Parity Violation program at MESA

Frank Maas

MITP workshop:

Precision Tests with Neutral-Current Coherent Interactions with Nuclei

Johannes Gutenberg Universität Mainz May 23 – May 27, 2022

Outline:

- Physics motivation
- Experimental Method
- Experimental Program
- Neutron Skin in Project: Talk by Michaela Thiel on Wednesday

Physics motivation

2

Search for New Physics: Various Methods

Direct: High Energy (LHC)

Indirect: High Intensity Rare B-decays R_{D*} Indirect: High Precision Anom. Mag. Moment (g-2)_{μ,e}, EDM, sin² θ_W, ...

at low energy, accurate theory needed

Direct observation versus precision measurements: top-quark, Higgs

Indirect measurements

Weak mixing angle

SFB 1044 Institut für Kernphysik

 $Sin^{2} \theta_{W} = 0.238$ $\theta_{W} = 29.2^{\circ}$ High precision measurements of the Weinberg angle sin^{2} θ_{W} θ_{W} at low energy

Weak mixing angle $\sin^2 \theta_W$

This project: A precise determination of sin² θ_w from parity violating elastic electron proton scattering

Running $\sin^2 \theta_w(\mu)$

Process dependent radiative corrections

- Sensitive SM-test of the running $\sin^2 \theta_W(\mu)$
- Sensitivity to BSM-physics: radiative corrections to real part
- Theory and Experiment on the same level of accuracy
- Complementary to high energy: on Z-pole real part by 10⁻³ suppressed

Different Portals for SM-extensions

Extra Z

Mixing with Dark photon

Complementary to LHC Sensitivity to low masses of m_{z'} > 70 MeV Contact interaction

New Fermions

Only parameter: Mass of new physics scale p: 49 TeV C¹² + p R-parity violating SUSY not well constrained from LHC

10

Running sin²θ_w and Dark Parity Violation

Large parameter space not excluded from other experiments

11

Sensitivity down to masses of 70 MeV

Supersymmetry (RPV)

12

LHC not very sensitive to RPV SUSY

Contact interaction

	precision	$\Delta \sin^2 \overline{\Theta}_{W}(0)$	Λ_{new} (expected)	
APV Cs	0.58 %	0.0019	32.3 TeV	
E158	14 %	0.0013	17.0 TeV	
Qweak I	19%	0.0030	17.0 TeV	
Qweak final	4.5 %	0.0008	33 TeV	
PVDIS	4.5 %	0.0050	7.6 TeV	
SoLID	0.6 %	0.00057	22 TeV	
MOLLER	2.3 %	0.00026	39 TeV	
P2	2.0 %	0.00036	49 TeV	70 TeV
PVES ¹² C	0.3 %	0.0007	49 TeV	combined

- Present limits fromLHC:
- LHC after Run 3, 2024 :

- 30 TeV (140 fb⁻¹) 36 TeV (300 fb⁻¹)
- LHC after HI-LUMI LHC (2035): 65 TeV (3000 fb⁻¹)

Future wEFT constraints from APV and PVES

Adam Falkowski at Mainz MITP workshop: Impact on low energy measurements Current QWEAK, PVDIS, and APV cesium experiments:

Projections from combined P2, SoLID, and APV radium experiments:

$$\begin{pmatrix} \delta g_{AV}^{eu} \\ \delta g_{AV}^{ed} \\ 2\delta g_{VA}^{eu} - \delta g_{VA}^{ed} \end{pmatrix} = \begin{pmatrix} 0 \pm 0.70 \\ 0 \pm 0.97 \\ 0 \pm 7.4 \end{pmatrix} \times 10^{-3}$$

$$\mathcal{L}_{\text{wEFT}} \supset -\frac{1}{2v^2} \sum_{q=u,d} g^{eq}_{AV} (\bar{e}\,\bar{\sigma}_{\rho}e - e^c\sigma_{\rho}\bar{e}^c) (\bar{q}\,\bar{\sigma}^{\rho}q + q^c\sigma^{\rho}\bar{q}^c) -\frac{1}{2v^2} \sum_{q=u,d} g^{eq}_{VA} (\bar{e}\,\bar{\sigma}_{\rho}e + e^c\sigma_{\rho}\bar{e}^c) (\bar{q}\,\bar{\sigma}^{\rho}q - q^c\sigma^{\rho}\bar{q}^c)$$

AA, Grilli Di Cortona, Tabrizi 1802.08296

AA, Gonzalez-Alonso in progress

Constraints from PVES at MESA

- Quark-vector-electron-axial vector couplings
- Sensitivity down to masses of 70 MeV and up to masses of 70 TeV

e

SFB 1044 Institut für Kernphysik

 $\sigma \sim \mathcal{M} \mathcal{M}^* \text{ Phasespace} \\ \sim (\frac{j_{\mu}}{Q^2} J^{\mu}) (\frac{j_{\mu}}{Q^2} J^{\mu})^* \\ \frac{j_{\mu}}{Q} \sim \overline{e} \gamma_{\mu} e \text{ Vector Current}$

$$J^{\mu}_{\gamma} \sim \left\langle N | q^{\mu} \overline{u} \gamma_{\mu} u + q^{d} \overline{d} \gamma_{\mu} d + q^{s} \overline{s} \gamma_{\mu} s | N' \right\rangle$$
$$= \overline{\mathcal{P}} \left[\gamma^{\mu} F_{1} - i \sigma^{\mu \nu} q_{\nu} \frac{\kappa_{p}}{2M_{N}} F_{2} \right] \mathcal{P}$$

SFB 1044 Institut für Kernphysik

$$\tilde{q}^{d}_{V} = \tau_3 - 2q^{d}sin^2(\theta_W)$$

$$\begin{split} \tilde{J}_{Z}^{\mu} &\sim \left\langle N | \tilde{q}^{\mu} \overline{u} \, \gamma_{\mu} \, u + \tilde{q}^{d} \overline{d} \, \gamma_{\mu} d + \tilde{q}^{s} \overline{s} \, \gamma_{\mu} s | N' \right\rangle \\ &= \overline{\mathcal{P}} [\gamma^{\mu} \tilde{F}_{1} - i \sigma^{\mu \nu} q_{\nu} \frac{\kappa_{p}}{2M_{N}} \tilde{F}_{2}] \mathcal{P} \end{split}$$

р

Z

JGU

9

JG U SFB 1044 Institut für Kernphysik

ing Asymmetry in elastic electron proton scattering

Parity violating cross section asymmetry weak charge $A_{LR} = \frac{\sigma(e\uparrow) - \sigma(e\downarrow)}{\sigma(e\uparrow) + \sigma(e\downarrow)} = -\frac{G_F Q^2}{4\sqrt{2}\pi\alpha} (Q_W - F(Q^2))$ $Q_W = 1 - 4\sin^2\theta_W(\mu)$ hadron structure $F(Q^2) = F_{EM}(Q^2) + F_{Axial}(Q^2) + F_{Strange}(Q^2)$

Projected Experiment Sensitivity

JG U

JGU	Achievable	precision in sin ² O _W	
P2 Exp cond	$eriment \\ E_{beam} \\ itions \\ \bar{\theta}_{f} \\ \delta \theta_{f}$	$155 \mathrm{MeV}$ 35° 20°	
	$s_{ m W}^2 \ {\it \Delta}_{ m exp} s_{ m W}^2$	0.23116 $3.7 \times 10^{-4} \ (0.16\%)$	
	$egin{aligned} &\Delta_{ ext{exp, stat}}s_{ ext{W}}^2 \ &\Delta_{ ext{exp, P}}s_{ ext{W}}^2 \ &\Delta_{ ext{exp, false}}s_{ ext{W}}^2 \ &\Delta_{ ext{exp, t.w.}}s_{ ext{W}}^2 \ &\Delta_{ ext{exp, t.p.}}s_{ ext{W}}^2 \end{aligned}$	$\begin{array}{l} 3.1\times10^{-4}~(0.13~\%)\\ 0.7\times10^{-4}~(0.03~\%)\\ 0.6\times10^{-4}~(0.03~\%)\\ 1.2\times10^{-4}~(0.05~\%)\\ 0.1\times10^{-4}~(0.00~\%) \end{array}$	
	$\Delta_{\mathrm{exp},\square_{\gamma Z}} s_{\mathrm{W}}^2 \ \Delta_{\mathrm{exp, nucl. FF}} s_{\mathrm{W}}^2$	$0.4 \times 10^{-4} \ (0.02 \%)$ $1.2 \times 10^{-4} \ (0.05 \%)$	

Institut für Kernphysik

June 4th 2013

Electromagnetic Reactions and Few-Nucleons Dynamics

SFB 1044 Institut für Kernphysik

Target					Wassersto	ff				
Winkelbereich	Vorwärts 25°-45°									
Strahlenergie	55	MeV	55	MeV	155 MeV					
Strahlstrom	20	Ο μΑ	15	0 μΑ	150 μA					
Asymmetrie <a>	-2.8	8 ррb	-2.8 ppb		-28.1 ppb					
Virtualität <q<sup>2></q<sup>	4.7 10	⁴ GeV ² /c ²	4.7 10 ⁻⁴ GeV ² /c ²		4.8 10 ⁻³ GeV ² /c ²					
Rate (alle Teilchen)	572	2 GHz	4 287 GHz		1 439 GHz					
Rate (Primäre Elektronen)	111	1 GHz	833 GHz		109 GHz					
Messzeit	100 h	10 000 h	100 h	10 000 h	100 h	10 000 h				
Gesamt Fehler ΔA	4.9 ppb (181%) 0.49 ppb (17.4%)		1.7 ppb (62%)	0.21 ppb (7.6%)	5.0 ppb (17,7%)	0.6 ppb (2.2%)				
Statistische Fehler ΔA	4.7 ppb (172%)	0.48 ppb (17.3%)	1.7 ppb (62%)	0.17 ppb (6.2%)	4.9 ppb (17.2%)	0.5 ppb (1.8%)				
Gesamt Fehler Δsin ² θ _w	10,8%	1,1%	3,8%	0,5%	1,1%	0,14%				
Statistische Fehler $\Delta sin^2 \theta_w / sin^2 \theta_w$	10,5%	1,1%	3,8%	0,4%	1,1%	0,13%				

	Target								
	Winkelbereich				Rückw 140°-1	ärts .50°	5		
55 MeV	Strahlenergie				55 MeV		155	MeV	
150 µA	Strahlstrom				150 μΑ		150) μΑ	
-2.8 ppb	Asymmetrie <a>				-0.2 ppm		-4.6	ppm	
10 ⁻⁴ GeV ² /	0 ⁻⁴ GeV ² /c ∛irtualität <q<sup>2></q<sup>				6 10 ⁻³ GeV ² /c ²		6.7 10 ⁻²	GeV ² /c ²	
287 GHz	Rate (alle Teilchen)				13 888 GHz		10 31	4 GHz	
833 GHz	Rate (Primäre Elektronen)				0.75 GHz		0.11	0.11 GHz	
	Messzeit				100 h 1 000 h		100 h	1 000 h	
	Gesamt Fehler ΔA	۷	5)						
	Statistische Fehler ΔA	2	5)		10,9%			1,4%	
	Gesamt Fehler Δsin ² θ _w								
	Statistische Fehler $\Delta sin^2 \theta_w / sin^2 \theta_w$								

155 MeV 150 μA -28.1 ppb 4.8 10⁻³ GeV²/c² 1 439 GHz 109 GHz

June 4th 2013

Electromagnetic Reactions and Few-Nucleons Dynamics

SFB 1044 Institut für Kernphysik

Target	Kohlenstoff										
Winkelbereich	Vorwärts 25°-45°										
Strahlenergie	55	MeV	55 MeV		155 MeV		155 MeV				
Strahlstrom	7.5 μΑ		150 μΑ		75 μA		150 μΑ				
Asymmetrie <a>	47.9 ppb		47.9 ppb		416.3 ppb		416.3 ppb				
Virtualität <q<sup>2></q<sup>	5.8 10 ⁻⁴ GeV ² /c ²		5.8 10 ⁻⁴ GeV ² /c ²		$5.0 10^{-3} \text{GeV}^2/\text{c}^2$		$5.0 10^{-3} \text{GeV}^2/\text{c}^2$		1		
Rate (alle Teilchen)	436 GHz		8 730 GHz		958 GHz		1 916 GHz				
Rate (Primäre Elektronen)	123	1 GHz	2 421 GHz		125 GHz		249 GHz		1		
Messzeit	100 h	2 500 h	100 h	2 500 h	100 h	2 500 h	100 h	2 500 h			
Gesamt Fehler ΔA	4.6 ppb (9.6%)	0.94 ppb (2.0%)	1.1 ppb (2.2%)	0.3 ppb (0.7%)	5.1 ppb (1.2%)	2.3 ppb (0.5%)	3.7 ppb (0.9%)	2.2 ppb (0.5%)			
Statistische Fehler ΔA	4.5 ppb (9.4%)	0.90 ppb (1.9%)	1.0 ppb (2.1%)	0.2 ppb (0.4%)	4.6 ppb (1.1%)	0.9 ppb (0.2%)	3.3 ppb (0.8%)	0.7 ppb (0.2%)			
Gesamt Fehler Δsin ² θ _w	9,6%	2,0%	2,2%	0,7%	1,2%	0,5%	0,9%	0,5%	1		
Statistische Fehler $\Delta sin^2 \theta_w / sin^2 \theta_w$	9,4%	1,9%	2,1%	0,4%	1,1%	0,2%	0,8%	0,2%			

Target						
Winkelbereich	Rückwärts 140°-150°					
Strahlenergie	55	MeV	155	MeV		
Strahlstrom	15	0 μΑ	150	Ο μΑ		
Asymmetrie <a>	0.76	5 ppm	6.6 ppm			
Virtualität <q<sup>2></q<sup>	$9.1 10^{-3} \text{GeV}^2/\text{c}^2$		7.97 10 ⁻² GeV ² /c ²			
Rate (alle Teilchen)						
Rate (Primäre Elektronen)	0.74	4 GHz	1.2 MHz			
Messzeit	100 h	1 000 h	100 h	1 000 h		
Gesamt Fehler ΔA						
Statistische Fehler ΔA	8,0%	2,5%	22,9%	7,2%		
Gesamt Fehler Δsin ² θ _w						
Statistische Fehler $\Delta sin^2 \theta_w / sin^2 \theta_w$	8,0%	2,5%	22,9%	7,2%		

155 MeV 75 μA 416.3 ppb 5.0 10⁻³ GeV²/c² 958 GHz 125 GHz

June 4th 2013

′c²

Qweak@Jlab	P2@MESA hydrogen	P2@MESA carbon	P2@MESA lead
A _{ep} =-226.5 ppb	A _{ep} =-28 ppb	A _{ep} = 416.3 ppb	See talk by Michaela Thiel
⊿A _{ep} = 9.3 ppb	⊿A _{ep} = 0.5 ppb ppb=1/√N Factor 19 After 10,000 h	⊿A _{ep} ^{stat} = 2.7 ppb after 300 h ⊿A _{ep} ^{stat} = 0.9 ppb after 2500 h	
$\Delta A_{ep}/A_{ep} = 4.2 \%$	⊿A _{ep} /A _{ep} = 1.8 %	⊿A _{ep} /A _{ep} stat= 0.6 % (0.2 %) Polarimetry!	
⊿sin² θ _w /sin² θ _w = 0.46 %	⊿sin² θ _W /sin² θ _W = 0.15 %	⊿sin² θ _W /sin² θ _W = 0.6 %	
	Auxiliary measurements backward angle	Auxiliary measurements backward angle	

Improvement by high luminosity, long measurement time, small systematics, lower Q²

Experimental method

Parity violating electron scattering

PVeS Experiment Summary

- P2: Challenging experiment
- New concepts on all aspects of experiment
- Factor 3 improved accuracy compared to Jlab Qweak
- Large solid angle magnetic spectrometer: Solenoid
- Integrating detectors for ~100 GHz signal rate
- Polarimetry: ΔP = 0.3 -0.5%, 3 different polarimeters, double scattering Mott, Hydro-Möller
- 150 µA beam current
- High power target
- Fast digitization of signals
- All solid state tracking for Q²measurement: HVmaps
- Existing accelerator MAMI availbale for in situ prototype-tests of all components

Parity violating electron scattering New developments

False asymmetries Control of accelerator

Parity violating electron scattering

RTM2

- 20 years of experience with previous parity violating electron scattering experiment (A4)
- 10000 h of beam and detector data
- 36 beam stabilisation systems
- Polarimetry, fast electronics, target
- MAMI accelerator in operation
- Large synergy with MOLLER experiment at JLab
- Prototypes of all components tested in MAMI-beam
- Integrating detectors and PMTs (new concept)
- Electronics and data acquisition (collaboration with Manitoba)
- Luminosity monitors
- Accelerator components, new concept position monitors
- Polarimetry (Hydro-Moller)

Recent publication from A4: B. Gou et al. Phys.Rev.Lett. 124 (2020) 12, 122003

Quartz glas detector concept

- Cherenkov detector ring consisting of **72 fused silica bars** Covering **full azimuth 25° 45° polar angle**
- Integrating detector

34

Spectrometer full simulation Particles on quartz glass bar (proton)

Spectrometer full simulation Photo electrons on PMT (proton)

36

Spectrometer full simulation Photo electrons on PMT (proton)

χ2

Q² tracking system

- Based on High-Voltage Monolithic Active Pixel Sensors (HV-MAPS)
- Full size sensors produced, work well (with Mu3e collaboration, beam tests at MAMI)

P2 Tracker Construction

- Remote powering solution under test (*Bachelor thesis* Johannes Hoffmann)
- Assembly and gluing robot for modules under construction in the PRISMA+ detector lab (Bachelor theses Patrick Riederer, Jana Weyrich, David Anthofer)
- Cooling optimized and experimentally verified

Das Bildelement

rld51 wurde in der

Datei nicht

Set up at the MAMI accelerator

Test of analogue integrating readout

Counting single electrons

QDC spectrum of **SiO**² detector

QDC: Charge-to-Digital-Converter

DAQ Trigger: Trigger scintillator

SiO2 detector voltage = -825 V (nom. voltage) **Oszi Trigger: Trigger scintillator**

Integrating single electrons (analogue measurement)

Measurement with electron beam current at MAMI

Integration Mode: Linearity Test Measurement with electron beam current

Prototypes of full differential read-out electronics

P2 voltage divider and preamplifier

- Single Event Mode: 10 dynodes
- Integration Mode: 5 dynodes
 - Feedback resistor: 33 kOhm
 - Differential output at preamp

P2ADC basic parameters

- Synergy with University of Manitoba
 - ADC prototype for P2
 - 18-bit
 - Dynamic range of +/- 4.096 V

Synergy with University of Manitoba

Evaluation board

FPGA module

Integration Mode Measurement with electron beam current at MAMI

Channel 1 (V)

Electron beam current = 274 pA ≈ 1,69 GHz PMT operating voltage = 500 V Signal as a function of time: Samples taking in the first 300 us Run: 14051, Channel: 1 Entries Run: 14051, Channel: 1 Entries 4300800 Measurement Mean 1.277 Voltage (V) 0.03336 Std Dev Fit Channel 1 Samples χ^2 / ndf 228.4 / 44 Constant 4363 ± 18.5 40000 1.277 ± 0.000 Mean Sigma 0.03424 ± 0.00017 signal 20000 1.2 0.1 0.2 0 0.3 0 1.2 1.4 Time (s)

GU **Test of analogue integrating detector and readout**

- Analogue signal from electrons in quartz Cherenkov, 274pA=1.7 GHz electrons on detector
 - Electronics from U Manitoba
 - Response of detector and width as expected
 - System is ready to be used in the experiment

Measurements

JGU

Parity violating electron scattering Measurements: Use of beam time

- Challenging measurements
- Unknown: New accelerator MESA (performance of SC RF)
- Parity-grade beam properties needed
- Unknown: Commissioning of accelerator and the two main experiments in parallel (MESA, MAGIX, P2)

Strategy:

- Start with large asymmetries, easy targets
- First Phase: Pilot measurements with reduced statistics but meeting or improving previous experiments
- Second Phase: Aim for ultimate precision
- A total of about 16,000 h: 6 years to complete measurements 2025 - 2030

	A [10 ⁻⁹]	ΔΑ [10 ⁻⁹]	Data taking time	Q ² [(GeV/ c) ²]	Angle interval	Comment	When
H ₂ -I	40	0.8	1000	0.005	25° – 45°	Pilot measurement, reach Qweak accuracy	
C-I	400	15	1000	0.005	30° – 40°	Pilot measurement with larger Asymmetry, 4% accuracy	
Pb-I	660	7	800	0.007	30° – 40°	Pilot run to reach same statistics as Prex-II, in EOS	
H ₂ -R	4500	70	1000	0.06	140° – 150°	Backward angle measurement to improve G_A und $G_M{}^s$, needed to reach the final goal for $sin^2\theta_W$	
D ₂ -R	4500	70	1000	0.06	140° – 150°	Backward angle measurement to improve G_A und $G_M{}^s$, needed to reach the final goal for $sin^2\theta_W$	
H ₂ -II	40	0.3	9000	0.005	25° – 45°	Complete Statistics (including first meaurement) to reach final goal for $\sin^2\theta_W$	
C-II	400	8	1500	0.005	30° – 40°	Complete Statistics (including first meaurement) to reach final goal for $\sin^2\theta_W$	
Pb-II	660	7	800	0.007	30° – 40°	Complete full statistics run would be highly desirable,	208ff

50

Risk in schedule due to unknown accelerator performance

Raytracing simulation

- Geant 4
- Fast simulation
- No real target, only virtual
- Using mean energy loss
- No multiple scattering
- No secondary particles
- Only absorber
- Tracing the primary electron

- Full simulation (P2Sim)
 - Geant 4
 - Slow simulation
 - Real target
 - Real energy loss
 - Multiple scattering
 - Secondary particles

51

- Full setup
- Track all particles

- Target centre at IH2 position
- Elastic scattered electrons
- Inelastic scattered electrons
- Using a 5-finger target
 - Thickness: 4.4 mm
 - Separation: 36 mm
- Focusing point
- Separation between elastic and inelastic scattering
 - Shorter quartz glas detector as compared to Hydrogen
 - Cross section for inelastic scattering from excited states 10⁻⁴ suppressed

52

B = 0.60 T, target center @ z = -700 mm

- Inelastic scattered electrons
 - Sum from 4.4, 7.6, 9.6 MeV states
 - Located at smaller r
- Rate dominated by photons
- Photoelectron rate dominated by primary electrons
- Separation between elastic/inelastic electrons possible
- ⇒ Use short bars

Inelastic scattered electrons

- Sum from 4.4, 7.6, 9.6 MeV states
- Located at smaller r
- Rate dominated by photons
- Photoelectron rate dominated by primary electrons
- Separation between elastic/inelastic electrons possible

⇒ Use short bars

 Asymmetry for inelastic not known • $P_{\text{beam}} = 85\%$ • Asymmetry $A = -\frac{G_f Q^2}{4\sqrt{2}\pi \alpha} \frac{Q_W}{6}$ • For T = 2500 h: • $A_{exp}(650 \text{ mm}) = 353.94 \pm 0.70 \text{ ppb}$ • $A_{exp}(260 \,\mathrm{mm}) = 463.8 \pm 1.6 \,\mathrm{ppb}$ (Amp) (ppb) Statistical uncertainty Length 2000 h 2500 h (mm) 500 h 1000h 250 0.92% 0.63% 0.45% 0.39% 0.77% 0.40% 260 0.55% 0.35% 0.40% 300 0.57% 0.29% 0.26% 0.32% 0.22% 0.20% 400 0.46% 0.42% 0.29% 0.21% 0.20% 650

Only elastic scattering

- P2-experiment from R&D-Phase to Construction-Phase
 - Main components in Mainz by end of 2022
- P2 will be ready to take data after 2024
- Commissioning of accelerator and the two main experiments in the same hall in parallel (MESA, MAGIX, P2)
- Worlds most precise measurement of parity violating ep, eC, and ePb scattering