IPhT CEA-Saclay Marco Taoso

Minimal Dark Makker and future colliders

Effective Theories and Dark Matter

DE LA RECHERCHE À L'INDUSTRIE

MITP, Mainz

19-03- 2015

What do we know about DM?

Mass and cross sections largely unconstrained

Thermal relic from the early Universe

Connection with BSM at the Terascale

Multiple way to test the scenario: collider, direct detection, indirect searches

Minimal Dark Matter

Minimalistic approach: add to SM an extra gauge multiplet and search for assignments giving a viable DM candidate

$$\mathscr{L}_{\rm SM} + c \begin{cases} \bar{\mathcal{X}}(i\mathcal{D} + M)\mathcal{X} & \text{when } \mathcal{X} \text{ is a spin } 1/2 \text{ fermionic multiplet} \\ |D_{\mu}\mathcal{X}|^2 - M^2 |\mathcal{X}|^2 & \text{when } \mathcal{X} \text{ is a spin } 0 \text{ bosonic multiplet} \end{cases}$$

Requirements for DM: stable, neutral and allowed by DM searches

The only free parameter is the DM mass, fixed by the thermal relic density

Minimal Dark Matter

Stability: for large enough representation , 5 (7) for fermions (scalars), renormalizable and dim 5 operators do not lead fast decays

Constraints from DM searches: no colored, Y=0 to avoid large Z-mediated SI scattering cross section with nuclei. Pure SU(2) multiplets

Lightest component is neutral

$$M_Q - M_{Q=0} \simeq Q(Q + rac{2Y}{c_{ heta_w}})\Delta M$$

g2 Landau pole: pushed above M_{p_1} for reprs. $n \le 5$ for fermions and $n \le 8$ for scalars

Minimal Dark Matter

From Cirelli, Strumia 0903.3381

Quantum numbers			DM can	DD	Stable?
$SU(2)_L$	$\mathrm{U}(1)_Y$	Spin	decay into	bound?	
2	1/2	S	EL	×	×
2	1/2	F	EH	×	×
3	0	S	HH^*		×
3	0	F	LH		×
3	1	S	HH, LL	×	×
3	1	F	LH	×	×
4	1/2	S	HHH^*	×	×
4	1/2	F	(LHH^*)	×	×
4	3/2	S	HHH	×	×
4	3/2	F	(LHH)	×	×
5	0	S	(HHH^*H^*)		×
5	0	F	—	\checkmark	\checkmark
5	1	S	$(HH^*H^*H^*)$	×	×
5	1	F	—	×	\checkmark
5	2	S	$ (H^*H^*H^*H^*) $	×	×
5	2	F	—	×	\checkmark
6	1/2,3/2,5/2	S	—	×	
7	0	S	—		
8	$1/2, 3/2 \dots$	S	_	×	

DM mass fixed for a thermal relic to match measured DM abundance. Mass in the multi-TeV range (10 TeV for 5-plet and 25 TeV for 7-plet)

Triplet DM candidate

Qua	antum numbe	ers	DM can	DD	Stable?
$SU(2)_L$	$\mathrm{U}(1)_Y$	Spin	decay into	bound?	
2	1/2	S	EL	×	×
2	1/2	F	EH	×	×
3	0	S	HH^*		×
3	0	F	LH		×
3	1	S	HH, LL	×	×
3	1	F	LH	×	×

Fermionic triplet **stable** if L or B-L is respected (or at least matter parity)

Lightest component is **neutral** Mass splitting at 2 loop $\Delta M = 164.5 \pm 0.5$ MeV

Ibe et al. 1212.5989

Capture low-energy pheno of SUSY models with WINO LSP and heavy scalars

Other remarks on the EW multiplets

- It correct the running of Higgs quartic coupling stabilizing the EW vacuum

Chao Gonderinger Ramsey-Musolf 1210.0491

- Helps with gauge-coupling unification

Frigerio, Hambye 0912.1545 "Dark Matter stability and unification without supersymmetry"

- Do not worsen fine-tuning of Higgs mass

Farina, Pappadopulo, Strumia 1303.7244

$$\delta m^2 = rac{M^2}{(4\pi)^4} \, rac{n(n^2-1)}{4} \, g_2^2 \left(6 \ln rac{M^2}{ar{\mu}^2} - 1
ight)$$

 $M_\chi \lesssim 1.0 \sqrt{\Delta}$ TeV to have less than (100/ Δ) % fine-tuning

[5-plet $M_\chi \lesssim 0.4 \sqrt{\Delta}$ TeV, 7-plet $M_\chi \lesssim 0.06 \sqrt{\Delta}$ TeV]

Relic abundance

Correct abundance for M around 3 TeV.

Under-abundant (over-abundant) for a lighter (heavier) triplet Other masses possible for non-thermal production &/or non standard cosmology

Indirect searches

Sommerfeld effect enhances annihilation cross-section at low velocities, i.e. relevant for DM at present epoch inside galaxies

For accurate calculations of cross-sections see Hryczuk and Iengo 1111.2916

Recent works on resummation of EW Sudakov logs: Ovaneysian, Slatyer, Stewart 1409.8294, Bauer, Cohen, Hill, Solon 1409.7392, Baumgart, Rothstein, Vaidya 1412.8698

Indirect detection bounds

Bounds depend on astrophysical assumptions like DM density profiles, cosmic-rays propagation... Shading corresponds to different choices

From Hryczuk, Cholis, Iengo, Takavoli, Ullio 1401.6210

See also Cohen et al. 1307.4082 Fan, Reece 1307.4400

Constraints from gamma lines

"Search for photon line-like signatures from Dark Matter annihilations with H.E.S.S." Hess collaboration 1301.1173

Region of observation: 1 deg around Galactic Center |b|>0.3 deg

Indirect detection bounds

From Cohen et al. 1307.4082

Direct detection

Triplet at Hadron Collider

Mass splitting between charged and neutral components around 165 MeV Charged state decays into DM + soft pions

Channels: mono-jet, mono-photon, Vector Boson Fusion, disappearing tracks

Focus on LHC 14 TeV with L=3000 fb⁻¹ and future 100 TeV pp collider with L=3000 fb⁻¹

Results based on Cirelli, Sala, Taoso 1407.7058

For a recent analysis with mono-jet and disappearing tracks see also Low, Wang 1404.0682, Berlin Lin Low Wang 1502.05044

Monojet

Background: mainly Z(nu nu)+jets and W(l nu)+jets Cuts on jets, MET, leptons similar to ATLAS-CMS mono-jet analysis rescaled to optimize sensitivity

Madgraph5 + Pythia + Delphes

Sum in quadrature statistic and systematic errors

Significance =
$$\frac{S}{\sqrt{B + \alpha^2 B^2 + \beta^2 S^2}}$$

Mono-photon

Qualitatively the same: systematics are crucial. 100 TeV increase the reach of a factor 3-4

Dijet channel

VBF processes characterized by 2 forward jets

Apply cuts on rapidity, invariant mass and pT to reduce QCD background

Cuts	14 TeV	$100~{\rm TeV}$ 3 ${\rm ab^{-1}}$	$100 { m TeV} 30 { m ab}^{-1}$
$\not\!$	0.4 - 0.7	1.5 - 5.5	1.5 - 5.5
$p_T(j_{12})$ [GeV]	40 (1%), 60 (5%)	150	200
M_{jj} [TeV]	1.5 (1%), 1.6 (5%)	6 (1%), 7 (5%)	7
$\Delta \eta_{12}$	3.6	3.6	3.6~(1%),~4~(5%)
$\Delta \phi$	1.5 - 3	1.5 - 3	1.5 - 3
$p_T(j_3)$ [GeV]	25	60	60
$p_T(\ell) \; [\text{GeV}]$	20	20	20
$p_T(\tau) \; [\text{GeV}]$	30	40	40

Vector boson fusion

Smaller sensitivities than mono-j

Estimate the sensitivity extrapolating the 8-TeV background rescaling with the jets+MET events cross-sections

Band: bkg multiplied/divided by factor 5

Estimate the sensitivity extrapolating the 8-TeV background rescaling with the jets+MET events cross-sections

Band: bkg multiplied/divided by factor 5

Mass splitting modified by operators >= 7. E g.

 $\chi^a \chi^b (H^{\dagger} \sigma^a H) (H^{\dagger} \sigma^b H) \qquad \Delta M \simeq \frac{1}{4} \frac{v^4}{\Lambda^3} < 10 \text{ MeV for } \Lambda > 5 \text{ TeV}$

Summary

Indirect searches good probe of EW triplet DM BUT still large astro-uncertainties LHC-14 covers part of non-thermal DM scenario / DM under-abundanant 100 TeV collider could potentially test thermal WINO.

Fermionic Quintuplet

The Minimal Dark Matter candidate, automatically stable Thermal relic for M = 10 TeV

Cirelli, Hambye, Panci, Sala, Taoso. In progress

Limits on gamma-ray lines from HESS

Fermionic Quintuplet

The Minimal Dark Matter candidate, automatically stable Thermal relic for M = 10 TeV

Cirelli, Hambye, Panci, Sala, Taoso. In progress

Limit on WW annihilations from FERMI (prompt +IC).

Direct detection : poor prospects 100 TeV collider: thermal mass beyond the reach

