Low mass dark matter

GRavitation AstroParticle Physics Amsterdam

Christopher M^cCabe

Effective Theories and Dark Matter, Mainz – 19th March 2015

1. General considerations

2. A peculiar neutralino model

Results from: Boehm, Dolan, CM, *Increasing N_{eff} with particles in thermal equilibrium with neutrinos - arXiv:1207.0497 A lower bound on the mass of cold dark matter from Planck - arXiv:1303.6270*

1. General considerations:

How low is low mass?

Low-mass dark matter candidates

Low-mass dark matter candidates

How light can we make WIMPs?

What is a WIMP?

- Weak scale mass...
- Weak scale cross-section: ~0.1-10 pb
- Abundance from thermal freeze-out mechanism:

WIMP mass?

- SM fermion get mass from the Higgs vev... ...yet most are below a GeV
- Lee-Weinberg argument
 - On dimensional grounds:

$$\langle \sigma v \rangle = \frac{m_{\rm DM}^2}{m_{\rm weak}^4}$$

- If $m_{\text{weak}} = 100 \text{ GeV}$, for $\langle \sigma v \rangle \approx 1 \text{ pb}$ $\Rightarrow m_{\text{DM}} > 1 \text{ GeV}$
- Light WIMPs are sub-GeV
- Light WIMPs require a light mediator

The thermal bath

- 'Freeze-out' from what? Need a thermal bath of particles
- Kept in equilibrium with annihilations

• f could be SM states or BSM states

Two cases

• I'll consider when WIMP in equilibrium with SM particles

- Case 1: In equilibrium with neutrinos
- Case 2: In equilibrium with electrons/photons

Reminder: The usual Timeline

• Plasma of particles in a thermal bath:

Timeline: Neutrino decoupling

Events: ν decoupling

- Species remain in thermal equilibrium until $\Gamma = n\sigma v \sim H$
- Neutrinos decouple at ~2.3 MeV

Timeline: Big Bang Nucleosynthesis

Timeline: Photon reheating

- When electrons and positrons become non-relativistic, they transfer their entropy to photons
- Photon thermal bath heated relative to neutrino bath:

$$\frac{T_{\nu}}{T_{\gamma}} = \left(\frac{4}{11}\right)^{1/3}$$

Timeline: CMB formation

- Electrons recombine with protons: $H^+ + e^- \rightarrow H + \gamma$
- Photons decouple from matter: cosmic microwave background is formed

Timeline: Today

- Today we have (at least) two thermal relics:
 - 1. CMB with $T_{\gamma} = 2.725 \,\mathrm{K}$ (measured)
 - 2. Cosmic neutrino background with $T_{\nu} = 1.945 \,\mathrm{K}$ (not measured)

New timeline: With light dark matter

- Plasma of particles in a thermal bath, including χ , which is in equilibrium with the neutrinos

New timeline: Neutrino decoupling

Events: u, χ decoupling

- Neutrinos and χ decouple at ~2.3 MeV

New timeline: Neutrino heating

New timeline: Today

- Today we have (at least) two thermal relics:
 - 1. CMB with $T_{\gamma} = 2.725 \,\mathrm{K}$ (measured)
 - 2. Cosmic neutrino background now warmer: $T_{\nu} = 1.945 \,\mathrm{K} \cdot \left[1 + \frac{F(m_{\chi}/2.3 \,\mathrm{MeV})}{3}\right]^{1/3} \quad \text{(not measured)}$

Changes to BBN?

Kolb, Turner, Phys.Rev. D34 (1986) Raffelt, Serpico, Phys.Rev. D70 (2004) Steigman, Nollett, arXiv:1312.5725

- A new light particle can contribute to the energy density (if it is still relativistic during BBN)
- A different neutrino-photon temperature ratio changes:
 - 1. Neutrino energy density higher
 - 2. Change to the weak interaction rates for proton <-> neutron conversion ($\nu_e + n \leftrightarrow p + e$)

Changes to abundances

• We implemented the changes into PArthENoPE BBN code

In equilibrium with EM particles

• We implemented the changes into PArthENoPE BBN code

CMB: N_{eff} changes

• Higher neutrino temperature increases $N_{\rm eff}$

Mini-conclusion

- Assumptions:
 - Light WIMPs are sub-GeV
 - If in equilibrium with SM particles...
- Then...MeV mass particles can show up through BBN and CMB through effects on the neutrino-photon temperature relation

2. A peculiar neutralino model

How light can we make the neutralino?

 The answer might be surprising: it can be as light as we like - even massless

Explored in a series of papers by Dreiner and others

- Certain conditions are required...
 - Bino-like
 - Selectrions and squarks are reasonably heavy
 - (some tuning of the parameters)

How light can we make neutralino dark matter?

• In the MSSM, difficult to go below ~10 GeV:

Solution is clear: need another light superpartner

• Introduce sterile rhd sneutrino that mix with lhd sneutrino

$$V_{\text{soft}} \supset m_{\tilde{\nu}_L}^2 |\tilde{\nu}_{Li}|^2 + m_{\tilde{n}}^2 |\tilde{n}_i|^2 + A_{ij} h_u \cdot \tilde{L}_i \tilde{n}_j + \text{h.c.}$$

• Light mass eigenstates are mostly rhd $\tilde{\nu}_1 = -\sin\theta_1 \ \tilde{\nu}_L^{\alpha} + \cos\theta_1 \ \tilde{n}^{\alpha\star}$ with $\tan 2\theta_i = \frac{2A_i v \sin\beta}{m_{\tilde{\nu}_L}^2 - m_{\tilde{n}}^2} \sim 0.1$.

Solution is clear: need another light superpartner

• Neutralino remains in equilibrium with neutrinos:

• Freeze-out happens as usual with a weak scale cross-section:

$$\langle \sigma v \rangle \approx 7 \text{ pb} \left(\frac{\sin \theta}{0.1} \right)^4 \left(\frac{m_{\tilde{\chi}_1^0}}{5 \text{ MeV}} \right)^2 \left(\frac{35 \text{ MeV}}{m_{\tilde{\nu}_1}} \right)^4$$

How can we test this?

- No collider constraints
- Not visible in Z, h or meson decays
- No direct detection (from electron scattering):

$$\sigma_e \approx 3 \times 10^{-46} \text{ cm}^2 \left(\frac{195 \text{ GeV}}{m_{\tilde{e}}}\right)^4$$

 No usual indirect detection signal: dominant annihilation is to low energy neutrinos

Is this WIMP invisible?

Consequence: N_{eff} is larger

• Recall: Higher neutrino temperature increases N_{eff}

$$N_{\rm eff} = 3.046 \left[\frac{T_{\nu}}{T_{\gamma}} \middle/ \left(\frac{4}{11} \right)^{1/3} \right]^4$$

• We now have a way to probe a light neutralino

Conclusions

WIMPs can be light
 ...need a light mediator

Usual detection strategies may fail
...direct/indirect/collider

• Can still have observable consequences ...BBN and CMB are sensitive probes of new physics