

Nuclear Weak Charges and Neutron Skins in Current and Future PVES Experiments

Nicola Cargioli nicola.cargioli@ca.infn.it

I will mainly refer to two published works:

M.Atzori Corona, M. Cadeddu, N. Cargioli, P. Finelli and M. Vorabbi, PRC 105,055503

M. Cadeddu, N. Cargioli, F. Dordei, C. Giunti and E. Picciau, PRD 104,L011701

I will also show some preliminary studies done with M. Gorchtein and H. Spiesberger

Nuclear Weak Charge

Weak coupling to a nucleus:

 $Q_W = -2(g_{ep}^{AV}Z + g_{en}^{AV}N)$

Combination of electron coupling to protons and neutrons

Electron-proton coupling suppressed with respect to neutron coupling :

 $\begin{aligned} \mathcal{Q}_W^p &= -2g_{ep}^{AV} \approx 0.0714 \\ \mathcal{Q}_W^n &= -2g_{en}^{AV} \approx -0.99 \end{aligned}$

Weak Form Factor

Weak Form Factor F_W : Fourier transform of the corresponding weak nuclear density ρ_W

- Electromagnetic Interaction \rightarrow probes the charge density ρ_{ch}
- Weak Interaction \rightarrow probes the weak density ρ_W

 $\rho_{ch} \rightarrow \text{mainly due to protons}$ $\rho_W \rightarrow \text{mainly due to neutrons}$

Measurement of the Charge Radius R_{ch} and the Weak Radius R_W into Proton distribution radius R_p and Neutron distribution radius R_n

$$\begin{array}{ccc} R_{ch} \xrightarrow{\rightarrow} R_{p} & R_{W} \xrightarrow{\rightarrow} R_{n} \\ \\ \text{Neutron Skin} \rightarrow \Delta R_{np} = R_{n} - R_{p} \\ \\ \text{Weak Skin} \rightarrow R_{skin} = R_{W} - R_{ch} \end{array}$$

Weak Mixing Angle

The electron-proton coupling depends on the weak mixing angle θ_W

$$g_{ep}^{AV} \approx -\frac{1}{2} + 2\sin^2\theta_W$$

In SM the weak mixing angle runs with the energy scale

Precisely tested at high energies \rightarrow Z pole

Few measurements at low energies → APV and Qweak

Atomic Parity Violation → measurement of the nuclear weak charge of Cesium (most precise), Lead and other nuclei

Qweak \rightarrow measurement of the proton weak charge

A measurement of the nuclear weak charge leads to a measurement of the weak mixing angle

PVES

Parity Violating Electron Scattering: powerful tool to measure both the nuclear weak charge and the weak nuclear radius

Polarized electrons that scatter off a nucleus: both electromagnetic and weak interaction

Interaction mediated by the photon and so mostly sensitive to the charge (proton) distribution Interaction mediated by the Z boson and so mostly sensitive to the weak (neutron) distribution. Polarized electrons \rightarrow build an asymmetry

$$\mathcal{A}_{pv} = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-} \approx -\frac{G_F Q^2}{4\pi\alpha\sqrt{2}} \frac{Q_W F_W(Q^2)}{Z F_{ch}(Q^2)}$$

Nuclear Weak Charge

Weak distribution

Charge distribution Charge distribution is well known from electromagnetic scattering

道

This formula is in PWBA, Coulomb distortion effect must be taken into account

Qweak Collaboration Nature 557, 207–211 (2018)

PREX-II measurement

PREX Collaboration: Measurement of the ${}^{208}Pb$ weak radius and neutron skin Weak distribution described through a symmetrized 2pF with $a \approx 0.605$ fm

2012: first electroweak neutron skin measurement with 1.06 GeV electrons scattering off ²⁰⁸*Pb* nuclei at forward angles (~5°) **PREX Collaboration Phys.Rev.Lett.** 108,112502 (2012)

- $A_{pv} = 0.656 \pm 0.060 (\text{stat}) \pm 0.014 (\text{syst}) \text{ ppm}$
- $Q^2 \approx 0.00880 \ GeV^2$
- $\Delta R_{np} = 0.33^{+0.16}_{-0.18}$ fm

2021 improved measurement with 953 MeV electrons scattering off ²⁰⁸*Pb* nuclei at forward angles (~5°) **PREX Collaboration** Phys.Rev.Lett. 126,172502 (2021)

- $\mathcal{A}_{pv} = 550 \pm 16(\text{stat}) \pm 8(\text{syst}) \text{ ppb}$
- $Q^2 \approx 0.00616 \, GeV^2$
- $\Delta R_{np} = 0.278 \pm 0.078(\text{exp}) \pm 0.012(\text{theo}) \text{ fm}$

PREX found a rather thick neutron skin compared with the EDF predicted value: $\Delta R_{np}^{th} \approx 0.13 - 0.19$ fm

PHYSICAL REVIEW LETTERS 126, 172502 (2021)

Editors' Suggestion Featured in Physics

Accurate Determination of the Neutron Skin Thickness of ²⁰⁸Pb through Parity-Violation in Electron Scattering

D. Adhikari,¹ H. Albataineh,² D. Androic,³ K. Aniol,⁴ D. S. Armstrong,⁵ T. Averett,⁵ C. Ayerbe Gayoso,⁵ S. Barcus,⁶ V. Bellini,⁷ R. S. Beminiwatha,⁸ J. F. Benesch,⁶ H. Bhatt,⁹ D. Bhatta Pathak,⁸ D. Bhetuwal,⁹ B. Blaikie,¹⁰ Q. Campagna,⁵ A. Camsonne,⁶ G. D. Cates,¹¹ Y. Chen,⁸ C. Clarke,¹² J. C. Cornejo,¹³ S. Covrig Dusa,⁶ P. Datta,¹⁴ A. Deshpande,^{12,15} D. Dutta,⁹ C. Feldman,¹² E. Fuchey,¹⁴ C. Gal,^{12,11,15} D. Gastell,⁶ T. Gautam,¹⁶ M. Gericke,¹⁰ C. Ghosh,^{17,12} I. Hallovic,¹⁰ J.-O. Hansen,⁶ F. Hauenstein,¹⁸ W. Henry,¹⁹ C. J. Horowitz,²⁰ C. Jantzi,¹¹ S. Jian,¹¹ S. Johnston,¹⁷ D. C. Jones,¹⁹ B. Karki,²¹ S. Katugampola,¹¹ C. Keppel,⁶ P. M. King,²¹ D. E. King,²² M. Knauss,²³ K. S. Kumar,¹⁷ T. Kutz,¹² N. Lashley-Colthirst,¹⁶ G. Leverick,¹⁰ H. Liu,¹⁷ N. Liyange,¹¹ S. Malace,⁶ R. Marnmei,²⁴ J. Marnmei,¹⁰ M. McCaughan,⁶ D. McNulty,¹
D. Meekins,⁶ C. Metts,⁵ R. Michaels,⁶ M. M. Mondal,^{12,15} J. Naspolitano,¹⁹ A. Narayan,²⁵ D. Nikolaev,¹⁹ M. N. H. Rashad,¹⁸ V. Owen,⁵ C. Palatchi,^{11,15} J. Pan,¹⁰ B. Pandey,¹⁶ S. Park,¹² K. D. Paschke^{11,4} M. Petrusky,¹² M. L. Pitt,²⁶ S. Premathilake,¹¹ A. J. R. Puckett,¹⁴ B. Quinn,¹³ R. Radloff,²¹ S. Rahman,¹⁰ A. Rathnayake,¹¹ B. T. Reed,²⁰ P. E. Reimer,²⁷ R. Richards,¹² S. Riordan,²⁷ Y. Roblin,⁶ S. Seeds,¹⁴ A. Shahinyan,²⁸ P. Souder,² L. Tang,^{6,16} M. Thiel,²⁹ Y. Tian,² G. M. Urciuoli,³⁰ E. W. Wertz,⁵ B. Wojtsekhowski,⁶ B. Yale,⁵ T. Ye,¹² A. Yoon,³¹ A. Zec,¹¹ W. Zhang,¹² J. Zhang,^{12,15,25} and X. Zheng¹¹

PREX Collaboration Phys.Rev.Lett. 126,172502 (2021)

W.M.A. effect

 $\mathcal{A}_{pv} = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-} \approx -\frac{G_F Q^2}{4\pi\alpha\sqrt{2}} \frac{\mathcal{Q}_W F_W(Q^2)}{Z F_{ch}(Q^2)}$

 \mathcal{A}_{pv} depends on the Nuclear Weak Charge \mathcal{Q}_W and thus, on in the weak mixing angle $\sin^2 \theta_W$.

PHYSICAL REVIEW C 105, 055503 (2022)

Incorporating the weak mixing angle dependence to reconcile the neutron skin measurement on ²⁰⁸Pb by PREX-II

M. Atzori Corona ⁽⁰⁾,^{1,2} M. Cadeddu ⁽⁰⁾,^{2,*} N. Cargioli ⁽⁰⁾,^{1,2,†} P. Finelli ⁽⁰⁾,³ and M. Vorabbi ⁽⁰⁾ ¹Dipartimento di Fisica, Università degli Studi di Cagliari, Complesso Universitario di Monserrato - S.P. per Sestu Km 0.700, 09042 Monserrato (Cagliari), Italy ²Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Cagliari, Complesso Universitario di Monserrato - S.P. per Sestu Km 0.700, 09042 Monserrato (Cagliari), Italy ³Dipartimento di Fisica e Astronomia, Università degli Studi di Bologna and INFN, Sezione di Bologna, Via Irnerio 46, I-40126 Bologna, Italy ⁴National Nuclear Data Center, Bldg. 817, Brookhaven National Laboratory, Upton, New York 11973-5000, USA

(Received 22 December 2021; accepted 3 May 2022; published 17 May 2022)

Published last week!!

Is it reasonable?

PREX is a low-energy experiment ($Q \approx 78 - 93$ MeV), where $\sin^2 \theta_W$ is not well tested.

Variation arising in plenty BSM scenarios (one discussed later..)

We included the weak mixing angle in the analysis as a parameter free-to-vary

- Degeneracy in the plane ΔR_{np} vs sin² θ_W
- Smaller $\sin^2 \theta_W \rightarrow \text{smaller} \Delta R_{np}(^{208}\text{Pb})$

Atomic Parity Violation

Do we really know nothing of the weak mixing angle at low-energy? From Atomic Parity Violation (APV) experiments we obtain the lowest energy (few MeVs) weak mixing angle measurements

Parity violation in an atomic system: an electric dipole transition amplitude between two atomic states with the same parity

- transition between two atomic states with same parity is forbidden by the parity selection rule and cannot happen with the exchange of a photon
- an electric dipole transition amplitude can be induced by a Z boson exchange between atomic electrons and nucleons-> Atomic Parity Violation (APV) or Parity Non Conserving (PNC)

We used APV(Pb) although it is less precise than APV(Cs). But why?

M. Cadeddu talk at 11:30 on Thursday

• *Q*~2.4 MeV

transition between the states 6S and 7S in Cs

APV(Pb)

APV(Cs)

- *Q*~8 MeV
- transition between the states $6p^2 {}^3P_o$ and $6p^2 {}^3P_1$ in Pb

Atomic Parity Violation

$$R_{exp} = -9.80(33) \times 10^{-8}$$

S.J. Phipp et al. Journal of Physics B 29, 1861 (1996)

 $R_{exp} = -9.86(12) \times 10^{-8}$

D.M. Meekhof et al. Phys Rev Lett 71,3442 (1993)

Experimental value of electric dipole transition amplitude between the two states

 $Q_W = \frac{\Lambda_{exp}}{R_{++}} = -117(5)$

To be compared with

 $Q_W^{th}(SM) = -118.79(5)$

 Q_W^{th} depends on the weak mixing angle!

 $\frac{R_{th}}{M_{1}} = \left(\frac{\text{Im E}_{\text{APV}}}{M_{1}}\right)_{...} = -10.6(4) \times 10^{-8} (-Q_{W}^{APV}/N)$

 M_1 is the reduced electric-dipole transition of the magnetic-dipole operator for the relevant transition

S.G. Porsev et al. PRA 93,012501 (2016) $H_{PNC} = -\frac{G_F}{2\sqrt{2}}Q_W\gamma_5\rho(r)$

of the electric dipole transition Nuclear spin independent Hamiltonian describing the electron-nucleus weak interaction $\rho(\mathbf{r}) = \rho_p(\mathbf{r}) = \rho_n(\mathbf{r}) \rightarrow \text{neutron}$ skin correction needed

Theoretical APV (or PNC) amplitude

R_{th} depends on the neutron skin!

In the case of APV(Pb): uniformely charged ball density with $R_{ch}(^{208}Pb) = 5.501$ fm Neutron Skin Correction: $\delta E_{APV}^{n.s.}(\mathbf{R}_n) = \left(\frac{N}{O_W}\right) \left(1 - \frac{q_n(\mathbf{R}_n)}{q_n}\right) E_{APV}$

• $q_{p(n)}$ are the integrals over the proton and neutron nuclear densities:

 $q_{p,n} = 4\pi \int_0^\infty \rho_{p,n}(r) f(r) r^2 dr$

- f(r) is the matrix element of the **electron axial current** between the atomic states wave functions inside the nucleus
- For the radial electric potential we used the charged density used in the original work

$$Q_W(R_n) = -N R_{exp} \left(\frac{M_1}{Im \left(E_{APV} + \delta E_{APV}^{n.s.}(R_n) \right)} \right)$$

M. Cadeddu et al. PRC 104,065502 (2021)

PVES+APV Pb

APV(Pb) and PVES on ²⁰⁸*Pb* depend on the same quantities: ΔR_{np} and $\sin^2 \theta_W$ APV is more sensitive to $\sin^2 \theta_W$, PREX more to ΔR_{np}

Assumption: $\sin^2 \theta_W$ constant between the two experimental energy scales (i.e. $8 \le Q \le 78$ MeV)

 $\Delta R_{np} = 0.262 \pm 0.136 \text{ fm}$ $\sin^2 \theta_W = 0.237 \pm 0.014$ PREX-II+APV(Pb)

Forcing ΔR_{np} toward the nuclear model prediction:

 $\Delta R_{np} = 0.164 \pm 0.029 \, \text{fm}$ PREX-II+APV(Pb) $\sin^2 \theta_W = 0.228 \pm 0.008$ +theory

In order to find a neutron skin compatible with the ones predicted by EDF nuclear models the weak mixing angle should be lower than the SM value

W.M.A. Status

BSM physics in W.M.A.

Example of BSM physics involving the weak mixing angle

- Z_d model: U(1)_d extension of the SM with a corresponding
- Z_d boson, in the sub-GeV mass scale
- Coupling via kinetic mixing parametrized by ε and $Z Z_d$ mass matrix mixing, parametrized by $\varepsilon_Z = (m_{Z_d}/m_Z)\delta$

PHYSICAL REVIEW D 104, L011701 (2021)

Letter

Muon and electron g-2 and proton and cesium weak charges implications on dark Z_d models

M. Cadeddu⁰,^{1,*} N. Cargioli⁰,^{21,†} F. Dordei⁰,^{1,‡} C. Giunti⁰,^{3,§} and E. Picciau⁰,^{21,||}
 ¹Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Cagliari,
 Complesso Universitario di Monserrato–S.P. per Sestu Km 0.700, 09042 Monserrato (Cagliari), Italy
 ²Dipartimento di Fisica, Università degli Studi di Cagliari,
 Complesso Universitario di Monserrato–S.P. per Sestu Km 0.700, 09042 Monserrato (Cagliari), Italy
 ³Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Torino, Via P. Giuria 1, I–10125 Torino, Italy

(Received 16 April 2021; accepted 1 June 2021; published 16 July 2021)

$$sin^2 \theta_W(Q^2) \rightarrow \left(1 - \epsilon \delta \frac{m_Z}{m_{Z_d}} \cot \theta_W f\left(\frac{Q^2}{m_{Z_d}^2}\right)\right) sin^2 \theta_W(Q^2)$$

H. Davoudiasl et al.. Phys Rev Lett 109,031802

The running of $\sin^2 \theta_W$ is modified by the introduction of this Z_d :

- for a MeV Z_d boson \rightarrow the effect is at low-energies
 - Effects on weak charge measurements (both nuclear and proton)
 - Effects on muon and electron g-2

SCALE DEPENDENT VARIATION

Zd in light of Muon g-2

Combined fit of APV(Cs), Qweak and muon and electron g-2:

CREX

CREX results are about to come out

CREX is the PREX twin experiment on ${}^{48}Ca$

- Higher momentum transfer: *Q*~172 *MeV*
- $E_e \sim 2.1 \ GeV$
- $\theta_{scatt} \sim 5^{\circ}$
- $A_{pv}^{preliminary} = 2.6586 \pm 0.1132 \text{ ppm}$
- We used the PREX-II angular acceptance
- $a \approx 0.523$ fm

Fixed $\sin^2 \theta_w \rightarrow \Delta R_{np}(^{48}Ca) = 0.10 \pm 0.03 \text{ fm}$ Thin skin compatible with the nuclear model prediction: $\Delta R_{np}^{th} \sim 0.08 - 0.12 \text{ fm}$

Degenerate Band To be compatible with the nuclear model prediction $\sin^2 \theta_w$ should be similar to its SM value

It's just a really PRELIMINARY result

CREX+Qweak

We can use the Qweak measurement to break the degeneracy:

proton weak charge measurement at Q~160 MeV

 $\sin^2 \theta_{\rm w} \approx 0.238 \pm 0.001$

 $\mathbf{\hat{f}}$ Precise measurement of $\sin^2 \theta_W$ at $Q \sim 160 \text{ MeV}$

CREX+Qweak results $\Delta R_{np} = 0.10 \pm 0.03 \text{ fm}$ $\sin^2 \theta_W = 0.23857 \pm 0.001$

 $\square \qquad CREX \rightarrow thin \ skin$ $PREX \rightarrow thick \ skin$

Different Qs can mean different sin² θ_W

Can we be in presence of a BSM effect on the weak mixing angle? Who knows..

O. Koschchii et all., PRC 102,022501(2020)

MESA measurements

The case of Carbon-12@Mesa

- $E_e \sim 155 MeV$
- $\rho_W \sim \rho_{ch}$ (6 neutrons and 6 protons)
- $Q_W(^{12}C) \approx -24 \sin^2 \theta_W$
- Approach which accounts for model dependences
- Combined information from forward and backward scattering

PHYSICAL REVIEW C 102, 022501(R) (2020)

Rapid Communications

Weak charge and weak radius of $^{\rm 12}{\rm C}$

Oleksandr Koshchii ⁰, ^{1,*} Jens Erler ⁰, ^{1,2,3} Mikhail Gorchtein ^{0,4} Charles J. Horowitz ^{0,5} Jorge Piekarewicz ^{0,6} Xavier Roca-Maza ^{0,7} Chien-Yeah Seng ^{0,8} and Hubert Spiesberger ^{0,1}
 ¹PRISMA⁺ Cluster of Excellence, Institut für Physik, Johannes Gutenberg-Universität, D-55099 Mainz, Germany ²Helmholtz Institute Mainz, Johannes Gutenberg-Universität, D-55099 Mainz, Germany ³Departamento de Física Teórica, Instituto de Física, Universidad Nacional Autónoma de México, 04510 CDMX, México ⁴PRISMA⁺ Cluster of Excellence, Institut für Kernphysik, Johannes Gutenberg-Universität, D-55099 Mainz, Germany ⁵Department of Physics, Center for Exploration of Energy and Matter, Indiana University, Bloomington, Indiana 47405, USA ⁶Department of Physics, Florida State University, Tallahassee, Florida 32306, USA ⁷Dipartimento di Fisica, Universit degli Studi di Milano, Via Celoria 16, I-20133 Milano, Italy and INFN, Sezione di Milano, Via Celoria 16, I-20133 Milano, Italy
 ⁸Helmholtz-Institut für Strahlen- und Kernphysik, Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn, Germany

(Received 8 May 2020; accepted 27 July 2020; published 11 August 2020)

- Coulomb distorsion effect is larger at backward angles
- Study in terms of $\lambda = \frac{R_W R_{ch}}{R_{ch}}$ and $\Delta \equiv \frac{F_{wk}(Q^2)}{F_{ch}(Q^2)} 1$

$$\Delta = -\frac{\lambda}{3}Q^2 R_{ch}^2 + \left[\frac{\lambda}{\lambda_{SF}} \left(\frac{F_{SF}}{F_{ch}} - 1\right) + \frac{\lambda}{3}Q^2 R_{ch}^2\right]$$
$$= \frac{G_F Q^2}{2} \frac{Q_W}{Q_W} \left[1 + n_0 + (n_1 + n_0 \zeta)\lambda\right]$$

- $\mathcal{A}_{pv} = -\frac{G_F Q^2}{4\pi\alpha\sqrt{2}} \frac{\mathcal{D}_W}{Z} \left[1 + p_0 + (p_1 + p_2\zeta)\lambda\right]$
- ζ to account for the model dependence introduced by fixing the diffuseness parameter

O. Koschchii et all., PRC 102,022501(2020)

Simultaneous measurement

Combined measurement of \mathcal{A}_{pv} at both forward and backward angle:

- Assuming a 0.3% precision at forward angle (29°)
- Investigating for 3%-7%-10% precisions at backward angle (145°)
 - Simultaneous measurement of R_{skin} and $\sin^2 \theta_W$ with intriguing precision
 - No need of an external input to break the degeneracy

Estimate of having a relative precision of 0.32-0.35% on $\sin^2 \theta_W$ (similar to Qweak) and a determination of R_W within 0.19-0.35% of R_{ch}

O. Koschchii et all., PRC 102,022501(2020)

Preliminary results on ^{12}C

Same approach adopted for CREX and PREX to the case of a backward-forward measurement on ^{12}C :

- $E_e \sim 155 \text{ MeV} \rightarrow q \sim 70 300 \text{ MeV}$
- a = 0.494 fm

Work in Collaboration with M. Gorchtein and H. Spiesberger

PRELIMINARY

 $\epsilon_b = 3\%$

0.2400

0.2395

Conclusions

- We showed the impact of a non-standard weak mixing angle running at low-energies for PVES experiments
- In this scenario, CREX could find a thin neutron skin being still compatible with the thick skin found by PREX due to the different energy scales (i.e. different weak mixing angle)
- Need for precise weak mixing angle measurements at low-energy
- Prospect for a simulaneous measurement of the weak skin and weak mixing angle with ¹²C @MESA facility using 155 MeV electrons

TO BE DONE:

- Implement in our analysis the procedure introduced in PRC.102,022501(2020) for the case of ¹²C to account for the nuclear model dependence
- Investigate the sensitivity of the measurement on ¹²C also for different kinematic regimes

Thank you for your kind attention

Doubts?

Nuclear Weak Charge

Weak coupling to a nucleus:

 $Q_W = -2(g_{ep}^{AV}Z + g_{en}^{AV}N)$

Combination of electron coupling to protons and neutrons

Electron-proton coupling suppressed with respect to neutron coupling :

 $\begin{aligned} \mathcal{Q}_W^p &= -2g_{ep}^{AV} \approx 0.0714 \\ \mathcal{Q}_W^n &= -2g_{en}^{AV} \approx -0.99 \end{aligned}$

Radius R_{ch} and the Weak Radius R_W into Proton distribution radius R_p and Neutron distribution radius R_n

$$R_p^2 = R_{\rm ch}^2 - \frac{N}{Z} \langle r_{\rm n}^2 \rangle - \frac{3}{4M^2} - \langle r^2 \rangle_{SO}$$

M. Cadeddu et al. PRD 102,015030(2020) G. Hagen et al. Nature Physics 12,186-190 (2016)

$$R_n^2 = \frac{Q_W}{Q_W^n N} R_W^2 - \frac{Q_W^p Z}{Q_W^n N} R_{ch}^2 - \left\langle r_p^2 \right\rangle - \frac{Z}{N} \left\langle r_n^2 \right\rangle + \frac{Z + N}{Q_W^n N} \left\langle r_s^2 \right\rangle$$

C.J. Horowitz et al. PRC 85,032501(2012)

Neutron Skin $\rightarrow \Delta R_{np} = R_n - R_p$ Weak Skin $\rightarrow R_{skin} = R_W - R_{ch}$

PVES+APV Pb

APV(Pb) and PVES on ${}^{208}Pb$ depend on the same quantities: ΔR_{np} and $\sin^2\theta_W$ APV is more sensitive to $\sin^2\theta_W$, PREX more to ΔR_{np}

M. Atzori Corona et al. PRC 105,055503 (2022) The assumption behind the combined fit is that the weak mixing angle has to be constant between the two experimental energy scales (i.e. $8 \le Q \le 78$ MeV)

 $\Delta R_{np} = 0.262 \pm 0.136 \, \mathrm{fm}$

 $\sin^2 \theta_W = 0.237 \pm 0.014$

If we force the skin toward the EDF predicted value we find:

 $\Delta R_{np} = 0.164 \pm 0.029 \, \mathrm{fm}$

 $\sin^2 \theta_W = 0.228 \pm 0.008$

In order to find a neutron skin compatible with the ones predicted by EDF nuclear models the weak mixing angle should be lower than the SM value

M. Atzori Corona et al. PRC 105,055503 (2022)

BSM physics in W.M.A.

Example of BSM physics involving the weak mixing angle

- Z_d model: U(1)_d extension of the SM with a corresponding
- Z_d boson, in the sub-GeV mass scale
- Coupling via kinetic mixing parametrized by ε and $Z Z_d$ mass matrix mixing, parametrized by $\varepsilon_Z = (m_{Z_d}/m_Z)\delta$

$$\sin^2 \theta_W(Q^2) \rightarrow \left(1 - \epsilon \delta \frac{m_Z}{m_{Z_d}} \cot \theta_W f\left(\frac{Q^2}{m_{Z_d}^2}\right)\right) \sin^2 \theta_W(Q^2)$$

H. Davoudiasl et al.. Phys Rev Lett 109,031802

The running of the weak mixing angle gets modified by the introduction of this BSM boson: for a light (MeV) boson, the effect is in the low energy regime

- Weak charge measurements (both nuclear and proton) are sensitive to the Z_d boson.
- Also, the anomalous magnetic moment g-2 is sensitive to such boson:

•
$$a_{l,vector}^{Z_d} = \frac{\alpha}{2\pi} \left(\varepsilon + \frac{m_{Z_d}}{m_Z} \delta \frac{1 - 4\sin^2 \theta_W}{4\sin \theta_W \cos \theta_W} \right)^2 F_V \left(\frac{m_{Z_d}}{m_l} \right) \operatorname{con} F_V(x) = \int_0^1 dz \frac{2z(1 - z)^2}{(1 - z)^2 + x^2}$$

PHYSICAL REVIEW D 104, L011701 (2021)

Letter

Muon and electron g-2 and proton and cesium weak charges implications on dark Z_d models

M. Cadeddu[●],^{1,*} N. Cargioli[●],^{2,1,†} F. Dordei[●],^{1,‡} C. Giunti[●],^{3,§} and E. Picciau^{0,2,1,∥}
 ¹Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Cagliari,
 Complesso Universitario di Monserrato—S.P. per Sestu Km 0.700, 09042 Monserrato (Cagliari), Italy
 ²Dipartimento di Fisica, Università degli Studi di Cagliari,
 Complesso Universitario di Monserrato—S.P. per Sestu Km 0.700, 09042 Monserrato (Cagliari), Italy
 ³Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Torino, Via P. Giuria 1, I–10125 Torino, Italy

(Received 16 April 2021; accepted 1 June 2021; published 16 July 2021)

SCALE DEPENDENT VARIATIO

Zd in light of Muon g-2

- Muon g-2 Collaboration (FNAL) confirmed the deviation of a_{μ} :
- World average $\Delta a_{\mu} = 251(59) \times 10^{-11}(4.2\sigma)$
- Recent result also for the electron magnetic moment $\Delta a_e = 0.48(30) \times 10^{-12}(1.6\sigma)$ L. Morel et al. Nature 588, 61(2020)

Combined fit of APV(Cs), Qweak and muon and electron g-2:

Phys Rev Lett 126, 141801(2021)

CREX

CREX is the PREX twin experiment on ${}^{48}Ca$

- Higher momentum transfer: $Q \sim 172 MeV$ ($E_e \sim 2.1 GeV$, $\theta_{scatt} \sim 5^\circ$) • $A_{pv}^{preliminary} = 2.6586 \pm 0.1132 ppm$
- We used the PREX angular acceptance
- Weak charge computed at tree level
- $a \approx 0.523 \text{ fm}$

CREX results are about to come out

For the nuclear model prediciton of CREX

The combination of PREX and CREX results could suggest a preference for some values of the L parameter, selecting specific nuclear models

It's just a PRELIMINARY result

 $\begin{array}{l} \mbox{Fixed s_w^2} \rightarrow \ \Delta R_{np}(^{48}\mbox{Ca}) = 0.\ 10 \pm 0.\ 03\ fm \\ \mbox{Skin thinner and compatible with the nuclear model} \\ \mbox{prediction:} \ \ \Delta R_{np}^{th} {\sim} 0.\ 08 - 0.\ 12\ fm \end{array}$

Degenerate Band, however, to be compatible with the nuclear model prediction the weak mixing angle should approximately be similar to its SM value

CREX+Qweak

We can use the Qweak measurement to break the degeneracy:

proton weak charge measurement at Q~160 MeV $Q_W^p = -2g_{AV}^{ep} = 0.0711(2)$ $Q_W^{p,exp} = -2g_{AV}^{ep} = 0.0719(45)$

Which is translated in: $\sin^2 \theta_{\rm w} \approx 0.238 \pm 0.001$

Precise measurement of $\sin^2 \theta_W$ at Q~160 MeV

> **CREX could find a thin skin**, while PREX measures a thick skin due to the different impact of the weak mixing angle at different energy scales

CREX+Qweak results $\Delta R_{np} = 0.10 \pm 0.03 \, \text{fm}$ $\sin^2 \theta_W = 0.23857 \pm 0.001$ Are we in presence of a BSM effect on

the weak mixing angle? Who knows..

MESA measurements

O. Koschchii et all., PRC 102,022501(2020)

Rapid Communicat

PHYSICAL REVIEW C 102, 022501(R) (2020)

• ζ to account for the model dependence introduced by fixing the thickness parameter

