

Precise running of the electroweak mixing angle

Rodolfo Ferro Hernández.

MITP

Precision Tests with Neutral-Current

TOPICAL

Coherent Interactions with Nuclei

WORKSHOP

Precise running of the electroweak mixing angle

Rodolfo Ferro Hernández.

1. Motivation
2. Definition(s) of the weak mixing angle 3. RGE
3. Uncertainties
4. Results
5. Conclusions and future work

Motivation

- Possible light new physics. For example Z's.
- Possible light new physics. For example Z's.

Motivation

- Complementarity between the energy and precision frontier

$$
\mathcal{L}=\mathcal{L}_{S M}+\sum_{n=5}^{\infty} \frac{\mathcal{O}^{(n)}}{\Lambda^{n}}
$$

Motivation

- Possible light new physics. For example Z's.

- Complementarity between the energy and precision frontier
- Future low energy experiments will be able to measure the weak mixing angle with tiny error ~ 0.0003.

$$
\mathcal{L}=\mathcal{L}_{S M}+\sum_{n=5}^{\infty} \frac{\mathcal{O}^{(n)}}{\Lambda^{n}}
$$

Definitions

On shell

$\overline{\mathrm{MS}}$

$$
\sin ^{2} \theta=1-\frac{M_{W}^{2}}{M_{Z}^{2}}
$$

$$
\sin ^{2} \hat{\theta} \equiv \frac{g^{\prime 2}}{g^{\prime 2}+g^{2}}
$$

Definitions

On shell

$\overline{\mathrm{MS}}$

$$
\sin ^{2} \theta=1-\frac{M_{W}^{2}}{M_{Z}^{2}}
$$

$$
\sin ^{2} \hat{\theta} \equiv \frac{g^{\prime 2}}{g^{\prime 2}+g^{2}}
$$

At leading order $\longrightarrow \sin ^{2} \hat{\theta}=\sin ^{2} \theta$

Definitions

On shell
$\overline{\mathrm{MS}}$

$$
\sin ^{2} \theta=1-\frac{M_{W}^{2}}{M_{Z}^{2}} \quad \quad \sin ^{2} \hat{\theta} \equiv \frac{g^{\prime 2}}{g^{\prime 2}+g^{2}}
$$

At leading order $\longrightarrow \sin ^{2} \hat{\theta}=\sin ^{2} \theta$

Including loop corrections $\longrightarrow \rho \cos ^{2} \hat{\theta}=\cos ^{2} \theta$

Polarized electron scattering Asymmetry at NLO

$$
A_{L R}=\frac{\sigma_{L}-\sigma_{R}}{\sigma_{L}+\sigma_{R}}
$$

Polarized electron scattering Asymmetry at NLO

$$
A_{L R}=\frac{\sigma_{L}-\sigma_{R}}{\sigma_{L}+\sigma_{R}}
$$

+ Vertex+box

RGE

From the γZ bubble we obtain,

$$
\mu^{2} \frac{d \hat{v}_{f}}{d \mu^{2}}=\frac{\hat{\alpha} Q_{f}}{24 \pi}\left[\sum_{i} K_{i} \gamma_{i} \hat{v}_{i} Q_{i}+12 \sigma\left(\sum_{q} Q_{q}\right)\left(\sum_{q} \hat{v}_{q}\right)\right]
$$

while the RGE for α is

$$
\mu^{2} \frac{d \hat{\alpha}}{d \mu^{2}}=\frac{\hat{\alpha}^{2}}{\pi}\left[\frac{1}{24} \sum_{i} K_{i} \gamma_{i} Q_{i}^{2}+\sigma\left(\sum_{q} Q_{q}\right)^{2}\right]
$$

RGE

From the γZ bubble we obtain,

$$
\mu^{2} \frac{d \hat{v}_{f}}{d \mu^{2}}=\frac{\hat{\alpha} Q_{f}}{24 \pi}\left[\sum_{i} K_{i} \gamma_{i} \hat{v}_{i} Q_{i}+12 \sigma\left(\sum_{q} Q_{q}\right)\left(\sum_{q} \hat{v}_{q}\right)\right]
$$

while the RGE for α is

$$
\mu^{2} \frac{d \hat{\alpha}}{d \mu^{2}}=\frac{\hat{\alpha}^{2}}{\pi}\left[\frac{1}{24} \sum_{i} K_{i} \gamma_{i} Q_{i}^{2}+\sigma\left(\sum_{q} Q_{q}\right)^{2}\right]
$$

RGE

From the γZ bubble we obtain,

$$
\mu^{2} \frac{d \hat{v}_{f}}{d \mu^{2}}=\frac{\hat{\alpha} Q_{f}}{24 \pi}\left[\sum_{i} K_{i} \gamma_{i} \hat{v}_{i} Q_{i}+12 \sigma\left(\sum_{q} Q_{q}\right)\left(\sum_{q} \hat{v}_{q}\right)\right]
$$

while the RGE for α is

$$
\mu^{2} \frac{d \hat{\alpha}}{d \mu^{2}}=\frac{\hat{\alpha}^{2}}{\pi}\left[\frac{1}{24} \sum_{i} K_{i} \gamma_{i} Q_{i}^{2}+\sigma\left(\sum_{q} Q_{q}\right)^{2}\right]
$$

RGE

$$
\hat{s}^{2}(\mu)=\hat{s}^{2}\left(\mu_{0}\right) \frac{\hat{\alpha}(\mu)}{\hat{\alpha}\left(\mu_{0}\right)}+\lambda_{1}\left[1-\frac{\hat{\alpha}(\mu)}{\hat{\alpha}\left(\mu_{0}\right)}\right]+\frac{\hat{\alpha}(\mu)}{\pi}\left[\frac{\lambda_{2}}{3} \ln \frac{\mu^{2}}{\mu_{0}^{2}}+\frac{3 \lambda_{3}}{4} \ln \frac{\hat{\alpha}(\mu)}{\hat{\alpha}\left(\mu_{0}\right)}+\tilde{\sigma}\left(\mu_{0}\right)-\tilde{\sigma}(\mu)\right]
$$

RGE

$$
\begin{aligned}
& \left.\hat{s}^{2}(\mu)=\hat{s}^{2}\left(\mu_{0}\right) \frac{\hat{\alpha}(\mu)}{\hat{\alpha}\left(\mu_{0}\right)}+\lambda_{1}\left[1-\frac{\hat{\alpha}(\mu)}{\hat{\alpha}\left(\mu_{0}\right)}\right]+\frac{\hat{\alpha}(\mu)}{\pi}-\frac{\lambda_{2}}{3} \ln \frac{\mu^{2}}{\mu^{2}}+\frac{3 \lambda_{3}}{4} \ln \frac{\hat{\alpha}(\mu)}{\hat{\alpha}\left(\mu_{0}\right)}+\tilde{\sigma}\left(\mu_{0}\right)-\tilde{\sigma}(\mu)\right] \\
& \begin{array}{l}
\text { Numerical constants } \\
\text { deppend on the number } \\
\text { of particles }
\end{array}
\end{aligned}
$$

RGE

Solve for $\hat{\alpha}$ to get \hat{s}^{2} !

RGE down to zero

Below the particle mass, such particle is removed from the RGE.

RGE down to zero

Below the particle mass, such particle is removed from the RGE.

The numerical values λ_{i} will change.

RGE down to zero

Below the particle mass, such particle is removed from the RGE.

The numerical values λ_{i} will change.

Need to disentangle the contributions of the strange, up and down quarks

RGE down to zero

Below the particle mass, such particle is removed from the RGE.

The numerical values λ_{i} will change.

Need to disentangle the contributions of the strange, up and down quarks

Need to estimate the disconnected contributions

The light quarks

$$
\hat{\alpha}(\mu)=\frac{\alpha_{0}}{1-4 \pi \alpha_{0} \hat{\Pi}(0, \mu)}
$$

$$
\hat{\Pi}(0)=\frac{1}{\pi} \int_{4 m_{\pi}^{2}}^{\mu_{0}^{2}} \frac{d s}{s-i \epsilon} \operatorname{Im} \hat{\Pi}(s)+\frac{1}{2 \pi i} \oint_{|s|=\mu_{0}^{2}} \frac{d s}{s} \hat{\Pi}(s)
$$

The light quarks

$$
\hat{\alpha}(\mu)=\frac{\alpha_{0}}{1-4 \pi \alpha_{0} \hat{\Pi}(0, \mu)}
$$

$$
\hat{\Pi}(0)=\frac{1}{\pi} \int_{4 m_{\pi}^{2}}^{\mu_{0}^{2}} \frac{d s}{s-i \epsilon} \operatorname{Im} \hat{\Pi}(s)+\frac{1}{2 \pi i} \oint_{|s|=\mu_{0}^{2}} \frac{d s}{s} \hat{\Pi}(s)
$$

$$
\Delta \hat{\alpha}^{(3)}\left(\mu_{0}\right)=\frac{\alpha}{3 \pi} \int_{4 m^{2}}^{\mu_{0}^{2}} d \frac{R(s)}{s-i \epsilon}+4 \pi I^{(3)}
$$

The light quarks

$$
\hat{\alpha}(\mu)=\frac{\alpha_{0}}{1-4 \pi \alpha_{0} \hat{\Pi}(0, \mu)}
$$

$$
\hat{\Pi}(0)=\frac{1}{\pi} \int_{4 m_{\pi}^{2}}^{\mu_{0}^{2}} \frac{d s}{s-i \epsilon} \operatorname{Im} \hat{\Pi}(s)+\frac{1}{2 \pi i} \oint_{|s|=\mu_{0}^{2}} \frac{d s}{s} \hat{\Pi}(s)
$$

$$
\Delta \hat{\alpha}^{(3)}\left(\mu_{0}\right)=\frac{\alpha}{3 \pi} \int_{4 m_{\pi}^{2}}^{\mu_{0}^{2}} d s \frac{R(s)}{s-i \epsilon}+4 \pi I^{(3)}
$$

$$
\delta \hat{s}^{2}(0)=\left[\frac{1}{2}-\hat{s}^{2}\right] \delta \Delta \hat{\alpha}^{(3)}(2 \mathrm{GeV})=\mp 1.2 \times 10^{-5}
$$

Strange quark contribution

Strange quark contribution

Use channels that correspond to strange quark current: $\phi(1020), \phi(1680)$

Strange quark contribution

Use channels that correspond to strange quark current: $\phi(1020), \phi(1680)$
For kaon channels we take a 50% contribution $\pm 50 \%$.

channel	$a_{\mu} \times 10^{10}$	$\Delta \alpha \times 10^{4}$
$K \bar{K}($ non $-\phi)$	3.62	0.76
$K \bar{K} 2 \pi$	0.85	0.30
$K \bar{K} 3 \pi$	-0.03	-0.01
$K \bar{K} \eta$	0.01	0.00
$K \bar{K} \omega$	0.01	0.00
Total	4.46	1.05

arXiv:1712.09146

Strange quark contribution

Use channels that correspond to strange quark current: $\phi(1020), \phi(1680)$
For kaon channels we take a 50% contribution $\pm 50 \%$.

channel	$a_{\mu} \times 10^{10}$	$\Delta \alpha \times 10^{4}$
$K \bar{K}($ non $-\phi)$	3.62	0.76
$K \bar{K} 2 \pi$	0.85	0.30
$K \bar{K} 3 \pi$	-0.03	-0.01
$K \bar{K} \eta$	0.01	0.00
$K \bar{K} \omega$	0.01	0.00
Total	4.46	1.05

$\Delta_{s} \hat{\alpha}\left(\bar{m}_{c}\right)=Q_{S}^{2} \frac{\stackrel{\alpha}{\alpha}}{\pi} K_{\mathrm{QCD}}^{s}\left(\bar{m}_{c}\right) \ln \frac{\bar{m}_{c}^{2}}{\bar{m}_{s}^{2}}$

After combination with lattice (RBC and UKQCD 2016):

$$
\begin{aligned}
& \Delta_{s} \hat{\alpha}\left(\bar{m}_{c}\right)=(8.71 \pm 0.32) \times 10^{-4} \\
& \delta \hat{s}^{2}(0) \simeq \frac{1}{20} \delta \Delta \hat{\alpha}^{(2)}\left(\bar{m}_{c}\right)= \pm 1.0 \times 10^{-5}
\end{aligned}
$$

Error budget

source	$\delta \sin ^{2} \hat{\theta}_{W}(0) \times 10^{5}$
$\Delta \hat{\alpha}^{(3)}(2 \mathrm{GeV})$	1.2
flavor separation	1.0
isospin breaking	0.7
singlet contribution	0.3
PQCD	0.6
Total	1.8

Error budget

source	$\delta \sin ^{2} \hat{\theta}_{W}(0) \times 10^{5}$
$\Delta \hat{\alpha}^{(3)}(2 \mathrm{GeV})$	1.2
flavor separation	1.0
isospin breaking	0.7
singlet contribution	0.3
PQCD	0.6
Total	1.8

RBC/UKQCD 1512.09054

$\sin ^{2} \hat{\theta}_{W}(0)=0.23868 \pm 0.00005 \pm 0.00002$

Polarized electron scattering asymmetry at NLO

In the $\overline{\text { MS }}$ scheme at $\mu=M_{\mathcal{Z}}$ (Marciano and Czarnecki 1995).

$$
\begin{aligned}
A_{\mathrm{LR}}^{1-\text { loop }}= & \frac{\rho G_{\mu} Q^{2}}{\sqrt{2} \pi \alpha} \frac{1-y}{1+y^{4}+(1-y)^{4}}\left[1-4 \kappa(0) \hat{s}_{Z}^{2}\right. \\
& +\frac{\alpha}{4 \pi \hat{s}_{Z}^{2}}-\frac{3 \alpha}{32 \pi \hat{s}_{Z}^{2} \hat{c}_{Z}^{2}}\left(1-4 \hat{s}_{Z}^{2}\right)\left(1+\left(1-4 \hat{s}_{Z}^{2}\right)^{2}\right) \\
& \left.-\frac{\alpha}{4 \pi}\left(1-4 \hat{s}_{Z}^{2}\right)\left\{\frac{22}{3} \ln \frac{y m_{Z}^{2}}{Q^{2}}+\frac{85}{9}+f(y)\right\}+F_{2}\left(y, Q^{2}\right)\right]
\end{aligned}
$$

Polarized electron scattering asymmetry at NLO

In the $\overline{\mathrm{MS}}$ scheme at $\mu=M_{\mathrm{Z}}$ (Marciano and Czarnecki 1995).

Polarized electron scattering asymmetry at NLO

In the $\overline{\text { MS }}$ scheme at $\mu=M_{\mathcal{Z}}$ (Marciano and Czarnecki 1995).

$$
\kappa(0) s_{Z}^{2}=\hat{s}_{Z}^{2}-\frac{\alpha}{\pi}\left[\frac{1}{6} \sum_{f}\left(T_{3 f} Q_{f}-2 s_{Z}^{2} Q_{f}^{2}\right) \ln \frac{m_{f}^{2}}{m_{Z}^{2}}-\left(\frac{7}{4} \hat{c}_{Z}^{2}+\frac{1}{24}\right) \ln \frac{m_{W}^{2}}{m_{Z}^{2}}+\frac{7}{18}-\frac{\hat{s}_{Z}^{2}}{6}\right]
$$

Polarized electron scattering asymmetry at NLO

In the $\overline{\mathrm{MS}}$ scheme at $\mu=M_{\mathrm{Z}}$ (Marciano and Czarnecki 1995).

$$
\begin{aligned}
& \kappa(0) s_{Z}^{2}=\hat{s}_{Z}^{2}-\frac{\alpha}{\pi}\left[\frac{1}{6} \sum_{f}\left(T_{3 f} Q_{f}-2 s_{Z}^{2} Q_{f}^{2}\right) \ln \frac{m_{f}^{2}}{m_{Z}^{2}}-\left(\frac{7}{4} c_{Z}^{2}+\frac{1}{24}\right) \ln \frac{m_{W}^{2}}{m_{Z}^{2}}+\frac{7}{18}-\frac{\hat{s}_{Z}^{2}}{6}\right] \\
& \hat{s}_{Z}^{2}-\hat{s}_{D}^{2}=\frac{\alpha}{\pi}\left[\frac{1}{6} \sum_{f}\left(T_{3 f} Q_{f}-2 \hat{s}_{Z}^{2} Q_{f}^{2}\right) \ln \frac{m_{f}^{2}}{m_{Z}^{2}}-\left(\frac{7}{4} c_{Z}^{2}+\frac{1}{24}\right) \ln \frac{m_{W}^{2}}{m_{Z}^{2}}+\frac{1}{6}-\frac{\hat{s}_{Z}^{2}}{6}\right]
\end{aligned}
$$

Polarized electron scattering asymmetry at NLO

In the $\overline{\mathrm{MS}}$ scheme at $\mu=M_{\mathrm{Z}}$ (Marciano and Czarnecki 1995).

$$
\begin{gathered}
\kappa(0) \hat{s}_{Z}^{2}=\hat{s}_{Z}^{2}-\frac{\alpha}{\pi}\left[\frac{1}{6} \sum_{f}\left(T_{3 f} Q_{f}-2 s_{Z}^{2} Q_{f}^{2}\right) \ln \frac{m_{f}^{2}}{m_{Z}^{2}}-\left(\frac{7}{4} c_{Z}^{2}+\frac{1}{24}\right) \ln \frac{m_{W}^{2}}{m_{Z}^{2}}+\frac{7}{18}-\frac{\hat{s}_{Z}^{2}}{6}\right] \\
\hat{s}_{Z}^{2}-\hat{s}_{0}^{2}=\frac{\alpha}{\pi}\left[\frac{1}{6} \sum_{f}\left(T_{3 f} Q_{f}-2 \hat{s}_{Z}^{2} Q_{f}^{2}\right) \ln \frac{m_{f}^{2}}{m_{Z}^{2}}-\left(\frac{7}{4} c_{Z}^{2}+\frac{1}{24}\right) \times \frac{m_{W}^{2}}{2^{2}}+\frac{1}{6}-\frac{\hat{s}_{Z}^{2}}{6}\right] \\
\kappa(0) \hat{s}_{Z}^{2}=\hat{s}_{0}^{2}-\frac{2 \alpha}{9 \pi_{s}}+\mathcal{O}\left(\alpha^{2}\right) \\
\text { same logs! }
\end{gathered}
$$

Asymmetry at NNLO

$A_{\mathrm{LR}}=\frac{G_{\mu} Q^{2}}{\sqrt{2} \pi \alpha} \frac{1-y}{1+y^{4}+(1-y)^{4}}\left(1-4 \sin ^{2} \theta_{W}+\Delta Q_{W}^{e}\right)$ (arXiv:1912.08220, arXiv:2202.11976)

	$\hat{s}\left(m_{Z}\right)-\alpha$ scheme $^{*}\|5\|$ $(X=\alpha)$	$\hat{s}(0)-\alpha$ scheme $(X=\alpha)$	$\hat{s}(0)-G_{\mu}$ scheme $\left(X=G_{\mu}\right)$
$1-4 \hat{s}^{2}$	74.40	45.56	45.56
$X \Delta Q_{W(1,1)}^{c, X}$	-29.04	+0.39	+0.43
$X \Delta Q_{W(1,0)}^{c, X}$	+3.06	+0.77	+0.84
$X^{2} \Delta Q_{W(2,2)}^{c, X}$	-0.18	+0.07	+0.05
$X^{2} \Delta Q_{W(2,1)}^{c, X}$	+1.18	-1.15	-1.30
$X \Delta Q_{W, \Delta \rho}^{c, X}$	-	-0.05	-0.06
Sum	49.42	45.60	45.52

$$
\begin{aligned}
& Q_{W}^{e}=\left(45.83 \pm 0.08_{\hat{s}(0)} \pm 0.06_{\Delta Q_{W(2,1)}^{e, X}(\text { had })} \pm 0.13_{\Delta Q_{W(2,0)}^{e, x}(\text { missing })} \pm 0.23_{\text {scheme }}\right) \times 10^{-3} \\
& Q_{W}^{e}=(45.83 \pm 0.28) \times 10^{-3} \xrightarrow{e} 0.6 \% \text { theoretical uncertainty }
\end{aligned}
$$

Asymmetry at NNLO

$A_{\mathrm{LR}}=\frac{G_{\mu} Q^{2}}{\sqrt{2} \pi \alpha} \frac{1-y}{1+y^{4}+(1-y)^{4}}\left(1-4 \sin ^{2} \theta_{W}+\Delta Q_{W}^{e}\right)(\operatorname{arXiv}: 1912.08220, \operatorname{arXiv}: 2202.11976)$

	$\hat{s}\left(m_{Z}\right)-\alpha$ scheme $^{*}\|5\|$ $(X=\alpha)$	$\hat{s}(0)-\alpha$ scheme $(X=\alpha)$	$\hat{s}(0)-G_{\mu}$ scheme $\left(X=G_{\mu}\right)$	
$1-4 \hat{s}^{2}$	74.40	45.56	45.56	
$X \Delta Q_{W(1,1)}^{c, X}$	-29.04	+0.39	+0.43	
$X \Delta Q_{W(1,0)}^{c, X}$	+3.06	+0.77	+0.84	
$X^{2} \Delta Q_{W(2,2)}^{c, X}$	-0.18	+0.07	+0.05	
$X^{2} \Delta Q_{W(2,1)}^{c, X}$	+1.18	-1.15	-1.30	
$X \Delta Q_{W, \Delta \rho}^{c, X}$	-	-0.05	-0.06	
Sum	*no QCD corrections			
49.42				
45.60	45.52			

$$
\begin{aligned}
& Q_{W}^{e}=\left(45.83 \pm 0.08_{\hat{s}(0)} \pm 0.06_{\Delta Q_{W(2,1)}^{e, X}(\text { had })} \pm 0.13_{\Delta Q_{W(2,0)}^{c, x}(\text { missing })} \pm 0.23_{\text {scheme }}\right) \times 10^{-3} \\
& Q_{W}^{e}=(45.83 \pm 0.28) \times 10^{-3} \longrightarrow 0.6 \% \text { theoretical uncertainty }
\end{aligned}
$$

Outlook.

Combine with lattice results to the γZ vacuum polarisation here at Mainz
(arxiv:2203.08676)

Outlook.

Combine with lattice results to the γZ vacuum polarisation here at Mainz (arXiv:2203.08676)

Use q dependent vacuum polarization to improve the results on box diagram (Möller)

Outlook.

Combine with lattice results to the γZ vacuum polarisation here at Mainz
(arxiv:2203.08676)

Use q dependent vacuum polarization to improve the results on box diagram (Möller)

Find a way to systematically re-sum contribution from the boxes, LEFT?

