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A Problem of Gravity

* All evidence for dark matter is purely gravitational.
 Few positive statements we can make:

e [EXists today

* EXxisted prior to CMB

e Non-relativistic at structure formation

* Everything else is what we know dark matter isn't

 Non-EM interacting  Doesn't interact with itself
* Non-QCD interacting * Doesn’t decay

* Sub-Zinteraction with nucleons (... upper limits only)

 Why should | expect non-gravitational interactions?



Weak-Scale Dark Matter

» (Good to have motivations from elsewhere in physics.

« Observation: a stable particle interacting with the Standard
Model would be present in thermal bath assuming the
Universe everhad T > m.

e Some remain as thermal relics after freeze-out.

 An electroweak-mass particle with
electroweak interactions has:

-
Increasing <o,v> y

(ov) ~ a® /miy S

QOh? ~ 0.12 et

e The WIMP Miracle! 1 S R
DM with “significant” interactions

x=m/T (time -)

Jungman et al hep-ph/95063



A Miracle with Footnhotes

o “Pure” SU(2); doublet fermions have extremely large
direct detection rates: o ~ 107°° — 107%% cm?

* Models with m,, ~ 100 GeV often
require particles beyond DM to
annihilate with or through.
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* Pure Wino/Higgsino DM

requires m, ~ 1 —2 TeV B,
 Thermal relics can be obtained 10 100 e 10
with new non- SU(2), forces LUX 1405.5906
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Accessible Dark Matter

e |f dark matter was in thermal equilibrium, then it needs to
be able to annihilate into something. Caveats abound:

 Dark matter might have never been in equilibrium
(e.g. axions)

* [t might annihilate into non-Standard Model particles
(have to prevent those from over-closing Universe...)

e But: Reasonable to consider dark matter with signiticant
interactions with Standard Model ( 2> SU(2)p,).

X \ SM?

X SM?




Dark Matter at the LHC

 Assume dark matter is “significantly” interacting
(ov) 23 x107%° em3 /s

 Then reasonable to expect production at the LHC.

 How to motivate/parametrize/quantity search channels?
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An Effective Framework

 Assume accessible new physics just dark matter.
* |Integrate out heavy additional particles.

 LHC signature primarily pp — xx + jet

' Q/gwﬂw&/x q/9 X
q/g/\x q/9 X |
ngxq_XQ/+"' ngng(b+9x>_CX¢+""
1
Ler. = 5 (qq)(Xx) +
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An Effective Framework

* Exhaustive list of operators in Goodman et al. 1008.1783

D1 ~2(qq)(x
T ((qi)((”;) ) Cl 5 (49) (X" X)
: 13 BT [RI (qq)(xx) elc.
D11 | 5% (Xx)GWGW i
 Allows direct Comparison of experimental results
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An Effective Framework

Exhaustive list of operators in Goodman et al. 1008.1783
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An Effective Framework

* Exhaustive list of operators in Goodman et al. 1008.1783
D1 ﬂ(ciq)(>2><) ol

. #(9) (X" X)
D2 3 Yy’
- Ay )y etc.
D11 O‘A (XX)GWG p s
» Allows direct comparison of experimental results
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Effective Operators

« Useful to directly compare ditferent types of experiments.

 However, have to check that assumptions
are valid. Can we really integrate out the

mediators” |
(9x9q) X " _ZMQ : —g]\’}%q (14 0(¢*/M?)---)
2= M
Il q/9

» Effective theory is only valid it

Qtransfer < M = \/gxqu < 4rA
* Atthe LHC Qtransfer X PT,jet

q/9
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Effective Operators

« Useful to directly compare ditferent types of experiments.

 However, have to check that assumptions
are valid. Can we really integrate out the

mediators” |
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Effective Operators

« Useful to directly compare ditferent types of experiments.

 However, have to check that assumptions
are valid. Can we really integrate out the

mediators” |
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| Imitations of EFTs

 How much of the LHC cross section comes from region
where effective operator is good?
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Simplified Models

SO effective operators are not generically applicable at
the LHC energies.

* Most things we can find require M?/g,g, small
enough that we can produce the mediator on-shell.

But still dont want to run all the way back to SUSY.
o Keep it Simple:

q/9

q/9 X




Simplified Models

* S0 effective operators are not generically applicable at
the LHC energies.

* Most things we can find require M?/g,g, small
enough that we can produce the mediator on-shell.

e But still don’t want to run all the way back to SUSY.
o Keep it Simple:

q/ gww/x q/9
q/ g/\x a/g




s-Channel Mediators
X f

e Dark matter communicating to Standard Model through scalars or
pseudoscalars an attractive theoretical option.

* “Easy” to accommodate in extended Higgs sectors (2HDM, NMSSM, etc)

* Might generically expect some mixing between new scalars and the
Higgs sector

« Can expect SM fermion couplings to be oc y¢

« MFV assumption also avoids flavor constraints
Buckley, Feld, Gongalves 1410.6497 4



Spin-0 Simplified Models

* [wo benchmark models:
» Scalar ¢ or Pseudoscalar A mediator with mass my /m 4
 Dirac fermionic dark matter x with mass m,,
* Assuming MFV couplings to SM termions:

1 ~ ~ 1 _
Lscalar ) _im?b¢2 — My XX — 9X¢XX \/5 Z g?];yf¢ff
/

1 - . - 1 . 3
ﬁpseudo B _im?élAZ — M XX — ZgXAX/fX \/i Z Zg”‘{yfAfw5f |
r |

e (Can explore phenomenology of different g, in up/down/

lepton sectors.



Spin-0 Simplified Models

1 ~ B 1 _
Lscalar 2 _§m35¢2 — M XX — gxngX \/5 Z gi]jyfgbff
/

1 _ | _ 1 . =
Lpseudo =2 _57’%24142 — My XX — ZQXAX75X NG Z Zg,,]jyfAva)f |
f |

e Minimal model 4-dimensional:

l mqb/AamXagX:gv

* Mediator width will affect collider bounds.

* Will suggest how to treat 1"y, 4 shortly.

q



Thermal Relic

e |f the dark matter freeze-out is described by thermal
freeze-out, then can require mass/coupling parameters

give appropriate relic abundance. o
upper limits on /g9

* |f we violate the standard
assumptions, allowed
couplings can be
larger/smaller than this
prediction.

m, (GeV)

* Here assuming on_ly
XX = ¢—=ff
XX = A—ff

Buckley, Feld, Gongalves 1410.6497



Thermal Relic

If we violate the standard

assumptions, allowed
couplings can be

larger/smaller than this

prediction.
* Here assuming only

XX =~ o= 1)
XX = A—[|f

Buckley, Feld, Gongalves 1410.6497

(GeV)

My

e |f the dark matter freeze-out is described by thermal
freeze-out, then can require mass/coupling parameters
give appropriate relic abundance.

upper limits on /g9




Direct Detection Bounds

e Scalar mediator benchmark will result in spin-
iIndependent direct detection signal.

» Constraints from LUX & CDMS upper limits on /g gy
* Relatively independent of 1",

e Keep in mind the hidden
dependence on |local
velocity & density distributions.

Buckley, Feld, Gongalves 1410.6497



Indirect Detection Bounds

e Pseudoscalar model has thermal annihilation cross

0

section o v, so bounds from present-day annihilation

 Assuming MFV, can apply
dwarf galaxy constraints from
annihilation into bb

« Candependon 1'4

 Show here bounds
assuming no additional
decay channels and

Jgv = Gy

Buckley, Feld, Gongalves 1410.6497

upper limits on /g» 9
O ——




Collider Searches

* |ooking for dark matter production.

pp — something 4+ nothing
(xx)

* Possible channels: Something = jets, tops, bottoms...

 Minimal simplified model correlates signal rates

between these channels, but must keep an open mind.

 Example: MSSM-type 2HDM may have increased
couplings to down-type quarks, boosting b-tagged
channels.

<



Monojet Production

 MFV assumption means ¢ couples proportional to mass.

» But protons don’t contain many t/t/b/b

 Seen in very weak bounds on scalar EFT operators

/hou et al 1302.36?19

N

00
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vector/axial-vector
mediators




Monojet Production

* |n 1-1 analogy to Higgs production, couplings to top (and
bottom) quarks lead to loop-level interaction with gluons.

 Has been considered in EFT interactions.
* This will be the main production mode for monojets
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Tricky Tops

e Using a tool like MadGraph to
generate ¢ through integrated-out
top loop (another EFT) is
problematic.

* For monojet searches, jet pr
and ¢ pr (MET) are all large
compared to 2m;. my can be
large as well.

* Cannot treat the coupling
to gluons as an EFT.

* Not just a K-factor, changes
differential distributions

 We use MCFM to resolve loop.

Buckley, Feld, Gongalves 1410.6497
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Width Etfects

 We keep total width a free parameter, look to place
bounds on couplings gy, g, for our benchmark masses

—

» All else being equal, on-shell bounds o g; g5 /1

» Primary effect is decrease in - ™1 Giis preiminary —-nm il e -

signal rate o< BR(¢ — xx) zzsoofﬂw ottt

S - JLdt=1951b mz=50 GeVIcE T=M/H0 ]

o 2nd Order effect: £ 2000F s e

» For large widths, experimental < s .

acceptance will change. I S ol :

« MCFM is narrow-width only, S :

, 500 /. ' ~

extrapolate using MadGraph oy :
results when 'y, /mgy 2 1 0=

10 1 10
Mediator Mass M [TeV/c?] I
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Width Etfects

« Kinematic effect at very large widths.

e Effect on CMS Monojet searches:
mg = 100 GeV me = 3705 GeV

i 4 total backgrouna @ 4 total background
10 & 10"
max. signal A signal
10° 3 — 10° —
: I - provemanel ]
_ T el T g = 100 T B S —
: —*—'—F?mi = 0.1,/ o L e = 10
10" 107 F/m¢ = 0.1
i MCFM i MCFM
250500850 400450 500550 600 250500850 400450 500550 600

MET (GeV) MET (GeV)




Heavy Quarks

g b, t

b
MadGraph-level simulation acceptable here

CMS B2G-13-004 for in tt dilepton channel
Use ATLAS 1410.4031 for b/bb channel
 We assume coupling onlyto b here. Stronger bounds if

coupling to both b and ¢




9. 9o

10

10t}

102 |

m, =100 GeV, m, =40-GeV

et

Monojet (MCFM)
Monojet (MG)

Top

Bottom

Width Consistency
Direct Detection

102

10!

Iﬂ¢/7n¢

m,4 =100 GeV, m, =40

Monojet (MCFM)
Monojet (MG)
Top

Bottom

Width Consistency | |

Indirect Detection

1072

10

'y /7"71

Buckley, Feld, Goncalves 1410.6497

10

9, 9o

10

102

10t |

‘‘‘‘
‘‘‘‘
....
ot
‘‘‘‘
ot
et

-2

Collider Bounds

Monojet (MCFM)
Monojet (MG)

Top

Bottom

Width Consistency
Direct Detection

107 107

10!

Iﬂﬁ/rn¢

ot
....

W
----

....
oo

e

> 10°
>
Lot Monojet (MCFM)
- - Monojet (MG)
-- Top
----- Bottom
102 L — Width Consistency | |
— Indirect Detection
103 102 10!
Ly /my




Discussion of Widths

Experiments will want to scan over mg, m,, if nothing

seen place limits on g, g,

* o keep dimensionality down, usually assume g, = g,

e But this makes particular assumption of the width,

important for on-shell production.

102

Qur advice to experimentalists: set T
as if g, = g, and no additional decays

10° |

CMS/Atlas including kinematic effects .
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>

“Easy” for theorists to rescale.
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HIgQgs Portal

» Scalar mediator could be the 125 GeV Higgs
» Can search for pp — (h — xx) + jets

10? g S R T T T
o If m, <my/2, very powerful - 125CeV Higgs, m, =10 GeV
imits from invisible Higgs T
=8 e - -
. . . i s = ':4
* Direct limits from on/off-shell | 2 &o” 22227270
measurements of h — ZZ R :
A Cecer :
S

 Some model assumptions

e Direct measurements needed
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 Note heavy-flavor channels
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Extended Higgs Sectors

« 2HDM contain 1 extra scalar, 1 pseudoscalar.

We know that SM Higgs lives in the alignment limit.

* Associated CP-even Higgses may have suppressed
production via W/Z

* Production then through fermion couplings a /a
simplified models.

 Dark Matter is a problem that needs a solution, so
reasonable to look for H/A — xx

» (Often significantly lower background.
* We still know very little about Higgs sector.

+



Conclusions

Effective operators have limited applicability at colliders.

* Fantastic News: It we are producing dark matter we are

producing the mediators

Simplified Models a good intermediate step to avoid

overcommitment to a particular UV theory.
Searches in monojets, heavy flavor )

CMS/ATLAS/theory working groups
converging on common language 5

10! |

10° |

Correct simulation of monojets still a
difficulty: May have missed the window

for Monte Carlo generation.
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