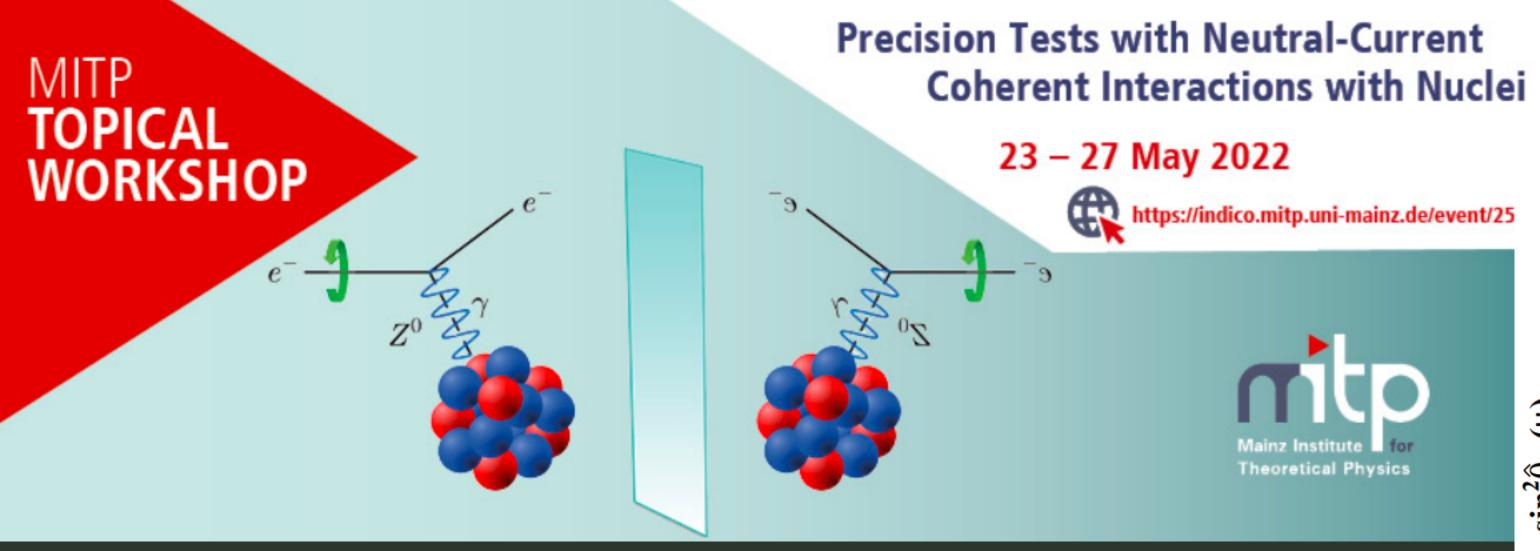
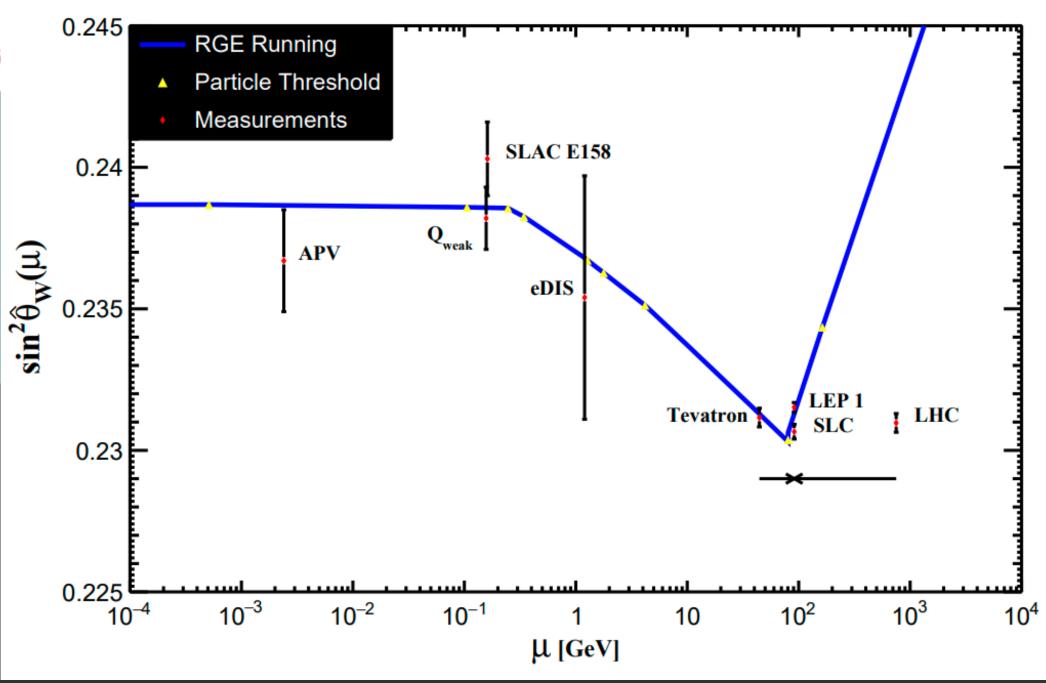


Precise running of the electroweak mixing angle

Rodolfo Ferro Hernández.





Precise running of the electroweak mixing angle

Rodolfo Ferro Hernández.

- 1. Motivation
- 2. Definition(s) of the weak mixing angle
- 3. RGE
- 4. Uncertainties
- 5. Results

6. Conclusions and future work

Motivation

Possible light new physics. For example Z´s.

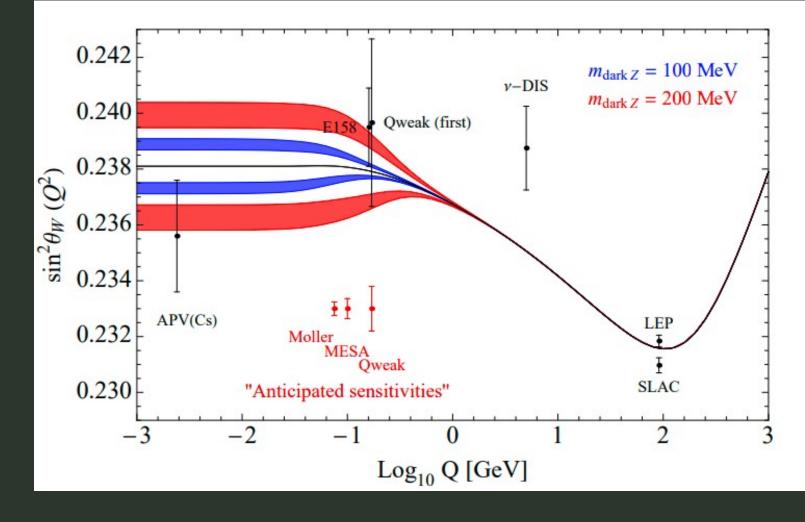
 $\epsilon B_{\mu\nu}B'^{\mu\nu}$

 $\delta M_Z M_Z'$

Motivation

Marciano, Davoudiasl, Lee (2014)

Possible light new physics. For example Z´s.



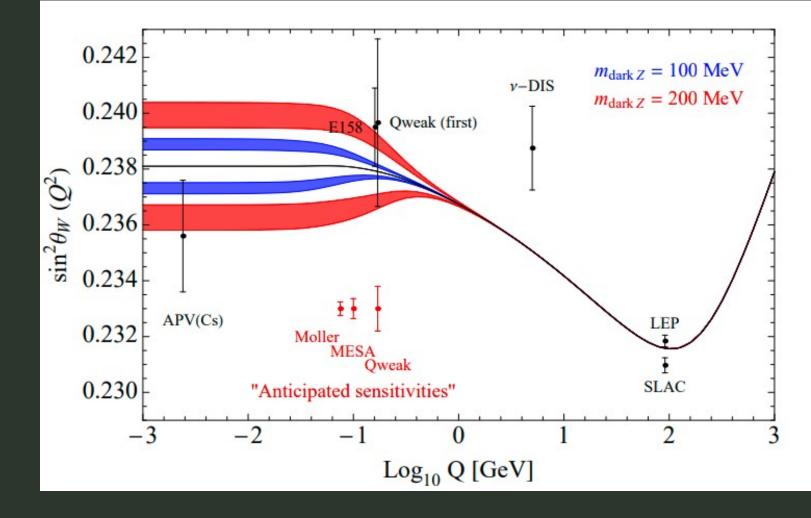
$$\epsilon B_{\mu\nu} B'^{\mu\nu}$$

$\delta M_Z M_Z'$

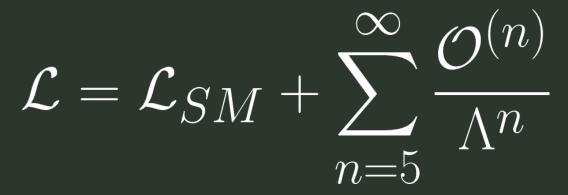
Motivation

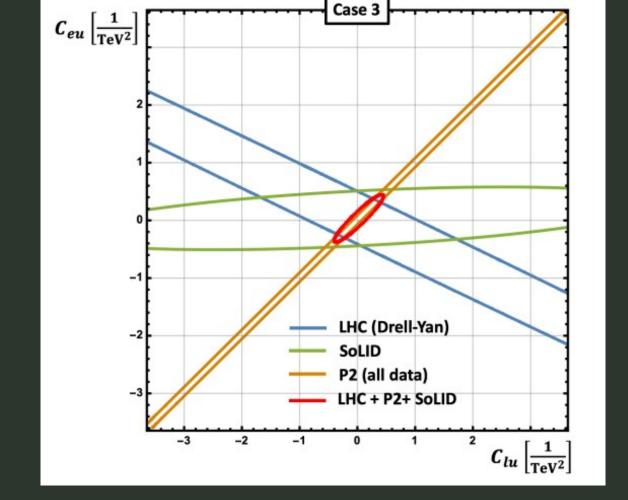
Marciano, Davoudiasl, Lee (2014)

Possible light new physics. For example Z´s.



Complementarity between the energy and precision frontier





Boughezal, Petriello, and Daniel Wiegand (2021)

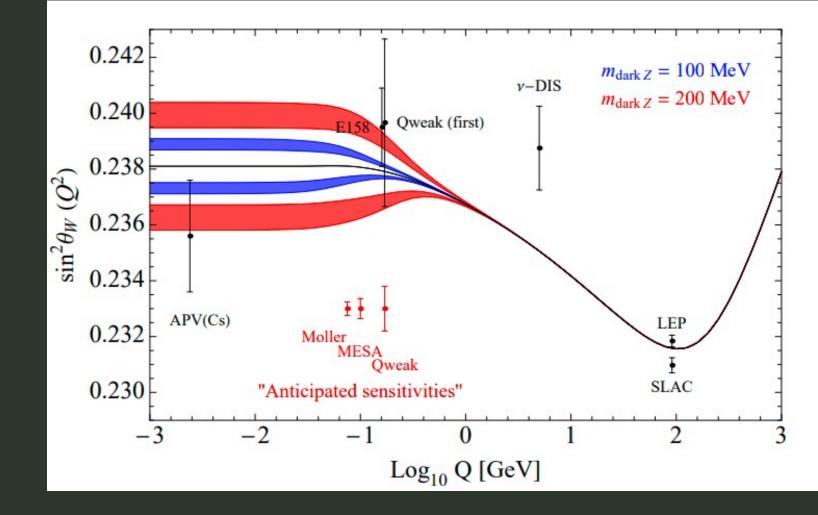
$$\epsilon B_{\mu\nu}B^{\prime\mu\nu}$$

$\delta M_Z M_Z'$

Motivation

Marciano, Davoudiasl, Lee (2014)

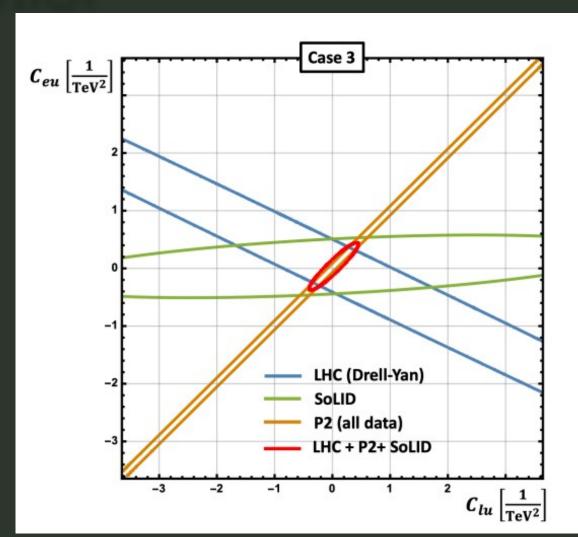
Possible light new physics. For example Z´s.



Complementarity between the energy and precision frontier

• Future low energy experiments will be able to measure the weak mixing angle with tiny error ~0.0003.

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{n=5}^{\infty} \frac{\mathcal{O}^{(n)}}{\Lambda^n}$$



Boughezal, Petriello, and Daniel Wiegand (2021)

Definitions

On shell

$$\sin^2\theta = 1 - \frac{M_W^2}{M_Z^2}$$

MS

$$\sin^2 \hat{\theta} \equiv \frac{g'^2}{g'^2 + g^2}$$

Definitions

On shell

$$\sin^2\theta = 1 - \frac{M_W^2}{M_Z^2}$$

MS

$$\sin^2 \hat{\theta} \equiv \frac{g'^2}{g'^2 + g^2}$$

At leading order

$$\sin^2 \hat{\theta} = \sin^2 \theta$$

Definitions

On shell

MS

$$\sin^2\theta = 1 - \frac{M_W^2}{M_Z^2}$$

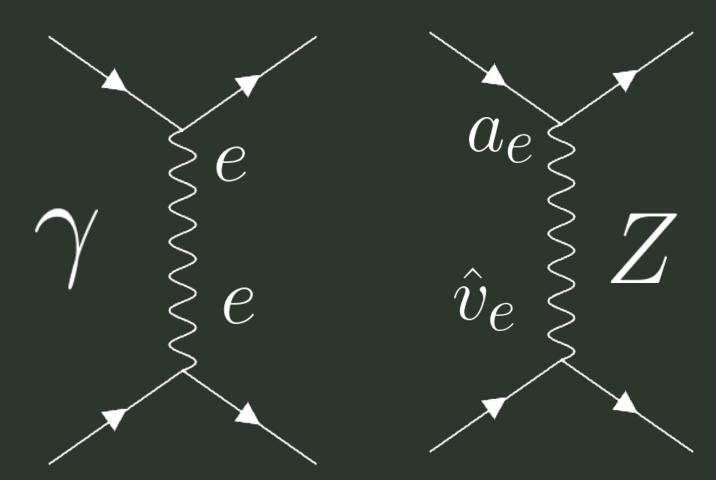
$$\sin^2 \hat{\theta} \equiv \frac{g'^2}{g'^2 + g^2}$$

At leading order

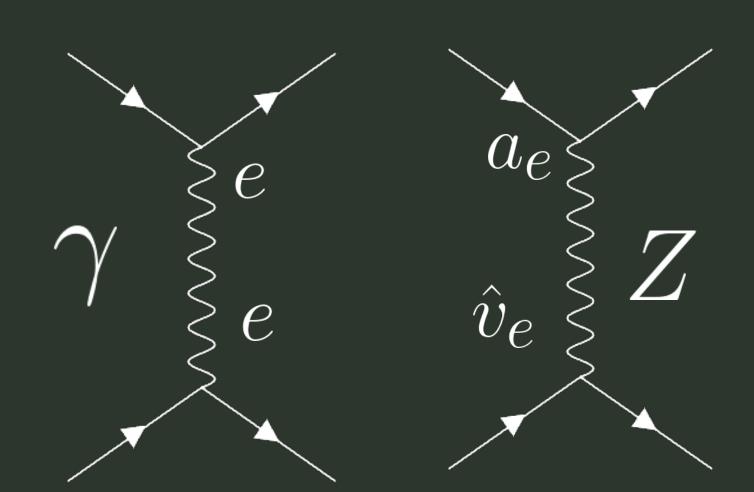
$$- \sin^2 \hat{\theta} = \sin^2 \theta$$

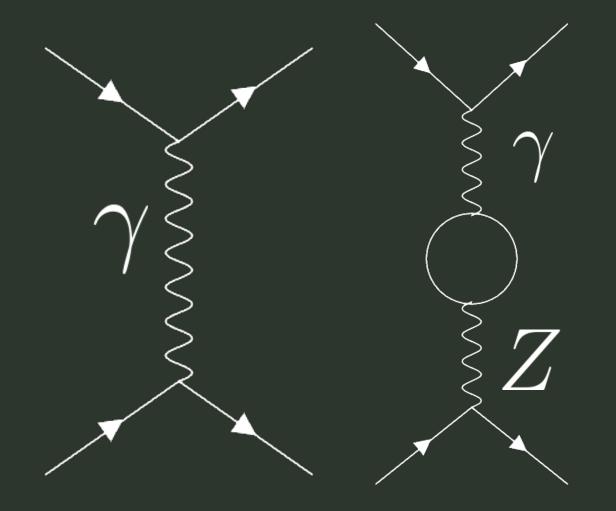
Including loop corrections $\longrightarrow
ho \cos^2 \hat{ heta} = \cos^2 heta$

$$A_{LR} = rac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R}$$



$$A_{LR} = rac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R}$$





+ Vertex+box

From the γZ bubble we obtain,

$$\mu^2 \frac{d\hat{v}_f}{d\mu^2} = \frac{\hat{\alpha}Q_f}{24\pi} \left[\sum_i K_i \gamma_i \hat{v}_i Q_i + 12\sigma \left(\sum_q Q_q \right) \left(\sum_q \hat{v}_q \right) \right]$$

while the RGE for lpha is

$$\mu^{2} \frac{d\hat{\alpha}}{d\mu^{2}} = \frac{\hat{\alpha}^{2}}{\pi} \left[\frac{1}{24} \sum_{i} K_{i} \gamma_{i} Q_{i}^{2} + \sigma \left(\sum_{q} Q_{q} \right)^{2} \right]$$

$$\hat{v}_f = T_f - 2Q_f \sin^2 \hat{\theta}_W$$

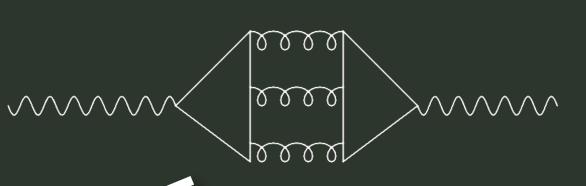
From the γZ bubble we obtain,

$$\mu^2 \frac{d\hat{v}_f}{d\mu^2} = \frac{\hat{\alpha}Q_f}{24\pi} \left[\sum_i K_i \gamma_i \hat{v}_i Q_i + 12\sigma \left(\sum_q Q_q \right) \left(\sum_q \hat{v}_q \right) \right]$$

while the RGE for α is

$$\mu^2 \frac{d\hat{\alpha}}{d\mu^2} = \frac{\hat{\alpha}^2}{\pi} \left[\frac{1}{24} \sum_i K_i \gamma_i Q_i^2 + \sigma \left(\sum_q Q_q \right)^2 \right]$$

$$\hat{v}_f = T_f - 2Q_f \sin^2 \hat{\theta}_W$$



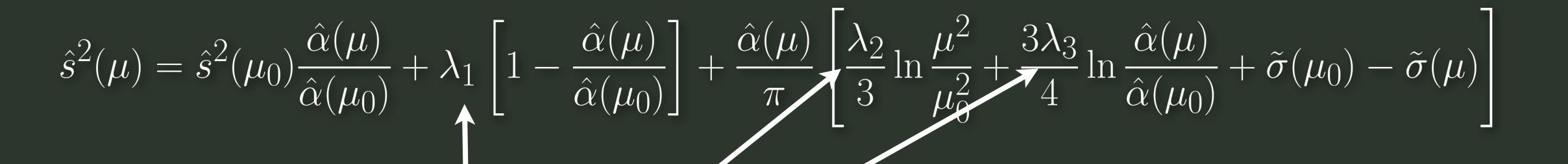
From the γZ bubble we obtain,

$$\mu^2 \frac{d\hat{v}_f}{d\mu^2} = \frac{\hat{\alpha}Q_f}{24\pi} \left[\sum_i K_i \gamma_i \hat{v}_i Q_i + 12\sigma \left(\sum_q Q_q \right) \left(\sum_q \hat{v}_q \right) \right]$$

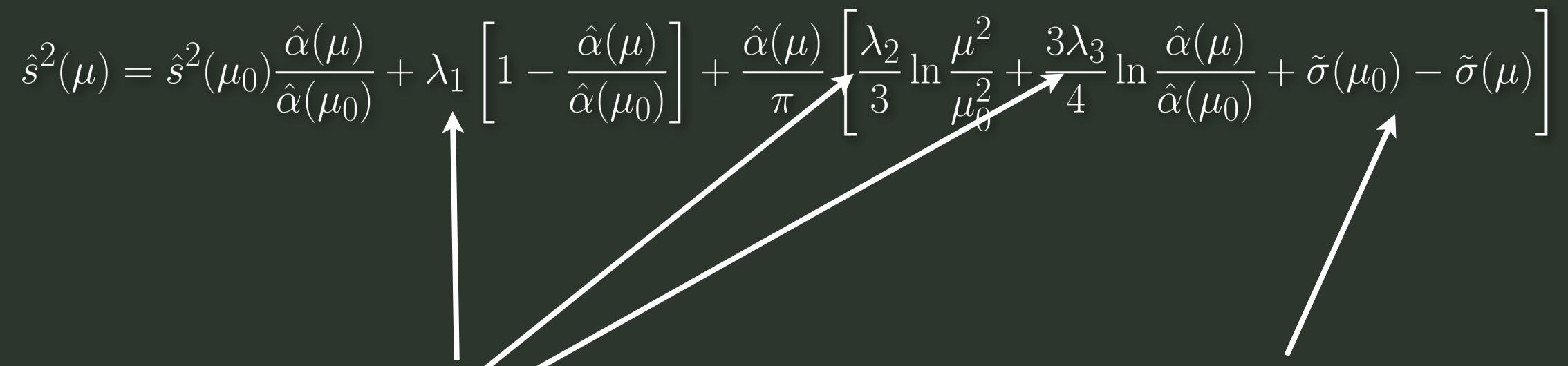
while the RGE for α is

$$\mu^2 \frac{d\hat{\alpha}}{d\mu^2} = \frac{\hat{\alpha}^2}{\pi} \left[\frac{1}{24} \sum_i K_i \gamma_i Q_i^2 + \sigma \left(\sum_q Q_q \right)^2 \right]$$

$$\hat{s}^{2}(\mu) = \hat{s}^{2}(\mu_{0}) \frac{\hat{\alpha}(\mu)}{\hat{\alpha}(\mu_{0})} + \lambda_{1} \left[1 - \frac{\hat{\alpha}(\mu)}{\hat{\alpha}(\mu_{0})} \right] + \frac{\hat{\alpha}(\mu)}{\pi} \left[\frac{\lambda_{2}}{3} \ln \frac{\mu^{2}}{\mu_{0}^{2}} + \frac{3\lambda_{3}}{4} \ln \frac{\hat{\alpha}(\mu)}{\hat{\alpha}(\mu_{0})} + \tilde{\sigma}(\mu_{0}) - \tilde{\sigma}(\mu) \right]$$



Numerical constants, depend on the number of particles



Numerical constants, depend on the number of particles

Disconnected contribution

Solve for $\hat{\alpha}$ to get \hat{s}^2 !

Below the particle mass, such particle is removed from the RGE.

Below the particle mass, such particle is removed from the RGE.

The numerical values λ_i will change.

Below the particle mass, such particle is removed from the RGE.

The numerical values λ_i will change.

Need to disentangle the contributions of the strange, up and down quarks

Below the particle mass, such particle is removed from the RGE.

The numerical values λ_i will change.

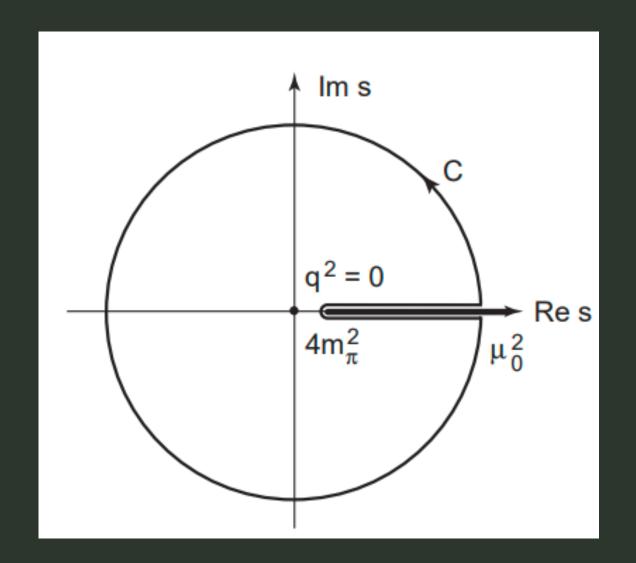
Need to disentangle the contributions of the strange, up and down quarks

Need to estimate the disconnected contributions

The light quarks

$$\hat{\alpha}(\mu) = \frac{\alpha_0}{1 - 4\pi\alpha_0 \hat{\Pi}(0, \mu)}$$

$$\hat{\Pi}(0) = \frac{1}{\pi} \int_{4m_{\pi}^{2}}^{\mu_{0}^{2}} \frac{ds}{s - i\epsilon} \underbrace{\ln \hat{\Pi}(s)}_{|s| = \mu_{0}^{2}} + \frac{1}{2\pi i} \oint_{|s| = \mu_{0}^{2}} \frac{ds}{s} \hat{\Pi}(s)$$

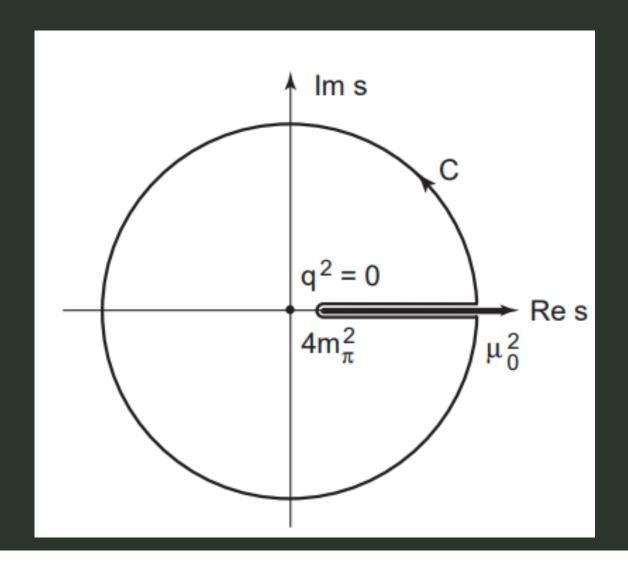


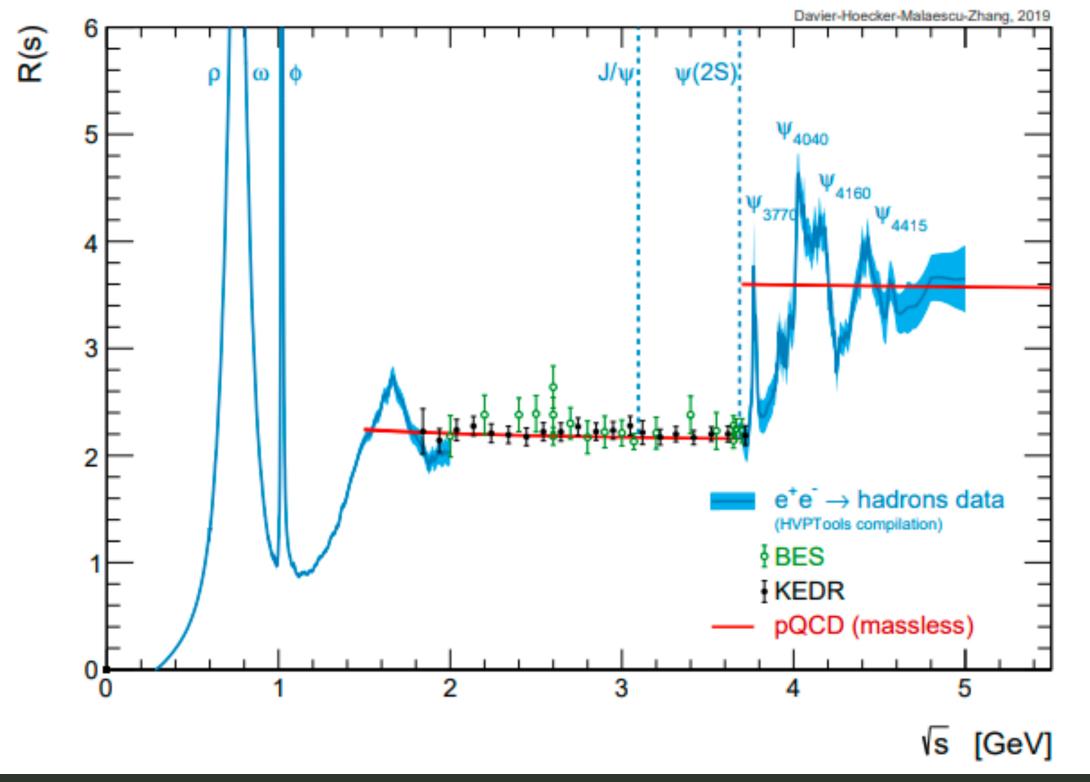
The light quarks

$$\hat{\alpha}(\mu) = \frac{\alpha_0}{1 - 4\pi\alpha_0 \hat{\Pi}(0, \mu)}$$

$$\hat{\Pi}(0) = \frac{1}{\pi} \int_{4m_{\pi}^{2}}^{\mu_{0}^{2}} \frac{ds}{s - i\epsilon} \underbrace{\ln \hat{\Pi}(s)}_{\text{Im}} + \frac{1}{2\pi i} \oint_{|s| = \mu_{0}^{2}} \frac{ds}{s} \hat{\Pi}(s)$$

$$\Delta\hat{\alpha}^{(3)}(\mu_0) = \frac{\alpha}{3\pi} \int_{4m^2}^{\mu_0^2} ds \frac{R(s)}{s - i\epsilon} + 4\pi I^{(3)},$$
 Data pQCD



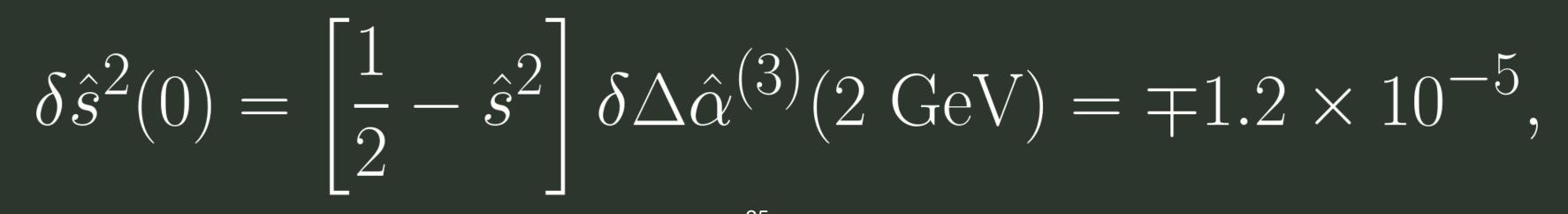


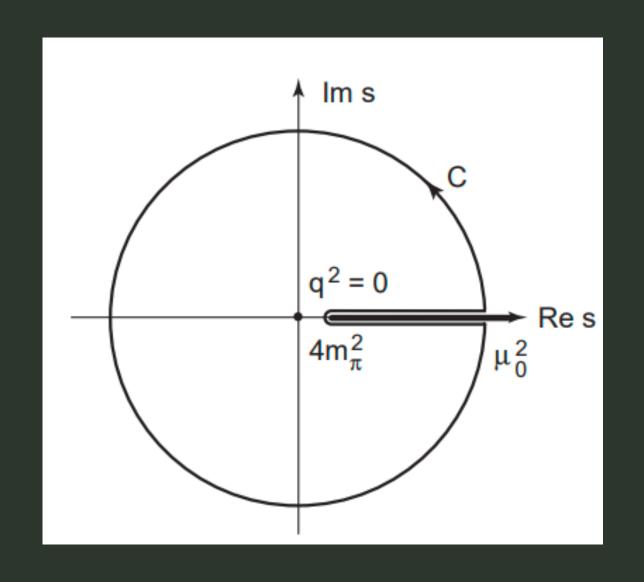
The light quarks

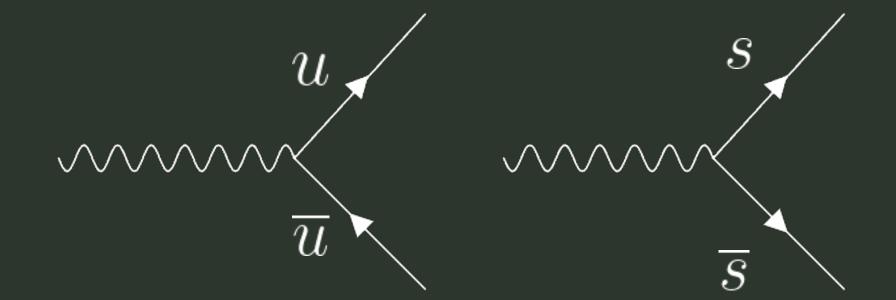
$$\hat{\alpha}(\mu) = \frac{\alpha_0}{1 - 4\pi\alpha_0 \hat{\Pi}(0, \mu)}$$

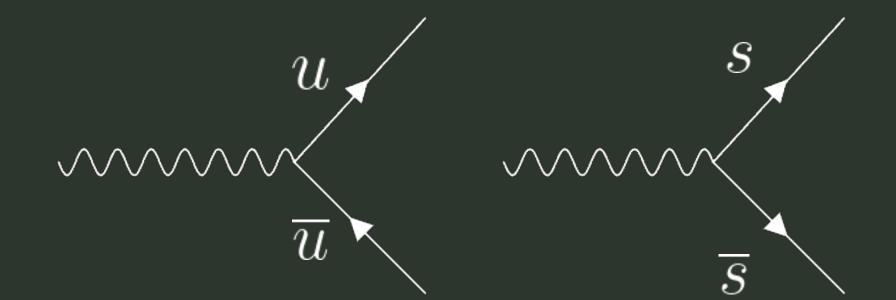
$$\hat{\Pi}(0) = \frac{1}{\pi} \int_{4m_{\pi}^{2}}^{\mu_{0}^{2}} \frac{ds}{s - i\epsilon} \underbrace{\ln \hat{\Pi}(s)}_{\text{Im}} + \frac{1}{2\pi i} \oint_{|s| = \mu_{0}^{2}} \frac{ds}{s} \hat{\Pi}(s)$$

$$\Delta \hat{\alpha}^{(3)}(\mu_0) = \frac{\alpha}{3\pi} \int_{4m_\pi^2}^{\mu_0^2} ds \frac{R(s)}{s - i\epsilon} + 4\pi I^{(3)},$$

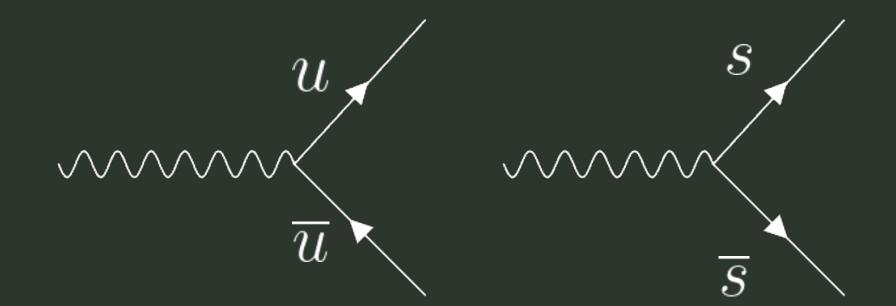








Use channels that correspond to strange quark current: $\phi(1020), \; \phi(1680)$

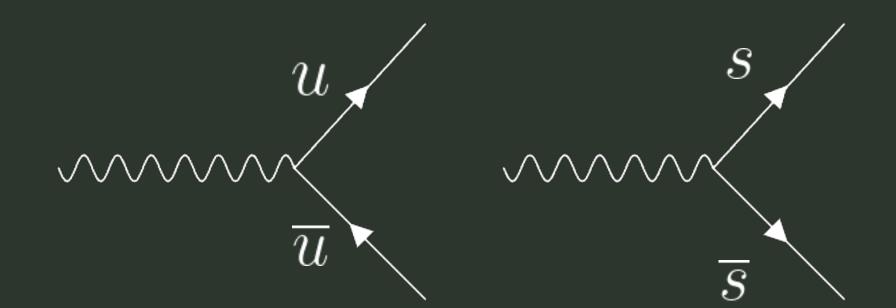


Use channels that correspond to strange quark current: $\phi(1020), \; \phi(1680)$

For kaon channels we take a 50% contribution $\pm 50\%$.

channel	$a_{\mu} imes 10^{10}$	$\Delta lpha imes 10^4$
$K\bar{K} \pmod{-\phi}$	3.62	0.76
$Kar{K}2\pi$	0.85	0.30
$K\bar{K}3\pi$	-0.03	-0.01
$Kar{K}\eta$	0.01	0.00
$Kar{K}\omega$	0.01	0.00
Total	4.46	1.05

arXiv:1712.09146



Use channels that correspond to strange quark current: $\phi(1020), \ \phi(1680)$

For kaon channels we take a 50% contribution $\pm 50\%$.

channel	$a_{\mu} imes 10^{10}$	$\Delta lpha imes 10^4$
$K\bar{K} \pmod{-\phi}$	3.62	0.76
$Kar{K}2\pi$	0.85	0.30
$K\bar{K}3\pi$	-0.03	-0.01
$Kar{K}\eta$	0.01	0.00
$Kar{K}\omega$	0.01	0.00
Total	4.46	1.05

$$\Delta_s \hat{\alpha}(\bar{m}_c) = Q_s^2 \frac{\alpha}{\pi} K_{\text{QCD}}^s(\bar{m}_c) \ln \frac{\bar{m}_c^2}{\bar{m}_s^2}$$

After combination with lattice (RBC and UKQCD 2016):

$$\Delta_s \hat{\alpha}(\bar{m}_c) = (8.71 \pm 0.32) \times 10^{-4}$$

$$\delta \hat{s}^2(0) \simeq \frac{1}{20} \delta \Delta \hat{\alpha}^{(2)}(\bar{m}_c) = \pm 1.0 \times 10^{-5}$$

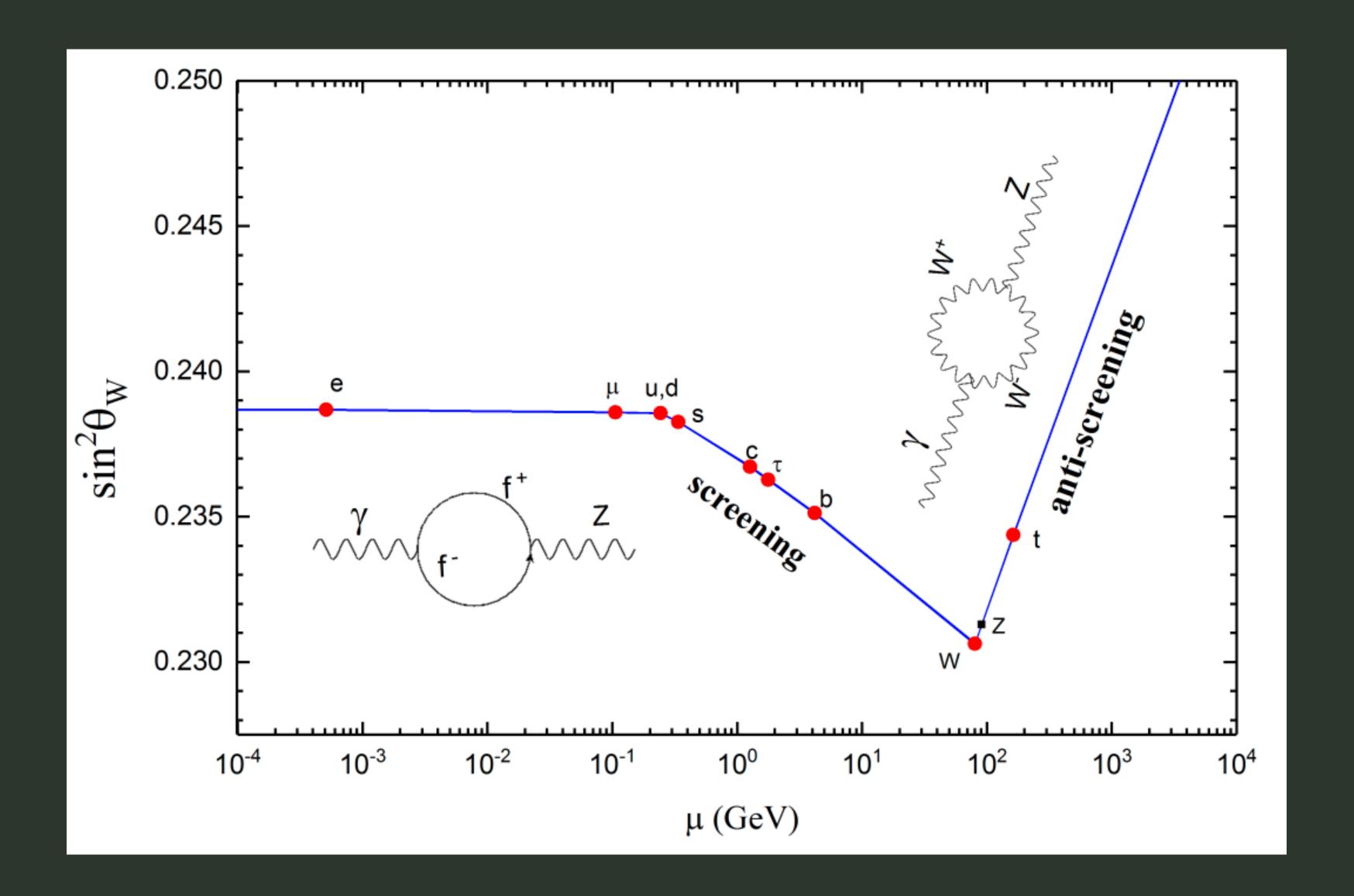
Error budget

source	$\delta \sin^2 \hat{\theta}_W(0) \times 10^5$
$\Delta \hat{\alpha}^{(3)} (2 \text{ GeV})$	1.2
flavor separation	1.0
isospin breaking	0.7
singlet contribution	0.3
PQCD	0.6
Total	1.8

Error budget

source	$\delta \sin^2 \hat{\theta}_W(0) \times 10^5$
$\Delta \hat{\alpha}^{(3)} (2 \text{ GeV})$	1.2
flavor separation	1.0
isospin breaking	0.7
singlet contribution	0.3
PQCD	0.6
Total	1.8

RBC/UKQCD 1512.09054



$$\sin^2 \hat{\theta}_W(0) = 0.23868 \pm 0.00005 \pm 0.00002$$

In the $\overline{ ext{MS}}$ scheme at $\mu=M_Z$ (Marciano and Czarnecki 1995).

$$A_{LR}^{1-\text{loop}} = \frac{\rho G_{\mu} Q^2}{\sqrt{2}\pi\alpha} \frac{1-y}{1+y^4+(1-y)^4} \left[1 - 4\kappa(0)\hat{s}_Z^2 + \frac{\alpha}{4\pi\hat{s}_Z^2} - \frac{3\alpha}{32\pi\hat{s}_Z^2\hat{c}_Z^2} (1-4\hat{s}_Z^2) \left(1 + (1-4\hat{s}_Z^2)^2 \right) - \frac{\alpha}{4\pi} (1-4\hat{s}_Z^2) \left\{ \frac{22}{3} \ln \frac{ym_Z^2}{Q^2} + \frac{85}{9} + f(y) \right\} + F_2(y, Q^2) \right]$$

In the $\overline{
m MS}$ scheme at $\mu=M_Z$ (Marciano and Czarnecki 1995).

$$A_{LR}^{1-\text{loop}} = \frac{\rho G_{\mu} Q^2}{\sqrt{2}\pi\alpha} \frac{1-y}{1+y^4+(1-y)^4} \left[1 - 4\kappa(0)\hat{s}_Z^2\right]$$

$$W = \frac{\alpha}{4\pi \hat{s}_{Z}^{2}} - \frac{3\alpha}{32\pi \hat{s}_{Z}^{2}\hat{c}_{Z}^{2}} (1 - 4\hat{s}_{Z}^{2}) \left(1 + (1 - 4\hat{s}_{Z}^{2})^{2}\right) + \frac{2}{32\pi \hat{s}_{Z}^{2}\hat{c}_{Z}^{2}} (1 - 4\hat{s}_{Z}^{2}) \left(1 + (1 - 4\hat{s}_{Z}^{2})^{2}\right) + \frac{2}{32\pi \hat{s}_{Z}^{2}\hat{c}_{Z}^{2}} (1 - 4\hat{s}_{Z}^{2}) \left(1 + (1 - 4\hat{s}_{Z}^{2})^{2}\right) + \frac{2}{32\pi \hat{s}_{Z}^{2}\hat{c}_{Z}^{2}} (1 - 4\hat{s}_{Z}^{2}) \left(1 + (1 - 4\hat{s}_{Z}^{2})^{2}\right) + \frac{2}{32\pi \hat{s}_{Z}^{2}\hat{c}_{Z}^{2}} (1 - 4\hat{s}_{Z}^{2}) \left(1 + (1 - 4\hat{s}_{Z}^{2})^{2}\right) + \frac{2}{32\pi \hat{s}_{Z}^{2}\hat{c}_{Z}^{2}} (1 - 4\hat{s}_{Z}^{2}) \left(1 + (1 - 4\hat{s}_{Z}^{2})^{2}\right) + \frac{2}{32\pi \hat{s}_{Z}^{2}\hat{c}_{Z}^{2}} (1 - 4\hat{s}_{Z}^{2}) \left(1 + (1 - 4\hat{s}_{Z}^{2})^{2}\right) + \frac{2}{32\pi \hat{s}_{Z}^{2}\hat{c}_{Z}^{2}} (1 - 4\hat{s}_{Z}^{2}) \left(1 + (1 - 4\hat{s}_{Z}^{2})^{2}\right) + \frac{2}{32\pi \hat{s}_{Z}^{2}\hat{c}_{Z}^{2}} (1 - 4\hat{s}_{Z}^{2}) \left(1 + (1 - 4\hat{s}_{Z}^{2})^{2}\right) + \frac{2}{32\pi \hat{s}_{Z}^{2}\hat{c}_{Z}^{2}} (1 - 4\hat{s}_{Z}^{2}) \left(1 + (1 - 4\hat{s}_{Z}^{2})^{2}\right) + \frac{2}{32\pi \hat{s}_{Z}^{2}\hat{c}_{Z}^{2}} (1 - 4\hat{s}_{Z}^{2}) \left(1 + (1 - 4\hat{s}_{Z}^{2})^{2}\right) + \frac{2}{32\pi \hat{s}_{Z}^{2}\hat{c}_{Z}^{2}} (1 - 4\hat{s}_{Z}^{2}) \left(1 + (1 - 4\hat{s}_{Z}^{2})^{2}\right) + \frac{2}{32\pi \hat{s}_{Z}^{2}\hat{c}_{Z}^{2}} (1 - 4\hat{s}_{Z}^{2}) \left(1 + (1 - 4\hat{s}_{Z}^{2})^{2}\right) + \frac{2}{32\pi \hat{s}_{Z}^{2}\hat{c}_{Z}^{2}} (1 - 4\hat{s}_{Z}^{2}) \left(1 + (1 - 4\hat{s}_{Z}^{2})^{2}\right) + \frac{2}{32\pi \hat{s}_{Z}^{2}\hat{c}_{Z}^{2}} (1 - 4\hat{s}_{Z}^{2}) \left(1 + (1 - 4\hat{s}_{Z}^{2})^{2}\right) + \frac{2}{32\pi \hat{s}_{Z}^{2}\hat{c}_{Z}^{2}} (1 - 4\hat{s}_{Z}^{2}) \left(1 + (1 - 4\hat{s}_{Z}^{2})^{2}\right) + \frac{2}{32\pi \hat{s}_{Z}^{2}\hat{c}_{Z}^{2}} (1 - 4\hat{s}_{Z}^{2}) \left(1 + (1 - 4\hat{s}_{Z}^{2})^{2}\right) + \frac{2}{32\pi \hat{s}_{Z}^{2}\hat{c}_{Z}^{2}} (1 - 4\hat{s}_{Z}^{2}) \left(1 + (1 - 4\hat{s}_{Z}^{2})^{2}\right) + \frac{2}{32\pi \hat{s}_{Z}^{2}\hat{c}_{Z}^{2}} (1 - 4\hat{s}_{Z}^{2}) \left(1 + (1 - 4\hat{s}_{Z}^{2})^{2}\right) + \frac{2}{32\pi \hat{s}_{Z}^{2}\hat{c}_{Z}^{2}} (1 - 4\hat{s}_{Z}^{2}) \left(1 + (1 - 4\hat{s}_{Z}^{2})^{2}\right) + \frac{2}{32\pi \hat{s}_{Z}^{2}\hat{c}_{Z}^{2}} (1 - 4\hat{s}_{Z}^{2}) \left(1 + (1 - 4\hat{s}_{Z}^{2})^{2}\right) + \frac{2}{32\pi \hat{s}_{Z}^{2}\hat{c}_{Z}^{2}} (1 - 4\hat{s}_{Z}^{2}) \left(1 + (1 - 4\hat{s}_{Z}^{2})^{2}\right) + \frac{2}{32\pi \hat{s}_{Z}^{2}\hat{c}_{Z}^{2}} (1 - 4\hat{s}_{Z}^{2}) +$$

In the $\overline{{
m MS}}$ scheme at $\mu=M_Z$ (Marciano and Czarnecki 1995).

$$\kappa(0)\hat{s}_Z^2 = \hat{s}_Z^2 - \frac{\alpha}{\pi} \left[\frac{1}{6} \sum_f \left(T_{3f} Q_f - 2\hat{s}_Z^2 Q_f^2 \right) \ln \frac{m_f^2}{m_Z^2} - \left(\frac{7}{4} \hat{c}_Z^2 + \frac{1}{24} \right) \ln \frac{m_W^2}{m_Z^2} + \frac{7}{18} - \frac{\hat{s}_Z^2}{6} \right]$$

In the $\overline{{
m MS}}$ scheme at $\mu=M_Z$ (Marciano and Czarnecki 1995).

$$\kappa(0)\hat{s}_{Z}^{2} = \hat{s}_{Z}^{2} - \frac{\alpha}{\pi} \left[\frac{1}{6} \sum_{f} \left(T_{3f} Q_{f} - 2\hat{s}_{Z}^{2} Q_{f}^{2} \right) \ln \frac{m_{f}^{2}}{m_{Z}^{2}} - \left(\frac{7}{4} \hat{c}_{Z}^{2} + \frac{1}{24} \right) \ln \frac{m_{W}^{2}}{m_{Z}^{2}} + \frac{7}{18} - \frac{\hat{s}_{Z}^{2}}{6} \right]$$

$$\hat{s}_Z^2 - \hat{s}_0^2 = \frac{\alpha}{\pi} \left[\frac{1}{6} \sum_f \left(T_{3f} Q_f - 2\hat{s}_Z^2 Q_f^2 \right) \ln \frac{m_f^2}{m_Z^2} - \left(\frac{7}{4} \hat{c}_Z^2 + \frac{1}{24} \right) \ln \frac{m_W^2}{m_Z^2} + \frac{1}{6} - \frac{\hat{s}_Z^2}{6} \right]$$

In the $\overline{\mathrm{MS}}$ scheme at $\mu=M_Z$ (Marciano and Czarnecki 1995).

$$\kappa(0)\hat{s}_{Z}^{2} = \hat{s}_{Z}^{2} - \frac{\alpha}{\pi} \left[\frac{1}{6} \sum_{f} \left(T_{3f} Q_{f} - 2\hat{s}_{Z}^{2} Q_{f}^{2} \right) \ln \frac{m_{f}^{2}}{m_{Z}^{2}} - \left(\frac{7}{4} \hat{c}_{Z}^{2} + \frac{1}{24} \right) \ln \frac{m_{W}^{2}}{m_{Z}^{2}} + \frac{7}{18} - \frac{\hat{s}_{Z}^{2}}{6} \right]$$

$$\hat{s}_{Z}^{2} - \hat{s}_{0}^{2} = \frac{\alpha}{\pi} \left[\frac{1}{6} \sum_{f} \left(T_{3f} Q_{f} - 2\hat{s}_{Z}^{2} Q_{f}^{2} \right) \ln \frac{m_{f}^{2}}{m_{Z}^{2}} - \left(\frac{7}{4} \hat{c}_{Z}^{2} + \frac{1}{24} \right) \ln \frac{m_{W}^{2}}{m_{Z}^{2}} + \frac{1}{6} - \frac{\hat{s}_{Z}^{2}}{6} \right]$$

$$\kappa(0)\hat{s}_Z^2 = \hat{s}_0^2 - \frac{2\alpha}{9\pi} + \mathcal{O}(\alpha^2)$$

same logs!

Asymmetry at NNLO

$$A_{\rm LR} = \frac{G_{\mu}Q^2}{\sqrt{2}\pi\alpha} \frac{1-y}{1+y^4+(1-y)^4} (1-4\sin^2\theta_W + \Delta Q_W^e) \text{ (arXiv:1912.08220, arXiv:2202.11976)}$$

	$\hat{s}(m_Z) - \alpha \text{ scheme}^* [5]$	$\hat{s}(0)$ – α scheme	$\hat{s}(0)$ – G_{μ} scheme
	$(X=\alpha)$	$(X=\alpha)$	$(X=G_{\mu})$
$1-4\hat{s}^2$	74.40	45.56	45.56
$X \Delta Q_{W(1,1)}^{e,X}$	-29.04	+ 0.39	+ 0.43
$X \Delta Q_{W(1,0)}^{e,X}$	+ 3.06	+ 0.77	+ 0.84
$X^2 \Delta Q_{W(2,2)}^{e,X}$	- 0.18	+ 0.07	+ 0.05
$X^2 \Delta Q_{W(2,1)}^{e,X}$	+ 1.18	- 1.15	- 1.30
$X \Delta Q_{W,\Delta\rho}^{e,X}$		- 0.05	- 0.06
Sum	49.42	45.60	45.52
	*no QCD corrections		

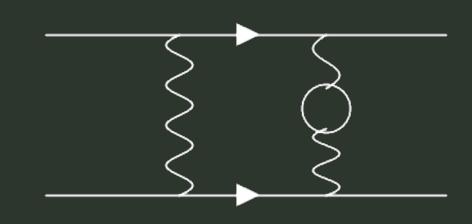
 $Q_W^e = (45.83 \pm 0.08_{\hat{s}(0)} \pm 0.06_{\Delta Q_{W(2,1)}^{e,X}(\text{had})} \pm 0.13_{\Delta Q_{W(2,0)}^{e,X}(\text{missing})} \pm 0.23_{\text{scheme}}) \times 10^{-3}$

$$Q_W^e = (45.83 \pm 0.28) \times 10^{-3}$$
 ———— 0.6% theoretical uncertainty

Asymmetry at NNLO

$$A_{\rm LR} = \frac{G_{\mu}Q^2}{\sqrt{2}\pi\alpha} \frac{1-y}{1+y^4+(1-y)^4} (1-4\sin^2\theta_W + \Delta Q_W^e) \text{ (arXiv:1912.08220, arXiv:2202.11976)}$$

	$\hat{s}(m_Z) - \alpha \text{ scheme}^* [5]$	$\hat{s}(0)$ – α scheme	$\hat{s}(0)$ – G_{μ} scheme
	$(X=\alpha)$	$(X=\alpha)$	$(X=G_{\mu})$
$1-4\hat{s}^2$	74.40	45.56	45.56
$X \Delta Q_{W(1,1)}^{e,X}$	-29.04	+ 0.39	+ 0.43
$X \Delta Q_{W(1,0)}^{e,X}$	+ 3.06	+ 0.77	+ 0.84
$X^2 \Delta Q_{W(2,2)}^{e,X}$	- 0.18	+ 0.07	+ 0.05
$X^2 \Delta Q_{W(2,1)}^{e,X}$	+ 1.18	- 1.15	- 1.30
$X \Delta Q_{W,\Delta\rho}^{e,X}$		- 0.05	- 0.06
Sum	49.42	45.60	45.52



$$Q_W^e = (45.83 \pm 0.08_{\hat{s}(0)} \pm 0.06_{\Delta Q_{W(2,1)}^{e,X}(\text{had})} \pm 0.13_{\Delta Q_{W(2,0)}^{e,X}(\text{missing})} \pm 0.23_{\text{scheme}}) \times 10^{-3}$$

$$Q_W^e = (45.83 \pm 0.28) \times 10^{-3}$$
 ______ 0.6% theore

0.6% theoretical uncertainty

^{*}no QCD corrections

Outlook.

Combine with lattice results to the γ^Z vacuum polarisation here at Mainz (arXiv:2203.08676)

Outlook.

Combine with lattice results to the γ^Z vacuum polarisation here at Mainz (arXiv:2203.08676)

Use a dependent vacuum polarization to improve the results on box diagram (Möller)

Outlook.

Combine with lattice results to the γ^Z vacuum polarisation here at Mainz (arXiv:2203.08676)

Use a dependent vacuum polarization to improve the results on box diagram (Möller)

Find a way to systematically re-sum contribution from the boxes, LEFT?