QCD anatomy of WIMPnucleon interactions

Mikhail Solon
UCB/LBNL

MITP workshop on Effective Theories and Dark Matter 16 March 2015
based on work with R. Hill: 1409.8290 see also 1111.0016, 1309.4092, 1401.3339.

$\Omega_{M} h^{2} \neq \Omega_{B} h^{2}$
 $0.1423 \pm 0.0029 \quad 0.02207 \pm 0.00033$

theory dreamscape

signals, backgrounds
model-dependent uncertainties
model-independent uncertainties

Scrutiny of underlying astrophysics is important, but we'll stick to Standard Model physics here.

M	annihilation: sommerfeld enhancement, bound states, thermal bath effects, Sudakov logs
m_{W}	production: complementarity

m_{N}\end{array}\right|\)| scattering: nucleon matrix elements, DM-nucleon |
| :---: |
| EFT, multinucleon effects |

Develop an effective theory framework to put a handle on

 model-dependent and -independent uncertainties
calculability universality precision

QCD
brown muck, simple

factorization, heavy quark symmetry

unknown
DM

LHC is carving out parameter space, pushing to regions requiring precision

Heavy electroweak charged WIMPs

In the rest of the talk,

$$
\mathcal{L}_{\mathrm{DM}}+\mathcal{L}_{\mathrm{SM}}
$$

and illustrate with phenomenological examples.

Zeroth order question: why bother with radiative corrections?

$$
\mathcal{L}=\sum_{i} c_{i}(\mu) O_{i}(\mu) \quad \mathcal{M}_{\text {phys }}=\sum_{i} c_{i}(\mu)\left\langle O_{i}(\mu)\right\rangle \quad \frac{d \mathcal{M}_{\text {phys }}}{d \mu}=0
$$

μ_{1}

- get the LO (LL) result $\quad \mu_{2}$
- some matrix elements acessible only at a certain scale
- use complementarity
- (avoid certain uncertainties)

Currents: relativistic scalar or fermion

$$
\begin{aligned}
\mathcal{L}_{\phi, \mathrm{SM}}= & \sum_{q=u, d, s, c, b}\left\{\frac{c_{\phi 1, q}}{m_{W}^{2}}|\phi|^{2} m_{q} \bar{q} q+\frac{c_{\phi 2, q}}{m_{W}^{2}}|\phi|^{2} m_{q} \bar{q} i \gamma_{5} q+\frac{c_{\phi 3, q}}{m_{W}^{2}} \phi^{*} i \partial_{-}^{\mu} \phi \bar{q} \gamma_{\mu} q+\frac{c_{\phi 4, q}}{m_{W}^{2}} \phi^{*} i \partial_{-}^{\mu} \phi \bar{q} \gamma_{\mu} \gamma_{5} q\right\} \\
& +\frac{c_{\phi 5}}{m_{W}^{2}}|\phi|^{2} G_{\alpha \beta}^{A} G^{A \alpha \beta}+\frac{c_{\phi 6}}{m_{W}^{2}}|\phi|^{2} G_{\alpha \beta}^{A} \tilde{G}^{A \alpha \beta}+\cdots
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{L}_{\psi, S M}= & \frac{c_{\psi 1}}{m_{W}} \bar{\psi} \sigma^{\mu \nu} \psi F_{\mu \nu}+\frac{c_{\psi 2}}{m_{W}} \bar{\psi} \sigma^{\mu \nu} \psi \tilde{F}_{\mu \nu}+\sum_{q=u, d, s, c, b}\left\{\frac{c_{\psi 3, q}}{m_{W}^{2}} \bar{\psi} \gamma^{\mu} \gamma_{5} \psi \bar{q} \gamma_{\mu} q+\frac{c_{\psi 4, q}}{m_{W}^{2}} \bar{\psi} \gamma^{\mu} \gamma_{5} \psi \bar{q} \gamma_{\mu} \gamma_{5} q+\frac{c_{\psi 5, q}}{m_{W}^{2}} \bar{\psi} \gamma^{\mu} \psi \bar{q} \gamma_{\mu} q\right. \\
& +\frac{c_{\psi 6, q}}{m_{W}^{2}} \bar{\psi} \gamma^{\mu} \psi \bar{q} \gamma_{\mu} \gamma_{5} q+\frac{c_{\psi 7, q}}{m_{W}^{3}} \bar{\psi} \psi m_{q} \bar{q} q+\frac{c_{\psi 8, q}}{m_{W}^{3}} \bar{\psi} i \gamma_{5} \psi m_{q} \bar{q} q+\frac{c_{\psi 9, q}}{m_{W}^{3}} \bar{\psi} \psi m_{q} \bar{q} i \gamma_{5} q+\frac{c_{\psi 10, q}}{m_{W}^{3}} \bar{\psi} i \gamma_{5} \psi m_{q} \bar{q} i \gamma_{5} q \\
& +\frac{c_{\psi 11, q}}{m_{W}^{3}} \bar{\psi} i \partial_{-}^{\mu} \psi \bar{q} \gamma_{\mu} q+\frac{c_{\psi 12, q}}{m_{W}^{3}} \bar{\psi} \gamma_{5} \partial_{-}^{\mu} \psi \bar{q} \gamma_{\mu} q+\frac{c_{\psi 13, q}}{m_{W}^{3}} \bar{\psi} i \partial_{-}^{\mu} \psi \bar{q} \gamma_{\mu} \gamma_{5} q+\frac{c_{\psi 14, q}}{m_{W}^{3}} \bar{\psi} \gamma_{5} \partial_{-}^{\mu} \psi \bar{q} \gamma_{\mu} \gamma_{5} q \\
& \left.+\frac{c_{\psi 15, q}}{m_{W}^{3}} \bar{\psi} \sigma_{\mu \nu} \psi m_{q} \bar{q} \sigma^{\mu \nu} q+\frac{c_{\psi 16, q}}{m_{W}^{3}} \epsilon_{\mu \nu \rho \sigma} \bar{\psi} \sigma^{\mu \nu} \psi m_{q} \bar{q} \sigma^{\rho \sigma} q\right\}+\frac{c_{\psi 17}}{m_{W}^{3}} \bar{\psi} \psi G_{\alpha \beta}^{A} G^{A \alpha \beta} \\
& +\frac{c_{\psi 18}}{m_{W}^{3}} \bar{\psi} i \gamma_{5} \psi G_{\alpha \beta}^{A} G^{A \alpha \beta}+\frac{c_{\psi 19}^{3}}{m_{W}^{3}} \bar{\psi} \psi G_{\alpha \beta}^{A} \tilde{G}^{A \alpha \beta}+\frac{c_{\psi 20}}{m_{W}^{3}} \bar{\psi} i \gamma_{5} \psi G_{\alpha \beta}^{A} \tilde{G}^{A \alpha \beta}+\cdots, \quad n=1,2,5,6,11,12,13,14,15,16
\end{aligned}
$$

Currents: heavy particle field

$$
\chi_{v}(x) \rightarrow e^{i q \cdot x}\left[1+\frac{i q \cdot D_{\perp}}{2 M^{2}}+\frac{1}{4 M^{2}} \sigma_{\alpha \beta} q^{\alpha} D_{\perp}^{\beta}+\ldots\right] \chi_{v}\left(\mathcal{B}^{-1} x\right)
$$

$$
\text { Heinonen, Hill, Solon } 2012
$$

$$
\begin{aligned}
\frac{m_{W}}{M} c_{\chi 3}+2 c_{\chi 12} & =\frac{m_{W}}{M} c_{\chi 4}+2 c_{\chi 14}=\frac{m_{W}}{M} c_{\chi 5}-2 c_{\chi 17} \\
& =\frac{m_{W}}{M} c_{\chi 6}-2 c_{\chi 20}=c_{\chi 11}=c_{\chi 13}=0
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{L}_{\chi_{v}, \mathrm{SM}}=\frac{c_{\chi 1}}{m_{W}} \bar{\chi}_{v} \sigma_{\perp}^{\mu \nu} \chi_{v} F_{\mu \nu}+\frac{c_{\chi 2}}{m_{W}} \bar{\chi}_{v} \sigma_{\perp}^{\mu \nu} \chi_{v} \tilde{F}_{\mu \nu}+\sum_{q=u, d, s, c, b}\left\{\frac{c_{\chi 3, q}}{m_{W}^{2}} \epsilon_{\mu \nu \rho \sigma} v^{\mu} \bar{\chi}_{v} \sigma_{\perp}^{\nu \rho} \chi_{v} \bar{q} \gamma^{\sigma} q\right. \\
& +\frac{c_{\chi 4, q}}{m_{W}^{2}} \epsilon_{\mu \nu \rho \sigma} v^{\mu} \bar{\chi}_{v} \sigma_{\perp}^{\nu \rho} \chi_{v} \bar{q} \gamma^{\sigma} \gamma_{5} q+\frac{c_{\chi 5, q}}{m_{W}^{2}} \bar{\chi}_{v} \chi_{v} \bar{q} \forall q+\frac{c_{\chi 6, q}}{m_{W}^{2}} \bar{\chi}_{v} \chi_{v} \bar{q} \forall \gamma_{5} q+\frac{c_{\chi 7, q}}{m_{W}^{3}} \bar{\chi}_{v} \chi_{v} m_{q} \bar{q} q \\
& +\frac{c_{\chi 8, q}}{m_{W}^{3}} \bar{\chi}_{v} \chi_{v} \bar{q} \not \approx i v \cdot D_{-} q+\frac{c_{\chi 9, q}}{m_{W}^{3}} \bar{\chi}_{v} \chi_{v} m_{q} \bar{q} i \gamma_{5} q+\frac{c_{\chi 10, q}}{m_{W}^{3}} \bar{\chi}_{v} \chi_{v} \bar{q} \not \gamma_{5} i v \cdot D_{-} q \\
& +\frac{c_{\chi 11, q}}{m_{W}^{3}} \bar{\chi}_{v} \sigma_{\perp}^{\mu \nu} i \partial_{-\mu}^{\perp} \chi_{v} \bar{q} \gamma_{\nu} q+\frac{c_{\chi 12, q}}{m_{W}^{3}} \epsilon_{\mu \nu \rho \sigma} \bar{\chi}_{v} \sigma_{\perp}^{\mu \nu} i \partial_{-}^{\perp \rho} \chi_{v} \bar{q} \gamma^{\sigma} q+\frac{c_{\chi 13, q}}{m_{W}^{3}} \bar{\chi}_{v} \sigma_{\perp}^{\mu \nu} i \partial_{-\mu}^{\perp} \chi_{v} \bar{q} \gamma_{\nu} \gamma_{5} q \\
& +\frac{c_{\chi 14, q}}{m_{W}^{3}} \epsilon_{\mu \nu \rho \sigma} \bar{\chi}_{v} \sigma_{\perp}^{\mu \nu} i \partial_{-}^{\perp \rho} \chi_{v} \bar{q} \gamma^{\sigma} \gamma_{5} q+\frac{c_{\chi 15, q}}{m_{W}^{3}} \epsilon_{\mu \nu \rho \sigma} v^{\mu} \bar{\chi}_{v} \sigma_{\perp}^{\nu \rho} \chi_{v} \bar{q}\left(\not{ }^{\prime} i D_{-}^{\sigma}+\gamma^{\sigma} i v \cdot D_{-}\right) q \\
& +\frac{c_{\chi 16, q}}{m_{W}^{3}} \epsilon_{\mu \nu \rho \sigma} v^{\mu} \bar{\chi}_{v} \sigma_{\perp}^{\nu \rho} \chi_{v} \bar{q}\left(\nsim i D_{-}^{\sigma}+\gamma^{\sigma} i v \cdot D_{-}\right) \gamma_{5} q+\frac{c_{\chi 17, q}}{m_{W}^{3}} \bar{\chi}_{v} i \partial_{-}^{\perp \mu} \chi_{v} \bar{q} \gamma_{\mu} q \\
& +\frac{c_{\chi 18, q}}{m_{W}^{3}} \bar{\chi}_{v} \sigma_{\perp}^{\mu \nu} \partial_{+\mu}^{\perp} \chi_{v} \bar{q} \gamma_{\nu} q+\frac{c_{\chi 18, q}}{m_{W}^{3}} \epsilon_{\mu \nu \rho \sigma} \bar{\chi}_{v} \sigma_{\perp}^{\mu \nu} \partial_{+}^{\perp \rho} \chi_{v} \bar{q} \gamma^{\sigma} q+\frac{c_{\chi 20, q}}{m_{W}^{3}} \bar{\chi}_{v} i \partial_{-}^{\perp \mu} \chi_{v} \bar{q} \gamma_{\mu} \gamma_{5} q \\
& +\frac{c_{\chi 21, q}}{m_{W}^{3}} \bar{\chi}_{v} \sigma_{\perp}^{\mu \nu} \partial_{+\mu}^{\perp} \chi_{v} \bar{q} \gamma_{\nu} \gamma_{5} q+\frac{c_{\chi 22, q}}{m_{W}^{3}} \epsilon_{\mu \nu \rho \sigma} \bar{\chi}_{v} \sigma_{\perp}^{\mu \nu} \partial_{+}^{\perp \rho} \chi_{v} \bar{q} \gamma^{\sigma} \gamma_{5} q+\frac{c_{\chi 23, q}}{m_{W}^{3}} \bar{\chi}_{v} \sigma_{\perp}^{\mu \nu} \chi_{v} m_{q} \bar{q} \sigma_{\mu \nu} q \\
& \left.+\frac{c_{\chi 24, q}}{m_{W}^{3}} \epsilon_{\mu \nu \rho \sigma} \bar{\chi}_{v} \sigma_{\perp}^{\mu \nu} \chi_{v} m_{q} \bar{q} \sigma^{\rho \sigma} q\right\}+\frac{c_{\chi 25}}{m_{W}^{3}} \bar{\chi}_{v} \chi_{v} G_{\alpha \beta}^{A} G^{A \alpha \beta}+\frac{c_{\chi 26}}{m_{W}^{3}} \bar{\chi}_{v} \chi_{v} G_{\alpha \beta}^{A} \tilde{G}^{A \alpha \beta}
\end{aligned}
$$

Through dimension seven, there are seven operator classes closed under renormalization and transforming irreducibly under continuous and discrete Lorentz transformations.

QCD operator basis

$$
\begin{gathered}
V_{q}^{\mu}=\bar{q} \gamma^{\mu} q \\
A_{q}^{\mu}=\bar{q} \gamma^{\mu} \gamma_{5} q \\
T_{q}^{\mu \nu}=i m_{q} \bar{q} \sigma^{\mu \nu} \gamma_{5} q \\
O_{q}^{(0)}=m_{q} \bar{q} q, O_{g}^{(0)}=G_{\mu \nu}^{A} G^{A \mu \nu} \\
O_{5 q}^{(0)}=m_{q} \bar{q} i \gamma_{5} q, O_{5 g}^{(0)}=\epsilon^{\mu \nu \rho \sigma} G_{\mu \nu}^{A} G_{\rho \sigma}^{A} \\
O_{q}^{(2) \mu \nu}=\frac{1}{2} \bar{q}\left(\gamma^{\{\mu} i D_{-}^{\nu\}}-\frac{g^{\mu \nu}}{4} i D_{-}\right) q, \\
O_{g}^{(2) \mu \nu}=-G^{A \mu \lambda} G^{A \nu}{ }_{\lambda}+\frac{g^{\mu \nu}}{4}\left(G_{\alpha \beta}^{A}\right)^{2} \\
O_{5 q}^{(2) \mu \nu}=\frac{1}{2} \bar{q} \gamma^{\{\mu} i D_{-}^{\nu\}} \gamma_{5} q \\
\hline
\end{gathered}
$$

Example: Weak-scale matching

$$
m_{W} \sim m_{Z} \sim m_{h} \sim m_{t} \left\lvert\, \begin{aligned}
& \mathcal{L}_{\mathrm{DM}}+\mathcal{L}_{\mathrm{SM}} \\
& \downarrow \\
& \mathcal{L}_{\phi, \mathrm{SM}}+\mathcal{L}_{n_{f}=5 \mathrm{QCD}}
\end{aligned}\right.
$$

$\mathcal{L}_{\psi, \mathrm{SM}}=\frac{1}{2} \bar{\psi}\left(i \not \partial-M^{\prime}\right) \psi-\frac{1}{\Lambda} \bar{\psi}\left(c_{\psi 1}^{\prime}+i c_{\psi 2}^{\prime} \gamma_{5}\right) \psi H^{\dagger} H+\cdots$

$$
\begin{aligned}
\mathcal{L}_{\psi, \mathrm{SM}}= & \frac{1}{2} \bar{\psi}(i \not \partial-M) \psi+\frac{1}{m_{W}^{3}}\left[\bar{\psi}\left(c_{\psi 7}+i c_{\psi 8} \gamma_{5}\right) \psi \sum_{q} m_{q} \bar{q} q\right. \\
& \left.+\bar{\psi}\left(c_{\psi 17}+i c_{\psi 18} \gamma_{5}\right) \psi G_{\mu \nu}^{A} G^{A \mu \nu}\right]+\cdots, \quad \psi \rightarrow e^{-i \phi \gamma_{5}} \psi, \quad \tan 2 \phi=\frac{c_{\psi 2}^{\prime} v^{2}}{c_{\psi 1}^{\prime} v^{2}+M^{\prime} \Lambda}
\end{aligned}
$$

$$
\begin{aligned}
M & =\sqrt{\left(M^{\prime}+\frac{c_{\psi 1}^{\prime} v^{2}}{\Lambda}\right)^{2}+\left(\frac{c_{\psi 2}^{\prime} v^{2}}{\Lambda}\right)^{2}}, \\
\left\{c_{\psi 7}, c_{\psi 8}\right\} & =\frac{m_{W}^{3} M^{\prime}}{m_{h}^{2} \Lambda M}\left\{c_{\psi 1}^{\prime}+\frac{v^{2}}{M^{\prime} \Lambda}\left[c_{\psi 1}^{\prime 2}+c_{\psi 2}^{\prime 2}\right], c_{\psi 2}^{\prime}\right\} \\
\left\{c_{\psi 17}, c_{\psi 18}\right\} & =-\frac{\alpha_{s}\left(m_{W}\right)}{12 \pi}\left\{c_{\psi 7}, c_{\psi 8}\right\} .
\end{aligned}
$$

Weak-scale matching for electroweak charged DM done completely in 1401.3339

reduces to five integrals

EW pol. tensors

Renormalization constants, anomalous dimensions, and RGE solutions

$$
\begin{aligned}
& O_{i}^{\text {bare }}=Z_{i j}(\mu) O_{j}^{\mathrm{ren}}(\mu), \\
& c_{i}^{\mathrm{ren}}(\mu)=Z_{j i}(\mu) c_{j}^{\mathrm{bare}} \\
& \frac{d}{d \log \mu} O_{i}=-\gamma_{i j} O_{j}, \\
& \frac{d}{d \log \mu} c_{i}=\gamma_{j i} c_{j}, \\
& \gamma_{i j} \equiv Z_{i k}^{-1} \frac{d}{d \log \mu} Z_{k j} \\
& c_{i}\left(\mu_{l}\right)=R_{i j}\left(\mu_{l}, \mu_{h}\right) c_{j}\left(\mu_{h}\right)
\end{aligned}
$$

Wilson coefficient renormalization

$$
\begin{aligned}
& c_{q}^{(0)}(\mu)=\sum_{q^{\prime}} Z_{q^{\prime} q}^{(0)}(\mu) c_{q^{\prime}}^{(0) \text { bare }}+Z_{g q}^{(0)}(\mu) c_{g}^{(0) \text { bare }}=c_{q}^{(0) \text { bare }}+\mathcal{O}\left(\alpha_{s}^{2}\right) \\
& c_{g}^{(0)}(\mu)=\sum_{q^{\prime}} Z_{q^{\prime} g}^{(0)}(\mu) c_{q^{\prime}}^{(0) \text { bare }}+Z_{g g}^{(0)}(\mu) c_{g}^{(0) \text { bare }}=c_{g}^{(0) \text { bare }}+\mathcal{O}\left(\alpha_{s}^{2}\right) \\
& c_{q}^{(2)}(\mu)=\sum_{q^{\prime}} Z_{q^{\prime} q}^{(2)}(\mu) c_{q^{\prime}}^{(2) \text { bare }}+Z_{g q}^{(2)}(\mu) c_{g}^{(2) \text { bare }}=c_{q}^{(2) \text { bare }}+\mathcal{O}\left(\alpha_{s}\right), \\
& c_{g}^{(2)}(\mu)=\sum_{q^{\prime}} Z_{q^{\prime} g}^{(2)}(\mu) c_{q^{\prime}}^{(2) \text { bare }}+Z_{g g}^{(2)}(\mu) c_{g}^{(2) \text { bare }}=\sum_{q} \frac{1}{\epsilon} \frac{\alpha_{s}}{6 \pi} c_{q}^{(2) \text { bare }}+c_{g}^{(2) \text { bare }}+\mathcal{O}\left(\alpha_{s}^{2}\right)
\end{aligned}
$$

Heavy quark thresholds

$$
\left.\begin{array}{c|c}
m_{b} & \mathcal{L}_{n_{f}}=4 \mathrm{QCD} \\
& \downarrow \\
\mathcal{L}_{n_{f}}=5 \mathrm{QCD}
\end{array}\right] \begin{aligned}
& c_{i j}\left(\mu_{Q}\right) c_{j}^{\prime}\left(\mu_{Q}\right)
\end{aligned}
$$

Operator	Solution to matching condition
V_{q}	$M_{V}=1$
A_{q}	$M_{A}=1+\mathcal{O}\left(\alpha_{s}^{2}\right)$
T_{q}	$M_{T}=1+\mathcal{O}\left(\alpha_{s}^{2}\right)$
$O_{q}^{(0)}, O_{g}^{(0)}$	$M_{g Q}^{(0)}=-\frac{\alpha_{s}^{\prime}\left(\mu_{Q}\right)}{12 \pi}\left\{1+\frac{\alpha_{s}^{\prime}\left(\mu_{Q}\right)}{4 \pi}\left[11-\frac{4}{3} \log \frac{\mu_{Q}}{m_{Q}}\right]+\mathcal{O}\left(\alpha_{s}^{2}\right)\right\}$,
	$M_{g g}^{(0)}=1-\frac{\alpha_{s}^{\prime}\left(\mu_{Q}\right)}{3 \pi} \log \frac{\mu_{Q}}{m_{Q}}+\mathcal{O}\left(\alpha_{s}^{2}\right)$
$O_{5 q}^{(0)}, O_{5 g}^{(0)}$	$M_{5, g Q}^{(0)}=\frac{\alpha_{s}^{\prime}\left(\mu_{Q}\right)}{8 \pi}+\mathcal{O}\left(\alpha_{s}^{2}\right), M_{5, g g}^{(0)}=1+\mathcal{O}\left(\alpha_{s}\right)$
$O_{q}^{(2)}, O_{g}^{(2)}$	$M_{g Q}^{(2)}=\frac{\alpha_{s}^{\prime}}{3 \pi} \log \frac{\mu_{Q}}{m_{Q}}+\mathcal{O}\left(\alpha_{s}^{2}\right), M_{g g}^{(2)}=1+\mathcal{O}\left(\alpha_{s}\right)$
$O_{5 q}^{(2)}$	$M_{5}^{(2)}=1+\mathcal{O}\left(\alpha_{s}^{2}\right)$

Sum rule constraints on scalar matrix elements

$$
\begin{aligned}
& \bar{\chi} \chi\left\{\bar{q} q, G_{\mu \nu} G^{\mu \nu}\right\} \quad h\left\{\bar{q} q, G_{\mu \nu} G^{\mu \nu}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Iow energy theorems }
\end{aligned}
$$

Sum rule constraints on scalar matrix elements

$$
\begin{aligned}
\left\langle\theta_{\mu}^{\mu}\right\rangle= & m_{N}=\left(1-\gamma_{m}\right) \sum_{q=u, d, s, \ldots}^{n_{f}}\left\langle O_{q}^{(0)}\right\rangle+\frac{\tilde{\beta}}{2}\left\langle O_{g}^{(0)}\right\rangle \\
& \left\langle O_{i}^{\prime(S)}\right\rangle\left(\mu_{h}\right)=R_{j i}^{(S)}\left(\mu, \mu_{h}\right)\left\langle O_{j}^{(S)}\right\rangle(\mu), \\
& \left\langle O_{i}^{\prime(S)}\right\rangle\left(\mu_{b}\right)=M_{j i}^{(S)}\left(\mu_{b}\right)\left\langle O_{j}^{(S)}\right\rangle\left(\mu_{b}\right)+\mathcal{O}\left(1 / m_{b}\right)
\end{aligned}
$$

$$
\frac{2}{\tilde{\beta}(\mu)} R_{g g}=\frac{2}{\tilde{\beta}\left(\mu_{h}\right)},
$$

$$
M_{q q} \equiv 1, \quad M_{q q^{\prime}} \equiv 0, \quad M_{g q} \equiv 0,
$$

$$
M_{g g}=\frac{\tilde{\beta}^{\left(n_{f}\right)}}{\tilde{\beta}^{\left(n_{f}+1\right)}}-\frac{2}{\tilde{\beta}^{\left(n_{f}+1\right)}}\left[1-\gamma_{m}^{\left(n_{f}+1\right)}\right] M_{g Q},
$$

$$
M_{g q}=\frac{2}{\tilde{\beta}^{\left(n_{f}+1\right)}}\left[\gamma_{m}^{\left(n_{f}+1\right)}-\gamma_{m}^{\left(n_{f}\right)}\right]-\frac{2}{\tilde{\beta}^{\left(n_{f}+1\right)}}\left[1-\gamma_{m}^{\left(n_{f}+1\right)}\right] M_{q Q}
$$

Sum rule constraints on scalar matrix elements

Reduces dominant theoretical uncertainty, which comes from $\alpha_{s}\left(\mu_{c}\right)$
For heavy WIMP scattering this is an O(50-70\%) reductions, and the remaining uncertainty comes from $\alpha_{s}\left(\mu_{t}\right)$, requiring higher order matching at the weak scale.

Equivalently, we have the best perturbative QCD estimate of the charm scalar matrix element.

$$
\begin{aligned}
f_{c, N}^{(0) \prime} & =0.083-0.103 \lambda+\mathcal{O}\left(\alpha_{s}^{4}, 1 / m_{c}\right) \\
& =0.073(3)+\mathcal{O}\left(\alpha_{s}^{4}, 1 / m_{c}\right), \\
f_{q, N}^{(0) \prime} & =f_{q, N}^{(0)}+\mathcal{O}\left(1 / m_{c}\right),
\end{aligned} \quad f_{c, N}^{(0) \prime}=\left\{\begin{array}{l}
0.10(3) \\
0.07(3)
\end{array}\right.
$$

Hadronic matrix elements: vector, axial-vector, antisymmetric tensor

$$
\begin{aligned}
& \left\langle N\left(k^{\prime}\right)\right| V_{\mu}^{(q)}|N(k)\rangle \\
& \quad \equiv \bar{u}\left(k^{\prime}\right)\left[F_{1}^{(N, q)}\left(q^{2}\right) \gamma_{\mu}+\frac{i}{2 m_{N}} F_{2}^{(N, q)}\left(q^{2}\right) \sigma_{\mu \nu} q^{\nu}\right] u(k)
\end{aligned}
$$

q	$F_{1}^{(p, q)}(0)$	$F_{2}^{(p, q)}(0)$	$F_{2}^{(p, q)}(0)$
u	2	$1.62(2)$	$1.65(7)$
d	1	$-2.08(2)$	$-2.05(7)$
s	0	$-0.046(19)$	$-0.017(74)$
quark content		magnetic moment	

$$
\begin{aligned}
& \left\langle N\left(k^{\prime}\right)\right| A_{\mu}^{(q)}|N(k)\rangle \\
& \equiv \bar{u}^{(N)}\left(k^{\prime}\right)\left[F_{A}^{(N, q)}\left(q^{2}\right) \gamma_{\mu} \gamma_{5}+\frac{1}{2 m_{N}} F_{P^{\prime}}^{(N, q)}\left(q^{2}\right) \gamma_{5} q_{\mu}\right] u^{(N)}(k)
\end{aligned}
$$

$\mu(\mathrm{GeV})$	$F_{A}^{(p, u)}(0)$	$F_{A}^{(p, d)}(0)$	$F_{A}^{(p, s)}(0)$	Reference
$1-2$	$0.75(8)$	$-0.51(8)$	$-0.15(8)$	$[59]$
1	$0.80(3)$	$-0.46(4)$	$-0.12(8)$	$[60]$
2	$0.79(5)$	$-0.46(5)$	$-0.13(10)$	$[60]$

semileptonic decay and νp scattering polarized DIS

$\mu(\mathrm{GeV})$	$t_{u, p}(\mu)$	$t_{d, p}(\mu)$	$t_{s, p}(\mu)$	Reference
\ldots	$4 / 3$	$-1 / 3$	0	\ldots
1	$0.88(6)$	$-0.24(5)$	$-0.05(3)$	\ldots
1.4	$0.84(6)$	$-0.23(5)$	$-0.05(3)$	$[63]$
2	$0.81(6)$	$-0.22(5)$	$-0.05(3)$	\ldots

(polarized DIS), NR quark model, lattice

Hadronic matrix elements: scalar and pseudoscalar

$$
\begin{gathered}
\frac{E_{k}}{m_{N}}\langle N(k)| O_{q}^{(0)}|N(k)\rangle \equiv m_{N} f_{q, N}^{(0)}, \\
\frac{-9 \alpha_{s}(\mu)}{8 \pi} \frac{E_{k}}{m_{N}}\langle N(k)| O_{g}^{(0)}(\mu)|N(k)\rangle \equiv m_{N} f_{g, N}^{(0)}(\mu), \\
f_{u, N}^{(0)}=\frac{R_{u d}}{1+R_{u d}} \frac{\Sigma_{\pi N}}{m_{N}}(1+\xi), \\
f_{d, N}^{(0)}=\frac{1}{1+R_{u d}} \frac{\Sigma_{\pi N}}{m_{N}}(1-\xi), \quad \xi=\frac{1+R_{u d}}{1-R_{u d}} \frac{\Sigma_{-}}{2 \Sigma_{\pi N}}, \\
\Sigma_{\pi N}=\frac{m_{u}+m_{d}}{2}\langle N|(\bar{u} u+\bar{d} d)|N\rangle=44(13) \mathrm{MeV}, \\
\Sigma_{-}=\left(m_{d}-m_{u}\right)\langle N|(\bar{u} u-\bar{d} d)|N\rangle= \pm 2(2) \mathrm{MeV}, \\
{\left[\Sigma_{-}= \pm 2(1) \mathrm{MeV}\right]} \\
\left\langle N\left(k^{\prime}\right)\right| O_{5 q}^{(0)}|N(k)\rangle \equiv m_{N} f_{5 q, N}^{(0)}\left(q^{2}\right) \bar{u}\left(k^{\prime}\right) i \gamma_{5} u(k), \\
\left\langle N\left(k^{\prime}\right)\right| O_{5 g}^{(0)}|N(k)\rangle \equiv m_{N} f_{5 g, N}^{(0)}\left(q^{2}, \mu\right) \bar{u}\left(k^{\prime}\right) i \gamma_{5} u(k), \\
\sum_{q} \partial_{\mu} A_{q}^{\mu}=\sum_{q} 2 i m_{q} \bar{q} \gamma_{5} q-\frac{g^{2} n_{f}}{32 \pi^{2}} \epsilon^{\mu \nu \rho \sigma} G_{\mu \nu}^{a} G_{\rho \sigma}^{a}, \\
\sum_{q=u, d, s}\left\langle N\left(k^{\prime}\right)\right| \bar{q} i \gamma_{5} q|N(k)\rangle \equiv \kappa\left(q^{2}, \mu\right) \bar{u}\left(k^{\prime}\right) i \gamma_{5} u(k)
\end{gathered}
$$

q	$f_{q, p}^{(0)}$	$f_{q, n}^{(0)}$
u	$0.016(5)(3)(1)$	$0.014(5)\binom{+2}{-3}(1)$
d	$0.029(9)(3)(2)$	$0.034(9)\binom{+3}{-2}(2)$
s	$0.043(21)$	$0.043(21)$

lattice
Lattice determination of charm is interesting, and would assess impact of power corrections

q	$f_{5 q, p}^{(0)}$	Reference $[79]$	$f_{5 q, n}^{(0)}$	Reference [79]
u	$0.42(8)(1)$	0.43	$-0.41(8)(1)$	-0.42
d	$-0.84(8)(3)$	-0.84	$0.85(8)(3)$	0.85
s	$-0.48(8)(1)(3)$	-0.50	$-0.06(8)(1)(3)$	-0.08

recent confusion in the literature studying simplified models for the galactic excess:
1406.5542, 1404.0022, ...

Hadronic matrix elements: CP-even and CP-odd tensors

$$
\begin{aligned}
\frac{E_{k}}{m_{N}}\langle N(k)| O_{q}^{(2) \mu \nu}(\mu)|N(k)\rangle & \equiv \frac{1}{m_{N}}\left(k^{\mu} k^{\nu}-\frac{g^{\mu \nu}}{4} m_{N}^{2}\right) f_{q, N}^{(2)}(\mu) \\
\frac{E_{k}}{m_{N}}\langle N(k)| O_{g}^{(2) \mu \nu}(\mu)|N(k)\rangle & \equiv \frac{1}{m_{N}}\left(k^{\mu} k^{\nu}-\frac{g^{\mu \nu}}{4} m_{N}^{2}\right) f_{g, N}^{(2)}(\mu)
\end{aligned}
$$

$\mu(\mathrm{GeV})$	$f_{u, p}^{(2)}(\mu)$	$f_{d, p}^{(2)}(\mu)$	$f_{s, p}^{(2)}(\mu)$	$f_{c, p}^{(2)}(\mu)$	$f_{b, p}^{(2)}(\mu)$	$f_{g, p}^{(2)}(\mu)$
1	$0.404(9)$	$0.217(8)$	$0.024(4)$	\ldots	\ldots	$0.356(29)$
1.2	$0.383(8)$	$0.208(8)$	$0.027(4)$	\ldots	\ldots	$0.381(25)$
1.4	$0.370(8)$	$0.202(7)$	$0.030(4)$	\ldots	\ldots	$0.398(23)$
2	$0.346(7)$	$0.192(6)$	$0.034(3)$	\ldots	\ldots	$0.419(19)$
$80.4 / \sqrt{2}$	$0.260(4)$	$0.158(4)$	$0.053(2)$	$0.036(1)$	$0.0219(4)$	$0.470(8)$
100	$0.253(4)$	$0.156(4)$	$0.055(2)$	$0.038(1)$	$0.0246(5)$	$0.472(8)$
$172 \sqrt{2}$	$0.244(4)$	$0.152(3)$	$0.057(2)$	$0.042(1)$	$0.028(1)$	$0.476(7)$

PDFs from unpolarized DIS

$$
\frac{E_{k}}{m_{N}}\langle N(k)| O_{5 q}^{(2) \mu \nu}(\mu)|N(k)\rangle \equiv s^{\{\mu} k^{\nu\}} f_{5 q, N}^{(2)}(\mu)
$$

$\mu(\mathrm{GeV})$	$f_{5 u, p}^{(2)}(\mu)$	$f_{5 d, p}^{(2)}(\mu)$	$f_{5 s, p}^{(2)}(\mu)$
1	$0.186(7)$	$-0.069(8)$	$-0.007(6)$
1.2	$0.175(6)$	$-0.065(7)$	$-0.006(6)$
1.4	$0.167(6)$	$-0.062(7)$	$-0.006(5)$
2	$0.154(5)$	$-0.056(6)$	$-0.005(5)$

PDFs from polarized DIS

Nucleon level effective theory and relativistic invariance

$$
\begin{aligned}
\mathcal{L}_{N \chi, P T}= & \frac{1}{m_{N}^{2}}\left\{d_{1} N^{\dagger} \sigma^{i} N \chi^{\dagger} \sigma^{i} \chi+d_{2} N^{\dagger} N \chi^{\dagger} \chi\right\}+\frac{1}{m_{N}^{4}}\left\{d_{3} N^{\dagger} \partial_{+}^{i} N \chi^{\dagger} \partial_{+}^{i} \chi+d_{4} N^{\dagger} \partial_{-}^{i} N \chi^{\dagger} \partial_{-}^{i} \chi\right. \\
& +d_{5} N^{\dagger}\left(\partial^{2}+\grave{\partial}^{2}\right) N \chi^{\dagger} \chi+d_{6} N^{\dagger} N \chi^{\dagger}\left(\partial^{2}+\check{\partial}^{2}\right) \chi+i d_{8} \epsilon^{i j k} N^{\dagger} \sigma^{i} \partial_{-}^{j} N \chi^{\dagger} \partial_{+}^{k} \chi \\
& +i d_{9} \epsilon^{i j k} N^{\dagger} \sigma^{i} \partial_{+}^{j} N \chi^{\dagger} \partial_{-}^{k} \chi+i d_{11} \epsilon^{i j k} N^{\dagger} \partial_{+}^{k} N \chi^{\dagger} \sigma^{i} \partial_{-}^{j} \chi+i d_{12} i^{i j k} N^{\dagger} \partial_{-}^{k} N \chi^{\dagger} \sigma^{i} \partial_{+}^{j} \chi \\
& +d_{13} N^{\dagger} \sigma^{i} \partial_{+}^{j} N \chi^{\dagger} \sigma^{i} \partial_{+}^{j} \chi+d_{14} N^{\dagger} \sigma^{i} \partial_{-}^{j} N \chi^{\dagger} \sigma^{i} \partial_{-}^{j} \chi+d_{15} N^{\dagger} \boldsymbol{\sigma} \cdot \partial_{+} N \chi^{\dagger} \boldsymbol{\sigma} \cdot \partial_{+} \chi \\
& +d_{16} N^{\dagger} \boldsymbol{\sigma} \cdot \boldsymbol{\partial}_{-} N \chi^{\dagger} \boldsymbol{\sigma} \cdot \partial_{-}+d_{17} N^{\dagger} \sigma^{i} \partial_{-}^{j} N \chi^{\dagger} \sigma^{j} \partial_{-}^{i} \chi \\
& +d_{18} N^{\dagger} \sigma^{i}\left(\partial^{2}+\grave{\partial}^{2}\right) N \chi^{\dagger} \sigma^{i} \chi+d_{19} N^{\dagger} \sigma^{i}\left(\partial^{i} \partial^{j}+\grave{\partial}^{j} \partial^{i}\right) N \chi^{\dagger} \sigma^{j} \chi \\
& \left.+d_{20} N^{\dagger} \sigma^{i} N \chi^{\dagger} \sigma^{i}\left(\partial^{2}+\overleftarrow{\partial}^{2}\right) \chi+d_{21} N^{\dagger} \sigma^{i} N \chi^{\dagger} \sigma^{j}\left(\partial^{i} \partial^{j}+\grave{\partial}^{j} \partial^{i}\right) \chi\right\}+\mathcal{O}\left(1 / m_{N}^{6}\right),
\end{aligned}
$$

$u_{\mu} V_{q}^{u}=\left[F_{1}^{(q)}(0)\right] \bar{N}_{u} N_{u}+\frac{1}{m_{N}^{2}}\left\{\left[-\frac{1}{8} F_{1}^{(q)}(0)-m_{N}^{2} F_{1}^{(q)}(0)-\frac{1}{4} F_{2}^{(q)}(0)\right] \partial_{\perp}^{2}\left(\bar{N}_{u} N_{u}\right)\right.$
$\left.+\left[-\frac{1}{4} F_{1}^{(q)}(0)-\frac{1}{2} F_{2}^{(q)}(0)\right] i \bar{N}_{u} \mathcal{J}_{1}^{\prime} \bar{\partial}_{\perp}^{\nu} \sigma_{\perp w} N_{u}\right\}+\mathcal{O}\left(1 / m_{N}^{4}\right)$,
$V_{q \perp}^{\mu}=\frac{1}{m_{N}}\left\{\left[\frac{1}{2} F_{1}^{(q)}(0)\right] i \bar{N}_{u} \overleftrightarrow{\partial}_{1}^{\mu} N_{u}+\left[\frac{1}{2} F_{1}^{(q)}(0)+\frac{1}{2} F_{2}^{(q)}(0)\right] \partial_{\perp \iota}\left(\bar{N}_{u} \sigma_{\perp}^{\mu \nu} N_{u}\right)\right\}+\mathcal{O}\left(1 / m_{N}^{3}\right)$,
$u_{\mu} A_{q}^{\mu}=\frac{1}{m_{N}}\left\{\left[-\frac{1}{4} F_{A}^{(q)}(0)\right] \epsilon^{\mu \epsilon^{\mu \rho} \sigma_{u_{\mu}} \bar{U}_{u}} \ddot{\partial}_{\perp \sigma_{\perp \rho \sigma}} \sigma_{u}\right\}+\mathcal{O}\left(1 / m_{N}^{3}\right)$,
$A_{q \perp}^{\mu}=\left[-\frac{1}{2} F_{A}^{(q)}(0)\right]^{\mu \mu^{\mu \rho} \sigma_{\nu} \bar{N}_{u} \sigma_{\perp \rho \rho} N_{u}}$
$+\frac{1}{m_{N}^{2}}\left\{\left[\frac{1}{\overline{8}} F_{A}^{(q)}(0)+m_{N}^{2} F_{A}^{(q)}(0)\right]^{\epsilon^{\mu \mu \rho} \sigma_{u}} \bar{N}_{u} \bar{\partial}_{\perp}^{\alpha} \partial_{\perp a} \sigma_{\perp o \sigma} N_{u}\right.$
$\left.+\left[-\frac{1}{16} F_{A}^{(q)}(0)+\frac{1}{2} m_{N}^{2} F_{A}^{(q)}(0)\right]\right]_{e^{\mu \mu \rho} \sigma_{u} \bar{N}_{u}\left(\tilde{\partial}^{2}+\partial_{\perp}^{2}\right) \sigma_{\perp \rho \sigma} N_{u}}$

$$
\begin{aligned}
& \left.+\left[-\frac{1}{4} F_{A}^{(q)}(0)\right] i^{\mu \omega \alpha \beta} \beta_{u_{\nu}} \bar{N}_{u} \partial_{\perp \alpha} \bar{\partial}_{\perp \beta} N_{u}\right\}+\mathcal{O}\left(1 / m_{N}^{4}\right), \\
& \left.+\left[-\frac{1}{4} F_{1}^{(q)}(0)-\frac{1}{2} F_{2}^{(q)}(0)\right] i \bar{N}_{u} \partial_{\perp}^{\mu} \stackrel{\partial}{\perp}_{\perp}^{\nu} \sigma_{\perp \mu \nu} N_{u}\right\}+\mathcal{O}\left(1 / m_{N}^{4}\right), \\
& V_{q \perp}^{\mu}=\frac{1}{m_{N}}\left\{\left[\frac{1}{2} F_{1}^{(q)}(0)\right] i \bar{N}_{u} \stackrel{\leftrightarrow}{\partial}_{\perp}^{\mu} N_{u}+\left[\frac{1}{2} F_{1}^{(q)}(0)+\frac{1}{2} F_{2}^{(q)}(0)\right] \partial_{\perp \nu}\left(\bar{N}_{u} \sigma_{\perp}^{\mu \nu} N_{u}\right)\right\}+\mathcal{O}\left(1 / m_{N}^{3}\right), \\
& u_{\mu} A_{q}^{\mu}=\frac{1}{m_{N}}\left\{\left[-\frac{1}{4} F_{A}^{(q)}(0)\right] i \epsilon^{\mu \nu \rho \sigma} u_{\mu} \bar{N}_{u} \stackrel{\leftrightarrow}{\partial}_{\perp \nu} \sigma_{\perp \rho \sigma} N_{u}\right\}+\mathcal{O}\left(1 / m_{N}^{3}\right), \\
& \begin{array}{l}
+\frac{1}{m_{N}^{2}}\left\{\left[\frac{1}{8} F_{A}^{(q)}(0)+m_{N}^{2} F_{A}^{(q) \prime}(0)\right] \epsilon^{\mu \nu \rho \sigma} u_{\nu} \bar{N}_{u} \overleftarrow{\partial}_{\perp}^{\alpha} \partial_{\perp \alpha} \sigma_{\perp \rho \sigma} N_{u}\right. \\
+\left[-\frac{1}{16} F_{A}^{(q)}(0)+\frac{1}{2} m_{N}^{2} F_{A}^{(q) \prime}(0)\right] \epsilon^{\mu \nu \rho \sigma} u_{\nu} \bar{N}_{u}\left(\overleftarrow{\partial}^{2}+\partial_{\perp}^{2}\right) \sigma_{\perp \rho \sigma} N_{u}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { - }
\end{aligned}
$$

d's can be matched from NR limit of form factors

$$
\begin{aligned}
T_{q}^{\mu \nu} & =m_{N}\left[\left(\frac{m_{q} t_{q}}{m_{N}}\right) \epsilon^{\alpha \beta \gamma[\mu} u^{\nu]} u_{\alpha} \bar{N} \sigma_{\beta \gamma}^{\perp} N+\mathcal{O}\left(1 / m_{N}^{2}\right)\right] \\
O_{q}^{(0)} & =m_{N}\left[f_{q}^{(0)} \bar{N}_{u} N_{u}+\mathcal{O}\left(1 / m_{N}^{2}\right)\right], \\
O_{g}^{(0)} & =m_{N}\left[\left(\frac{-8 \pi}{9 \alpha_{s}}\right) f_{g}^{(0)} \bar{N}_{u} N_{u}+\mathcal{O}\left(1 / m_{N}^{2}\right)\right], \\
O_{5 q, 5 g}^{(0)} & =\frac{1}{4} f_{5 q, 5 g}^{(0)} \epsilon^{\mu \nu \rho \sigma} u_{\mu} \partial_{\perp \nu}\left(\bar{N} \sigma_{\rho \sigma}^{\perp} N\right)+\mathcal{O}\left(1 / m_{N}^{2}\right), \\
u_{\mu} u_{\nu} O_{q, g}^{(2) \mu \nu} & =m_{N}\left[\frac{3}{4} f_{q, g}^{(2)} \bar{N}_{u} N_{u}+\mathcal{O}\left(1 / m_{N}^{2}\right)\right], \\
O_{5 q}^{(2) \mu \nu} & =m_{N}\left[\frac{1}{2} f_{5 q}^{(2)} \epsilon^{\alpha \beta \gamma\{\mu} u^{\nu\}} u_{\alpha} \bar{N} \sigma_{\beta \gamma}^{\perp} N+\mathcal{O}\left(1 / m_{N}^{2}\right)\right],
\end{aligned}
$$

Nucleon level effective theory and relativistic invariance

$$
\begin{aligned}
\mathcal{L}_{N \chi, P T}= & \frac{1}{m_{N}^{2}}\left\{d_{1} N^{\dagger} \sigma^{i} N \chi^{\dagger} \sigma^{i} \chi+d_{2} N^{\dagger} N \chi^{\dagger} \chi\right\}+\frac{1}{m_{N}^{4}}\left\{d_{3} N^{\dagger} \partial_{+}^{i} N \chi^{\dagger} \partial_{+}^{i} \chi+d_{4} N^{\dagger} \partial_{-}^{i} N \chi^{\dagger} \partial_{-}^{i} \chi\right. \\
& +d_{5} N^{\dagger}\left(\partial^{2}+\overleftarrow{\partial}^{2}\right) N \chi^{\dagger} \chi+d_{6} N^{\dagger} N \chi^{\dagger}\left(\partial^{2}+\check{\partial}^{2}\right) \chi+i d_{8} \epsilon^{i j k} N^{\dagger} \sigma^{i} \partial_{-}^{j} N \chi^{\dagger} \partial_{+}^{k} \chi \\
& +i d_{9} \epsilon^{i j k} N^{\dagger} \sigma^{i} \partial_{+}^{j} N \chi^{\dagger} \partial_{-}^{k} \chi+i d_{11} \epsilon^{i j k} N^{\dagger} \partial_{+}^{k} N \chi^{\dagger} \sigma^{i} \partial_{-}^{j} \chi+i d_{12} e^{i j k} N^{\dagger} \partial_{-}^{k} N \chi^{\dagger} \sigma^{i} \partial_{+}^{j} \chi \\
& +d_{13} N^{\dagger} \sigma^{i} \partial_{+}^{j} N \chi^{\dagger} \sigma^{i} \partial_{+}^{j} \chi+d_{14} N^{\dagger} \sigma^{i} \partial_{-}^{j} N \chi^{\dagger} \sigma^{i} \partial_{-}^{j} \chi+d_{15} N^{\dagger} \boldsymbol{\sigma} \cdot \partial_{+} N \chi^{\dagger} \boldsymbol{\sigma} \cdot \partial_{+} \chi \\
& +d_{16} N^{\dagger} \boldsymbol{\sigma} \cdot \boldsymbol{\partial}_{-} N \chi^{\dagger} \boldsymbol{\sigma} \cdot \partial_{-\chi}+d_{17} N^{\dagger} \sigma^{i} \partial_{-}^{j} N \chi^{\dagger} \sigma^{j} \partial_{-\chi}^{i} \\
& +d_{18} N^{\dagger} \sigma^{i}\left(\partial^{2}+\overleftarrow{\partial}^{2}\right) N \chi^{\dagger} \sigma^{i} \chi+d_{19} N^{\dagger} \sigma^{i}\left(\partial^{i} \partial^{j}+\overleftarrow{\partial}^{j} \partial^{i}\right) N \chi^{\dagger} \sigma^{j} \chi \\
& \left.+d_{20} N^{\dagger} \sigma^{i} N \chi^{\dagger} \sigma^{i}\left(\partial^{2}+\overleftarrow{\partial}^{2}\right) \chi+d_{21} N^{\dagger} \sigma^{i} N \chi^{\dagger} \sigma^{j}\left(\partial^{i} \partial^{j}+\check{\partial}^{j} \partial^{i}\right) \chi\right\}+\mathcal{O}\left(1 / m_{N}^{6}\right),
\end{aligned}
$$

d's can be matched from NR limit of form factors
impose Lorentz symmetry

$$
\begin{gathered}
N \rightarrow e^{i m_{N} \boldsymbol{\eta} \cdot \boldsymbol{x}}\left[1-\frac{i \boldsymbol{\eta} \cdot \boldsymbol{\partial}}{2 m_{N}}+\frac{\boldsymbol{\sigma} \times \boldsymbol{\eta} \cdot \boldsymbol{\partial}}{4 m_{N}}+\ldots\right] N, \quad \chi \rightarrow e^{i m_{\chi} \boldsymbol{\eta} \cdot \boldsymbol{x}}\left[1-\frac{i \boldsymbol{\eta} \cdot \boldsymbol{\partial}}{2 m_{\chi}}+\frac{\boldsymbol{\sigma} \times \boldsymbol{\eta} \cdot \boldsymbol{\partial}}{4 m_{\chi}}+\ldots\right] \chi \\
\partial_{t} \rightarrow \partial_{t}-\boldsymbol{\eta} \cdot \boldsymbol{\partial}, \quad \boldsymbol{\partial} \rightarrow \boldsymbol{\partial}-\boldsymbol{\eta} \partial_{t} . \\
r d_{4}+d_{5}=\frac{d_{2}}{4}, \quad d_{5}=r^{2} d_{6}, \quad 8 r\left(d_{8}+r d_{9}\right)=-r d_{2}+d_{1}, \quad 8 r\left(r d_{11}+d_{12}\right)=-d_{2}+r d_{1}, \\
r d_{14}+d_{18}=\frac{d_{1}}{4}, \quad d_{18}=r^{2} d_{20}, \quad 2 r d_{16}+d_{19}=\frac{d_{1}}{4}, \quad r\left(d_{16}+d_{17}\right)+d_{19}=0, \quad d_{19}=r^{2} d_{21}
\end{gathered}
$$

or Galilean?

$$
\begin{aligned}
& \left.N \rightarrow e^{i m_{N} \eta \cdot x} N, \quad \chi \rightarrow e^{i m_{\chi} \eta \cdot x} \chi, \quad \mathbf{v}_{\mathrm{rel}}=\frac{1}{2} \frac{\left[\underline{p}+\boldsymbol{p}^{\prime}\right.}{m_{N}}-\frac{\boldsymbol{k}+\boldsymbol{k}^{\prime}}{m_{\chi}}\right], \quad q \equiv \boldsymbol{p}^{\prime}-\boldsymbol{p}=\boldsymbol{k}-\boldsymbol{k}^{\prime}, \quad \boldsymbol{P} \equiv \boldsymbol{p}+\boldsymbol{k}=\boldsymbol{p}^{\prime}+\boldsymbol{k}^{\prime} . \\
& \partial_{t} \rightarrow \partial_{t}-\boldsymbol{\eta} \cdot \partial, \quad \partial \rightarrow \boldsymbol{\partial},
\end{aligned}
$$

$\mathcal{L}_{\mathrm{DM}}+\mathcal{L}_{\mathrm{SM}}$

Example: Isospin violating dark matter

$$
\mathcal{L}_{\chi, \mathrm{SM}}=\frac{1}{\Lambda^{2}} \bar{\chi} \chi\left[b_{u} \bar{u} u+b_{d} \bar{d} d+\frac{b_{g}}{\Lambda}\left(G_{\mu \nu}^{a}\right)^{2}\right]
$$

Meaningful predictions require both a precise knowledge of hadronic inputs and a careful treatment of renormalization effects.

Example: Heavy WIMP scattering

$$
\begin{aligned}
& c_{s}=c_{s, 0}+c_{s, 1} \frac{V_{p}}{V}+\ldots \\
& c_{i}=c_{i, 0}+c_{i, 1} \frac{m_{W}}{M}+\ldots
\end{aligned}
$$

universal gas law
universal heavy WIMP limit

Universal heavy WIMP limit

$\mu_{t} \quad \vec{c}_{(3)}^{(S)}\left(\mu_{0}\right)=R_{(3)}^{(S)}\left(\mu_{0}, \mu_{c}\right) M_{(3,4)}^{(S)}\left(\mu_{c}\right) R_{(4)}^{(S)}\left(\mu_{c}, \mu_{b}\right) M_{(4,5)}^{(S)}\left(\mu_{b}\right) R_{(5)}^{(S)}\left(\mu_{b}, \mu_{t}\right) \bar{c}_{(5)}^{(S)}\left(\mu_{t}\right)$
$-\mu_{b}$

	u	d	s	c	b	g
$c^{(0)}\left(\mu_{t}, 5\right)$	-0.407	-0.407	-0.407	-0.407	-0.424	0.004
$c^{(0)}\left(\mu_{b}, 5\right)$	-0.418	-0.418	-0.418	-0.418	-0.436	0.009
$c^{(0)}\left(\mu_{b}, 4\right)$	-0.418	-0.418	-0.418	-0.418	-	0.012
$c^{(0)}\left(\mu_{c}, 4\right)$	-0.443	-0.443	-0.443	-0.443	-	0.022
$c^{(0)}\left(\mu_{c}, 3\right)$	-0.443	-0.443	-0.443	-	-	0.028
$c^{(0)}\left(\mu_{0}, 3\right)$	-0.458	-0.458	-0.458	-	-	0.033
$\langle N\| c^{(0)}\left(\mu_{0}, 3\right) O^{(0)}\|N\rangle(\mathrm{MeV})$	-8	-13	-18	-	-	-128
$\mathcal{M}_{p}^{(0)}=-167\binom{+1}{-1}\binom{+0}{-1}\binom{+5}{-14}(2)(3)(5) \mathrm{MeV}$						

$-\mu_{c}$
$-\mu_{0}$

Transparency of WIMPs to nucleons

$$
\begin{gathered}
\sigma \sim\left|\mathcal{M}^{(0)}+\mathcal{M}^{(2)}\right|^{2} \quad \mathcal{M}_{p}^{(0)}=-167\left({ }_{-1}^{+1}\right)\binom{+0}{{ }_{-1}}\left({ }_{-14}^{+5}\right)(2)(3)(5) \mathrm{MeV} \\
\mathcal{M}_{p}^{(2)}=216\left({ }_{-7}^{+11}\right)(2)(2)(1)(2) \mathrm{MeV} \\
\mathrm{~J}=1, \mathrm{Y}=0: \quad \mathcal{M}_{p}^{(2)}+\mathcal{M}_{p}^{(0)}=49\left({ }_{-10}^{+19}\right)(7) \mathrm{MeV} \\
\mathrm{~J}=1 / 2, \mathrm{Y}=1 / 2: \quad \mathcal{M}_{p}^{(2)}+\mathcal{M}_{p}^{(0)}=1.5\left({ }_{-4}^{+7}\right)(3) \mathrm{MeV}
\end{gathered}
$$

Model-independent uncertainties

$$
\alpha_{s}\left(\mu_{t}\right), m_{W} / M, m_{b} / m_{W}, \Lambda_{\mathrm{QCD}}^{2} / m_{c}^{2}
$$

$$
\begin{aligned}
& \sigma_{\mathrm{SI}}=1.3_{-0.5-0.3}^{+1.2+0.4} \times 10^{-47} \mathrm{~cm}^{2} \\
& \sigma_{\mathrm{SI}} \lesssim 10^{-48} \mathrm{~cm}^{2}(95 \% \mathrm{C.L.}) \\
& \sigma_{\mathrm{SI}} \sim \frac{\alpha_{2}^{4} m_{N}^{4}}{m_{W}^{2}}\left(\frac{1}{m_{W}^{2}}, \frac{1}{m_{h}^{2}}\right)^{2} \sim 10^{-45} \mathrm{~cm}^{2} \\
& \sigma \approx 3 \times 10^{-47}\left[1-\left(104 \mathrm{GeV} / m_{h}\right)^{2}\right]^{2}\left[J(J+1)-\left[\frac{1+\left(104 \mathrm{GeV} / m_{h}\right)^{2}}{1-\left(104 \mathrm{GeV} / m_{h}\right)^{2}}\right] \frac{Y^{2}}{2}\right]^{2}
\end{aligned}
$$

Model-independent uncertainties

pQCD corrections in the RG running from μ_{c} to μ_{0} and in the spin-0 gluon matrix element for triplet

Sensitivity to model-independent inputs

Junnarkar, Walker-Loud [1301.1114]

$$
\begin{aligned}
\mathrm{J}=1, \mathrm{Y}=0: & \sigma_{\mathrm{SI}}=1.3_{-0.5-0.3}^{+1.2+0.4} \times 10^{-47} \mathrm{~cm}^{2} \\
\mathrm{~J}=1 / 2, \mathrm{Y}=1 / 2: & \sigma_{\mathrm{SI}} \lesssim 10^{-48} \mathrm{~cm}^{2} \quad(95 \% \mathrm{C} . \mathrm{L} .)
\end{aligned}
$$

WIMP observables are interesting, multiple-scale field theory problems

M
m_{W}
annihilation: sommerfeld enhancement, bound states,
thermal bath effects, Sudakov logs
weak scale matching
power corrections, other UV completions

