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Impacts on solar models

Nuclear scattering cross-sections

In standard (read: SUSY) WIMP-land, everything is nice and
constant. . .

χχ̄QQ̄ → σSI spin− independent (1)
χγµγ5χ̄Qγµγ5Q̄ → σSD spin− dependent (2)

No dependence on
vrel – relative velocity
q – momentum exchange between DM (χ) and quarks (Q)

. . . but in e.g. pseudoscalar exchange

χγ5χ̄Qγ5Q̄ → σSD′ spin− dependent, σ ∝ q4 (3)

In general σ(q, vrel) – but consider one at a time for now:

σq = σ0

(
q
q0

)2n

, σvrel = σ0

(
vrel

v0

)2n

. (4)

Pat Scott – Mar 20 – MITP Indications of momentum-dependent ADM in the Sun



Background
Energy transport by dark matter

Impacts on solar models

Nuclear scattering cross-sections

In standard (read: SUSY) WIMP-land, everything is nice and
constant. . .

χχ̄QQ̄ → σSI spin− independent (1)
χγµγ5χ̄Qγµγ5Q̄ → σSD spin− dependent (2)

No dependence on
vrel – relative velocity
q – momentum exchange between DM (χ) and quarks (Q)

. . . but in e.g. pseudoscalar exchange

χγ5χ̄Qγ5Q̄ → σSD′ spin− dependent, σ ∝ q4 (3)

In general σ(q, vrel) – but consider one at a time for now:

σq = σ0

(
q
q0

)2n

, σvrel = σ0

(
vrel

v0

)2n

. (4)

Pat Scott – Mar 20 – MITP Indications of momentum-dependent ADM in the Sun



Background
Energy transport by dark matter

Impacts on solar models

Nuclear scattering cross-sections

In standard (read: SUSY) WIMP-land, everything is nice and
constant. . .

χχ̄QQ̄ → σSI spin− independent (1)
χγµγ5χ̄Qγµγ5Q̄ → σSD spin− dependent (2)

No dependence on
vrel – relative velocity
q – momentum exchange between DM (χ) and quarks (Q)

. . . but in e.g. pseudoscalar exchange

χγ5χ̄Qγ5Q̄ → σSD′ spin− dependent, σ ∝ q4 (3)

In general σ(q, vrel) – but consider one at a time for now:

σq = σ0

(
q
q0

)2n

, σvrel = σ0

(
vrel

v0

)2n

. (4)

Pat Scott – Mar 20 – MITP Indications of momentum-dependent ADM in the Sun



Background
Energy transport by dark matter

Impacts on solar models

Doing “indirect direct detection” with the Sun

DM-nucleon scattering allows DM collisions with nuclei in the
Sun

→ gravitational capture and settling the to solar core

→ 2. nuclear scattering inside the Sun
→ additional energy transport

→ modified solar structure
→ 1. observables: – sound speed

(helioseismology) – oscillation frequencies
– convective zone depth
– surface helium frac.

→ 2. different core temperature
→ observable: solar neutrino rates

Pat Scott – Mar 20 – MITP Indications of momentum-dependent ADM in the Sun
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The solar abundance problem

Latest solar photospheric abundances (Asplund, Grevesse, Sauval & PS:

AGS05, AGSS09) factor of ∼2 less than old ones (Grevesse & Sauval: GS98)

Best atomic data, highly accurate observations, new 3D
modelling, NLTE corrections, improved agreement with solar
neighbourhood =⇒ highly reliable

Messes up inferred sound
speed profile, helium
abundance and depth of
convection zone from
helioseismology
Many solutions attempted in
the last decade; none really
successful.
=⇒ DM conduction?
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Conductive energy transport with dark matter
Dark matter number density:

nχ(r) = nχ(0)

[
T (r)
T (0)

]3/2

exp

[
−
∫ r

0
dr ′

kBα(r ′) dT (r ′)
dr ′ + mχ

dφ(r ′)
dr ′

kBT (r ′)

]
(5)

Dark matter conductive luminosity:

Lχ(r) = 4πr 2ζ2n(r)κ(r)nχ(r)lχ(r)
[

kBT (r)
mχ

]1/2

kB
dT (r)

dr
, (6)

Corresponding energy injection rate per unit mass of stellar material:

εχ(r) =
1

4πr 2ρ(r)
dLχ(r)

dr
. (7)

φ(r): gravitational potential at height r in star
T (r): temperature at height r
ρ(r): stellar density at height r
ζ(r): v0/vT (r) or q0/[mχvT (r)] depending on cross-section
vT (r): DM thermal velocity at height r
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Impacts on solar models

So how do you get α and κ then?

The name of the game is solving the Boltzmann collision equation:

DF = CF/lχ (8)

D: differential operator (change in)
F : DM phase space density
C: collision operator
lχ: typical DM scattering length

with (roughly)
C(u, v , r , t) = Cin(u, v , r , t)− Cout(v , r , t) (9)

and then...
α, κ = horrible(C−1, n) (10)

Gould & Raffelt (ApJ 1990) worked out + tabulated horrible(C−1, 0)
We worked out + tabulated q-dep and vrel-dep horrible(C−1, n) for n 6= 0
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Diffusivity α
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σ ∝ q−2

µ ≡ mχ/mnuc

n > 1 =⇒ α smaller→ ‘tighter’ dark matter core
n < 1 =⇒ α larger→ ‘fluffier’ dark matter core
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Conductivity κ
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µ ≡ mχ/mnuc

n > 1 =⇒ κ smaller→ less effective conduction
n < 1 =⇒ κ larger→ more effective conduction
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Partial summary. . .

Derived necessary ingredients for including q and
vrel-dependent cross-sections in solar models
Calculated + tabulated corresponding α and κ for general
consumption
Big impacts on solar energy transport for σ ∝ v−2

rel , σ ∝ q2n

→ next, put it all into a state-of-the-art solar evolution,
helioseismology + neutrino code
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DarkStec

(“The Monster”)

+ =

DarkStars

Garstec DarkStec

Dark stellar evolution

Detailed solar
structure, neutrinos
and helioseismology

Precision dark solar physics code
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Impacts on capture and transport
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Global impact on combined observables: SI v2
rel, q2
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Global impact on combined observables: SI v4
rel, q4
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Preferred models

In general v2n
rel models are basically no better than the Standard

Solar Model (SSM) overall.

q2 is great though.
Best fit:

q2 coupling
mχ = 3 GeV
σ0 = 10−37 cm2

Sound speed for best q2,
SI and SD models:
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Best models – small frequency separations
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Best models – what is going on in the Sun?

Pat Scott – Mar 20 – MITP Indications of momentum-dependent ADM in the Sun

energy extracted below M(R) = 0.2 M�,
dumped in 0.2 < M(R)/M� < 0.6
strong core ∇T change
=⇒ change in sound speed, freq
separations, ν fluxes
slight ∇T increase at base of conv. zone
=⇒ convection sets in at lower R
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Best models – detailed likelihood figures

SSM SD q2 SI Obs.1 σobs σmodel

φ
8B
ν (106 cm−2s−1) 4.95 4.39 3.78 5.00 3% 14%
φ

7Be
ν (109 cm−2s−1) 4.71 4.58 4.29 4.82 5% 7%

RCZ/R� 0.722 0.721 0.718 0.713 0.001 0.004
Ys 0.2356 0.2351 0.2327 0.2485 0.0034 0.0035
χ2

8B
0.0 0.9 4.9

χ2
7Be

0.1 0.4 1.9
χ2

RCZ
4.8 3.8 1.5

χ2
Ys

7.0 7.5 10.5
χ2

r02
156.6 95.3 5.6

χ2
r13

119.3 50.7 3.1
χ2

total 287.8 158.5 27.5 (36 dof)
p <10−10 <10−10 0.845

1Neutrino data and obs. errors inferred from Borexino data (Serenelli et al. ApJ 2011).

=⇒ q2 model is a great fit, SSM + others ruled out at > 6σ!
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Background
Energy transport by dark matter

Impacts on solar models

Other constraints?

Direct detection:
3 GeV too low for DD limits (Guo et al Nuc Phys B 2014)
possibly interesting for CDMSlite and DAMIC though

Collider limits:
model-dependent
χ̄γ5χq̄q (D2) and χ̄σµνγ5χq̄σµνq (D10) give q2 SI ADM
D2 χ̄γ5χq̄q still OK
D10 χ̄σµνγ5χq̄σµνq a bit tight (Cheung et al JCAP 2012)

→ Dedicated analyses of DD and LHC signatures would be
very helpful
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Background
Energy transport by dark matter

Impacts on solar models

Conclusions

Standard Solar Model and regular SI and SD ADM
excluded at > 6σ

q2 ADM fits almost perfectly
Preferred mass and cross-section not excluded by direct
detection or LHC
smaller masses might give even better fits
→ q2 ADM looks like a viable solution to the solar
abundance problem
→ On face value, over 6σ evidence for light,
momentum-dependent ADM

Pat Scott – Mar 20 – MITP Indications of momentum-dependent ADM in the Sun



Background
Energy transport by dark matter

Impacts on solar models

Conclusions

Standard Solar Model and regular SI and SD ADM
excluded at > 6σ
q2 ADM fits almost perfectly

Preferred mass and cross-section not excluded by direct
detection or LHC
smaller masses might give even better fits
→ q2 ADM looks like a viable solution to the solar
abundance problem
→ On face value, over 6σ evidence for light,
momentum-dependent ADM

Pat Scott – Mar 20 – MITP Indications of momentum-dependent ADM in the Sun



Background
Energy transport by dark matter

Impacts on solar models

Conclusions

Standard Solar Model and regular SI and SD ADM
excluded at > 6σ
q2 ADM fits almost perfectly
Preferred mass and cross-section not excluded by direct
detection or LHC

smaller masses might give even better fits
→ q2 ADM looks like a viable solution to the solar
abundance problem
→ On face value, over 6σ evidence for light,
momentum-dependent ADM

Pat Scott – Mar 20 – MITP Indications of momentum-dependent ADM in the Sun



Background
Energy transport by dark matter

Impacts on solar models

Conclusions

Standard Solar Model and regular SI and SD ADM
excluded at > 6σ
q2 ADM fits almost perfectly
Preferred mass and cross-section not excluded by direct
detection or LHC
smaller masses might give even better fits

→ q2 ADM looks like a viable solution to the solar
abundance problem
→ On face value, over 6σ evidence for light,
momentum-dependent ADM

Pat Scott – Mar 20 – MITP Indications of momentum-dependent ADM in the Sun



Background
Energy transport by dark matter

Impacts on solar models

Conclusions

Standard Solar Model and regular SI and SD ADM
excluded at > 6σ
q2 ADM fits almost perfectly
Preferred mass and cross-section not excluded by direct
detection or LHC
smaller masses might give even better fits
→ q2 ADM looks like a viable solution to the solar
abundance problem

→ On face value, over 6σ evidence for light,
momentum-dependent ADM

Pat Scott – Mar 20 – MITP Indications of momentum-dependent ADM in the Sun



Background
Energy transport by dark matter

Impacts on solar models

Conclusions

Standard Solar Model and regular SI and SD ADM
excluded at > 6σ
q2 ADM fits almost perfectly
Preferred mass and cross-section not excluded by direct
detection or LHC
smaller masses might give even better fits
→ q2 ADM looks like a viable solution to the solar
abundance problem
→ On face value, over 6σ evidence for light,
momentum-dependent ADM

Pat Scott – Mar 20 – MITP Indications of momentum-dependent ADM in the Sun



Backup slides

Pat Scott – Mar 20 – MITP Indications of momentum-dependent ADM in the Sun



Implications of α and κ: energy injection for σ ∝ v2n
rel
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mχ = 20 GeV

v0 = 110 km/s
σ0 = 10−39 cm2.
nχ/nb = 10−16 WIMPs per baryon
Static AGSS09ph solar model (Serenelli et al. ApJ 2009)
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Implications of α and κ: energy injection for σ ∝ q2n
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q0 = 40 MeV
σ0 = 10−39 cm2.
nχ/nb = 10−16 WIMPs per baryon
Static AGSS09ph solar model (Serenelli et al. ApJ 2009)
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Transport regimes
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Transport maximised at transition from non-local to local (LTE)
regime

mχ = 10 GeV, nχ/nbaryons = 10−15

Left sides of curves = non-local, right sides = LTE
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Global impact on combined observables: regular SI
and SD
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Global χ2 includes:
8B neutrino flux
7Be neutrino flux

depth of the convection zone RCZ

surface helium abundance Ys

sound speed profile (sparsely
sampled to avoid correlations)
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Global impact on combined observables: SI v−2
rel , q−2
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Direct search bound (Guo et al
Nuc Phys B ’14)
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