Indications of momentum-dependent dark matter-nucleon interactions in the Sun

Pat Scott

Imperial College London

With: Aaron Vincent (IPPP Durham) Aldo Serenelli (UAB Barcelona)

Based on: Vincent, PS & Serenelli, *Phys. Rev. Lett* **114**:081302 (2015) arXiv:1411.6626 Vincent & PS, *JCAP* **04**:019 (2014), arXiv:1311.2074

Slides available from tinyurl.com/patscott

Imperial College London

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のへで

Background

2 Energy transport by dark matter

Impacts on solar models

Imperial College London

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のへで

Nuclear scattering cross-sections

In standard (read: SUSY) WIMP-land, everything is nice and constant...

$$\chi \bar{\chi} Q \bar{Q} \rightarrow \sigma_{\rm SI}$$
 spin – independent (1)
 $\chi \gamma_{\mu} \gamma_5 \bar{\chi} Q \gamma^{\mu} \gamma_5 \bar{Q} \rightarrow \sigma_{\rm SD}$ spin – dependent (2)

No dependence on

- *v*_{rel} relative velocity
- q momentum exchange between DM (χ) and quarks (Q)

Nuclear scattering cross-sections

In standard (read: SUSY) WIMP-land, everything is nice and constant...

$$\chi \bar{\chi} Q \bar{Q} \rightarrow \sigma_{\rm SI}$$
 spin – independent (1)
 $\chi \gamma_{\mu} \gamma_5 \bar{\chi} Q \gamma^{\mu} \gamma_5 \bar{Q} \rightarrow \sigma_{\rm SD}$ spin – dependent (2)

No dependence on

- V_{rel} relative velocity
- q momentum exchange between DM (χ) and quarks (Q)
- ... but in e.g. pseudoscalar exchange

$$\chi\gamma_5\bar{\chi}Q\gamma_5\bar{Q} \to \sigma_{\rm SD'}$$
 spin – dependent, $\sigma \propto q^4$ (3)

mperial College

▲ 臣 ▶ ▲ 臣 ▶ 三 目 = → ○ Q ()

Nuclear scattering cross-sections

In standard (read: SUSY) WIMP-land, everything is nice and constant...

$$\chi \bar{\chi} Q \bar{Q} \rightarrow \sigma_{\rm SI}$$
 spin – independent (1)
 $\chi \gamma_{\mu} \gamma_5 \bar{\chi} Q \gamma^{\mu} \gamma_5 \bar{Q} \rightarrow \sigma_{\rm SD}$ spin – dependent (2)

No dependence on

- V_{rel} relative velocity
- q momentum exchange between DM (χ) and quarks (Q)
- ... but in e.g. pseudoscalar exchange

 $\chi \gamma_5 \bar{\chi} Q \gamma_5 \bar{Q} \rightarrow \sigma_{SD'}$ spin – dependent, $\sigma \propto q^4$ (3) In general $\sigma(q, v_{rel})$ – but consider one at a time for now:

$$\sigma_q = \sigma_0 \left(\frac{q}{q_0}\right)^{2n}, \quad \sigma_{v_{\text{rel}}} = \sigma_0 \left(\frac{v_{\text{rel}}}{v_0}\right)^{2n}. \tag{4 thereis College Lindon}$$

Pat Scott – Mar 20 – MITP Indications of momentum-dependent ADM in the Sun

Doing "indirect direct detection" with the Sun

DM-nucleon scattering allows DM collisions with nuclei in the Sun

< 🗇 🕨

DM-nucleon scattering allows DM collisions with nuclei in the Sun

 \rightarrow gravitational capture and settling the to solar core

DM-nucleon scattering allows DM collisions with nuclei in the Sun

- \rightarrow gravitational capture and settling the to solar core
 - \rightarrow 1. observable: high-*E* neutrinos from annihilation

DM-nucleon scattering allows DM collisions with nuclei in the Sun

- \rightarrow gravitational capture and settling the to solar core
 - \rightarrow 1. observable: high-*E* neutrinos from annihilation
 - \rightarrow 2. nuclear scattering inside the Sun

Imperial College London ■ ▶ ▲ ■ ▶ ■ ■ ■ ∽ ۹ ペ

DM-nucleon scattering allows DM collisions with nuclei in the Sun

- \rightarrow gravitational capture and settling the to solar core
 - \rightarrow 1. observable: high-*E* neutrinos from annihilation
 - \rightarrow 2. nuclear scattering inside the Sun
 - \rightarrow additional energy transport

mperial College

∃ ► ▲ ∃ ► ∃ = 𝔄 𝔄 𝔄

DM-nucleon scattering allows DM collisions with nuclei in the Sun

- \rightarrow gravitational capture and settling the to solar core
 - \rightarrow 1. observable: high-*E* neutrinos from annihilation
 - \rightarrow 2. nuclear scattering inside the Sun
 - \rightarrow additional energy transport
 - \rightarrow modified solar structure

mperial College

∃ ► ▲ ∃ ► ∃ = 𝔄 𝔄 𝔄

DM-nucleon scattering allows DM collisions with nuclei in the Sun

- \rightarrow gravitational capture and settling the to solar core
 - \rightarrow 1. observable: high-E neutrinos from annihilation
 - \rightarrow 2. nuclear scattering inside the Sun
 - \rightarrow additional energy transport
 - \rightarrow modified solar structure
 - \rightarrow 1. observables:
- sound speed
- (helioseismology) oscillation frequencies
 - convective zone depth

mperial College

ヨ▶ ▲ヨ▶ ヨヨ わへ⊙

surface helium frac.

DM-nucleon scattering allows DM collisions with nuclei in the Sun

- \rightarrow gravitational capture and settling the to solar core
 - \rightarrow 1. observable: high-*E* neutrinos from annihilation
 - \rightarrow 2. nuclear scattering inside the Sun
 - \rightarrow additional energy transport
 - \rightarrow modified solar structure
 - \rightarrow 1. observables:
- sound speed
- (helioseismology) oscillation frequencies
 - convective zone depth

mperial College

ヨ▶ ▲ヨ▶ ヨヨ わへ⊙

- surface helium frac.
- \rightarrow 2. different core temperature

DM-nucleon scattering allows DM collisions with nuclei in the Sun

- \rightarrow gravitational capture and settling the to solar core
 - \rightarrow 1. observable: high-*E* neutrinos from annihilation
 - \rightarrow 2. nuclear scattering inside the Sun
 - \rightarrow additional energy transport
 - \rightarrow modified solar structure
 - \rightarrow 1. observables:
- sound speed
- (helioseismology) oscillation frequencies
 - convective zone depth

mperial College

→ @ → → E → モト 王田 - のへで

- surface helium frac.
- \rightarrow 2. different core temperature
 - → observable: solar neutrino rates

DM-nucleon scattering allows DM collisions with nuclei in the Sun

- \rightarrow gravitational capture and settling the to solar core
 - \rightarrow 1. observable: high-*E* neutrinos from annihilation
 - \rightarrow 2. nuclear scattering inside the Sun
 - \rightarrow additional energy transport
 - \rightarrow modified solar structure
 - \rightarrow 1. observables:
- sound speed
- (helioseismology) oscillation frequencies
 - convective zone depth

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のへで

Imperial College

- surface helium frac.
- \rightarrow 2. different core temperature
 - → observable: solar neutrino rates

 $\sigma_{\rm nuc} \neq 0$

DM-nucleon scattering allows DM collisions with nuclei in the Sun

- \rightarrow gravitational capture and settling the to solar core
 - → 1. observable: high-E neutrinos from annihilation
 - \rightarrow 2. nuclear scattering inside the Sun
 - \rightarrow additional energy transport
 - \rightarrow modified solar structure
 - \rightarrow 1. observables:
- sound speed
- (helioseismology) oscillation frequencies
 - convective zone depth

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のへで

Imperial College

- surface helium frac.
- \rightarrow 2. different core temperature
 - → observable: solar neutrino rates

ADM

The solar abundance problem

- Latest solar photospheric abundances (Asplund, Grevesse, Sauval & PS: AGS05, AGSS09) factor of ~2 less than old ones (Grevesse & Sauval: GS98)
- Messes up inferred sound speed profile, helium abundance and depth of convection zone from helioseismology
- Many solutions attempted in the last decade; none really successful.
 - \implies DM conduction?

Outline

Pat Scott – Mar 20 – MITP Indications of momentum-dependent ADM in the Sun

Conductive energy transport with dark matter

Dark matter number density:

$$n_{\chi}(r) = n_{\chi}(0) \left[\frac{T(r)}{T(0)} \right]^{3/2} \exp\left[-\int_{0}^{r} \mathrm{d}r' \, \frac{k_{\mathrm{B}} \alpha(r') \frac{\mathrm{d}T(r')}{\mathrm{d}r'} + m_{\chi} \frac{\mathrm{d}\phi(r')}{\mathrm{d}r'}}{k_{\mathrm{B}} T(r')} \right]$$
(5)

Dark matter conductive luminosity:

$$L_{\chi}(r) = 4\pi r^2 \zeta^{2n}(r) \kappa(r) n_{\chi}(r) I_{\chi}(r) \left[\frac{k_{\rm B} T(r)}{m_{\chi}} \right]^{1/2} k_{\rm B} \frac{\mathrm{d} T(r)}{\mathrm{d} r}, \tag{6}$$

Corresponding energy injection rate per unit mass of stellar material:

$$\epsilon_{\chi}(r) = \frac{1}{4\pi r^2 \rho(r)} \frac{\mathrm{d}L_{\chi}(r)}{\mathrm{d}r}.$$
(7)

Pat Scott – Mar 20 – MITP

Indications of momentum-dependent ADM in the Sun

Conductive energy transport with dark matter

Dark matter number density:

$$n_{\chi}(r) = n_{\chi}(0) \left[\frac{T(r)}{T(0)} \right]^{3/2} \exp\left[-\int_{0}^{r} \mathrm{d}r' \, \frac{k_{\mathrm{B}} \alpha(r') \frac{\mathrm{d}T(r')}{\mathrm{d}r'} + m_{\chi} \frac{\mathrm{d}\phi(r')}{\mathrm{d}r'}}{k_{\mathrm{B}} T(r')} \right] \quad (5)$$

Dark matter conductive luminosity:

$$L_{\chi}(r) = 4\pi r^2 \zeta^{2n}(r) \kappa(r) n_{\chi}(r) l_{\chi}(r) \left[\frac{k_{\rm B} T(r)}{m_{\chi}} \right]^{1/2} k_{\rm B} \frac{\mathrm{d} T(r)}{\mathrm{d} r}, \tag{6}$$

Corresponding energy injection rate per unit mass of stellar material:

$$\epsilon_{\chi}(r) = \frac{1}{4\pi r^2 \rho(r)} \frac{\mathrm{d}L_{\chi}(r)}{\mathrm{d}r}.$$
(7)

Pat Scott – Mar 20 – MITP

Indications of momentum-dependent ADM in the Sun

So how do you get α and κ then?

The name of the game is solving the Boltzmann collision equation:

$$DF = CF/I_{\chi} \tag{8}$$

- D: differential operator (change in)
- F: DM phase space density
- C: collision operator
- I_{χ} : typical DM scattering length

with (roughly)

$$C(\boldsymbol{u},\boldsymbol{v},r,t) = C_{\rm in}(\boldsymbol{u},\boldsymbol{v},r,t) - C_{\rm out}(\boldsymbol{v},r,t)$$
(9)

So how do you get α and κ then?

The name of the game is solving the Boltzmann collision equation:

$$DF = CF/I_{\chi} \tag{8}$$

- D: differential operator (change in)
- F: DM phase space density
- C: collision operator
- I_{χ} : typical DM scattering length

with (roughly)

$$C(\boldsymbol{u},\boldsymbol{v},r,t) = C_{\rm in}(\boldsymbol{u},\boldsymbol{v},r,t) - C_{\rm out}(\boldsymbol{v},r,t)$$
(9)

and then...

$$\alpha, \kappa = \operatorname{horrible}(C^{-1}, n) \tag{10}$$

Gould & Raffelt (*ApJ* 1990) worked out + tabulated horrible (C^{-1} , 0) We worked out + tabulated *q*-dep and v_{rel} -dep horrible (C^{-1} , *n*) for $n \neq 0$

Diffusivity α

 $n > 1 \implies \alpha$ smaller \rightarrow 'tighter' dark matter core $n < 1 \implies \alpha$ larger \rightarrow 'fluffier' dark matter core

Conductivity κ

 $n > 1 \implies \kappa$ smaller \rightarrow less effective conduction $n < 1 \implies \kappa$ larger \rightarrow more effective conduction

Pat Scott – Mar 20 – MITP Indications of momentum-dependent ADM in the Sun

Partial summary...

- Derived necessary ingredients for including *q* and *v*_{rel}-dependent cross-sections in solar models
- Calculated + tabulated corresponding α and κ for general consumption
- Big impacts on solar energy transport for $\sigma \propto v_{\rm rel}^{-2}$, $\sigma \propto q^{2n}$
- → next, put it all into a state-of-the-art solar evolution, helioseismology + neutrino code

Outline

- Energy transport by dark matter
- Impacts on solar models

Imperial College

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のへで

PS et al (MNRAS 2009) PS et al (Dark2009, 0904.2395)

DarkStars Dark stellar evolution

Pat Scott – Mar 20 – MITP Indications of momentum-dependent ADM in the Sun

< < >> < </>

Imperial College London

▲ 臣 ▶ ▲ 臣 ▶ 三 目目 • つ Q () ●

DarkStec

PS et al (MNRAS 2009) PS et al (Dark2009, 0904.2395) Weiss & Schlattl (Ap&SS 2008) Serenelli et al (ApJ 2011)

DarkStars Dark stellar evolution

Garstec

Detailed solar structure, neutrinos and helioseismology

Pat Scott - Mar 20 - MITP

Indications of momentum-dependent ADM in the Sun

Imperial College

▲ 臣 ▶ 三 目 = ∽ < (~

DarkStec ("The Monster")

PS et al (MNRAS 2009) PS et al (Dark2009, 0904.2395) Weiss & Schlattl (Ap&SS 2008) Serenelli et al (ApJ 2011)

DarkStars Dark stellar evolution

Garstec

Detailed solar structure, neutrinos and helioseismology Precision dark solar physics code

Imperial College

ヨ ▶ ▲ ヨ ▶ ヨ 目 = ∽ ۹ () ●

Pat Scott - Mar 20 - MITP

Indications of momentum-dependent ADM in the Sun

Impacts on capture and transport

- Enhancement factors for capture and transport wrt constant cross-sections, for $q_0 = 10^{-35} \text{ cm}^2$
- Solid = SI, Dashed = SD
- transport similar for v_{rel}^{2n} ; capture enhanced as $\langle \sigma(v_{rel}) \rangle$

Imperial College London

12

Global impact on combined observables: SI $v_{\rm rel}^2$, q^2

- ⁸B neutrino flux
- ⁷Be neutrino flux
- depth of the convection zone R_{CZ}

- surface helium abundance Y_s
- sound speed profile (sparsely sampled to avoid correlations)

코 🖌 🛪 코 🛌

고 노

Global impact on combined observables: SI $v_{\rm rel}^4$, q^4

- ⁸B neutrino flux
- ⁷Be neutrino flux
- depth of the convection zone R_{CZ}

- surface helium abundance Y_s
- sound speed profile (sparsely sampled to avoid correlations) Imperial College

프 🖌 🛪 프 🕨

ondon

고대학

Preferred models

In general v_{rel}^{2n} models are basically no better than the Standard Solar Model (SSM) overall.

Preferred models

In general v_{rel}^{2n} models are basically no better than the Standard Solar Model (SSM) overall.

 q^2 is great though.

- Best fit:
 - q² coupling
 - $m_{\chi} = 3 \, {
 m GeV}$
 - $\sigma_0 = 10^{-37} \,\mathrm{cm}^2$

Preferred models

In general v_{rel}^{2n} models are basically no better than the Standard Solar Model (SSM) overall.

 q^2 is great though.

- Best fit:
 - q² coupling
 - $m_{\chi} = 3 \, \mathrm{GeV}$
 - $\sigma_0 = 10^{-37} \,\mathrm{cm}^2$

Sound speed for best q^2 , SI and SD models:

Best models – small frequency separations

Pat Scott – Mar 20 – MITP Indications of momentum-dependent ADM in the Sun

Best models – what is going on in the Sun?

- energy extracted below $M(R) = 0.2 M_{\odot}$, dumped in $0.2 < M(R)/M_{\odot} < 0.6$
- strong core ∇T change
- ⇒ change in sound speed, freq separations, ν fluxes
- slight ∇T increase at base of conv. zone

Best models – detailed likelihood figures

	SSM	SD	q² SI	Obs. ¹	$\sigma_{ m obs}$	$\sigma_{ m model}$
$\phi_{ u}^{^{8}\mathrm{B}}$ (10 ⁶ cm ⁻² s ⁻¹)	4.95	4.39	3.78	5.00	3%	14%
$\phi_{\nu}^{^{7}\text{Be}}$ (10 ⁹ cm ⁻² s ⁻¹)	4.71	4.58	4.29	4.82	5%	7%
$R_{\rm CZ}/R_{\odot}$	0.722	0.721	0.718	0.713	0.001	0.004
Y _s	0.2356	0.2351	0.2327	0.2485	0.0034	0.0035
$\chi^{2}_{8_{B}}$	0.0	0.9	4.9			
$\chi^{2}_{7_{\text{Be}}}$	0.1	0.4	1.9			
$\chi^2_{R_{CZ}}$	4.8	3.8	1.5			
$\chi^2_{Y_s}$	7.0	7.5	10.5			
$\chi^{2^{3}}_{r_{02}}$	156.6	95.3	5.6			
$\chi^{2^{2}}_{r_{13}}$	119.3	50.7	3.1			
χ^{2}_{total}	287.8	158.5	27.5	(36 dof)		
p	$< 10^{-10}$	$< 10^{-10}$	0.845			

¹Neutrino data and obs. errors inferred from Borexino data (Serenelli et al. ApJ 2011).

Imperial College

▲ 콜 ▶ ▲ 콜 ▶ _ 콜| ᆋ → 의 ۹ ()

Best models – detailed likelihood figures

	SSM	SD	q² SI	Obs. ¹	$\sigma_{ m obs}$	$\sigma_{ m model}$
$\phi^{^{8}\mathrm{B}}_{ u}$ (10 ⁶ cm ⁻² s ⁻¹)	4.95	4.39	3.78	5.00	3%	14%
$\phi_{\nu}^{^{7}\text{Be}}$ (10 ⁹ cm ⁻² s ⁻¹)	4.71	4.58	4.29	4.82	5%	7%
$R_{\rm CZ}/R_{\odot}$	0.722	0.721	0.718	0.713	0.001	0.004
Ys	0.2356	0.2351	0.2327	0.2485	0.0034	0.0035
$\chi^2_{8_{B}}$	0.0	0.9	4.9			
$\chi^{2}_{7_{\text{Be}}}$	0.1	0.4	1.9			
$\chi^{2}_{R_{CZ}}$	4.8	3.8	1.5			
$\chi^2_{Y_s}$	7.0	7.5	10.5			
$\chi^{2^{3}}_{r_{02}}$	156.6	95.3	5.6			
$\chi^{2^{2}}_{r_{13}}$	119.3	50.7	3.1			
χ^{2}_{total}	287.8	158.5	27.5	(36 dof)		
p	$< 10^{-10}$	<10 ⁻¹⁰	0.845			

¹Neutrino data and obs. errors inferred from Borexino data (Serenelli et al. ApJ 2011).

 \Rightarrow q² model is a great fit, SSM + others ruled out at > 6 σ ! Imperial College London

Pat Scott – Mar 20 – MITP Indications of momentum-dependent ADM in the Sun

Other constraints?

Pat Scott – Mar 20 – MITP Indications of momentum-dependent ADM in the Sun

Imperial College

Other constraints?

Direct detection:

- 3 GeV too low for DD limits (Guo et al Nuc Phys B 2014)
- possibly interesting for CDMSlite and DAMIC though

Other constraints?

Direct detection:

- 3 GeV too low for DD limits (Guo et al Nuc Phys B 2014)
- possibly interesting for CDMSlite and DAMIC though
- Collider limits:
 - model-dependent
 - $\bar{\chi}\gamma_5\chi\bar{q}q$ (D2) and $\bar{\chi}\sigma_{\mu\nu}\gamma_5\chi\bar{q}\sigma^{\mu\nu}q$ (D10) give q^2 SI ADM
 - D2 $\bar{\chi}\gamma_5\chi\bar{q}q$ still OK
 - D10 $\bar{\chi}\sigma_{\mu\nu}\gamma_5\chi\bar{q}\sigma^{\mu\nu}q$ a bit tight (Cheung et al JCAP 2012)

Other constraints?

Direct detection:

- 3 GeV too low for DD limits (Guo et al Nuc Phys B 2014)
- possibly interesting for CDMSlite and DAMIC though
- Collider limits:
 - model-dependent
 - $\bar{\chi}\gamma_5\chi\bar{q}q$ (D2) and $\bar{\chi}\sigma_{\mu\nu}\gamma_5\chi\bar{q}\sigma^{\mu\nu}q$ (D10) give q^2 SI ADM
 - D2 $\bar{\chi}\gamma_5\chi\bar{q}q$ still OK
 - D10 $\bar{\chi}\sigma_{\mu\nu}\gamma_5\chi\bar{q}\sigma^{\mu\nu}q$ a bit tight (Cheung et al JCAP 2012)

\rightarrow Dedicated analyses of DD and LHC signatures would be very helpful

Conclusions

• Standard Solar Model and regular SI and SD ADM excluded at $> 6\sigma$

Conclusions

- Standard Solar Model and regular SI and SD ADM excluded at $> 6\sigma$
- q² ADM fits almost perfectly

Conclusions

- Standard Solar Model and regular SI and SD ADM excluded at $> 6\sigma$
- q² ADM fits almost perfectly
- Preferred mass and cross-section not excluded by direct detection or LHC

Conclusions

- Standard Solar Model and regular SI and SD ADM excluded at $> 6\sigma$
- q² ADM fits almost perfectly
- Preferred mass and cross-section not excluded by direct detection or LHC
- smaller masses might give even better fits

Conclusions

- Standard Solar Model and regular SI and SD ADM excluded at $> 6\sigma$
- q² ADM fits almost perfectly
- Preferred mass and cross-section not excluded by direct detection or LHC
- smaller masses might give even better fits
- $\rightarrow q^2$ ADM looks like a viable solution to the solar abundance problem

mperial College

Conclusions

- Standard Solar Model and regular SI and SD ADM excluded at $> 6\sigma$
- q² ADM fits almost perfectly
- Preferred mass and cross-section not excluded by direct detection or LHC
- smaller masses might give even better fits
- $\rightarrow q^2$ ADM looks like a viable solution to the solar abundance problem
- \rightarrow On face value, over 6σ evidence for light, momentum-dependent ADM

mperial College

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ = •○ Q @

Backup slides

Implications of α and κ : energy injection for $\sigma \propto v_{\rm rel}^{2n}$

- *v*₀ = 110 km/s
- $\sigma_0 = 10^{-39} \text{ cm}^2$.
- $n_{\chi}/n_{\rm b} = 10^{-16}$ WIMPs per baryon
- Static AGSS09ph solar model (Serenelli et al. ApJ 2009)

Implications of α and κ : energy injection for $\sigma \propto q^{2n}$

- $n_{\chi}/n_{\rm b} = 10^{-16}$ WIMPs per baryon
- Static AGSS09ph solar model (Serenelli et al. ApJ 2009)

Transport regimes

Transport maximised at transition from non-local to local (LTE) regime

•
$$m_\chi=$$
 10 GeV, $n_\chi/n_{
m baryons}=$ 10 $^{-15}$

Left sides of curves = non-local, right sides = LTE

Imperial College

크 🛌 크 티 티

Global impact on combined observables: regular SI and SD

- ⁷Be neutrino flux
- depth of the convection zone R_{CZ}

- surface helium abundance Y_s
- sound speed profile (sparsely sampled to avoid correlations) and the sampled to avoid correlations and the same set of the same s

Indications of momentum-dependent ADM in the Sun

Global impact on combined observables: SI v_{rel}^{-2} , q^{-2}

- ⁸B neutrino flux
- ⁷Be neutrino flux
- depth of the convection zone R_{CZ}

- surface helium abundance Y_s
- sound speed profile (sparsely sampled to avoid correlations)

▶ ★ 문 ▶ '문'님