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Background

Nuclear scattering cross-sections

In standard (read: SUSY) WIMP-land, everything is nice and
constant. ..

YYQQ — oy spin — independent (1)
XX QY 5Q  — osp spin — dependent 2

No dependence on
@ v, — relative velocity
@ g — momentum exchange between DM (x) and quarks (Q)

Imperial College
London

Indications of momentum-dependent ADM in the Sun



Background

Nuclear scattering cross-sections

In standard (read: SUSY) WIMP-land, everything is nice and
constant. ..

YYQQ — oy spin — independent (1)
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Background

Nuclear scattering cross-sections

In standard (read: SUSY) WIMP-land, everything is nice and
constant. ..

YYQQ — oy spin — independent (1)
XWWST(QW“%@ — OsD spin — dependent (2)
No dependence on
@ v, — relative velocity
@ g — momentum exchange between DM (x) and quarks (Q)
...butin e.g. pseudoscalar exchange
X15¥Q15Q — oy spin — dependent, o o g* (3)
In general o(q, vie1) — but consider one at a time for now:

2n 2n
_ q _ Viel )
Oqg = 00 % 5 Ovg = 00 70 . (ﬁﬁf’:‘l College
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Doing “indirect direct detection” with the Sun

DM-nucleon scattering allows DM collisions with nuclei in the
Sun
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Doing “indirect direct detection” with the Sun

DM-nucleon scattering allows DM collisions with nuclei in the

Sun
— gravitational capture and settling the to solar core

— 1. observable: high-E neutrinos from annihilation

— 2. nuclear scattering inside the Sun
— additional energy transport
— modified solar structure

— 1. observables: — sound speed
(helioseismology) — oscillation frequencies
— convective zone depth

- {— — surface helium frac.
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Doing “indirect direct detection” with the Sun

DM-nucleon scattering allows DM collisions with nuclei in the

Sun
— gravitational capture and settling the to solar core

— 1. observable: high-E neutrinos from annihilation
— 2. nuclear scattering inside the Sun

— additional energy transport

— modified solar structure

— 1. observables: — sound speed
(helioseismology) — oscillation frequencies

WIMPS — convective zone depth
(ov) #0 .
0 — surface helium frac.
Tnuc 7 — 2. different core temperature
— observable: solar neutrino rates
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Background

Doing “indirect direct detection” with the Sun

DM-nucleon scattering allows DM collisions with nuclei in the

Sun
— gravitational capture and settling the to solar core

— 1. observable: high-Enreuirinestromannihilation

— 2. nuclear scattering inside the Sun
— additional energy transport
— modified solar structure

— 1. observables: — sound speed
(helioseismology) — oscillation frequencies

'Z‘ggnw 0 — convective zone depth
0 — surface helium frac.
Tmuc 7 — 2. different core temperature
—s observable: solar neutrino rates S
London
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Background

The solar abundance problem

@ Latest solar photospheric abundances (Asplund, Grevesse, Sauval & PS:
AGS05, AGSS09) factor of ~2 less than old ones (Grevesse & Sauval: GS98)

@ Best atomic data, highly accurate observations, new 3D
modelling, NLTE corrections, improved agreement with solar
neighbourhood = highly reliable

@ Messes up inferred sound oois ' ' At S 1 200
. . AGS05 —_—

speed profile, helium iasson —

abundance and depth of ]
convection zone from

helioseismology

éc/c

0.005 - -

0.000 [~ —

@ Many solutions attempted in
the last decade; none really ;s . . . .

successful. R/R,
—> DM conduction?
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Energy transport by dark matter

Outline

G Energy transport by dark matter
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Energy transport by dark matter

Conductive energy transport with dark matter

Dark matter number density:

32 r as(r')
nX(r) = nx(o) {%} exp |:—/0 dr (r) /:Br’T("_)mx ar’ :| (5)

Dark matter conductive luminosity:

1/2
Ly(r) = 4rnr®¢(r)s(r)ny (r)h(r) {M} deT(r), (6)
m, dr
Corresponding energy injection rate per unit mass of stellar material:
_ 1 dL(n)
ex(r) = Anrzp(r) dr (7)

¢(r): gravitational potential at height r in star

T(r): temperature at height r

p(r): stellar density at height r

¢(r): vo/vr(r) or go/[myvr(r)] depending on cross-section Imperial College
vr(r): DM thermal velocity at height r ronen
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Energy transport by dark matter

Conductive energy transport with dark matter

Dark matter number density:

B T(r)]%? /' , Kpa(r') 4T 4 m, 400)
Dark matter conductive luminosity:
1/2
Ly(r) = 4rnr®¢(r)s(r)ny (r)h(r) {M} deT(r), (6)
m, dr

Corresponding energy injection rate per unit mass of stellar material:

_ 1 dL,(r)
= Gerepn) ar

¢(r): gravitational potential at height r in star

T(r): temperature at height r

p(r): stellar density at height r

¢(r): vo/vr(r) or go/[myvr(r)] depending on cross-section Imperial College
vr(r): DM thermal velocity at height r ronen

Indications of momentum-dependent ADM in the Sun



Energy transport by dark matter

So how do you get « and « then?

The name of the game is solving the Boltzmann collision equation:
DF = CF/I, (8)

D: differential operator (change in)
F: DM phase space density

C: collision operator

Iy typical DM scattering length

with (roughly)
C(u,v,r,t) = Ca(u,v,r,t) — Cou(v,r,t) 9)
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Energy transport by dark matter

So how do you get « and « then?

The name of the game is solving the Boltzmann collision equation:
DF = CF/I, (8)

D: differential operator (change in)
F: DM phase space density

C: collision operator

Iy typical DM scattering length

with (roughly)
C(u,v,r,t) = Ca(u,v,r,t) — Cou(v,r,t) 9)

and then...
a, k= hattib[e(Cq,n) (10)

Gould & Raffelt (ApJ 1990) worked out + tabulated hottible(C~', 0) S
We worked out + tabulated g-dep and vi.-dep hoteible(C™',n)forn£0  ©hien
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Energy transport by dark matter

Diffusivity a

i | o4l

2.3r

05} w57 ---

o J

2 i 2.2
2

1 21F
4

2

—0 x const|
ST XU
oxq

q

L L 2 .
102 107 10° 10' 102 10 10 10
= My /My

n>1 = « smaller — ‘tighter’ dark matter core
n<1 — «alarger — ‘fluffier’ dark matter core
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Energy transport by dark matter

Conductivity x

107 .
—o0 x const. 10"} -
Lm0 x v? -
10 o x q? R B
""" aovuj
[ TT70 X (g o
10 -2 ‘7‘ ‘Q “ 2 10 2 1 ‘D ‘I 2
10 10 10 10 10 10~ 10~ 10 10 10
1 1

= My / Miye

n>1 — « smaller — less effective conduction
n<1 = &k larger — more effective conduction
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Energy transport by dark matter

Partial summary. ..

@ Derived necessary ingredients for including g and
Vie1-dependent cross-sections in solar models

@ Calculated + tabulated corresponding « and « for general
consumption

@ Big impacts on solar energy transport for o « V2 o q>"

rel ?
@ — next, put it all into a state-of-the-art solar evolution,
helioseismology + neutrino code

Imperial College
London
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Impacts on solar models

DarkStec

PS et al (MNRAS 2009)
PS et al (Dark2009, 0904.2395)

N\

DarkStars
Dark stellar evolution
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Impacts on solar models

DarkStec

PS et al (MNRAS 2009) Weiss & Schlattl (Ap&SS 2008)
PS et al (Dark2009, 0904.2395) Serenelli et al (ApJ 2011)

DarkStars Garstec
Dark stellar evolution ~ Detailed solar
structure, neutrinos
and helioseismology
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Impacts on solar models

DarkStec (“The Monster”)

PS et al (MNRAS 2009) Weiss & Schlattl (Ap&SS 2008)
PS et al (Dark2009, 0904.2395) Serenelli et al (ApJ 2011)

DarkStars Garstec DarkStec
Dark stellar evolution ~ Detailed solar Precision dark solar physics code
structure, neutrinos Imperial College

London

and helioseismology
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Impacts on solar models

Impacts on capture and transport

10 ‘ _ =
o xq - 10° ) n'ocq27
o xq? o oq?
— 4 — 0 X
10° o xq , q
10° ¢ 4
5100 Ffsocnm o mm e ]
& 107
107
10°F
-
10 s
10° 10’ 10° 10"
m, (GeV) m, (GeV)

@ Enhancement factors for capture and transport wrt constant
cross-sections, for gy = 1035 cm?

@ Solid = SI, Dashed = SD

@ transport similar for v27; capture enhanced as (o(Vei)) Imperial College

rel ? London
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Impacts on solar models

Global impact on combined observables: Sl v2

rel?
w og1 o< v? os1 X ¢°
10° ol 107 ©
: W0 .
s 52
10 s 10 ® ®
o5 s
10 10
=1 40 g 40
£ ey e ~
Z - ~ (Solar models do not converge here) -
107 S 107
30 \) 30
10—33 25 10 38 0 25

5 10 15
my (GeV)

Global x? includes:

20 25 5 10 0 25 30

15 2
my (GeV)

@ 8B neutrino flux @ surface helium abundance Y;
@ 7Be neutrino flux @ sound speed profile (sparsely
@ depth of the convection zone Rz sampled to avoid correlations)
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Impacts on solar models

Global impact on combined observables: Sl v?

rel?
4 4
o8] X U Os1X g
107 & 107 60
ss s
2 32
10 o 10 50
s i
s a4
510 510
5 40 NE 40
= % K e
- 55 - =
S 107 S 107
a0 w
.
10 25 10 . 2
\
20 “ 20
107 1 107 2 15
5 10 15 20 25 5 10 15 20 25 30
my (GeV) my (GeV)

Global x? includes:

@ 8B neutrino flux @ surface helium abundance Y;
@ 7Be neutrino flux @ sound speed profile (sparsely
@ depth of the convection zone Rz sampled to avoid correlations)

Imperial College
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Impacts on solar models

Preferred models

In general v2" models are basically no better than the Standard

rel

Solar Model (SSM) overall.
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Impacts on solar models

Preferred models

In general v2" models are basically no better than the Standard

rel

Solar Model (SSM) overall.

g is great though.

@ Best fit:
e g2 coupling
e m, =3GeV

@ op=10"%cm?
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Impacts on solar models

Preferred models

In general v2" models are basically no better than the Standard

rel

Solar Model (SSM) overall.

-3

10219 ‘ ‘
Modelling error
2 8+ Helioseismology error
q IS great though ——Standard Solar Model
" 6l Spin-Dependent ADM
) BeSt flt !._---- Spin-Independent ADM
. i i
° q2 Coupllng i 4,;'—Momeutum-dependeut ADM
Q 1
o m, = 3GeV = ol
O i
S .

@ op=10"%cm?

0%\ // . —_—

\ ’

Sound speed for best ¢2,
Sl and SD models: 1

-6 0.1 02 03 04 05 06 07 08 09

R/Rs College

London
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Impacts on solar models

Best models — small frequency separations

0.097 3 7 0.155
0.15

0.085" 1
0.145)
0.08F 1 0.14
0.135|

0.075" 1
s 2 0.13]
0.125]

B + BiSON data
0.12r——Standard Solar Model
0.115] Spin-Dependent ADM

0077 . BiSON data
——Standard Solar Model

00657 ___ §pin-Dependent ADM

== Spin-Independent ADM 0.11f----- Spin-Independent ADM

0.06| . q
—— Momentum-dependent ADM ~o1 0.105(—— Momentum-dependent ADM
1000 1500 2000 2500 3000 3500 4000 1000 1500 2000 2500 3000 3500 4000
= T T L LN N —
i N =
1000 1500 2000 2500 3000 3500 4000 1000 1500 2000 2500 3000 3500 4000
v (uHz) v (pHz) . College

London




Impacts on solar models

Best models — what is going on in the Sun?

@ energy extracted below M(R) = 0.2 My,
dumped in 0.2 < M(R)/Ms < 0.6

@ strong core VT change

@ — change in sound speed, freq
separations, v fluxes

@ slight VT increase at base of conv. zone
@ — convection sets in at lower R

> T~ ok ¢2 ADM

SSM

3 ¢> ADM 3
SSM

Temp. gradient

DL/dm - nuclear [erg s-1 g-1]
6 4
|
s o o
5 & 2
X ‘
\!

00 02 04 06 08 10 00 02 04 06 .
M [Msun] R [Rsun] Imperial College
London

Indications of m tum-dependent ADM in the Sun



Impacts on solar models

Best models — detailed likelihood figures

SSM SD q2 Sl Obs.! Oobs Omodel
& (108 cm—2s— ) 4.95 4.39 3.78 5.00 3% 14%
6B (10° cm—2s1) 4.71 4.58 4.29 4.82 5% 7%
Rcz/Re 0.722 0.721  0.718 0.713  0.001  0.004
Y 0.2356  0.2351 0.2327  0.2485 0.0034 0.0035
X5, 0.0 0.9 4.9
X, 0.1 0.4 1.9
X 4.8 3.8 1.5
x5, 7.0 7.5 10.5
X2, 156.6 95.3 5.6
X5 119.3 50.7 3.1
X2l 287.8 158.5 27.5 (36 dof)
P <1070 <10-1°  0.845

"Neutrino data and obs. errors inferred from Borexino data (Serenelli et al. ApJ 2011).
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Impacts on solar models

Best models — detailed likelihood figures

SSM SD q2 Sl Obs.! Oobs Omodel
& (108 cm—2s— ) 4.95 4.39 3.78 5.00 3% 14%
6B (10° cm—2s1) 4.71 4.58 4.29 4.82 5% 7%
Rcz/Re 0.722 0.721  0.718 0.713  0.001  0.004
Y 0.2356  0.2351 0.2327  0.2485 0.0034 0.0035
X5, 0.0 0.9 4.9
X, 0.1 0.4 1.9
X 4.8 3.8 1.5
x5, 7.0 7.5 10.5
X2, 156.6 95.3 5.6
X5 119.3 50.7 3.1
X2l 287.8 158.5 27.5 (36 dof)
p <1010 <10-10  0.845

"Neutrino data and obs. errors inferred from Borexino data (Serenelli et al. ApJ 2011).

Imperial College

— g model is a great fit, SSM + others ruled out at > 64!
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Impacts on solar models

Other constraints?
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Impacts on solar models

Other constraints?

@ Direct detection:

e 3GeV too low for DD limits (Guo et al Nuc Phys B 2014)
@ possibly interesting for CDMSlite and DAMIC though
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Impacts on solar models

Other constraints?

@ Direct detection:

e 3GeV too low for DD limits (Guo et al Nuc Phys B 2014)
@ possibly interesting for CDMSlite and DAMIC though

@ Collider limits:

model-dependent

¥75x9q (D2) and Yo, v5xgo" q (D10) give g* S| ADM
D2 xvs5xQq still OK

D10 xo,..vsxgqo*” q a bit tight (Cheung et al JCAP 2012)
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Impacts on solar models

Other constraints?

@ Direct detection:

e 3GeV too low for DD limits (Guo et al Nuc Phys B 2014)
@ possibly interesting for CDMSlite and DAMIC though

@ Collider limits:

model-dependent

¥75x9q (D2) and Yo, v5xgo" q (D10) give g* S| ADM
D2 xv5xQqq still OK

D10 xo,..vsxgqo*” q a bit tight (Cheung et al JCAP 2012)

— Dedicated analyses of DD and LHC signatures would be
very helpful

Imperial College
London
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Impacts on solar models

Conclusions

@ Standard Solar Model and regular S| and SD ADM
excluded at > 60
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Impacts on solar models

Conclusions

@ Standard Solar Model and regular S| and SD ADM
excluded at > 60

@ g? ADM fits almost perfectly

@ Preferred mass and cross-section not excluded by direct
detection or LHC

@ smaller masses might give even better fits

@ — g2 ADM looks like a viable solution to the solar
abundance problem

@ — On face value, over 60 evidence for light,
momentum-dependent ADM

Imperial College
London
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Implications of o and «: energy injection for

my =1 GeV m, =20 GeV

le| (erg g™ s71)

—— 0 = const;

0“02 0.64 0.66 0.68 0.1
R/R. R/R.,

@ vp =110 km/s

@ oo =103 cm?.

@ n,/n, = 10~ WIMPs per baryon |

@ Static AGSS09ph solar model (Serenelli et al. ApJ 2009) e "
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Implications of o and «: energy injection for

my =1 GeV m, =20 GeV

le| (erg g™ s71)
2

| —Z ; ;ogst,_ 1078
| oxqr
! =m0 gt B
107 w0 0 o0
R/R.
@ qo = 40 MeV

@ 0o =103 cm?2.
@ n,/n, = 10~'® WIMPs per baryon |
@ Static AGSS09ph solar model (Serenelli et al. ApJ 2009) oS College
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Transport regimes

[~ o = const.

10 g’ ¢ ? B oMt — o= cggLst, -
< 2 o XV
o0 X (14 — x 2?2
T A
107 10 107 10 10 107 107 10 107 107 107 107

7o (cm™2) 7o (em™?)

@ Transport maximised at transition from non-local to local (LTE)
regime

@ m, =10GeV, Ny/Myuryons = 1071°

@ Left sides of curves = non-local, right sides = LTE Imperial College
London
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Global impact on combined observables: regular Sl
and SD

w0 os1 X const. w osp x const.
10 o 10 w©
10732 50 50
10°*"t (Solar models do not converge here)
R - N
& e S0 =
€ 5% s c "
38| 25 10735 25
10
1075 10 15 20 25 1075 10 15 20 25
my (GeV) m, (GeV)
Global x? includes:
8 : .
@ °B neutrino flux @ surface helium abundance Y;
7 : .
@ "Be neutrino flux @ sound speed profile (sparsely
@ depth of the convection zone Rcz sampled to avoid correlations)?i, '
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Global impact on combined observables: Sl v_2, g2

-2 -2
51 0¢ v Ts1¢ ¢
107 0 107 60
s s
52 a2
10 o 10 Py
s s
107 o107
5 40 E 40
= % K e
- 35 - s
S 107 S 107
w0 ®
10 25 10 2
20 : Direct search bound (Guo et al 2
10~ . 10740 + Nuc Phys B ’14) .
5 10 15 20 25 5 10 15 20 25 30
my (GeV) my (GeV)

Global x? includes:

@ 8B neutrino flux @ surface helium abundance Y;
@ 7Be neutrino flux @ sound speed profile (sparsely
@ depth of the convection zone Rz sampled to avoid correlations)

Imperial College
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