu}	$arepsilon^{lphaeta\gamma}\left[(d_p^lpha)^T ight]$	$^{T}Cu_{r}^{eta}ig] \left[ight.$	$\left[(u_s^\gamma)^T C e_t ight]$	$Q_{\varphi WB}$	$arphi^\dagger au^I arphi W^I_{\mu u} B^{\mu u}$	Q_{dW}	$(ar{q}_p \sigma^{\mu u} d_r) au^I arphi W^I_{\mu u}$	$Q_{arphi d}$	$(arphi^\dagger i \overleftrightarrow{D}_\mu arphi)$
$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$					$\left\ Q_{\varphi \widetilde{W}B} \right\ $	$arphi^\dagger au^I arphi \widetilde{W}^I_{\mu u} B^{\mu u}$	Q_{dB}	$(ar{q}_p \sigma^{\mu u} d_r) arphi B_{\mu u}$	$Q_{arphi u d}$	$i(\widetilde{arphi}^{\dagger}D_{\mu}arphi)$ (

$$\begin{split} D_{\mu} &= \partial_{\mu} - ig_{L}T^{I}W_{\mu}^{I} - ig_{Y}YB_{\mu} - ig_{s}C^{A}G_{\mu}^{A} \\ \varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi &= i\varphi^{\dagger}(D_{\mu}\varphi) - i(D_{\mu}\varphi)^{\dagger}\varphi \\ \varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi &= i\varphi^{\dagger}\tau^{I}(D_{\mu}\varphi) - i(D_{\mu}\varphi)^{\dagger}\tau^{I}\varphi \end{split}$$

arXiv:1008.4884 B. Grzadkowski, M. Iskrzyński, M. Misiak and J. Rosiek

Correction to Z vertex from Dimension 6 SMEFT operators

$$\delta g_{L}^{Zd} = (-C_{\varphi q}^{(1)} - C_{\varphi q}^{(3)}) \frac{v^{2}}{2\Lambda^{2}} \qquad \delta g_{R}^{Ze} = (-C_{\varphi e}) \frac{1}{2\Lambda^{2}}$$

$$\delta g_{L}^{Zu} = (-C_{\varphi q}^{(1)} + C_{\varphi q}^{(3)}) \frac{v^{2}}{2\Lambda^{2}} \qquad \delta g_{R}^{Zu} = (-C_{\varphi u}) \frac{1}{2\Lambda^{2}}$$

$$\delta g_{L}^{Ze} = (-C_{\varphi l}^{(1)} - C_{\varphi l}^{(3)}) \frac{v^{2}}{2\Lambda^{2}} \qquad \delta g_{R}^{Zd} = (-C_{\varphi u}) \frac{1}{2\Lambda^{2}}$$

$$\delta g_{L}^{Zu} = (-C_{\varphi l}^{(1)} + C_{\varphi l}^{(3)}) \frac{v^{2}}{2\Lambda^{2}} \qquad \delta g_{L}^{We} = (C_{\varphi q}^{(3)}) \frac{v}{\Lambda^{2}}$$

$$\delta g_{L}^{We} = (C_{\varphi l}^{(3)}) \frac{v}{\Lambda^{2}}$$

Four fermion Dimension 6 SMEFT operators

$${}_{pL}\gamma_{\mu}\nu_{rL})(\bar{u}_{sL}\gamma^{\mu}u_{tL}) + \frac{C_{lq}^{(1)}}{\Lambda^{2}}(\bar{\nu}_{pL}\gamma_{\mu}\nu_{rL})(\bar{d}_{sL}\gamma^{\mu}d_{tL})$$

$${}_{pL}\gamma_{\mu}e_{rL})(\bar{u}_{sL}\gamma^{\mu}u_{tL}) + \frac{C_{lq}^{(1)}}{\Lambda^{2}}(\bar{e}_{pL}\gamma_{\mu}e_{rL})(\bar{d}_{sL}\gamma^{\mu}d_{tL})$$

$$\begin{aligned} C_{uL}^{eL} &= C_{dL}^{\nu L} = \frac{C_{lq}^{(1)} - C_{lq}^{(3)}}{\Lambda^2} & C_{dR}^{eR} = \frac{C_{ed}}{\Lambda^2} \\ C_{uL}^{\nu L} &= C_{dL}^{eL} = \frac{C_{lq}^{(1)} + C_{lq}^{(3)}}{\Lambda^2} & C_{udL}^{\nu eL} = 2\frac{C_{lq}^{(3)}}{\Lambda^2} \\ C_{uR}^{eL} &= C_{uR}^{\nu L} = \frac{C_{lu}}{\Lambda^2} & C_{uR}^{eR} = \frac{C_{eu}}{\Lambda^2} \\ C_{uR}^{eR} &= C_{uR}^{eR} = \frac{C_{qe}}{\Lambda^2} & C_{dR}^{eL} = C_{dR}^{\nu L} = \frac{C_{ld}}{\Lambda^2} \end{aligned}$$

P2(Electron-Proton Elastic Scattering)

$$A_{RL}^{Exp.} = \lim_{Q^2 \to 0} \left(\frac{-Q^2 G_F}{4\pi \alpha_{em} \sqrt{2}} \right) \left[Q_W(p) + 2\delta Q_W(p) \right]$$

arXiv:1802.04759v2

arXiv:1802.04759v2

arXiv:1802.04759v2

Correction to Proton's weak charge from Dim.6 SMEFT operators,

 $\delta Q_W(p) = (2\delta \hat{g}_V^{Zu} + \delta \hat{g}_V^{Zd}) + Q_W(p)\delta \hat{g}_A^{Ze} + \frac{v^2}{2}(2C_{uV}^{eA} + C_{dV}^{eA})$

Quark-Z vertex correction

electron-Z vertex correction

4 fermion

arXiv:1802.04759v2

Convention:

$$C_{uV}^{eA} = C_{uV}^{eR} - C_{uV}^{eL} = C_{uR}^{eR} + C_{uL}^{eR} - C_{uR}^{eL} - C_{uL}^{eL}$$

$$C_{dV}^{eA} = C_{dV}^{eR} - C_{dV}^{eL} = C_{dR}^{eR} + C_{dL}^{eR} - C_{dR}^{eL} - C_{dL}^{eL}$$

$$\delta \hat{g}_{V}^{Zu} = \delta \hat{g}_{R}^{Zu} + \delta \hat{g}_{L}^{Zu}$$

$$\delta \hat{g}_{V}^{Zd} = \delta \hat{g}_{R}^{Zd} + \delta \hat{g}_{L}^{Zd}$$

$$\delta \hat{g}_{A}^{Ze} = \delta \hat{g}_{R}^{Ze} - \delta \hat{g}_{L}^{Ze}$$

Correction to Proton's weak charge from Dim.6 SMEFT operators,

 $\delta Q_W(p) = (2\delta \hat{g}_V^{Zu} + \delta \hat{g}_V^{Zd}) + Q_W(p)\delta \hat{g}_A^{Ze} + \frac{v^2}{2}(2C_{uV}^{eA} + C_{dV}^{eA})$

Quark-Z vertex correction

electron-Z vertex correction

SoLID(Electron- Deuteron Deep Inelastic Scattering)

$$A_{RL} = -\left(\frac{G_F Q^2}{4\sqrt{2}\alpha\pi}\right) \left[\frac{4\sum_{q} Q^q (C_{1q} + \delta C_{1q})(f_q(x) + f_{\bar{q}}(x))}{\sum_{q} (Q^q)^2 (f_q(x) + f_{\bar{q}}(x))} Y_1 + \frac{4\sum_{q} Q^q (C_{2q} + \delta C_{2q})(f_q(x) - f_{\bar{q}}(x))}{\sum_{q} (Q^q)^2 (f_q(x) + f_{\bar{q}}(x))} Y_2\right]$$

$$\frac{C_{1q}, C_{2q}}{\sum_{q} (Q^q)^2 (f_q(x) + f_{\bar{q}}(x))} Y_1 + \frac{4\sum_{q} Q^q (C_{2q} + \delta C_{2q})(f_q(x) - f_{\bar{q}}(x))}{\sum_{q} (Q^q)^2 (f_q(x) + f_{\bar{q}}(x))} Y_2\right]$$

$$\frac{arXiv:2104.03979v1}{Badja Boughezal, Frank Petriello and Daniel Wiegand}$$

$$Y_1 = 1, Y_2 = \frac{1 - (1 - y)^2}{1 + (1 - y)^2}$$

$$y = \frac{2P \cdot q}{s} = \frac{\hat{s} + \hat{u}}{\hat{s}}$$

SoLID(Electron- Deuteron Deep Inelastic Scattering)

$$C_{1q} = \hat{g}_{A}^{e} \hat{g}_{V}^{q}$$

$$C_{2q} = \hat{g}_{V}^{e} \hat{g}_{A}^{q}$$

$$C_{2q} =$$

$$Y_1 = 1, Y_2 = \frac{1 - (1 - y)^2}{1 + (1 - y)^2}$$

$$y = \frac{2P \cdot q}{s} = \frac{\hat{s} + \hat{u}}{\hat{s}}$$

$$Y_1 = 1, Y_2 = \frac{1 - (1 - y)^2}{1 + (1 - y)^2}$$

$$y = \frac{2P \cdot q}{s} = \frac{\hat{s} + \hat{u}}{\hat{s}}$$

$$Y_1 = 1, Y_2 = \frac{1 - (1 - y)^2}{1 + (1 - y)^2}$$

$$y = \frac{2P \cdot q}{s} = \frac{\hat{s} + \hat{u}}{\hat{s}}$$

LHC(Drell-Yan Process)

$$x_{1} = \sqrt{\frac{\hat{s}}{s}}e^{Y}, x_{2} = \sqrt{\frac{\hat{s}}{s}}e^{-Y}$$
$$Y = \frac{1}{2}(lnx_{1} - lnx_{2})$$
$$\hat{s} = M^{2} = x_{1}x_{2}s$$

 M_{z} =91.1876 GeV

11

 M_{7} =91.1876 GeV

$$c_W = cos \theta_w$$

 M_z =91.1876 GeV

Forward scattering - lepton and boost are direction same Backward scattering-lepton and boost direction are opposite

Forward scattering - lepton and boost are direction same Backward scattering-lepton and boost direction are opposite

 X_{odd} leads to forward backward asymmetry

Standard Model prediction

 A_{FB} at leading order for different PDFs

Y	CT18NNLO	MSTW2008nnlo)	MSTW2008lo
0.0-0.8	0.0144(0.0%)	0.0147(2.0%)	0.0134(7.0%)
0.8-1.6	0.0493(4.6%)	0.0493(4.6%)	0.0441(6.8%)
1.6-2.5	0.0998(7.5%)	0.0978(5.3%)	0.0887(4.4%)
2.5-3.6	0.1476(0.8%)	0.1481(1.0%)	0.1400(4.3%)

Standard Model prediction

 A_{FB} at leading order for different PDFs

Y	CT18NNLO	MSTW2008nnlo)	MSTW2008lo
0.0-0.8	0.0144(0.0%)	0.0147(2.0%)	0.0134(7.0%)
0.8-1.6	0.0493(4.6%)	0.0493(4.6%)	0.0441(6.8%)
1.6-2.5	0.0998(7.5%)	0.0978(5.3%)	0.0887(4.4%)
2.5-3.6	0.1476(0.8%)	0.1481(1.0%)	0.1400(4.3%)

A_{FB} at NNLO in QCD

Y	Experimental	SM Predicti
0.0-0.8	0.0195±0.0015	0.0144±0.00
0.8-1.6	0.0448±0.0016	0.0471±0.00
1.6-2.5	0.0923±0.0026	0.0928±0.00
2.5-3.6	0.1445±0.0046	0.1464±0.00

Reference: ATLAS, Report number: ATLAS-CONF-2018-037 (2018).

Future Work

• Simplify the linear combination of dim.6 SMEFT operators for A_{FB} from LHC

Look at the correlations in systematic errors of all the linear combinations

Backup slides

Backup slides

