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(Radar) Cross Sections
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Stealth DM is a new model of DM

+ Scalar baryon of strongly-coupled SU(Np), with
Nbo even [focus on SU(4)] and dark fermions
transforming under EW group

- All mass scales are technically natural;
very roughly 100 GeV < My~ Ap S 100 TeV

Y

- We use lattice simulations to calculate several non-perturbative
observables (mass spectrum; interactions of DM with SM)

- Naturally “stealthly” with respect to direct detection; we determine
the “ultimate” lower bound on composite DM with charged constituents

- LHC phenomenology completely different from weakly-coupled
DM models



Direct Detection Cross Section
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Direct Detection Cross Section
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Effective lower bound on composite DM with electrically charged constituents.



Lattice Gauge Theory Simulations

Ideal tool to calculate properties of theories with
M; ~ Ap

in the fully non-perturbative regime. Joy of these
calculations is that what we simulate is interesting
“out of the box” without chiral extrapolations.

Relevant to DM: Thus far, we have accurate estimates of the spectrum,
the “sigma term”, and polarizability. Future work will nail down additional
correlators (for S parameter), meson form factor, ...

Simulated with modified Chroma mainly on LLNL sequoia/vulcan.
Quenched, unmodified Wilson fermions. Several volumes and
lattice spacings.



Dynamics

Dark fermions
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Dynamics

Dark fermions

M ¢ Could arise dynamically
A r

Mf ~ Ap

approx CFT

SU(4)
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Dark Fermions

Vector-like masses
Mysei; FIF) — MY FYF) + M, FIF® + h.c.,
EW breaking masses
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Dark Flavor Symmetries

Under SU(4): U(4) x U(4)

Weak gauging: [SU(2) x U(1)]* (that contains SU(2)L x U(1)y)
Vector-like masses: SUR)L x U(T)y x U(T) x U(1)

Yukawas with Higgs: U(1)s

Dark baryon number automatic.
and very safe against cutoff scale violations of global symmetries

e.g.
qqqq H'H
A4

cutoff

[This is one reason to prefer SU(4) over SU(2).]



Dark Fermion Mass Spectrum

General Custodial SU(2)
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Custodial SU(2)

- Lightest baryon is a neutral complex scalar

(eliminates operators dependent on spin,
e.g., dim-5 magnetic moment)

- Contributions to T parameter vanish

(no need to make life more complicated)

+ Dim-6 charge radius vanishes

(more stealthy w.r.t. direct detection;
one less thing to calculate on lattice)

q=+1/2

g=+1/2
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A similar observation of linear/quadratic effect also in Hill, Solon; 1401.3339



Approximately Symmetric / Vector-Like

Fermion mass matrices with custodial SU(2)

M=+ A y14v/\f )
M" = M* =
( y23v/V2 M F
Convenient to expand around the symmetric matrix limit
Y14 = Y + €y

Y23 = Y — €y

Then the axial current
. — d
J4 axial 2 Caxial V1775 ¥

becomes ,
€y YV

DM +\/2A2 + 1202

Caxial —

U 1 Linear Case
- yv/(V24) Quadratic Case.



Charged Meson Decay

Like pions in QCD

T <O‘ji,axia1’7Ti> = ifzD"
Vi
Lightest dark mesons decay through
7t t,t
I - or (017 aiad [TE5) = 4 fir p*
Vr b, b

The non-zero Yukawa couplings with ¢, #0  cause ji,axial 70

(I — f?/) N Cixial (fH>2 (mf ) 2 <mH) (unlike “Vector-like

~ Confinement”)
Nm—=ptr,) |Vd? \ fr my, Moy

Kilic, Okui, Sundrum; 0906.0577
and so dark mesons decay much faster than QCD pions even with
Caxial <K 1




Lower bound on meson mass ...

Charged pion production at LEP |l
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Using bounds on staus, we find

mog+ > 86 GeV

This is fairly robust to promptness/non-promptness of dark meson decay.



... becomes lower bound on the baryon mass
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Within the range simulated on the lattice, we obtain

05 < B < 38
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S parameter

BW@W\/\/\M W3

Obviously AS -> 0 as (yv) -> 0.

With custodial SU(2), approx symmetric, and M1 close to M2

e2v?

S / Az e (2)5(0) = 5 G
T—- G'p = (" PLy" "y Pry™) | ored

and thus can be easily suppressed to below experimental limits.

[Vector-like masses for dark fermions crucial.]



Direct Detection 1: Higgs exchange

B B

p, 1 D, N

Justas (p,n| myqq|p,n) = mp, f2"

We have (B|msff|B) = mpfy

My OMp
mapg (9M1

We can extract from lattice using Feynman-Hellman ff =

LSD Collaboration; 1402.6656




Effective Higgs Coupling

The Higgs coupling to the lightest dark fermions

L D y\phﬁlllfl
2 (Y Linear Case
v
Yy = J +O(€y) = 4 ;/251) :
Mo — M,y . SA Quadratic Case.

Gives an effective coupling to the dark scalar baryon

F Linear Case
9B ~ [7 X { e

2 v .
Yok g Quadratic Case

where

( mp

CTTR Linear Case
mp :
Y aarn Quadratic Case.

/"

Yeff =

[We cannot extract bound on Yukawa directly, due to difficulty
of getting dark fermion mass out of lattice regularization.]
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DM-nucleon cross section (cm2

Higgs exchange results

Linear case Quadratic case

DM-nucleon cross section (cm2)

10 50 100 500 1000 10 50 100 500 1000
mp(GeV) mg(GeV)

LSD Collaboration; 1503.04203

Roughly, yeff < 0.25 for lightest baryon mass, with constraints that
become looser proportional to ms for linear or (ms)? for quadratic case.



Direct Detection 2: Polarizability

B B

NAN

Wonderful formalism for extracting the polarizability from lattice using
background field methodology.

Detmold, Tiburzi, Walker-Loud; 0904.1586, 1001.1113

In the NR limit, the scalar baryon operator is dimension-7/

Cf€2

3
mpg

B*BF,, F*

extracted from our lattice simulations



Polarizability

The per nucleon cross section
2

2 2
o | L IunB CFre€ fA
nucleon ——

TA2 | m3 F

has large uncertainties on the nuclear side (momenta-dependent structure

factors, operator mixing, nuclear resonances) Weiner, Yavin: 1206.2910

Frandsen et al; 1207.3971
Ovanesyan, Vecchi; 1410.0601

We parametrize simply as

NA 1/3< M2 <3

( ) fj:4 — 37%°q—L&
R <— p_1924Y3

To obtain

Z* 144mo?ps g (Mp)?
Onucleon — A2 m6BR2 [CF]

Where the nuclear structure factor remains the largest uncertainty.



Polarizability
Notel!
2% 144ra’py g (Mp)?
Onucleon — A2 m%RQ [CF]

Depends on (Z,A), since it doesn’t have A2-like (Higgs-like) scaling.
For Zenon, we obtain:
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Confluence of collider and direct detection bounds, but for reasons
completely different than ordinary (elementary) WIMPs.



Abundance

Symmetric
B I
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If 2 -> 2 dominates thermal
annihilate rate and saturates
unitarity, expect
mp ~ 100 TeV
Griest, Kamionkowski; 1990
Unfortunately, this is hard
calculation to do using lattice...

Asymmetric

e.g., through EW sphalerons
Chivukula, Farhi, Barr; 1990

(ve) = [52
np ~ np |\ — eEXp | —
mp Tsph

IF EW breaking comparable to
EW preserving masses, expect
roughly

mp 5 Mtechni—B 7 1 TeV

How much less depends on
several factors...



Colliders

SUSY Stealth
A A baryon excited
———  heavier /resonances
——  superpartners ——  scalar baryon
——  LSP = s
> >

Collider searches dominated by light meson production and decay.

Missing energy signals largely absent!



Meson Decay Rates

(Quirky) charged pion decay (Vector-like) neutral meson decay
BR(UDbar1S0)
1 WR(QlQbarISO) .
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Fok, Kribs; 1106.3101



Future

- Calculate the correlators on lattice to compute S parameter
(get bounds on EW breaking parameters)

- Calculate meson form factor fi7, needed to understand meson
production and decay at LHC.

- Detailed investigation of abundance remains important and
(especially in the case of asymmetric) interesting.

- If some symmetric component, annihilation signals (into rs) extremely
interesting. It could be that multibody states are generic, e.g.

B*



Epilogue: Stealth DM versus SUSY DM

Need vector-like masses. --> Dark fermion flavor brekaing

SUSY needs Majorana masses --> SUSY breaking

Need (approx) custodial SU(2) --> (neutrality, T, charge radius)

SUSY needs parameter choices to get neutral LSP, and needs serious
care with flavor sector to avoid FCNC.

Need My¢ ~ Ap -->  Expt constaints + lattice simulation
constraints

SUSY needs 4 ~ MsuUSY breaking
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