The LHC and Dark Matter: Scalar Simplified Models

Matthew R Buckley Rutgers Universit(Non)-Standard Model Higgs Boson

A Problem of Gravity

- All evidence for dark matter is purely gravitational.
- Few positive statements we can make:
 - Exists today
 - Existed prior to CMB
 - Non-relativistic at structure formation
- Everything else is what we know dark matter *isn't*:
 - Doesn't interact with itself Non-EM interacting
 - Non-QCD interacting
 - Doesn't decay • • Sub-Z interaction with nucleons
 - (... upper limits only)
- Why should I expect non-gravitational interactions?

Weak-Scale Dark Matter

- Good to have motivations from elsewhere in physics.
- Observation: a stable particle interacting with the Standard Model would be present in thermal bath assuming the Universe ever had $T \gg m$.
 - Some remain as thermal relics after freeze-out.
- An electroweak-mass particle with electroweak interactions has:

 $\langle \sigma v \rangle \sim \alpha^2 / m_W^2$ $\Omega h^2 \sim 0.12$

- The WIMP Miracle!
 - DM with "significant" interactions

A Miracle with Footnotes

- "Pure" $SU(2)_L$ doublet fermions have extremely large direct detection rates: $\sigma \sim 10^{-35} 10^{-36} \text{ cm}^2$
- Models with $m_{\chi} \sim 100 \text{ GeV}$ often require particles beyond DM to annihilate with or through.
 - Pure thermal bino DM requires formions to annihilate away
 - Pure Wino/Higgsino DM requires $m_{\chi} \sim 1-2~{\rm TeV}$
- Thermal relics can be obtained with new non- $SU(2)_L$ forces

Accessible Dark Matter

- If dark matter was in thermal equilibrium, then it needs to be able to annihilate into something. Caveats abound:
 - Dark matter might have never been in equilibrium (*e.g.* axions)
 - It might annihilate into non-Standard Model particles (have to prevent those from over-closing Universe...)
- But: *Reasonable* to consider dark matter with significant interactions with Standard Model ($\gtrsim SU(2)_L$).

Dark Matter at the LHC

- Assume dark matter is "significantly" interacting $\langle \sigma v \rangle \gtrsim 3 \times 10^{-26} \ {\rm cm}^3/{\rm s}$
- Then reasonable to expect production at the LHC.
- How to motivate/parametrize/quantify search channels?

UV U Si Eff

UV Complete Theories (supersymmetry...)

Simplified Models

Effective Operators Contact Interaction!

31

Dark Matter at the LHC

- Assume dark matter is "significantly" interacting $\langle \sigma v \rangle \gtrsim 3 \times 10^{-26} \ {\rm cm}^3/{\rm s}$
- Then reasonable to expect production at the LHC.
- How to motivate/parametrize/quantify search channels?

Cheorist Complexity

UV Complete Theories (supersymmetry...)

Simplified Models

Effective Operators

Contact Interaction!

Experimental Handles

Dark Matter at the LHC

- Assume dark matter is "significantly" interacting $\langle \sigma v \rangle \gtrsim 3 \times 10^{-26} \ {\rm cm}^3/{\rm s}$
- Then reasonable to expect production at the LHC.
- How to motivate/parametrize/quantify search channels?

Theorist Complexity

UV Complete Theories (supersymmetry...)

Simplified Models

Effective Operators Contact Interaction! # Experimental Handles
 Ease of Comparison

Step 1

UV Complete Theories (supersymmetry...)

Simplified Models

Theorist Complexity

Effective Operators

Experimental Handles

of Comparison

Ease

31

An Effective Framework

- Assume accessible new physics *just* dark matter.
- Integrate out heavy additional particles.
- LHC signature primarily $pp \rightarrow \chi \chi + jet$

An Effective Framework

- Assume accessible new physics *just* dark matter.
- Integrate out heavy additional particles.
- LHC signature primarily $pp \rightarrow \chi \chi + jet$

An Effective Fra

An Effective Framework

• Exhaustive list of operators in Goodman et al. 1008.1783

etc.

Allows direct comparison of experimental results

An Effective Framework

• Exhaustive list of operators in Goodman et al. 1008.1783

Allows direct comparison of experimental results

- Useful to directly compare different types of experiments.
- However, have to check that assumptions are valid. Can we really integrate out the mediators?

- Effective theory is only valid if $Q_{\rm transfer} < M = \sqrt{g_\chi g_q}\Lambda < 4\pi\Lambda$
- At the LHC $\,Q_{\mathrm{transfer}} \propto p_{T,\mathrm{jet}}$

- Useful to directly compare different types of experiments.
- However, have to check that assumptions are valid. Can we really integrate out the mediators?

- Effective theory is only valid if $Q_{\rm transfer} < M = \sqrt{g_\chi g_q}\Lambda < 4\pi\Lambda$
- At the LHC $Q_{\mathrm{transfer}} \propto p_{T,\mathrm{jet}}$

- Useful to directly compare different types of experiments.
- However, have to check that assumptions are valid. Can we really integrate out the mediators?

$$(g_{\chi}g_q) \times \frac{i}{q^2 - M^2} \to -\frac{g_{\chi}g_q}{M^2} \left(1 + \mathcal{O}(q^2/M^2) \cdots\right)$$
$$\Lambda^2 \equiv \frac{M^2}{g_{\chi}g_q} \xrightarrow{2500} \frac{\eta = 0}{-p_T = 120 \text{ GeV}} \xrightarrow{g_{\chi}g_q} Buson$$

- Effective theory is only valid if $Q_{\rm transfer} < M = \sqrt{g_{\chi}g_{q}}\Lambda < 4\pi\Lambda$
- At the LHC $\,Q_{\mathrm{transfer}} \propto p_{T,\mathrm{jet}}$

 $\langle Q_{
m tr}{}^2
angle^{1/2} [
m GeV]$

200

- Useful to directly compare different types of experiments.
- However, have to check that assumptions are valid. Can we really integrate out the mediators?

- Effective theory is only valid if $Q_{\rm transfer} < M = \sqrt{g_\chi g_q}\Lambda < 4\pi\Lambda$
- At the LHC $Q_{\mathrm{transfer}} \propto p_{T,\mathrm{jet}}$

D2 N

200

 O_{0}^{150}

<100

50

<u>Thermal Relic</u> Fermi Dwarf

Mono-Everything

Step 2

UV Complete Theories (supersymmetry...)

Simplified Models

Theorist Complexity

Effective Operators

Experimental Handles

Ease of Comparison

Simplified Models

- So effective operators are not generically applicable at the LHC energies.
 - Most things we can find require $M^2/g_{\chi}g_v$ small enough that we can produce the mediator on-shell.
- But still don't want to run all the way back to SUSY.
 - Keep it Simple:

Simplified Models

- So effective operators are not generically applicable at the LHC energies.
 - Most things we can find require $M^2/g_{\chi}g_v$ small enough that we can produce the mediator on-shell.
- But still don't want to run all the way back to SUSY.
 - Keep it Simple:

s-Channel Mediators x ϕ/A f

- Dark matter communicating to Standard Model through scalars or pseudoscalars an attractive theoretical option.
- "Easy" to accommodate in extended Higgs sectors (2HDM, NMSSM, etc)
- Might generically expect some mixing between new scalars and the Higgs sector
 - Can expect SM fermion couplings to be $\propto y_f$
 - MFV assumption also avoids flavor constraints

Spin-0 Simplified Models

- Two benchmark models:
 - Scalar ϕ or Pseudoscalar A mediator with mass m_{ϕ}/m_A
 - Dirac fermionic dark matter χ with mass m_{χ}
 - Assuming MFV couplings to SM fermions:

$$\mathcal{L}_{\text{scalar}} \supseteq -\frac{1}{2}m_{\phi}^2 \phi^2 - m_{\chi}\bar{\chi}\chi - g_{\chi}\phi\bar{\chi}\chi - \frac{1}{\sqrt{2}}\sum_f g_v^f y_f \phi\bar{f}f$$
$$\mathcal{L}_{\text{pseudo}} \supseteq -\frac{1}{2}m_A^2 A^2 - m_{\chi}\bar{\chi}\chi - ig_{\chi}A\bar{\chi}\gamma^5\chi - \frac{1}{\sqrt{2}}\sum_f \frac{ig_v^f y_f A\bar{f}\gamma^5 f}{\sqrt{2}}$$

- Can explore phenomenology of different $g_v^{'}$ in up/down/ lepton sectors.

Spin-0 Simplified Models

$$\mathcal{L}_{\text{scalar}} \supseteq -\frac{1}{2}m_{\phi}^2 \phi^2 - m_{\chi}\bar{\chi}\chi - g_{\chi}\phi\bar{\chi}\chi - \frac{1}{\sqrt{2}}\sum_f g_v^f y_f \phi\bar{f}f$$
$$\mathcal{L}_{\text{pseudo}} \supseteq -\frac{1}{2}m_A^2 A^2 - m_{\chi}\bar{\chi}\chi - ig_{\chi}A\bar{\chi}\gamma^5\chi - \frac{1}{\sqrt{2}}\sum_f ig_v^f y_f A\bar{f}\gamma^5f$$

• Minimal model 4-dimensional:

 $m_{\phi/A}, m_{\chi}, g_{\chi}, g_{v}$

- Mediator width will affect collider bounds.
- Will suggest how to treat $\Gamma_{\phi/A}$ shortly.

Thermal Relic

- If the dark matter freeze-out is described by thermal freeze-out, then can require mass/coupling parameters give appropriate relic abundance.
 - If we violate the standard assumptions, allowed couplings can be larger/smaller than this prediction.
 - Here assuming only $\chi \bar{\chi} \to \phi \to f \bar{f}$ $\chi \bar{\chi} \to A \to f \bar{f}$

Thermal Relic

- If the dark matter freeze-out is described by thermal freeze-out, then can require mass/coupling parameters give appropriate relic abundance.
 - If we violate the standard assumptions, allowed couplings can be larger/smaller than this prediction.
 - Here assuming only $\chi \bar{\chi} \to \phi \to f \bar{f}$ $\chi \bar{\chi} \to A \to f \bar{f}$

31

Direct Detection Bounds

- Scalar mediator benchmark will result in spinindependent direct detection signal.
 - Constraints from LUX & CDMS
 - Relatively independent of Γ_{ϕ}
- Keep in mind the hidden dependence on local velocity & density distributions.

Indirect Detection Bounds

- Pseudoscalar model has thermal annihilation cross section $\propto v_{\rm r}^0$ so bounds from present-day annihilation
- Assuming MFV, can apply dwarf galaxy constraints from annihilation into $\overline{b}b$
 - Can depend on Γ_A
 - Show here bounds assuming no additional decay channels and

 $g_v = g_\chi$

upper limits on $\sqrt{g_v g_\chi}$

Collider Searches

• Looking for dark matter production.

 $pp \rightarrow \text{something} + \text{nothing}$ $(\chi \chi)$

- Possible channels: Something = jets, tops, bottoms...
 - Minimal simplified model correlates signal rates between these channels, but must keep an open mind.
 - Example: MSSM-type 2HDM may have increased couplings to down-type quarks, boosting *b*-tagged channels.

Monojet Production

- MFV assumption means ϕ couples proportional to mass.
 - But protons don't contain many $t/\overline{t}/b/\overline{b}$
 - Seen in very weak bounds on scalar EFT operators

Monojet Production

- In 1-1 analogy to Higgs production, couplings to top (and bottom) quarks lead to loop-level interaction with gluons.
 - Has been considered in EFT interactions.
 - This will be the main production mode for monojets

Monojet Production

- In 1-1 analogy to Higgs production, couplings to top (and bottom) quarks lead to loop-level interaction with gluons.
 - Has been considered in EFT interactions.
 - This will be the main production mode for monojets

Tricky Tops

- Using a tool like MadGraph to generate ϕ through integrated-out top loop (another EFT) is problematic.
 - For monojet searches, jet p_T and ϕp_T (MET) are all large compared to $2m_t \cdot m_\phi$ can be large as well.
 - Cannot treat the coupling to gluons as an EFT.
 - Not just a *K*-factor, changes differential distributions
- We use MCFM to resolve loop.

Buckley, Feld, Gonçalves 1410.6497

Width Effects

- We keep total width a free parameter, look to place bounds on couplings g_v, g_χ for our benchmark masses
- All else being equal, on-shell bounds $\propto g_v^2 g_\chi^2/\Gamma$
- Primary effect is decrease in signal rate $\propto {\rm BR}(\phi \to \chi \chi)$
- 2nd Order effect:
 - For large widths, experimental ^c acceptance will change.
 - MCFM is narrow-width only, extrapolate using MadGraph results when $\Gamma_\phi/m_\phi\gtrsim 1$

Width Effects

- We keep total width a free parameter, look to place bounds on couplings g_v, g_χ for our benchmark masses
- All else being equal, on-shell bounds $\propto g_v^2 g_\chi^2/\Gamma$
- Primary effect is decrease in signal rate $\propto {\rm BR}(\phi \to \chi \chi)$
- 2nd Order effect:
 - For large widths, experimental ³/₈
 acceptance will change.
 - MCFM is narrow-width only, extrapolate using MadGraph results when $\Gamma_\phi/m_\phi\gtrsim 1$

Width Effects

- Kinematic effect at very large widths.
 - Effect on CMS Monojet searches:

- MadGraph-level simulation acceptable here
- CMS B2G-13-004 for in $t\bar{t}$ dilepton channel
- Use ATLAS 1410.4031 for $b/b\bar{b}$ channel
 - We assume coupling *only* to b here. Stronger bounds if coupling to both b and t

Buckley, Feld, Gonçalves 1410.6497

Discussion of Widths

- Experiments will want to scan over m_{ϕ}, m_{χ} , if nothing seen place limits on g_{χ}, g_v
 - To keep dimensionality down, usually assume $g_{\chi} = g_v$
 - But this makes particular assumption of the width, important for on-shell production.
- Our advice to experimentalists: set Γ as if $g_{\chi}=g_v$, and no additional decays
- CMS/Atlas including kinematic effects
- "Easy" for theorists to rescale.

Step 3

UV Complete Theories (supersymmetry...)

Simplified Models

Theorist Complexity

Effective Operators

Experimental Handles

of Comparison

Ease

29

Higgs Portal

- Scalar mediator could be the 125 GeV Higgs
- Can search for $pp \rightarrow (h \rightarrow \chi \chi) + jets$
- If $m_{\chi} < m_h/2$, very powerful limits from invisible Higgs
- Direct limits from on/off-shell measurements of $h \rightarrow ZZ$
 - Some model assumptions
- Direct measurements needed
 - Note heavy-flavor channels powerful here.

Extended Higgs Sectors

- 2HDM contain 1 extra scalar, 1 pseudoscalar.
- We know that SM Higgs lives in the alignment limit.
 - Associated CP-even Higgses may have suppressed production via W/Z
 - Production then through fermion couplings *a la* simplified models.
- Dark Matter is a problem that needs a solution, so reasonable to look for $H/A \rightarrow \chi \chi$
 - Often significantly lower background.
 - We still know very little about Higgs sector.

Conclusions

- Effective operators have limited applicability at colliders.
 - Fantastic News: If we are producing dark matter we are producing the mediators
- Simplified Models a good intermediate step to avoid overcommitment to a particular UV theory.
- Searches in monojets, heavy flavor
- CMS/ATLAS/theory working groups
 converging on common language
- Correct simulation of monojets still a difficulty: May have missed the window for Monte Carlo generation.

