Flavored dark matter beyond Minimal Flavor Violation

Katrin Gemmler

Theoretical physics department, Fermilab

talk at MITP workshop "Effective Theories and Dark Matter", Universität Mainz March 19th, 2015

DOI: 10.1007/JHEP10(2014)072 arxiv:1405.6709 P. Agrawal, M. Blanke, KG

Outline

- Dark Minimal Flavor Violation
- 2 Analysis of flavor observables
- **3** Dark Matter Constraints
- Combined analysis

What we know about dark matter

Evidence for dark matter from astrophysics

- galactic rotation curves
- gravitationally lensing
- understanding of clusters
- angular fluctuations in Cosmic Microwave Background

Dark matter properties

- non-baryonic
- interacts gravitational through its mass
- \Box relic density $\Omega_{DM}h^2 = 0.119$
- stable
- □ cold, non-relativistic
- neutral, no charge and no color

Katrin Gemmler (Fermilab)

Flavored dark matter

Particle properties of Dark Matter?

- Coupling to SM particles?
- Single particle or entire sector?

 \rightarrow Considering the role of flavor in the SM

Assumption

\rightarrow Dark matter carries flavor and comes in multiple copies

New coupling to quarks:

neutral, no charge and no color

- d_{Ri} Right-handed down quark
 - Dark matter particle, flavored
 - New scalar, colored

Katrin Gemmler (Fermilab)

 χ_j

Flavored dark matter is not new!

Selection only!

- Flavored Dark Matter in Direct Detection Experiments and at LHC J. KILE, A. SONI (APRIL 2011)
- Dark Matter from Minimal Flavor Violation
 B. BATELL, J. PRADLER, M. SPANNOWSKY (MAY 2011)
- Discovering Dark Matter Through Flavor Violation at the LHC J. F. KAMENIK, J. ZUPAN (JULY 2011)
- Flavored Dark Matter, and Its Implications for Direct Detection and Colliders P. AGRAWAL, S. BLANCHET, Z. CHACKO, C. KILIC (SEP. 2011)
- Top-flavored dark matter and the forward-backward asymmetry A. KUMAR, S. TULIN (MAR. 2013)
- Flavored Dark Matter and R-Parity Violation
 B. BATELL, T. LIN, L.-T. WANG (SEP. 2013)

Flavored dark matter is not new!

Selection only!

- Flavored Dark Matter in Direct Detection Experiments and at LHC J. KILE, A. SONI (APRIL 2011)
- Dark Matter from Minimal Flavor Violation
 B. BATELL, J. PRADLER, M. SPANNOWSKY (MAY 2011)
- Discovering Dark Matter Through Flavor Violation at the LHC J. F. KAMENIK, J. ZUPAN (JULY 2011)
- Flavored Dark Matter, and Its Implications for Direct Detection and Colliders P. AGRAWAL, S. BLANCHET, Z. CHACKO, C. KILIC (SEP. 2011)
- Top-flavored dark matter and the forward-backward asymmetry A. KUMAR, S. TULIN (MAR. 2013)
- Flavored Dark Matter and R-Parity Violation
 B. BATELL, T. LIN, L.-T. WANG (SEP. 2013)

\rightarrow BUT common to all these studies

Minimal Flavor Violation

Minimal flavor violation

- SM: GIM mechanism controls pattern of FCNC processes formula
- NP: large new sources of flavor symmetry breaking are excluded at TeV scale
 ISIDORI, NIR, PEREZ (2010)

Example: bounds from B_d -mixing with generic flavor structure

$$M(B_d - \bar{B}_d) \sim rac{(y_t V_{ti}^* V_{tj})^2}{16\pi^2 M_W^2} + c_{NP} rac{1}{\Lambda^2} \quad ext{for} \quad c_{NP} \sim \mathcal{O}(1) \quad \Rightarrow \quad \Lambda \geq 10^3 ext{TeV}$$

 \rightarrow new flavor couplings to quarks cannot be arbitary but are strongly constrained by flavor observables

Minimal flavor violation

- SM: GIM mechanism controls pattern of FCNC processes formula
- NP: large new sources of flavor symmetry breaking are excluded at TeV scale
 ISIDORI, NIR, PEREZ (2010)

Example: bounds from B_d -mixing with generic flavor structure

$$M(B_d - \bar{B}_d) \sim rac{(y_t V_{ti}^* V_{tj})^2}{16\pi^2 M_W^2} + c_{NP} rac{1}{\Lambda^2} \quad ext{for} \quad c_{NP} \sim \mathcal{O}(1) \quad \Rightarrow \quad \Lambda \geq 10^3 ext{TeV}$$

 \rightarrow new flavor couplings to quarks cannot be arbitary but are strongly constrained by flavor observables

main features of MFV:

- flavor symmetry is only broken by the SM Yukawa couplings
- CKM matrix is the only source of flavor violation
- FCNCs are naturally suppressed

So, what should we do?

→ Minimal Flavor Violation???

non-MFV

MFV

\rightarrow DANGEROUS

But interesting if you know how to handle it!

 \rightarrow HARMLESS

But not very exciting.

The new model

 $\bullet\,$ dirac fermionic DM χ carries flavor and couples to quarks via a scalar colored mediator

$$\mathcal{L}_{\rm NP} = i\bar{\chi}\partial\!\!\!/ \chi - m_{\chi}\bar{\chi}\chi + (D_{\mu}\phi)^{\dagger}(D^{\mu}\phi) - m_{\phi}^{2}\phi^{\dagger}\phi - \lambda^{ij}\bar{d}_{Ri}\chi_{j}\phi + \text{h.c.} \\ + \lambda_{H\phi}\phi^{\dagger}\phi H^{\dagger}H + \lambda_{\phi\phi}\phi^{\dagger}\phi\phi^{\dagger}\phi$$

The new model

 $\bullet\,$ dirac fermionic DM χ carries flavor and couples to quarks via a scalar colored mediator

$$\mathcal{L}_{\rm NP} = i\bar{\chi}\partial\!\!\!/ \chi - m_{\chi}\bar{\chi}\chi + (D_{\mu}\phi)^{\dagger}(D^{\mu}\phi) - m_{\phi}^{2}\phi^{\dagger}\phi - \lambda^{ij}\bar{d}_{Ri}\chi_{j}\phi + \text{h.c.} \\ + \lambda_{H\phi}\phi^{\dagger}\phi H^{\dagger}H + \lambda_{\phi\phi}\phi^{\dagger}\phi\phi^{\dagger}\phi$$

Assumption

• Flavor symmetry: $U(3)_q \times U(3)_u \times U(3)_d \times U(3)_\chi$

 \rightarrow only broken by the SM Yukawa couplings and the DM-quark coupling λ

"Dark Minimal Flavor Violation"

(DMFV)

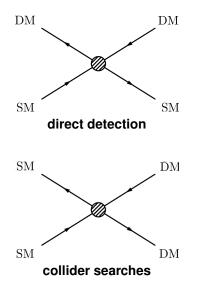
Dark Minimal Flavor Violation - special features Parametrization of DM-quark coupling

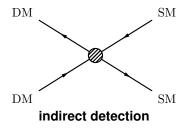
• $U(3)_{\chi}$ symmetry helps to remove 9 parameters

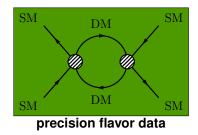
$$\lambda = U_{\lambda} D_{\lambda}$$

- U_{λ} unitary matrix, 3 mixing angles s_{12}^{λ} , s_{13}^{λ} , s_{23}^{λ} and 3 phases
- D_{λ} real diagonal matrix, e.g. $D_{\lambda} = \lambda_0 \cdot \mathbb{1} + \text{diag}(\lambda_1, \lambda_2, -(\lambda_1 + \lambda_2))$

Dark matter mass

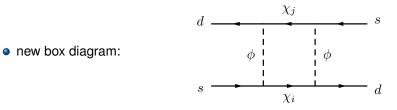

- $U(3)_{\chi}$ symmetry ensures equal mass for all flavors at tree level
- special form of mass splitting at higher order (loop level)


$$m_{ij} = m_{\chi} (\delta_{ij} + \eta \, \lambda_{ik}^{\dagger} \lambda_{kj}) = (m_{\chi} + m_{\chi} \eta \, D_{\lambda,ii}^2) \delta_{ij} \mid$$


Dark matter stability

 DM stability is guaranteed if Dark Minimal Flavor Violation is exact → talk by Monika Blanke

A new set of observables



Main goals of our analysis

- Which are the allowed structures of the coupling matrix λ beyond MFV?
- What are viable mass hierarchies for the flavored dark matter spectrum?
- What happens when combining flavor and dark matter constraints?
- How strong are the mass bounds on the new particles from LHC searches?

New contributions to meson anti-meson mixing

• dominant NP mixing amplitude for the *K* meson system

$$M_{12}^{K,\text{new}} \sim (\xi_K^*)^2 F(x)$$
 where $\xi_K = (\lambda \lambda^{\dagger})_{sd} = \sum_{i=1}^3 \lambda_{si} \lambda_{di}^*$

- $\xi_{\mathcal{K}}$ involves elements of matrix λ , dependent on the meson system
 - box loop function

• analogous contributions to $B_{d,s} - \bar{B}_{d,s}$ mixing

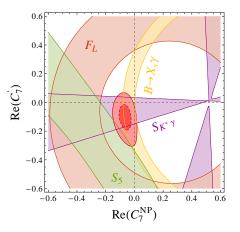
F(x)

The $B \rightarrow X_s \gamma$ decay

• effective Hamiltonian:

$$\mathcal{H}_{ ext{eff}} \sim (C_7 Q_7 + C_7' Q_7' + \cdots)$$

with
 $Q_7 \sim \bar{s}_L \sigma^{\mu
u} b_R F_{\mu
u}$
 $Q_7' \sim \bar{s}_R \sigma^{\mu
u} b_L F_{\mu
u}$


 SM: C₇ is strongly suppressed due to the chiral structure of weak interactions

$$C'_{7,\mathrm{SM}} = \frac{m_s}{m_b} C_{7,\mathrm{SM}}$$

new contribution

$$|\delta C_7'| \sim 0.04 \left[rac{500 \, {
m GeV}}{m_\phi}
ight]^2 \left| \sum_{i=1}^3 \lambda_{si} \lambda_{bi}^*
ight|$$

FIGURE FROM: ARXIV:1308.1501 W. Altmannshofer, D. Straub

\rightarrow NEGLIGIBLE

Negligible effects in ...

Rare decays
$$K \to \pi \nu \bar{\nu}$$
, $B_{s,d} \to \mu^+ \mu^-$ and $B \to K^* \mu^+ \mu^-$

- no box contribution since no coupling to leptons in final states
- Z penguin contribution is zero due to chiral structure/new couplings to right-handed quarks only
- γ penguin is negliglible estimate from supersymmetric models

Electric dipole elements

• no relevant contribution since chirality flips are required

Electroweak precision tests

• γ and Z self-energies (scalar ϕ in the loop) are highly suppressed

Strategy for phenomenology

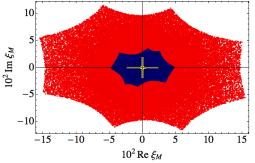
Step 1: Preanalysis of flavor constraints

• parametrize full mixing amplitude, e.g. B_q mixing

$$M_{12}^{B_q} = C_{B_q} e^{2i arphi_{B_q}} M_{12}^{B_q, \mathrm{SM}} \qquad (q=d,s)$$

SM corresponds to $C_{B_q} = 1$ and $\varphi_{B_q} = 0$

- use results of the model-independent NP fit by the UTfit collaboration
- fix flavor conserving parameters m_{ϕ} , m_{χ} and λ_0 to the values


$$m_{\phi}=850\,{
m GeV}\qquad m_{\chi}=200\,{
m GeV}\qquad \lambda_0=1$$

Step 2: Combined analysis of flavor and DM constraints

Lessons from flavor physics

- $K^0 \bar{K}^0$ mixing
 - $B_d^0 \bar{B}_d^0$ mixing

 $B_s^0 - \bar{B}_s^0$ mixing

- strongest constraint comes from $K^0 \bar{K}^0$ mixing, the CP-violating parameter ε_K
- flavor constraints are under control if

$$\begin{split} \xi_{M} &\sim \quad \lambda \lambda^{\dagger} \\ &= \quad U_{\lambda} D_{\lambda} D_{\lambda}^{\dagger} U_{\lambda}^{\dagger} = U_{\lambda} D_{\lambda}^{2} U_{\lambda}^{\dagger} \\ &\sim \quad \text{diag}(\star_{1}, \star_{2}, \star_{3}) \end{split}$$

$$\rightarrow$$
 "Universality"

Universality is automatically fullfilled for ...

- -1.0universal scenario -0.5(black): $\lambda_1 0.0$ $\lambda_1 = \lambda_2 = 0$ 0.5 12-degeneracy (blue): $\lambda_1 = \lambda_2$ 1.0 0.613-degeneracy s^{λ}_{12} 0.4 (red): $\lambda_2 = -2\lambda_1$ 0.2 23-degeneracy 0.0 (green): $\lambda_2 = -1/2\lambda_1$ -0.50.0small mixing λ_2 0.5 (yellow): arbitrary D_{λ} 1.0
 - $\begin{array}{ll} \mathsf{RECALL:} \quad D_{\lambda} = \lambda_0 \cdot \mathbb{1} + \operatorname{diag}(\lambda_1, \lambda_2, -(\lambda_1 + \lambda_2)) \\ \\ m_{ij} = (m_{\chi} + m_{\chi}\eta \ D^2_{\lambda, ii}) \delta_{ij} \end{array}$

Universality is automatically fullfilled for ...

-1.0universal scenario -0.5(black): $\lambda_1 0.0$ $\lambda_1 = \lambda_2 = 0$ 0.5 12-degeneracy (blue): $\lambda_1 = \lambda_2$ 1.0 0.6 13-degeneracy s^{λ}_{13} 0.4 (red): $\lambda_2 = -2\lambda_1$ 0.2 23-degeneracy 0.0 (green): -1.0 $\lambda_2 = -1/2\lambda_1$ -0.50.0small mixing λ2 0.5 (yellow): arbitrary D_{λ} 1.0

> **RECALL:** $D_{\lambda} = \lambda_0 \cdot \mathbb{1} + \text{diag}(\lambda_1, \lambda_2, -(\lambda_1 + \lambda_2))$ $m_{ij} = (m_{\chi} + m_{\chi}\eta D_{\lambda,ii}^2)\delta_{ij}$

Universality is automatically fullfilled for ...

-1.0universal scenario -0.5(black): $\lambda_1 0.0$ $\lambda_1 = \lambda_2 = 0$ 0.5 12-degeneracy (blue): $\lambda_1 = \lambda_2$ 1.0 0.6 13-degeneracy s^{λ}_{23} 0.4 (red): $\lambda_2 = -2\lambda_1$ 0.2 23-degeneracy 0.0 (green): -1.0 $\lambda_2 = -1/2\lambda_1$ 0.0small mixing λ2 0.5 (yellow): arbitrary D_{λ} 1.0

RECALL:
$$D_{\lambda} = \lambda_0 \cdot \mathbb{1} + \text{diag}(\lambda_1, \lambda_2, -(\lambda_1 + \lambda_2))$$

 $m_{ij} = (m_{\chi} + m_{\chi}\eta D_{\lambda,ii}^2)\delta_{ij}$

Universality is automatically fullfilled for ...

- -1.0universal scenario -0.5(black): $\lambda_1 0.0$ $\lambda_1 = \lambda_2 = 0$ 0.5 12-degeneracy (blue): $\lambda_1 = \lambda_2$ 1.0 0.613-degeneracy s^{λ}_{12} 0.4(red): $\lambda_2 = -2\lambda_1$ 0.2 23-degeneracy 0.0 (green): $\lambda_2 = -1/2\lambda_1$ -0.50.0small mixing λ_2 0.5 (yellow): arbitrary D_{λ} 1.0
 - $\begin{array}{ll} \mathsf{RECALL:} \quad D_{\lambda} = \lambda_0 \cdot \mathbb{1} + \operatorname{diag}(\lambda_1, \lambda_2, -(\lambda_1 + \lambda_2)) \\ \\ m_{ij} = (m_{\chi} + m_{\chi}\eta \ D^2_{\lambda, ii}) \delta_{ij} \end{array}$

Recovering the Minimal Flavor Violation limit

• Minimal Flavor Violation:

quark-dark matter coupling has a very specific structure

$$\lambda = \alpha \mathbb{1} + \beta \, \mathbf{Y}_{\mathbf{d}}^{\dagger} \, \mathbf{Y}_{\mathbf{d}}$$

where

$$Y_d = \frac{\sqrt{2}}{v} \operatorname{diag}(m_d, m_s, m_b)$$

mass pattern is fixed through

$$m_{ij} = m_{\chi} (\delta_{ij} + \eta \, \lambda^{\dagger}_{ik} \lambda_{kj})$$

only a small subset of specific points fullfills condition
 → near the 12-degeneracy line, where ALL mixing angles are small

\rightarrow DMFV is clearly BEYOND MFV

only the concept is similar

Mass hierarchies in the dark sector

Flavor observables do not fix the mass spectrum m_{χ_i} !

☺ *d*-flavored dark matter ☺

 \rightarrow severely constrained by direct detection experiments and LHC searches

s- and b-flavored dark matter

 \rightarrow similar for flavor physics and direct detection

☺ *b*-flavored dark matter ☺

- \rightarrow *b*-jet signatures at colliders
- \rightarrow possible explanation of γ ray signal from galactic center

P. AGRAWAL, B. BATELL, D. HOOPER, T. LIN (2014)

WE ASSUME ALWAYS:

$$egin{array}{rcl} m_{\chi_b} &<& m_{\chi_d}, m_{\chi_s} \ D_{\lambda,33} &>& D_{\lambda,11}, D_{\lambda,22} \end{array}$$

Recall: $m_{\chi_i} = m_{\chi} (1 - |\eta| D_{\lambda,ii}^2)$

Dark matter phenomenology

- Step 1: Preanalysis of flavor constraints
 - so far: flavor conserving parameters have been fixed

Step 2: Combined analysis of flavor and DM constraints

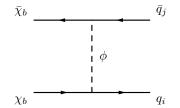
parameters are varied as follows

 $m_{\phi} = 850 \, ext{GeV}$ m_{χ} : free λ : free

single-flavor" freeze-out:

for large mass splittings $\gtrsim 10\%$ between DM flavors only lightest flavor remains in the termal bath

two-flavor" freeze-out:


if small mass splittings $\stackrel{<}{_\sim}$ 1% between DM flavors multiple flavors can be present at freeze-out

("three-flavor" freeze-out)

Relic abundance for single-flavor freeze-out

• relic abundance of the dark matter is set by annihilation

$$\langle \sigma v
angle_{bb} = rac{3 \, D_{\lambda,33}^4 m_{\chi_b}^2}{32 \pi (m_{\chi_b}^2 + m_{\phi}^2)^2}$$

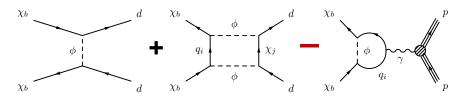
 and is determined by solving the Boltzmann equation for the dark matter number density n at late times

$$\frac{dn}{dt} + 3Hn = -\underbrace{\langle \sigma v \rangle_{eff}}_{2.2 \times 10^{-26} \mathrm{cm}^3/\mathrm{s}} \left(n^2 - n_{eq}^2\right)$$

n H

n_{ea}

- dark matter number density
- Hubble constant
- equilibrium number density of χ

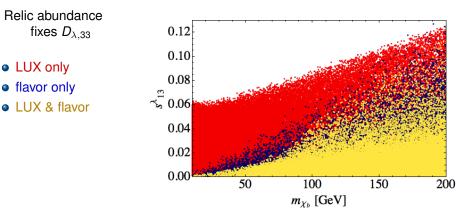

$$\langle \sigma \mathbf{v} \rangle_{eff}$$
 - $\langle \sigma \mathbf{v} \rangle_{eff} = \frac{1}{2} \langle \sigma \mathbf{v} \rangle_{eff}$

Constraints from direct detection

spin-independent contribution to the WIMP-nucleus scattering

$$\sigma_n^{SI} = \frac{\mu_n^2}{\pi} (Zf_p + (A - Z)f_n)^2$$

 \rightarrow cancelation between the direct detection box diagram and the one-loop photon contribution


 \rightarrow we apply the bounds from the LUX experiment

relevant processes:

Results of combined analysis

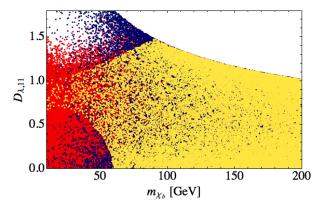
constraints imposed:

single-flavor freeze-out

\rightarrow non-trivial interplay of dark matter and flavor constraints

Katrin Gemmler (F	Fermilab)
-------------------	-----------

Results of combined analysis

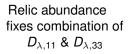

constraints imposed:

Relic abundance fixes $D_{\lambda,33}$

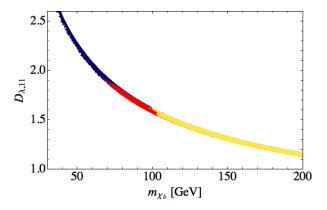
LUX only

- flavor only
- LUX & flavor

single-flavor freeze-out


ightarrow upper and a lower bound on the size of $D_{\lambda,11}$

Combined analysis


Results of combined analysis

constraints imposed:

two-flavor freeze-out e.g. 13-degeneracy

- LUX only
- flavor only
- LUX & flavor

ightarrow 13-degeneracy scenario ruled out below $m_{\chi_b} \simeq 100\,{
m GeV}$

Conclusions

• the mechanism to generate the flavor structure of the SM is unknown, assuming a similar mechanism in the dark sector suggests

"Dark Minimal Flavor Violation"

flavor symmetry, enlargered by an additional $U(3)_{\chi}$, is only broken by the new coupling λ and SM Yukawas

• the lightest dark matter particle is stable if DMFV is exact

 \longrightarrow talk next week by Monika Blanke

• "flavor-safe" scenarios - beyond MFV - can be identified

these can be directly used for further study

• non-trivial interplay of DM and flavor phenomenology

A brief look at collider phenomenology

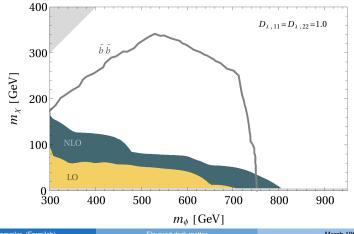
new particles within the reach of LHC

Dark Minimal Flavor Violation

- $\rightarrow \chi_i$ are nearly degenerate
- \rightarrow new particles have to be pair-produced

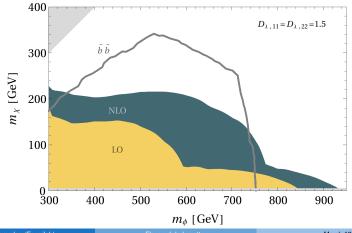
 \rightarrow particle spectrum is similar to simplified models of squarks and neutralinos in the MSSM

1. dark matter fermion χ_b and the heavier flavors $\chi_{d,s}$


• $\chi_{d,s}$ decay to χ_b produces soft particles (jets, photons) + missing E_T

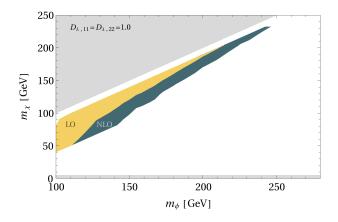
2. coloured scalar mediator ϕ

- pair-produced through QCD and through *t*-channel χ_d exchange
- decay φ → q_iχ_i with branching ratios given by D²_{λ,ii} ⇒ bb + ∉_T, bj + ∉_T, jj + ∉_T signatures


Mass bounds from dijet constraints

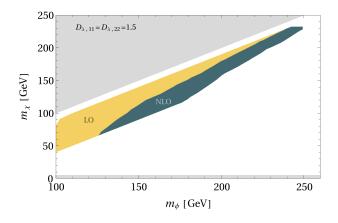
- CMS (& ATLAS) put strong bounds on sbottom and squark pair-production
 CMS-PAS-SUS-13-018
- bound on cross-section can be applied to DMFV

Mass bounds from dijet constraints

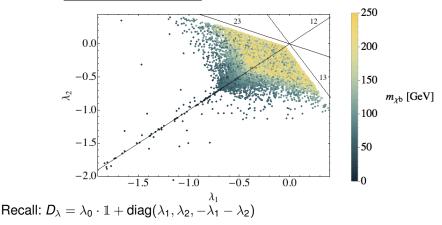

- CMS (& ATLAS) put strong bounds on sbottom and squark pair-production
 CMS-PAS-SUS-13-018
- bound on cross-section can be applied to DMFV

Backup slides

Constraints from Monojet Searches

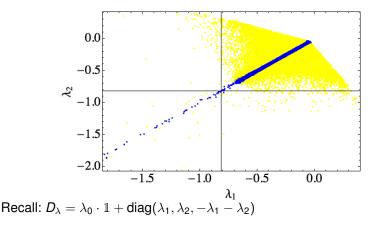

- constraint on the compressed region $m_\chi \lesssim m_\phi$

Backup slides


Constraints from Monojet Searches

- constraint on the compressed region $m_\chi \lesssim m_\phi$

Recovering flavor scenarios


Example: single-flavor freeze-out

 \rightarrow small m_{χ_b} implies sizeable non-universality $\lambda_{1,2} \neq 0$

Recovering flavor scenarios

Example: single-flavor freeze-out

 \rightarrow only 12-degeneracy and small mixing scenario survive

Dark matter stability

Consider the operator

SIMILAR PROOF IN MFV: ARXIV:1105.1781 B. BATELL, J. PRADLER, M. SPANNOWSKY

$$\mathcal{O} \sim \chi \dots \bar{\chi} \dots \phi \dots \phi^{\dagger} \dots q_L \dots \bar{q}_L \dots u_R \dots \bar{u}_R \dots d_R \dots \bar{d}_R \dots G \dots S$$

invariant under ...

- QCD if the number of *SU*(3)_c triplet minus the number of *SU*(3)_c antitriplets is a multiple of three
- flavor symmetry if $Y_u \dots Y_u^{\dagger} \dots Y_d \dots Y_d^{\dagger} \dots \lambda \dots \lambda^{\dagger} \dots$

Invariance Condition SU(3)I $(N_{\phi} - N_{\phi^{\dagger}} + N_{a} + N_{\mu} + N_{d} - N_{\bar{a}} - N_{\bar{\mu}} - N_{\bar{d}}) \mod 3 = 0$ $(N_q - N_{\bar{q}} + N_{Y_u} - N_{Y_u^{\dagger}} + N_{Y_d} - N_{Y_u^{\dagger}}) \mod 3 = 0$ Π $U(3)_a$ $(N_u - N_{\bar{u}} - N_{Y_u} + N_{Y_{\bar{u}}}) \mod 3 = 0$ III $U(3)_{\mu}$ $(N_d - N_{\bar{d}} - N_{Y_d} + N_{Y^{\dagger}} + N_{\lambda} - N_{\lambda^{\dagger}}) \mod 3 = 0$ IV $U(3)_d$ $(N_{\chi} - N_{\bar{\chi}} - N_{\lambda} + N_{\lambda^{\dagger}}) \mod 3 = 0$ V $U(3)_{\gamma}$ \sum II+III+IV+V-I $(N_{\chi} - N_{\bar{\chi}} - N_{\phi} + N_{\phi^{\dagger}}) \mod 3 = 0$

 $\rightarrow \chi$ and ϕ decays into SM fields forbidden