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Scrutiny of underlying astrophysics is important, but 
we’ll stick to Standard Model physics here.

annihilation: sommerfeld enhancement, bound states,  
thermal bath effects, Sudakov logs

production: complementarity 

scattering: nucleon matrix elements, DM-nucleon 
EFT, multinucleon effects
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QCD and EW running
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LHC is carving out parameter space, 
pushing to regions requiring precision

QCD

DM

calculability universality precision

brown muck, 
simple

factorization, 
heavy quark symmetry

O(1 - 10 %), 
control uncertainties

unknown O(102 - 104 %)SM anatomy
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Develop an effective theory framework to put a handle on 
model-dependent and -independent uncertainties
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Figure 26. A compilation of WIMP-nucleon spin-independent cross section limits (solid curves), hints
for WIMP signals (shaded closed contours) and projections (dot and dot-dashed curves) for US-led direct
detection experiments that are expected to operate over the next decade. Also shown is an approximate
band where coherent scattering of 8B solar neutrinos, atmospheric neutrinos and di↵use supernova neutrinos
with nuclei will begin to limit the sensitivity of direct detection experiments to WIMPs. Finally, a suite of
theoretical model predictions is indicated by the shaded regions, with model references included.

We believe that any proposed new direct detection experiment must demonstrate that it meets at least one
of the following two criteria:

• Provide at least an order of magnitude improvement in cross section sensitivity for some range of
WIMP masses and interaction types.

• Demonstrate the capability to confirm or deny an indication of a WIMP signal from another experiment.

The US has a clear leadership role in the field of direct dark matter detection experiments, with most
major collaborations having major involvement of US groups. In order to maintain this leadership role, and
to reduce the risk inherent in pushing novel technologies to their limits, a variety of US-led direct search

Community Planning Study: Snowmass 2013

wino: dimensional estimate
Cirelli, Fornengo, Strumia (2005)
Essig (2009)

this work}
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          (MicrOMEGAs)

SM
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LHC pushing us into new regime: MDM ≫ mW

Not quibbling about percents 
(example 1: heavy WIMP scattering)
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annihilation: thermal, theoretical control of Sudakov logs, 
production: null results pushing to higher limits 
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LDM + LSM
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Figure 2: Matching condition onto gluon operators. The notation is as in Fig. 1.

Matching conditions onto gluon operators are from the diagrams of Fig. (2):

c(0)
2 (µt) = C�s(µt)

4⇤

�
1

3x2
h

+
3 + 4xt + 2x2

t

6(1 + xt)2

⇥
,

c(2)
2 (µt) = C�s(µt)

4⇤

�
� 32

9
log

µt

mW
� 4� 4(2 + 3xt)

9(1 + xt)3
log

µt

mW (1 + xt)

� 4(12x5
t � 36x4

t + 36x3
t � 12x2

t + 3xt � 2)

9(xt � 1)3
log

xt

1 + xt
� 8xt(�3 + 7x2

t )

9(x2
t � 1)3

log 2

� 48x6
t + 24x5

t � 104x4
t � 35x3

t + 20x2
t + 13xt + 18

9(x2
t � 1)2(1 + xt)

⇥
. (22)

There is no dependence of c(0)
2 or c(2)

2 on CKM matrix elements in the limit of vanishing
d, s, b quark masses. The renormalized coe⇤cients are computed in the MS scheme. We have
employed Fock-Schwinger (x · A = 0) gauge [10] to compute the full-theory amplitudes for
gluonic operators in Fig. 2. The e�ective theory subtractions are e⇤ciently performed in
a scheme with massless light quarks, using dimensional regularization as infrared regulator.
We have verified that the same results are obtained using finite masses and taking the limit
mq/mW ⇤ 0. Details of this computation will be presented elsewhere.

5 RG evolution to hadronic scales

To account for perturbative corrections involving large logarithms, e.g. �s(µ0) log mt/µ0, we
employ renormalization group evolution to sum leading logarithms to all orders.
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|NihN |
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Figure 1: Matching condition for quark operators. Double lines denote heavy scalars, zigzag
lines denote W bosons, dashed lines denote Higgs bosons, single lines with arrows denote
quarks, and the solid square denotes an e�ective theory vertex. Diagrams with crossed W
lines are not displayed.

with derivatives acting on ⌃v or involving ⇥5, since these lead to spin-dependent interactions
that are suppressed for low-velocity scattering. The basis of operators is then
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where we have chosen QCD operators of definite spin,
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Here A{µB⇧} ⇥ (AµB⇧ + A⇧Bµ)/2 denotes symmetrization. We employ dimensional regu-
larization with d = 4 � 2⇤ the spacetime dimension. We use the background field method
for gluons in the e�ective theory thus ignoring gauge-variant operators, and assume that ap-
propriate field redefinitions are employed to eliminate operators that vanish by leading order
equations of motion. The matrix elements of the gluonic operators, O(S)

2 , are numerically
large, representing a substantial contribution of gluons to the energy and momentum of the
nucleon. To account for the leading contributions from both quark and gluon operators, we
compute the coe⌅cients c(S)

2 through O(�s) and c(S)
1q through O(�0

s).

4 Weak scale matching

The matching conditions for quark operators in the nf = 5 flavor theory at renormalization
scale µ = µt ⇤ mt ⇤ mW ⇤ mh are obtained from the diagrams in Fig. (1):
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where subscript U denotes u or c and subscript D denotes d, s or b. Here C = [⇧�2
2(µt)][J(J +

1)/2], xh ⇥ mh/mW and xt ⇥ mt/mW . We ignore corrections of order mq/mW for q =
u, d, s, c, b, and have used CKM unitarity to simplify the results.
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In the rest of the talk,

and illustrate with phenomenological examples.
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Zeroth order question: why bother with radiative corrections?

µ1

µ2

L =
X

i

ci(µ)Oi(µ) dMphys

dµ
= 0Mphys =

X

i

ci(µ)hOi(µ)i

7

- some matrix elements acessible 
only at a certain scale

- (avoid certain uncertainties)

⇠ ↵ log

µ1

µ2

- use complementarity

- get the LO (LL) result



Currents: relativistic scalar or fermion

vμ → −vμ; χv → χcv ¼ Cχ"v: ð3Þ

262 Equivalently, we may impose CPT invariance, applying
263 the usual CPT transformations for relativistic fields,
264 but employing a modified version of CPT for the heavy
265 particle, under which3

C∶ χðt; xÞ → ξχðt; xÞ;
P∶ χðt; xÞ → ηχðt;−xÞ;
T∶ χðt; xÞ → ζSχð−t; xÞ; ð4Þ

266 where S ¼ iσ2 for fermions and S ¼ 1 for scalars [33].
267 In this formulation of the self-conjugate parity, the action

268of discrete symmetries transforms fields but leaves the
269reference vector vμ unchanged. Hence, it may be readily
270employed even when the reference vector is fixed, e.g., to
271vμ ¼ ð1; 0Þ in the rest frame of the heavy particle.

272C. Operator basis

273Upon combining the SM building blocks in (1) with the
274DM building blocks in Table I, and performing field
275redefinitions to eliminate redundant operators, we obtain
276the effective Lagrangian for DM interactions below the
277weak scale.
278For the relativistic scalar case we have the following
279interactions,

Lϕ;SM ¼
X

q¼u;d;s;c;b

!
cϕ1;q
m2

W
jϕj2mqq̄qþ

cϕ2;q
m2

W
jϕj2mqq̄iγ5qþ

cϕ3;q
m2

W
ϕ"i∂μ

−ϕq̄γμqþ
cϕ4;q
m2

W
ϕ"i∂μ

−ϕq̄γμγ5q
"

þ
cϕ5
m2

W
jϕj2GA

αβG
Aαβ þ

cϕ6
m2

W
jϕj2GA

αβ
~GAαβ þ & & & : ð5Þ

280 For antisymmetric tensors we define the shorthand notation ~Tμν ¼ ϵμνρσTρσ=2 (we use the convention ϵ0123 ¼ þ1). The
281 ellipsis in (5) denotes operators of dimension six and higher involving the photon, and operators of dimension seven and
282 higher involving quarks and gluons. For a real scalar the coefficients cϕn vanish for n ¼ 3; 4.
283 For the relativistic fermion case we have the following interactions,

Lψ ;SM ¼
cψ1
mW

ψ̄σμνψFμν þ
cψ2
mW

ψ̄σμνψ ~Fμν þ
X

q¼u;d;s;c;b

!
cψ3;q
m2

W
ψ̄γμγ5ψ q̄γμqþ

cψ4;q
m2

W
ψ̄γμγ5ψ q̄γμγ5qþ

cψ5;q
m2

W
ψ̄γμψ q̄γμq

þ
cψ6;q
m2

W
ψ̄γμψ q̄γμγ5qþ

cψ7;q
m3

W
ψ̄ψmqq̄qþ

cψ8;q
m3

W
ψ̄iγ5ψmqq̄qþ

cψ9;q
m3

W
ψ̄ψmqq̄iγ5qþ

cψ10;q
m3

W
ψ̄iγ5ψmqq̄iγ5q

þ
cψ11;q
m3

W
ψ̄i∂μ

−ψ q̄γμqþ
cψ12;q
m3

W
ψ̄γ5∂μ

−ψ q̄γμqþ
cψ13;q
m3

W
ψ̄ i∂μ

−ψ q̄γμγ5qþ
cψ14;q
m3

W
ψ̄γ5∂μ

−ψ q̄γμγ5q

þ
cψ15;q
m3

W
ψ̄σμνψmqq̄σμνqþ

cψ16;q
m3

W
ϵμνρσψ̄σμνψmqq̄σρσq

"
þ
cψ17
m3

W
ψ̄ψGA

αβG
Aαβ

þ
cψ18
m3

W
ψ̄iγ5ψGA

αβG
Aαβ þ

cψ19
m3

W
ψ̄ψGA

αβ
~GAαβ þ

cψ20
m3

W
ψ̄iγ5ψGA

αβ
~GAαβ þ & & & ; ð6Þ

284 where the ellipsis denotes operators of dimension six and higher involving the photon, and operators of dimension eight and
285 higher involving quarks and gluons. For a Majorana fermion the coefficients cψn with n ¼ 1; 2; 5; 6; 11; 12; 13; 14; 15; 16
286 vanish, leaving ten types of operators through dimension seven as considered in Ref. [17].
287 For the case of DM with mass M ≳mW , we have the following interactions,4

4It is convenient to notice the identities GAμα ~GAν
α ¼ gμνGAαβ ~GA

αβ=4 and vμvνGAμ
½α ~G

Aν
β( ¼ −ϵαβμνvμvρGA

νσGAσ
ρ =2.

3The phases ξ, η and ζ under C, P and T do not affect scattering observables.
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272C. Operator basis
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276the effective Lagrangian for DM interactions below the
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X

q¼u;d;s;c;b

!
cϕ1;q
m2

W
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cϕ2;q
m2

W
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cϕ3;q
m2

W
ϕ"i∂μ

−ϕq̄γμqþ
cϕ4;q
m2

W
ϕ"i∂μ

−ϕq̄γμγ5q
"

þ
cϕ5
m2

W
jϕj2GA

αβG
Aαβ þ

cϕ6
m2

W
jϕj2GA

αβ
~GAαβ þ & & & : ð5Þ

280 For antisymmetric tensors we define the shorthand notation ~Tμν ¼ ϵμνρσTρσ=2 (we use the convention ϵ0123 ¼ þ1). The
281 ellipsis in (5) denotes operators of dimension six and higher involving the photon, and operators of dimension seven and
282 higher involving quarks and gluons. For a real scalar the coefficients cϕn vanish for n ¼ 3; 4.
283 For the relativistic fermion case we have the following interactions,

Lψ ;SM ¼
cψ1
mW

ψ̄σμνψFμν þ
cψ2
mW

ψ̄σμνψ ~Fμν þ
X

q¼u;d;s;c;b

!
cψ3;q
m2

W
ψ̄γμγ5ψ q̄γμqþ

cψ4;q
m2

W
ψ̄γμγ5ψ q̄γμγ5qþ

cψ5;q
m2

W
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þ
cψ6;q
m2

W
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cψ7;q
m3

W
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cψ8;q
m3

W
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m3

W
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m3

W
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þ
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m3

W
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m3

W
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m3
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−ψ q̄γμγ5qþ
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m3
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þ
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m3

W
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cψ16;q
m3

W
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"
þ
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m3

W
ψ̄ψGA

αβG
Aαβ

þ
cψ18
m3

W
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αβG
Aαβ þ

cψ19
m3

W
ψ̄ψGA

αβ
~GAαβ þ

cψ20
m3

W
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αβ
~GAαβ þ & & & ; ð6Þ

284 where the ellipsis denotes operators of dimension six and higher involving the photon, and operators of dimension eight and
285 higher involving quarks and gluons. For a Majorana fermion the coefficients cψn with n ¼ 1; 2; 5; 6; 11; 12; 13; 14; 15; 16
286 vanish, leaving ten types of operators through dimension seven as considered in Ref. [17].
287 For the case of DM with mass M ≳mW , we have the following interactions,4

4It is convenient to notice the identities GAμα ~GAν
α ¼ gμνGAαβ ~GA

αβ=4 and vμvνGAμ
½α ~G

Aν
β( ¼ −ϵαβμνvμvρGA

νσGAσ
ρ =2.

3The phases ξ, η and ζ under C, P and T do not affect scattering observables.
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mW
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X

q¼u;d;s;c;b

!
cχ3;q
m2

W
ϵμνρσvμχ̄vσ

νρ
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W
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m3

W
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þ
cχ11;q
m3

W
χ̄vσ

μν
⊥ i∂⊥

−μχvq̄γνqþ
cχ12;q
m3

W
ϵμνρσχ̄vσ

μν
⊥ i∂⊥ρ

− χvq̄γσqþ
cχ13;q
m3

W
χ̄vσ

μν
⊥ i∂⊥

−μχvq̄γνγ5q

þ
cχ14;q
m3

W
ϵμνρσχ̄vσ

μν
⊥ i∂⊥ρ

− χvq̄γσγ5qþ
cχ15;q
m3

W
ϵμνρσvμχ̄vσ

νρ
⊥ χvq̄ðviDσ

− þ γσiv ·D−Þq

þ
cχ16;q
m3

W
ϵμνρσvμχ̄vσ

νρ
⊥ χvq̄ðviDσ

− þ γσiv ·D−Þγ5qþ
cχ17;q
m3

W
χ̄vi∂⊥μ

− χvq̄γμq

þ
cχ18;q
m3
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⊥ ∂⊥
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m3
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μν
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þ
cχ24;q
m3

W
ϵμνρσχ̄vσ

μν
⊥ χvmqq̄σρσq

"
þ
cχ25
m3

W
χ̄vχvGA

αβG
Aαβ þ

cχ26
m3

W
χ̄vχvGA

αβ
~GAαβ

þ
cχ27
m3

W
χ̄vχvvμvνGAμ

αGAνα þ
cχ28
m3

W
χ̄vσ

μν
⊥ χvϵμναβvαvγGAβδGA

γδ þ % % % ; ð7Þ

289 where the ellipsis denotes operators of dimension six and
290 higher involving the photon, and operators of dimension
291 eight and higher involving quarks and gluons. In each
292 of (5), (6) and (7) we have employed field redefinitions
293 and chosen a basis of Hermitian QCD operators as in
294 Sec. III A.5 Lorentz-invariance constraints on the coeffi-
295 cients in Eq. (7) may be derived by performing an
296 infinitesimal boost,

BðqÞμν ¼ gμν þ
vμqν − qμvν

M
þOðq2Þ: ð8Þ

297 Relativistic fields transform in the usual way, while the
298 heavy field χv transforms as [33,35]

χvðxÞ→ eiq·x
#
1þ iq ·D⊥

2M2
þ 1

4M2
σαβqαD

β
⊥þ…

$
χvðB−1xÞ;

ð9Þ

299 where the ellipsis denotes terms of higher order in 1=M.
300 Working through OðM−1Þ for photon operators and
301 OðM−3Þ for quark and gluon operators, we find that the
302 variation of Eq. (7) under the boost transformation vanishes
303 upon enforcing the constraints

mW

M
cχ3 þ 2cχ12 ¼

mW

M
cχ4 þ 2cχ14 ¼

mW

M
cχ5 − 2cχ17

¼ mW

M
cχ6 − 2cχ20 ¼ cχ11 ¼ cχ13 ¼ 0;

ð10Þ

304where the subscript q on coefficients of quark operators is
305suppressed. This leaves 16 independent quark operators
306(for each quark flavor) through dimension seven, which
307reduce, upon imposing parity and time-reversal symmetry,
308to the seven operators describing nucleon-lepton inter-
309actions in nonrelativistic QED (NRQED) [36].
310The basis for a heavy scalar is obtained by omitting in
311Eq. (7) operators containing the spin structure σμν⊥ . The
312basis for a self-conjugate heavy particle is obtained by
313imposing invariance under Eq. (3) or (4); in particular,
314we find that the coefficients cχn vanish for n ¼ 1; 2; 5; 6;
31515; 16; 17; 18; 19; 20; 21; 22; 23; 24.

316D. Weak-scale matching

317Above the weak scale, the theory for the WIMP,
318symmetric under SUð3Þc × SUð2ÞW ×Uð1ÞY, may be
319specified in terms of a renormalizable UV completion
320(e.g., a supersymmetric extension), a basis of contact
321operators in the case of a heavy mediator, or heavy particle
322effective theory in the case of a heavy WIMP. By perform-
323ing a matching calculation between the theories above and
324below the weak scale, thereby integrating out the weak-
325scale particles including W&; Z0; t; h, we obtain a solution

5For the dimension four QCD operators, field redefinitions
implement the equations of motion mqq̄σμνq ¼ ∂ ½μq̄γν(qþ
1
2 ϵ

μναβq̄γμiD−νγ5q and q̄γ½μiDν(
−q ¼ 1

2 ϵ
μναβ∂αðq̄γσγ5qÞ.
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289 where the ellipsis denotes operators of dimension six and
290 higher involving the photon, and operators of dimension
291 eight and higher involving quarks and gluons. In each
292 of (5), (6) and (7) we have employed field redefinitions
293 and chosen a basis of Hermitian QCD operators as in
294 Sec. III A.5 Lorentz-invariance constraints on the coeffi-
295 cients in Eq. (7) may be derived by performing an
296 infinitesimal boost,

BðqÞμν ¼ gμν þ
vμqν − qμvν
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297 Relativistic fields transform in the usual way, while the
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χvðxÞ→ eiq·x
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299 where the ellipsis denotes terms of higher order in 1=M.
300 Working through OðM−1Þ for photon operators and
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304where the subscript q on coefficients of quark operators is
305suppressed. This leaves 16 independent quark operators
306(for each quark flavor) through dimension seven, which
307reduce, upon imposing parity and time-reversal symmetry,
308to the seven operators describing nucleon-lepton inter-
309actions in nonrelativistic QED (NRQED) [36].
310The basis for a heavy scalar is obtained by omitting in
311Eq. (7) operators containing the spin structure σμν⊥ . The
312basis for a self-conjugate heavy particle is obtained by
313imposing invariance under Eq. (3) or (4); in particular,
314we find that the coefficients cχn vanish for n ¼ 1; 2; 5; 6;
31515; 16; 17; 18; 19; 20; 21; 22; 23; 24.

316D. Weak-scale matching

317Above the weak scale, the theory for the WIMP,
318symmetric under SUð3Þc × SUð2ÞW ×Uð1ÞY, may be
319specified in terms of a renormalizable UV completion
320(e.g., a supersymmetric extension), a basis of contact
321operators in the case of a heavy mediator, or heavy particle
322effective theory in the case of a heavy WIMP. By perform-
323ing a matching calculation between the theories above and
324below the weak scale, thereby integrating out the weak-
325scale particles including W&; Z0; t; h, we obtain a solution

5For the dimension four QCD operators, field redefinitions
implement the equations of motion mqq̄σμνq ¼ ∂ ½μq̄γν(qþ
1
2 ϵ

μναβq̄γμiD−νγ5q and q̄γ½μiDν(
−q ¼ 1

2 ϵ
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304where the subscript q on coefficients of quark operators is
305suppressed. This leaves 16 independent quark operators
306(for each quark flavor) through dimension seven, which
307reduce, upon imposing parity and time-reversal symmetry,
308to the seven operators describing nucleon-lepton inter-
309actions in nonrelativistic QED (NRQED) [36].
310The basis for a heavy scalar is obtained by omitting in
311Eq. (7) operators containing the spin structure σμν⊥ . The
312basis for a self-conjugate heavy particle is obtained by
313imposing invariance under Eq. (3) or (4); in particular,
314we find that the coefficients cχn vanish for n ¼ 1; 2; 5; 6;
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317Above the weak scale, the theory for the WIMP,
318symmetric under SUð3Þc × SUð2ÞW ×Uð1ÞY, may be
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322effective theory in the case of a heavy WIMP. By perform-
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cχ7;q
m3

W
χ̄vχvmqq̄q

þ
cχ8;q
m3

W
χ̄vχvq̄viv ·D−qþ

cχ9;q
m3

W
χ̄vχvmqq̄iγ5qþ

cχ10;q
m3

W
χ̄vχvq̄vγ5iv ·D−q

þ
cχ11;q
m3

W
χ̄vσ

μν
⊥ i∂⊥

−μχvq̄γνqþ
cχ12;q
m3

W
ϵμνρσχ̄vσ

μν
⊥ i∂⊥ρ

− χvq̄γσqþ
cχ13;q
m3

W
χ̄vσ

μν
⊥ i∂⊥

−μχvq̄γνγ5q

þ
cχ14;q
m3

W
ϵμνρσχ̄vσ

μν
⊥ i∂⊥ρ

− χvq̄γσγ5qþ
cχ15;q
m3

W
ϵμνρσvμχ̄vσ

νρ
⊥ χvq̄ðviDσ

− þ γσiv ·D−Þq

þ
cχ16;q
m3

W
ϵμνρσvμχ̄vσ

νρ
⊥ χvq̄ðviDσ

− þ γσiv ·D−Þγ5qþ
cχ17;q
m3

W
χ̄vi∂⊥μ

− χvq̄γμq

þ
cχ18;q
m3

W
χ̄vσ

μν
⊥ ∂⊥

þμχvq̄γνqþ
cχ18;q
m3

W
ϵμνρσχ̄vσ

μν
⊥ ∂⊥ρ

þ χvq̄γσqþ
cχ20;q
m3

W
χ̄vi∂⊥μ

− χvq̄γμγ5q

þ
cχ21;q
m3

W
χ̄vσ

μν
⊥ ∂⊥

þμχvq̄γνγ5qþ
cχ22;q
m3

W
ϵμνρσχ̄vσ

μν
⊥ ∂⊥ρ

þ χvq̄γσγ5qþ
cχ23;q
m3

W
χ̄vσ

μν
⊥ χvmqq̄σμνq

þ
cχ24;q
m3

W
ϵμνρσχ̄vσ

μν
⊥ χvmqq̄σρσq

"
þ
cχ25
m3

W
χ̄vχvGA

αβG
Aαβ þ

cχ26
m3

W
χ̄vχvGA

αβ
~GAαβ

þ
cχ27
m3

W
χ̄vχvvμvνGAμ

αGAνα þ
cχ28
m3

W
χ̄vσ

μν
⊥ χvϵμναβvαvγGAβδGA

γδ þ % % % ; ð7Þ

289 where the ellipsis denotes operators of dimension six and
290 higher involving the photon, and operators of dimension
291 eight and higher involving quarks and gluons. In each
292 of (5), (6) and (7) we have employed field redefinitions
293 and chosen a basis of Hermitian QCD operators as in
294 Sec. III A.5 Lorentz-invariance constraints on the coeffi-
295 cients in Eq. (7) may be derived by performing an
296 infinitesimal boost,

BðqÞμν ¼ gμν þ
vμqν − qμvν

M
þOðq2Þ: ð8Þ

297 Relativistic fields transform in the usual way, while the
298 heavy field χv transforms as [33,35]

χvðxÞ→ eiq·x
#
1þ iq ·D⊥

2M2
þ 1

4M2
σαβqαD

β
⊥þ…

$
χvðB−1xÞ;

ð9Þ

299 where the ellipsis denotes terms of higher order in 1=M.
300 Working through OðM−1Þ for photon operators and
301 OðM−3Þ for quark and gluon operators, we find that the
302 variation of Eq. (7) under the boost transformation vanishes
303 upon enforcing the constraints

mW

M
cχ3 þ 2cχ12 ¼

mW

M
cχ4 þ 2cχ14 ¼

mW

M
cχ5 − 2cχ17

¼ mW

M
cχ6 − 2cχ20 ¼ cχ11 ¼ cχ13 ¼ 0;

ð10Þ

304where the subscript q on coefficients of quark operators is
305suppressed. This leaves 16 independent quark operators
306(for each quark flavor) through dimension seven, which
307reduce, upon imposing parity and time-reversal symmetry,
308to the seven operators describing nucleon-lepton inter-
309actions in nonrelativistic QED (NRQED) [36].
310The basis for a heavy scalar is obtained by omitting in
311Eq. (7) operators containing the spin structure σμν⊥ . The
312basis for a self-conjugate heavy particle is obtained by
313imposing invariance under Eq. (3) or (4); in particular,
314we find that the coefficients cχn vanish for n ¼ 1; 2; 5; 6;
31515; 16; 17; 18; 19; 20; 21; 22; 23; 24.

316D. Weak-scale matching

317Above the weak scale, the theory for the WIMP,
318symmetric under SUð3Þc × SUð2ÞW ×Uð1ÞY, may be
319specified in terms of a renormalizable UV completion
320(e.g., a supersymmetric extension), a basis of contact
321operators in the case of a heavy mediator, or heavy particle
322effective theory in the case of a heavy WIMP. By perform-
323ing a matching calculation between the theories above and
324below the weak scale, thereby integrating out the weak-
325scale particles including W&; Z0; t; h, we obtain a solution

5For the dimension four QCD operators, field redefinitions
implement the equations of motion mqq̄σμνq ¼ ∂ ½μq̄γν(qþ
1
2 ϵ

μναβq̄γμiD−νγ5q and q̄γ½μiDν(
−q ¼ 1

2 ϵ
μναβ∂αðq̄γσγ5qÞ.
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þ
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ϵμνρσχ̄vσ

μν
⊥ χvmqq̄σρσq

"
þ
cχ25
m3

W
χ̄vχvGA

αβG
Aαβ þ

cχ26
m3

W
χ̄vχvGA

αβ
~GAαβ

þ
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m3
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χ̄vχvvμvνGAμ

αGAνα þ
cχ28
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289 where the ellipsis denotes operators of dimension six and
290 higher involving the photon, and operators of dimension
291 eight and higher involving quarks and gluons. In each
292 of (5), (6) and (7) we have employed field redefinitions
293 and chosen a basis of Hermitian QCD operators as in
294 Sec. III A.5 Lorentz-invariance constraints on the coeffi-
295 cients in Eq. (7) may be derived by performing an
296 infinitesimal boost,

BðqÞμν ¼ gμν þ
vμqν − qμvν

M
þOðq2Þ: ð8Þ

297 Relativistic fields transform in the usual way, while the
298 heavy field χv transforms as [33,35]

χvðxÞ→ eiq·x
#
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þ 1

4M2
σαβqαD

β
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299 where the ellipsis denotes terms of higher order in 1=M.
300 Working through OðM−1Þ for photon operators and
301 OðM−3Þ for quark and gluon operators, we find that the
302 variation of Eq. (7) under the boost transformation vanishes
303 upon enforcing the constraints
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cχ4 þ 2cχ14 ¼
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304where the subscript q on coefficients of quark operators is
305suppressed. This leaves 16 independent quark operators
306(for each quark flavor) through dimension seven, which
307reduce, upon imposing parity and time-reversal symmetry,
308to the seven operators describing nucleon-lepton inter-
309actions in nonrelativistic QED (NRQED) [36].
310The basis for a heavy scalar is obtained by omitting in
311Eq. (7) operators containing the spin structure σμν⊥ . The
312basis for a self-conjugate heavy particle is obtained by
313imposing invariance under Eq. (3) or (4); in particular,
314we find that the coefficients cχn vanish for n ¼ 1; 2; 5; 6;
31515; 16; 17; 18; 19; 20; 21; 22; 23; 24.

316D. Weak-scale matching

317Above the weak scale, the theory for the WIMP,
318symmetric under SUð3Þc × SUð2ÞW ×Uð1ÞY, may be
319specified in terms of a renormalizable UV completion
320(e.g., a supersymmetric extension), a basis of contact
321operators in the case of a heavy mediator, or heavy particle
322effective theory in the case of a heavy WIMP. By perform-
323ing a matching calculation between the theories above and
324below the weak scale, thereby integrating out the weak-
325scale particles including W&; Z0; t; h, we obtain a solution

5For the dimension four QCD operators, field redefinitions
implement the equations of motion mqq̄σμνq ¼ ∂ ½μq̄γν(qþ
1
2 ϵ

μναβq̄γμiD−νγ5q and q̄γ½μiDν(
−q ¼ 1

2 ϵ
μναβ∂αðq̄γσγ5qÞ.
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Through dimension seven, there are seven operator 
classes closed under renormalization and 

transforming irreducibly under continuous and 
discrete Lorentz transformations.

401 the scale independence of the quark pseudoscalar matrix
402 elements.
403 For vector currents, axial-vector currents, tensor currents
404 and C-odd spin-2 operators, the renormalization constants
405 are quark flavor diagonal and have the form Zij ¼ Zδij,
406 with Z listed in Table III. For scalar, pseudoscalar and
407 C-even spin-2 operators, the renormalization constants, in
408 the basis ðu; d; s;…jgÞ, have the form

Z ¼

0

BBBBB@

Zqq Zqg

. .
. ..

.

Zqq Zqg

Zgq $ $ $ Zgq Zgg

1

CCCCCA
; ð16Þ

409 with elements Zij listed in Table III.
410 The vector currents, representing conserved quark num-
411 ber, ∂μV

μ
q ¼ 0, evolve trivially under QCD renormaliza-

412 tion. For the axial-vector currents, we consider separately
413 the quark-flavor singlet and nonsinglet combinations (see
414 Eq. (48)) and work in the ’t Hooft-Veltman scheme with the
415 convention ϵ0123 ¼ þ1,

γ5 ¼ iγ0γ1γ2γ3 ¼ −
i
4!
ϵμνρσγμγνγργσ: ð17Þ

416 The renormalization constants ZðsingletÞ
A and ZðnonsingletÞ

A
417 include a finite correction in addition to the MS scheme
418 [39] (see Appendix A for details), which retains the one-
419 loop anomaly condition,

X

q

∂μA
μ
q ¼

X

q

2imqq̄γ5q −
g2nf
32π2

ϵμνρσGa
μνGa

ρσ; ð18Þ

420
421for the singlet combination, and imposes a vanishing
422anomalous dimension for the nonsinglet combination.
423Terms contributing to the one-loop matching and two-loop
424anomalous dimension have been retained in both

425ZðnonsingletÞ
A and ZðsingletÞ

A . Corrections through three-loop
426order are also available [39].
427For the tensor current, the renormalization constant
428includes the contribution Zm (given in Appendix A) from
429the quark mass appearing in the definition of Tq. Two-loop
430corrections to ZT are also available [40–42]. For the scalar
431operators, the all-orders expression for the coefficient of the
4321=ϵ term of Zð0Þ is specified in terms of coupling and mass
433renormalization functions,7

~β ¼ β=g; β ¼ dg
d log μ

; γm ¼
d logmq

d log μ
; ð19Þ

434which are given explicitly in Appendix A.
435For the pseudoscalar operators, we employ the γ5 scheme
436in Eq. (17) and have included the contribution Zm from the

437quark mass appearing in the definition of Oð0Þ
5q . The

438renormalization constant Zð0Þ
5 also includes an additional

439finite renormalization constant that ensures nonrenormal-
440ization of the pseudoscalar quark operators [39] (see
441Appendix A for details). Terms contributing to the one-
442loop matching and two-loop anomalous dimension have

443been retained in Zð0Þ
5 . For the C-even spin-2 operators,

444three-loop corrections to the renormalization constant are

TABLE II. The seven operator classes: vector ðVqÞ, axial-
vector ðAqÞ, tensor ðTqÞ, scalar ðOð0Þ

q ; Oð0Þ
g Þ, pseudoscalar

ðOð0Þ
5q ; O

ð0Þ
5g Þ, C-even spin-2 ðOð2Þ

q ; Oð2Þ
g Þ and C-odd spin-2

ðOð2Þ
5q Þ. Here A½μBν' ≡ ðAμBν − AνBμÞ=2 and AfμBνg ≡ ðAμBν þ

AνBμÞ=2 respectively denote antisymmetrization and symmetri-
zation, and the subscript q denotes an active quark flavor. The
antisymmetric tensor current Tq and the quark pseudoscalar

operator Oð0Þ
5q both include a conventional quark mass prefactor.

d QCD operator basis

3 Vμ
q ¼ q̄γμq

Aμ
q ¼ q̄γμγ5q

4 Tμν
q ¼ imqq̄σμνγ5q

Oð0Þ
q ¼ mqq̄q, O

ð0Þ
g ¼ GA

μνGAμν

Oð0Þ
5q ¼ mqq̄iγ5q, O

ð0Þ
5g ¼ ϵμνρσGA

μνGA
ρσ

Oð2Þμν
q ¼ 1

2 q̄ðγ
fμiDνg

− − gμν
4 iD−Þq,

Oð2Þμν
g ¼ −GAμλGAν

λ þ gμν
4 ðGA

αβÞ2

Oð2Þμν
5q ¼ 1

2 q̄γ
fμiDνg

− γ5q

TABLE III. Renormalization constants for each of the seven
operator classes arising in the low-energy effective theory for the
DM particle. Here nf is the number of active quark flavors and
β0 ¼ 11 − 2nf=3.

Operator Renormalization constant

Vq ZV ¼ 1

Aq ZðsingletÞ
A ¼ 1þ αs

4π
16
3 − ðαs4πÞ

2 1
ϵ ð

20
9 nf þ

88
3 Þ þOðα3sÞ,

ZðnonsingletÞ
A ¼ 1þ αs

4π
16
3 þ ðαs4πÞ

2 1
ϵ ð

16
9 nf −

88
3 Þ þOðα3sÞ

Tq ZT ¼ 1 − αs
4π

1
ϵ
16
3 þOðα2sÞ

Oð0Þ
q ; Oð0Þ

g Zð0Þ
qq ¼ 1, Zð0Þ

qg ¼ 0,

Zð0Þ
gq ¼ 2γm

ϵ , Z
ð0Þ
gg ¼ 1 − ~β

ϵ

Oð0Þ
5q ; O

ð0Þ
5g Zð0Þ

5;qq ¼ 1þ αs
4π

32
3 þOðα2sÞ, Z

ð0Þ
5;qg ¼ 0þOðα2sÞ,

Zð0Þ
5;gq ¼

αs
4π

1
ϵ 16þOðα2sÞ, Z

ð0Þ
5;gg ¼ 1þ αs

4π
1
ϵ β0 þOðα2sÞ

Oð2Þ
q ; Oð2Þ

g Zð2Þ
qq ¼ 1 − αs

4π
1
ϵ
32
9 þOðα2sÞ, Z

ð2Þ
qg ¼ αs

4π
1
ϵ
2
3 þOðα2sÞ,

Zð2Þ
gq ¼ αs

4π
1
ϵ
32
9 þOðα2sÞ, Z

ð2Þ
gg ¼ 1 − αs

4π
1
ϵ
2nf
3 þOðα2sÞ

Oð2Þ
5q Zð2Þ

5 ¼ 1 − αs
4π

1
ϵ
32
9 þOðα2sÞ

7A typo appears in the expression after Eq. (24) of [15], which
should read g−1β ¼ g−1dg=d log μ ≈ −β0αs=4π.
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Example: Weak-scale matching

mW ⇠ mZ ⇠ mh ⇠ mt

LDM + LSM

L�,SM + Lnf=5 QCD

11

326 for the coefficients ci of the low-energy effective theories
327 in Eqs. (5), (6), or (7) in terms of parameters in the high-
328 energy theory.
329 As a simple illustration, let us consider the case of a
330 Majorana fermion electroweak singlet. The lowest dimen-
331 sion operators involving SM interactions are given in the
332 electroweak symmetric theory by

Lψ ;SM ¼ 1

2
ψ̄ði∂ −M0Þψ −

1

Λ
ψ̄ðc0ψ1 þ ic0ψ2γ5ÞψH†Hþ % % % ;

ð11Þ

333 where the ellipsis denotes terms suppressed by higher
334 powers of Λ, the scale associated with a heavy mediator.
335 Let us further assume ψ to have massM0 ≪ mW , and hence
336 organize the matching by a power counting employing a
337 scale separation M0 ≪ mW ≪ Λ.
338 Upon integrating out the physical Higgs field h and the
339 top quark t, and performing the field redefinition,

ψ → e−iϕγ5ψ ; tan 2ϕ ¼
c0ψ2v

2

c0ψ1v
2 þM0Λ

; ð12Þ

340 to retain a positive real mass convention for ψ, we obtain
341 the effective Lagrangian below the weak scale,

Lψ ;SM ¼ 1

2
ψ̄ði∂ −MÞψ þ 1

m3
W

!
ψ̄ðcψ7 þ icψ8γ5Þψ

X

q

mqq̄q

þ ψ̄ðcψ17 þ icψ18γ5ÞψGA
μνGAμν

"
þ % % % ; ð13Þ

342 where the sum runs over the active quark mass eigenstates
343 q ¼ u; d; s; c; b, and the ellipsis denotes higher-order
344 perturbative and power corrections. The physical DM mass
345 and the effective couplings in the low-energy theory are
346 given at leading order by

M ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi$
M0 þ

c0ψ1v
2

Λ

%2

þ
$
c0ψ2v

2

Λ

%2
s

;

fcψ7; cψ8g ¼ m3
WM

0

m2
hΛM

&
c0ψ1 þ

v2

M0Λ
½c02ψ1 þ c02ψ2'; c0ψ2

'
;

fcψ17; cψ18g ¼ −
αsðmWÞ
12π

fcψ7; cψ8g: ð14Þ

347 Note that avanishingc0ψ1 doesnot implyavelocity-suppressed
348 spin-independent cross section forWIMP-nucleon scattering,
349 since a nonvanishing cψ8 ∼ ðv2=M0ΛÞc02ψ2 is induced in the
350 low-energy theory.6 While we do not pursue a detailed
351 phenomenology of the model (13), this example illustrates
352 somegeneric featuresofweak-scalematching.First,particular

353UV completions may have nontrivial correlations and
354suppression factors amongst coefficients; e.g., cψ3;4;9;10 are
355suppressed by loop (∼g2) or power (∼1=Λ) corrections.
356Second, effects that are naively absent from the high scale
357Lagrangian are nonetheless present once a complete analysis
358is performed. It is essential to include a complete basis that is
359closed under renormalization and contains all operators not
360forbidden by symmetry.
361Weak-scale matching for an electroweak-singlet Dirac
362fermion or (real or complex) scalar can be similarly
363performed. Weak-scale matching for the case of electro-
364weak-charged dark matter requires a more intricate analysis
365as detailed in Ref. [4].

366III. OPERATOR RENORMALIZATION,
367SCALE EVOLUTION AND MATCHING
368AT HEAVY-QUARK THRESHOLDS

369Having determined the basis of effective operators
370and their coefficients at the weak scale, we may proceed
371to map onto a theory valid at lower energy scales. We
372identify the relevant QCD operators and compute their
373anomalous dimensions. We then solve the corresponding
374renormalization group evolution equations and enforce
375matching conditions at heavy-quark thresholds, passing
376from nf ¼ 5 renormalized at μ ∼mW to nf ¼ 3 (or nf ¼ 4)
377renormalized below the charm (or bottom) threshold.

378A. QCD operator basis

379Inspection of the low-energy SM building blocks in (1)
380shows that, up to field redefinitions, the strong interaction
381matrix elements relevant for WIMP-SM interactions
382through dimension seven involve seven QCD operator
383classes collected in Table II: at dimension three we have
384the vector and axial-vector currents; at dimension four
385we have the antisymmetric tensor currents, the scalar
386operators, the pseudoscalar operators, the C-even spin-2
387operators and the C-odd spin-2 operators. Each of these
388classes transforms irreducibly under continuous and dis-
389crete Lorentz transformations, and is separately closed
390under renormalization.

391B. Renormalization constants

392Let us denote byOi a generic operator with coefficient ci
393belonging to one of the seven operator classes closed under
394renormalization. The relations between bare and renormal-
395ized operators and coefficients are given by

Obare
i ¼ ZijðμÞOren

j ðμÞ; creni ðμÞ ¼ ZjiðμÞcbarej ; ð15Þ

396with an implicit sum over repeated indices. We define the
397operator renormalization constants Zij in the MS scheme,
398except for the axial-vector and pseudoscalar operators
399where we consider an additional finite renormalization to
400retain a conventional axial-vector current divergence and

6This observation has been employed in [18,37]. Also, spin-
dependent interactions may generate spin-independent inter-
actions at loop level [38].
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329 As a simple illustration, let us consider the case of a
330 Majorana fermion electroweak singlet. The lowest dimen-
331 sion operators involving SM interactions are given in the
332 electroweak symmetric theory by

Lψ ;SM ¼ 1

2
ψ̄ði∂ −M0Þψ −

1

Λ
ψ̄ðc0ψ1 þ ic0ψ2γ5ÞψH†Hþ % % % ;
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333 where the ellipsis denotes terms suppressed by higher
334 powers of Λ, the scale associated with a heavy mediator.
335 Let us further assume ψ to have massM0 ≪ mW , and hence
336 organize the matching by a power counting employing a
337 scale separation M0 ≪ mW ≪ Λ.
338 Upon integrating out the physical Higgs field h and the
339 top quark t, and performing the field redefinition,

ψ → e−iϕγ5ψ ; tan 2ϕ ¼
c0ψ2v

2

c0ψ1v
2 þM0Λ

; ð12Þ

340 to retain a positive real mass convention for ψ, we obtain
341 the effective Lagrangian below the weak scale,

Lψ ;SM ¼ 1

2
ψ̄ði∂ −MÞψ þ 1

m3
W

!
ψ̄ðcψ7 þ icψ8γ5Þψ

X

q

mqq̄q

þ ψ̄ðcψ17 þ icψ18γ5ÞψGA
μνGAμν

"
þ % % % ; ð13Þ

342 where the sum runs over the active quark mass eigenstates
343 q ¼ u; d; s; c; b, and the ellipsis denotes higher-order
344 perturbative and power corrections. The physical DM mass
345 and the effective couplings in the low-energy theory are
346 given at leading order by

M ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi$
M0 þ

c0ψ1v
2

Λ

%2

þ
$
c0ψ2v

2

Λ

%2
s

;

fcψ7; cψ8g ¼ m3
WM

0

m2
hΛM

&
c0ψ1 þ

v2

M0Λ
½c02ψ1 þ c02ψ2'; c0ψ2

'
;

fcψ17; cψ18g ¼ −
αsðmWÞ
12π

fcψ7; cψ8g: ð14Þ

347 Note that avanishingc0ψ1 doesnot implyavelocity-suppressed
348 spin-independent cross section forWIMP-nucleon scattering,
349 since a nonvanishing cψ8 ∼ ðv2=M0ΛÞc02ψ2 is induced in the
350 low-energy theory.6 While we do not pursue a detailed
351 phenomenology of the model (13), this example illustrates
352 somegeneric featuresofweak-scalematching.First,particular

353UV completions may have nontrivial correlations and
354suppression factors amongst coefficients; e.g., cψ3;4;9;10 are
355suppressed by loop (∼g2) or power (∼1=Λ) corrections.
356Second, effects that are naively absent from the high scale
357Lagrangian are nonetheless present once a complete analysis
358is performed. It is essential to include a complete basis that is
359closed under renormalization and contains all operators not
360forbidden by symmetry.
361Weak-scale matching for an electroweak-singlet Dirac
362fermion or (real or complex) scalar can be similarly
363performed. Weak-scale matching for the case of electro-
364weak-charged dark matter requires a more intricate analysis
365as detailed in Ref. [4].

366III. OPERATOR RENORMALIZATION,
367SCALE EVOLUTION AND MATCHING
368AT HEAVY-QUARK THRESHOLDS

369Having determined the basis of effective operators
370and their coefficients at the weak scale, we may proceed
371to map onto a theory valid at lower energy scales. We
372identify the relevant QCD operators and compute their
373anomalous dimensions. We then solve the corresponding
374renormalization group evolution equations and enforce
375matching conditions at heavy-quark thresholds, passing
376from nf ¼ 5 renormalized at μ ∼mW to nf ¼ 3 (or nf ¼ 4)
377renormalized below the charm (or bottom) threshold.

378A. QCD operator basis

379Inspection of the low-energy SM building blocks in (1)
380shows that, up to field redefinitions, the strong interaction
381matrix elements relevant for WIMP-SM interactions
382through dimension seven involve seven QCD operator
383classes collected in Table II: at dimension three we have
384the vector and axial-vector currents; at dimension four
385we have the antisymmetric tensor currents, the scalar
386operators, the pseudoscalar operators, the C-even spin-2
387operators and the C-odd spin-2 operators. Each of these
388classes transforms irreducibly under continuous and dis-
389crete Lorentz transformations, and is separately closed
390under renormalization.

391B. Renormalization constants

392Let us denote byOi a generic operator with coefficient ci
393belonging to one of the seven operator classes closed under
394renormalization. The relations between bare and renormal-
395ized operators and coefficients are given by

Obare
i ¼ ZijðμÞOren

j ðμÞ; creni ðμÞ ¼ ZjiðμÞcbarej ; ð15Þ

396with an implicit sum over repeated indices. We define the
397operator renormalization constants Zij in the MS scheme,
398except for the axial-vector and pseudoscalar operators
399where we consider an additional finite renormalization to
400retain a conventional axial-vector current divergence and

6This observation has been employed in [18,37]. Also, spin-
dependent interactions may generate spin-independent inter-
actions at loop level [38].
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The remainder of this section describes the computation of the complete basis of twelve matching
coe�cients at leading order in perturbation theory. In matching (3) onto (41), we systematically
neglect subleading corrections involving light quark masses, and use CKM unitarity. These lead to

c(S)
1u = c(S)

1c and c(S)
1d = c(S)

1s for both S = 0, 2, thus reducing the number of independent matching
coe�cients to eight. When the interactions are isospin-conserving, e.g., as in the pure triplet case,

we further have c(S)
1u = c(S)

1d for both S = 0, 2, and are left with six independent coe�cients. We may
write the quark and gluon matching coe�cients in terms of contributions from one-boson exchange
(1BE) and two-boson exchange (2BE) diagrams,

c(0)
1q = c(0)

1q 1BE

+ c(0)
1q 2BE

+ . . . ,

c(0)
2

= c(0)
2

1BE

+ c(0)
2

2BE

+ . . . ,

c(2)
1q = c(2)

1q 2BE

+ . . . ,

c(2)
2

= c(2)
2

2BE

+ . . . , (43)

where the ellipses denote subleading contributions with more bosons exchanged. Note that spin-2
coe�cients do not receive contributions from one-boson exchange. Below, these are specified for each
SM extension in terms of

c(U)

V = 1� 8

3
s2W , c(D)

V = �1 +
4

3
s2W , c(U)

A = �1 , c(D)

A = 1 . (44)

We will also denote up- and down-type quarks by U and D, respectively, while an arbitrary quark
flavor will be denoted by q.

4.1 Quark matching: one-boson exchange

+ + + +

+ +

"
+ . . .

#
+ + . . . = c(0)

1q 1BE

Figure 2: Quark matching condition for one-boson exchange. The full theory diagrams shown illus-
trate the di↵erent contributions to the h�̄� three-point function. Double lines denote heavy WIMPs,
zigzag lines denote W or Z bosons, dotted lines denote Goldstone bosons, dashed lines denote Higgs
bosons, and single lines with arrows denote quarks. The solid circle denotes counterterm contribu-
tions, and the solid square denotes an e↵ective theory vertex. We neglect the gauge invariant class
of diagrams within square brackets, which is always subleading to the tree-level diagram.

The matching condition for one-boson exchange is pictured in Fig. 2. The full-theory amplitude
is given by

iMq = i
⇣
M̂

tree

+ M̂
vertex,1 + M̂

vertex,2 + M̂�a1 + M̂�Z + M̂�v

⌘ i

�m2

h

�ig
2

mq

2mW
ūq(p)uq(p) , (45)
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Figure 3: Gluon matching condition for one-boson exchange. The notation is as in Fig. 2. Ellipses
denote diagrams not shown explicitly (cf. Fig. 2). We neglect the gauge-invariant class of diagrams
within the square brackets, which is always suppressed relative to the one-loop diagram. We sum
over active quarks running in the loop (including the top quark in the full theory).

top quark contribution to h ! gg. In terms of quark matching coe�cients from one-boson exchange,
the bare gluon matching coe�cient is thus

c(0)
2

1BE

= �↵s(µt)

12⇡
c(0)
1q 1BE

. (53)

We neglect one-boson exchange contributions containing O(↵1

2

) corrections to the ⇠ h(GA
µ⌫)

2 SM
coupling, drawn within square brackets in Fig. 3. This gauge-invariant class of diagrams is always
loop-suppressed relative to the one-loop contribution.

4.3 Quark matching: two-boson exchange

+ + + + . . .

= c(0)
1q 2BE

+ c(2)
1q 2BE

Figure 4: Quark matching condition for two-boson exchange. The notation is as in Fig. 2. The full
theory diagrams illustrate the possible types of two-boson exchange. Crossed diagrams and time
reversed diagrams are not shown.

Let us now consider quark matching from two-boson exchange (2BE), as displayed in Fig. 4. The full
theory includes diagrams with exchange of two gauge bosons (Z or W ), two Goldstone bosons (�Z

or �W ), one gauge and one Goldstone boson, or two Higgs bosons. In terms of these contributions
the total amplitude is

Mq = MZZ
q +MWW

q +MW�W
q +MZ�Z

q +M�W�W
q +M�Z�Z

q +Mhh
q , (54)
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theory diagrams illustrate the possible types of two-boson exchange. Crossed diagrams and time
reversed diagrams are not shown.

Let us now consider quark matching from two-boson exchange (2BE), as displayed in Fig. 4. The full
theory includes diagrams with exchange of two gauge bosons (Z or W ), two Goldstone bosons (�Z

or �W ), one gauge and one Goldstone boson, or two Higgs bosons. In terms of these contributions
the total amplitude is

Mq = MZZ
q +MWW

q +MW�W
q +MZ�Z

q +M�W�W
q +M�Z�Z

q +Mhh
q , (54)
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in Sec. 2.3, we recover the results (56) and (57) for both pure triplet and pure doublet.

4.4 Gluon matching: two-boson exchange

+ + + . . . = c(0)
2

2BE

+ c(0)
1q 2BE

+ c(2)
2

2BE

+ c(2)
1q 2BE

"
+

#

Figure 5: Gluon matching condition for two-boson exchange. The notation is as in Fig. 2. The
ellipses denote diagrams not shown explicitly, cf. Fig. 4. We sum over quarks running in the loop,
including the top quark in the full theory.

The gluon matching condition for two-boson exchange is pictured in Fig. 5. If we consider the
external gluons as a background field, we may express the full theory diagrams in terms of electroweak
polarization tensors induced by a quark loop. For example, the contributions from exchanging two
Z bosons have the structure

MZZ ⇠
Z
(dL)

1

�v · L� � + i0

1

(L2 �m2

Z + i0)2
vµv⌫i⇧

µ⌫
(ZZ)

(L) , (63)

where (dL) = ddL/(2⇡)d (this shorthand is used throughout this work), � is a residual mass and
i⇧µ⌫

(ZZ)

is the two-gluon part of the ZZ polarization tensor in a background field. Contributions with
exchange of one gauge and one Goldstone boson, two Goldstone bosons, or two Higgs bosons, have
the same structure but with vector and scalar electroweak polarization tensors appearing.

The background field method presents the following strategy for evaluating the two-loop diagrams
of the full theory. First, we determine the two-gluon part of the relevant polarization tensors. These
amplitudes depend only on the Standard Model, and can be used for gluon matching in other dark
matter scenarios. Second, we insert the polarization tensors in the boson loop and perform the
remaining loop-integral by identifying a basis of heavy-particle integrals.

We work in dimensional regularization where infrared divergences are expressed as 1/✏. These
divergences cancel in the matching procedure between the full and e↵ective theories, yielding finite
gluon coe�cients. Note that a consistent evaluation requires the O(✏) piece of the quark matching
coe�cients.

4.4.1 Electroweak polarization tensors in a background gluon field

Let us isolate the two-gluon amplitude of the relevant electroweak polarization tensors in a back-
ground gluon field. The generalized polarization tensors appearing in two-boson exchange contribu-
tions are

i⇧⌫µ
(W+W+

)

(L) =

U

D

µ ⌫

22

= i
X

U,D

g2
2

|VUD|2
8

i

Z
ddx eiL·xhT{D̄(x)�⌫(1� �

5

)U(x)Ū(0)�µ(1� �
5

)D(0)}i ,

i⇧⌫µ
(ZZ)

(L) =

q

q

µ ⌫

= i
X

q

g2
2

16c2W
i

Z
ddx eiL·xhT{q̄(x)�⌫(c(q)V + c(q)A �

5

)q(x)q̄(0)�µ(c(q)V + c(q)A �
5

)q(0)}i ,

i⇧µ

(W+�+
W )

(L) =

U

D

µ

= i
X

U,D

�g2
2

|VUD|2
8mW

i

Z
ddx eiL·xhT{D̄(x)

⇥� (mU �mD)� (mU +mD)�5
⇤
U(x)

Ū(0)�µ(1� �
5

)D(0)}i ,

i⇧µ
(Z�Z)

(L) =

q

q

µ

= i
X

q

�ig2
2

mq

8cWmW
i

Z
ddx eiL·xhT{q̄(x)c(q)A �

5

q(x)q̄(0)�µ(c(q)V + c(q)A �
5

)q(0)}i ,

i⇧
(�+

W�+
W )

(L) =

U

D

= i
X

ud

g2
2

|VUD|2
8m2

W

i

Z
ddx eiL·xhT{D̄(x)

⇥� (mU �mD)� (mU +mD)�5
⇤
U(x)

Ū(0)
⇥� (mU �mD) + (mU +mD)�5

⇤
D(0)}i ,

i⇧
(�Z�Z)

(L) =

q

q

= i
X

q

�g2
2

m2

q

4m2

W

i

Z
ddx eiL·xhT{q̄(x)�

5

q(x)q̄(0)�
5

q(0)}i ,

i⇧
(hh)(L) =

q

q

= i
X

q

g2
2

m2

q

4m2

W

i

Z
ddx eiL·xhT{q̄(x)q(x)q̄(0)q(0)}i , (64)

where the momentum L is flowing from left to right. We also require the polarization tensors

i⇧µ⌫
(W�W�

)

(L) , i⇧µ

(W���
W )

(L) , i⇧µ

(�±
WW±

)

(L) , i⇧µ
(�ZZ)

(L) , (65)

but as discussed below, these are simply related to the ones we have specified above.

23

EW pol. tensorsreduces to five integrals

Weak-scale matching for electroweak 
charged DM done completely in 1401.3339 
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Renormalization constants, anomalous dimensions, 
and RGE solutions
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445 available from Refs. [43,44]. For the C-odd spin-2 oper-
446 ators, the two-loop anomalous dimension may be obtained
447 from Ref. [45].

448 C. Anomalous dimensions and renormalization
449 group evolution

450 From the relations between bare and renormalized
451 quantities in Eq. (15), we obtain the scale evolution
452 equations

d
d log μ

Oi ¼ −γijOj;

d
d log μ

ci ¼ γjicj;

γij ≡ Z−1
ik

d
d log μ

Zkj; ð20Þ

453 where the scale dependence and superscript “ren” on
454 renormalized quantities in (15) have been suppressed,
455 and we have defined the anomalous dimension matrix
456 γij. In the MS scheme the anomalous dimension is given to
457 all orders in αs in terms of the coefficient of 1=ϵ in Zij,

γij ¼ −g
∂
∂g Zð1Þij; Zij ¼ δij þ

X∞

n¼1

ZðnÞij

ϵn
: ð21Þ

458 The renormalization constants for axial-vector currents and
459 pseudoscalar operators include a finite contribution beyond
460 MS, and hence we employ the general definition in (20) to
461 determine their anomalous dimensions.
462 For vector currents, axial-vector currents, tensor currents
463 and C-odd spin-2 operators, the anomalous dimensions

464have the form γij ¼ γδij, with γ listed in Table IV. For
465scalar, pseudoscalar and C-even spin-2 operators, the
466anomalous dimensions, in the basis ðu; d; s;…jgÞ, have
467the form

γ ¼

0

BBBBB@

γqq γqg

. .
. ..

.

γqq γqg

γgq % % % γgq γgg

1

CCCCCA
; ð22Þ

468with elements γij listed in Table IV.
469It is straightforward to solve for the evolution of
470coefficients from a high scale μh down to a low scale μl,
471employing the anomalous dimension for each of the seven
472operator classes. Let us express the solutions as

ciðμlÞ ¼ Rijðμl; μhÞcjðμhÞ: ð23Þ

473For vector currents, axial-vector currents, tensor currents
474and C-odd spin-2 operators, the solutions have the form
475Rij ¼ Rδij, with R listed in Table V. For scalar, pseudo-
476scalar operators and C-even spin-2 operators, the solutions
477in the basis ðu; d; s;…jgÞ have the form

TABLE IV. Anomalous dimensions for the seven operator
classes arising in the low-energy effective theory for the DM
particle. Here we denote X0 ≡ g ∂

∂g X.

Operator Anomalous dimension

Vq γV ¼ 0

Aq γðsingletÞA ¼ ðαs4πÞ
216nf þOðα3sÞ,

γðnonsingletÞA ¼ 0

Tq γT ¼ − αs
4π

32
3 þOðα2sÞ,

Oð0Þ
q ; Oð0Þ

g γð0Þqq ¼ 0, γð0Þqg ¼ 0,

γð0Þgq ¼ −2γ0m, γ
ð0Þ
gg ¼ ~β0

Oð0Þ
5q ; O

ð0Þ
5g γð0Þ5;qq ¼ 0, γð0Þ5;qg ¼ 0

γð0Þ5;gq ¼ − αs
4π 32þOðα2sÞ, γ

ð0Þ
5;gg ¼ − αs

4π 2β0 þOðα2sÞ

Oð2Þ
q ; Oð2Þ

g γð2Þqq ¼ αs
4π

64
9 þOðα2sÞ, γ

ð2Þ
qg ¼ − αs

4π
4
3 þOðα2sÞ,

γð2Þgq ¼ − αs
4π

64
9 þOðα2sÞ, γ

ð2Þ
gg ¼ αs

4π
4nf
3 þOðα2sÞ

Oð2Þ
5q γð2Þ5 ¼ αs

4π
64
9 þOðα2sÞ

TABLE V. Solutions to coefficient running for each of the
seven operator classes arising in the low-energy effective theory
for the DM particle. The coefficient running for C-even spin-2
operators are given in terms of the function rðtÞ defined in
Eq. (25).

Operator Solution to coefficient running

Vq RV ¼ 1

Aq RðsingletÞ
A ¼ expf2nfπβ0

½αsðμhÞ − αsðμlÞ' þOðα2sÞg,

RðnonsingletÞ
A ¼ 1

Tq RT ¼ ðαsðμlÞαsðμhÞÞ
− 16
3β0 ½1þOðαsÞ'

Oð0Þ
q ; Oð0Þ

g Rð0Þ
qq ¼ 1, Rð0Þ

qg ¼ 2½γmðμhÞ − γmðμlÞ'= ~βðμhÞ;

Rð0Þ
gq ¼ 0, Rð0Þ

gg ¼ ~βðμlÞ= ~βðμhÞ

Oð0Þ
5q ; O

ð0Þ
5g Rð0Þ

5;qq ¼ 1, Rð0Þ
5;qg ¼ 16

β0
ðαsðμlÞαsðμhÞ − 1Þ þOðαsÞ;

Rð0Þ
5;gq ¼ 0, Rð0Þ

5;gg ¼
αsðμlÞ
αsðμhÞ þOðαsÞ

Oð2Þ
q ; Oð2Þ

g Rð2Þ
qq − Rð2Þ

qq0 ¼ rð0Þ þOðαsÞ,

Rð2Þ
qq0 ¼

1
nf
½16rðnfÞþ3nf

16þ3nf
− rð0Þ' þOðαsÞ,

Rð2Þ
qg ¼ 16½1−rðnfÞ'

16þ3nf
þOðαsÞ,

Rð2Þ
gq ¼ 3½1−rðnfÞ'

16þ3nf
þOðαsÞ, R

ð2Þ
gg ¼ 16þ3nfrðnfÞ

16þ3nf
þOðαsÞ

Oð2Þ
5q Rð2Þ

5 ¼ ðαsðμlÞαsðμhÞ
Þ−

32
9β0 ½1þOðαsÞ'
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R ¼

0

BBBBB@

Rqg

1ðRqq − Rqq0Þ þ JRqq0
..
.

Rqg

Rgq % % % Rgq Rgg

1

CCCCCA
; ð24Þ

478 where the nf × nf matrices 1 and J are, respectively, the
479 identity matrix and the matrix with all elements equal to
480 unity. For the scalar and pseudoscalar operators, Rqq0 ¼ 0.
481 The elements Rij are specified in Table V, where the results
482 for the C-even spin-2 operators involve the function

rðtÞ ¼
!
αsðμlÞ
αsðμhÞ

"− 1
2β0

ð649þ
4
3tÞ
: ð25Þ

483
484 The vector and nonsinglet axial-vector currents have
485 vanishing anomalous dimension and hence trivial scale
486 evolution. For the singlet axial-vector current, nontrivial
487 renormalization begins at two-loop order. For the tensor
488 current and C-odd spin-2 operator, we have presented the
489 leading logarithmic order solutions. The chosen renorm-
490 alization prescription ensures scale invariance of the quark
491 pseudoscalar operators to all orders.
492 For most phenomenological applications we may simply
493 evaluate the matrix elements of the C-even spin-2 operators
494 in terms of parton distribution functions (PDFs) at the weak
495 scale μh ∼mW . This avoids the need for renormalization
496 group analysis (apart from matching to a convenient scale
497 to evaluate matrix elements) and heavy-quark threshold
498 matching conditions. Nonetheless, we include the above
499 results for future analyses which may require an evaluation
500 of tensor matrix elements at low scales, such as in
501 considering multinucleon contributions to matrix elements
502 [26,46,47] or in investigating the power-suppressed mixing
503 between scalar and tensor operators.

504 D. Heavy-quark threshold matching

505 After evolving to the scale μQ ∼mQ, we integrate out the
506 heavyquark, i.e., the bottomor charmquark, ofmassmQ. The
507 coefficients in thenf- and ðnf þ 1Þ-flavor theories are related
508 by matching physical matrix elements. In terms of renormal-
509 ized coefficients and operators, the matching condition is

c0ihO0
ii ¼ cihOiiþOð1=mQÞ; ð26Þ

510 where primed and unprimed quantities are in the ðnf þ 1Þ-
511 and nf-flavor theories, respectively.8 Let us express the
512 solution to the matching condition as

ciðμQÞ ¼ MijðμQÞc0jðμQÞ: ð27Þ

513514The vector currents have trivial matching conditions up to
515power corrections, while the axial-vector currents, tensor
516currents and C-odd spin-2 operators receive threshold
517matching corrections beginning at Oðα2sÞ. Since the latter
518operator classes have nuclear spin-dependent and/or veloc-
519ity-suppressed matrix elements in physical WIMP-nucleon
520processes at small relative velocity, we restrict our attention
521to the leading effects of renormalization scale evolution as
522detailed in the previous section, and neglect heavy-quark
523threshold matching conditions which are suppressed in each
524case by a further power of αs.

9 In terms of Eq. (27), we
525express these solutions in the basis ðu; d; s;…jQÞ as the
526nf × ðnf þ 1Þ matrix Mij ¼ Mδij, with i ¼ u; d; s;… and
527j ¼ u; d; s;…; Q. The constantsM are collected inTableVI.
528For the scalar, pseudoscalar andC-even spin-2 operators,
529threshold matching involving gluon operators begins at
530OðαsÞ, and the solution to the matching condition may be
531expressed in terms of an ðnf þ 1Þ × ðnf þ 2Þ matrix in the
532basis ðu; d; s;…jQjgÞ as

M ¼

0

BBBBB@

1 0 0

. .
. ..

. ..
.

1 0 0

0 % % % 0 MgQ Mgg

1

CCCCCA
: ð28Þ

533This parametrization is sufficient for matching at NLO
534for scalar operators [50] and at LO for pseudoscalar and
535C-even spin-2 operators.10 The elements Mij are given in

TABLE VI. Heavy-quark threshold matching relations for the
seven operator classes. The strong coupling in the ðnf þ 1Þ-flavor
theory is denoted α0s.

Operator Solution to matching condition

Vq MV ¼ 1

Aq MA ¼ 1þOðα2sÞ
Tq MT ¼ 1þOðα2sÞ

Oð0Þ
q ; Oð0Þ

g Mð0Þ
gQ ¼ − α0sðμQÞ

12π f1þ α0sðμQÞ
4π ½11 − 4

3 log
μQ
mQ
' þOðα2sÞg,

Mð0Þ
gg ¼ 1 − α0sðμQÞ

3π log μQ
mQ

þOðα2sÞ

Oð0Þ
5q ; O

ð0Þ
5g Mð0Þ

5;gQ ¼ α0sðμQÞ
8π þOðα2sÞ, M

ð0Þ
5;gg ¼ 1þOðαsÞ

Oð2Þ
q ; Oð2Þ

g Mð2Þ
gQ ¼ α0s

3π log
μQ
mQ

þOðα2sÞ, M
ð2Þ
gg ¼ 1þOðαsÞ

Oð2Þ
5q Mð2Þ

5 ¼ 1þOðα2sÞ

8For example, the matching condition for scalar operators,
between physical matrix elements in the five- and four-flavor
theories, is given by cð0Þ0g hOð0Þ0

g iþ
P

q¼u;d;s;c;bc
ð0Þ0
q hOð0Þ0

q i ¼
cð0Þg hOð0Þ

g iþ
P

q¼u;d;s;cc
ð0Þ
q hOð0Þ

q iþOð1=mbÞ, where primed
and unprimed quantities are in the five- and four-flavor theories,
respectively, and the scale dependence is implicit.

9For explicit results at two- and three-loop order, see [48,49].
10In the next section we generalize the parametrization of Mij

for higher-order matching in the case of scalar operators.
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326 for the coefficients ci of the low-energy effective theories
327 in Eqs. (5), (6), or (7) in terms of parameters in the high-
328 energy theory.
329 As a simple illustration, let us consider the case of a
330 Majorana fermion electroweak singlet. The lowest dimen-
331 sion operators involving SM interactions are given in the
332 electroweak symmetric theory by

Lψ ;SM ¼ 1

2
ψ̄ði∂ −M0Þψ −

1

Λ
ψ̄ðc0ψ1 þ ic0ψ2γ5ÞψH†Hþ % % % ;

ð11Þ

333 where the ellipsis denotes terms suppressed by higher
334 powers of Λ, the scale associated with a heavy mediator.
335 Let us further assume ψ to have massM0 ≪ mW , and hence
336 organize the matching by a power counting employing a
337 scale separation M0 ≪ mW ≪ Λ.
338 Upon integrating out the physical Higgs field h and the
339 top quark t, and performing the field redefinition,

ψ → e−iϕγ5ψ ; tan 2ϕ ¼
c0ψ2v

2

c0ψ1v
2 þM0Λ

; ð12Þ

340 to retain a positive real mass convention for ψ, we obtain
341 the effective Lagrangian below the weak scale,

Lψ ;SM ¼ 1

2
ψ̄ði∂ −MÞψ þ 1

m3
W

!
ψ̄ðcψ7 þ icψ8γ5Þψ

X

q

mqq̄q

þ ψ̄ðcψ17 þ icψ18γ5ÞψGA
μνGAμν

"
þ % % % ; ð13Þ

342 where the sum runs over the active quark mass eigenstates
343 q ¼ u; d; s; c; b, and the ellipsis denotes higher-order
344 perturbative and power corrections. The physical DM mass
345 and the effective couplings in the low-energy theory are
346 given at leading order by

M ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi$
M0 þ

c0ψ1v
2

Λ

%2

þ
$
c0ψ2v

2

Λ

%2
s

;

fcψ7; cψ8g ¼ m3
WM

0

m2
hΛM

&
c0ψ1 þ

v2

M0Λ
½c02ψ1 þ c02ψ2'; c0ψ2

'
;

fcψ17; cψ18g ¼ −
αsðmWÞ
12π

fcψ7; cψ8g: ð14Þ

347 Note that avanishingc0ψ1 doesnot implyavelocity-suppressed
348 spin-independent cross section forWIMP-nucleon scattering,
349 since a nonvanishing cψ8 ∼ ðv2=M0ΛÞc02ψ2 is induced in the
350 low-energy theory.6 While we do not pursue a detailed
351 phenomenology of the model (13), this example illustrates
352 somegeneric featuresofweak-scalematching.First,particular

353UV completions may have nontrivial correlations and
354suppression factors amongst coefficients; e.g., cψ3;4;9;10 are
355suppressed by loop (∼g2) or power (∼1=Λ) corrections.
356Second, effects that are naively absent from the high scale
357Lagrangian are nonetheless present once a complete analysis
358is performed. It is essential to include a complete basis that is
359closed under renormalization and contains all operators not
360forbidden by symmetry.
361Weak-scale matching for an electroweak-singlet Dirac
362fermion or (real or complex) scalar can be similarly
363performed. Weak-scale matching for the case of electro-
364weak-charged dark matter requires a more intricate analysis
365as detailed in Ref. [4].

366III. OPERATOR RENORMALIZATION,
367SCALE EVOLUTION AND MATCHING
368AT HEAVY-QUARK THRESHOLDS

369Having determined the basis of effective operators
370and their coefficients at the weak scale, we may proceed
371to map onto a theory valid at lower energy scales. We
372identify the relevant QCD operators and compute their
373anomalous dimensions. We then solve the corresponding
374renormalization group evolution equations and enforce
375matching conditions at heavy-quark thresholds, passing
376from nf ¼ 5 renormalized at μ ∼mW to nf ¼ 3 (or nf ¼ 4)
377renormalized below the charm (or bottom) threshold.

378A. QCD operator basis

379Inspection of the low-energy SM building blocks in (1)
380shows that, up to field redefinitions, the strong interaction
381matrix elements relevant for WIMP-SM interactions
382through dimension seven involve seven QCD operator
383classes collected in Table II: at dimension three we have
384the vector and axial-vector currents; at dimension four
385we have the antisymmetric tensor currents, the scalar
386operators, the pseudoscalar operators, the C-even spin-2
387operators and the C-odd spin-2 operators. Each of these
388classes transforms irreducibly under continuous and dis-
389crete Lorentz transformations, and is separately closed
390under renormalization.

391B. Renormalization constants

392Let us denote byOi a generic operator with coefficient ci
393belonging to one of the seven operator classes closed under
394renormalization. The relations between bare and renormal-
395ized operators and coefficients are given by

Obare
i ¼ ZijðμÞOren

j ðμÞ; creni ðμÞ ¼ ZjiðμÞcbarej ; ð15Þ

396with an implicit sum over repeated indices. We define the
397operator renormalization constants Zij in the MS scheme,
398except for the axial-vector and pseudoscalar operators
399where we consider an additional finite renormalization to
400retain a conventional axial-vector current divergence and

6This observation has been employed in [18,37]. Also, spin-
dependent interactions may generate spin-independent inter-
actions at loop level [38].
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445 available from Refs. [43,44]. For the C-odd spin-2 oper-
446 ators, the two-loop anomalous dimension may be obtained
447 from Ref. [45].

448 C. Anomalous dimensions and renormalization
449 group evolution

450 From the relations between bare and renormalized
451 quantities in Eq. (15), we obtain the scale evolution
452 equations

d
d log μ

Oi ¼ −γijOj;

d
d log μ

ci ¼ γjicj;

γij ≡ Z−1
ik

d
d log μ

Zkj; ð20Þ

453 where the scale dependence and superscript “ren” on
454 renormalized quantities in (15) have been suppressed,
455 and we have defined the anomalous dimension matrix
456 γij. In the MS scheme the anomalous dimension is given to
457 all orders in αs in terms of the coefficient of 1=ϵ in Zij,

γij ¼ −g
∂
∂g Zð1Þij; Zij ¼ δij þ

X∞

n¼1

ZðnÞij

ϵn
: ð21Þ

458 The renormalization constants for axial-vector currents and
459 pseudoscalar operators include a finite contribution beyond
460 MS, and hence we employ the general definition in (20) to
461 determine their anomalous dimensions.
462 For vector currents, axial-vector currents, tensor currents
463 and C-odd spin-2 operators, the anomalous dimensions

464have the form γij ¼ γδij, with γ listed in Table IV. For
465scalar, pseudoscalar and C-even spin-2 operators, the
466anomalous dimensions, in the basis ðu; d; s;…jgÞ, have
467the form

γ ¼

0

BBBBB@

γqq γqg

. .
. ..

.

γqq γqg

γgq % % % γgq γgg

1

CCCCCA
; ð22Þ

468with elements γij listed in Table IV.
469It is straightforward to solve for the evolution of
470coefficients from a high scale μh down to a low scale μl,
471employing the anomalous dimension for each of the seven
472operator classes. Let us express the solutions as

ciðμlÞ ¼ Rijðμl; μhÞcjðμhÞ: ð23Þ

473For vector currents, axial-vector currents, tensor currents
474and C-odd spin-2 operators, the solutions have the form
475Rij ¼ Rδij, with R listed in Table V. For scalar, pseudo-
476scalar operators and C-even spin-2 operators, the solutions
477in the basis ðu; d; s;…jgÞ have the form

TABLE IV. Anomalous dimensions for the seven operator
classes arising in the low-energy effective theory for the DM
particle. Here we denote X0 ≡ g ∂

∂g X.

Operator Anomalous dimension

Vq γV ¼ 0

Aq γðsingletÞA ¼ ðαs4πÞ
216nf þOðα3sÞ,

γðnonsingletÞA ¼ 0

Tq γT ¼ − αs
4π

32
3 þOðα2sÞ,

Oð0Þ
q ; Oð0Þ

g γð0Þqq ¼ 0, γð0Þqg ¼ 0,

γð0Þgq ¼ −2γ0m, γ
ð0Þ
gg ¼ ~β0

Oð0Þ
5q ; O

ð0Þ
5g γð0Þ5;qq ¼ 0, γð0Þ5;qg ¼ 0

γð0Þ5;gq ¼ − αs
4π 32þOðα2sÞ, γ

ð0Þ
5;gg ¼ − αs

4π 2β0 þOðα2sÞ

Oð2Þ
q ; Oð2Þ

g γð2Þqq ¼ αs
4π

64
9 þOðα2sÞ, γ

ð2Þ
qg ¼ − αs

4π
4
3 þOðα2sÞ,

γð2Þgq ¼ − αs
4π

64
9 þOðα2sÞ, γ

ð2Þ
gg ¼ αs

4π
4nf
3 þOðα2sÞ

Oð2Þ
5q γð2Þ5 ¼ αs

4π
64
9 þOðα2sÞ

TABLE V. Solutions to coefficient running for each of the
seven operator classes arising in the low-energy effective theory
for the DM particle. The coefficient running for C-even spin-2
operators are given in terms of the function rðtÞ defined in
Eq. (25).

Operator Solution to coefficient running

Vq RV ¼ 1

Aq RðsingletÞ
A ¼ expf2nfπβ0

½αsðμhÞ − αsðμlÞ' þOðα2sÞg,

RðnonsingletÞ
A ¼ 1

Tq RT ¼ ðαsðμlÞαsðμhÞÞ
− 16
3β0 ½1þOðαsÞ'

Oð0Þ
q ; Oð0Þ

g Rð0Þ
qq ¼ 1, Rð0Þ

qg ¼ 2½γmðμhÞ − γmðμlÞ'= ~βðμhÞ;

Rð0Þ
gq ¼ 0, Rð0Þ

gg ¼ ~βðμlÞ= ~βðμhÞ

Oð0Þ
5q ; O

ð0Þ
5g Rð0Þ

5;qq ¼ 1, Rð0Þ
5;qg ¼ 16

β0
ðαsðμlÞαsðμhÞ − 1Þ þOðαsÞ;

Rð0Þ
5;gq ¼ 0, Rð0Þ

5;gg ¼
αsðμlÞ
αsðμhÞ þOðαsÞ

Oð2Þ
q ; Oð2Þ

g Rð2Þ
qq − Rð2Þ

qq0 ¼ rð0Þ þOðαsÞ,

Rð2Þ
qq0 ¼

1
nf
½16rðnfÞþ3nf

16þ3nf
− rð0Þ' þOðαsÞ,

Rð2Þ
qg ¼ 16½1−rðnfÞ'

16þ3nf
þOðαsÞ,

Rð2Þ
gq ¼ 3½1−rðnfÞ'

16þ3nf
þOðαsÞ, R

ð2Þ
gg ¼ 16þ3nfrðnfÞ

16þ3nf
þOðαsÞ

Oð2Þ
5q Rð2Þ

5 ¼ ðαsðμlÞαsðμhÞ
Þ−

32
9β0 ½1þOðαsÞ'
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326 for the coefficients ci of the low-energy effective theories
327 in Eqs. (5), (6), or (7) in terms of parameters in the high-
328 energy theory.
329 As a simple illustration, let us consider the case of a
330 Majorana fermion electroweak singlet. The lowest dimen-
331 sion operators involving SM interactions are given in the
332 electroweak symmetric theory by

Lψ ;SM ¼ 1

2
ψ̄ði∂ −M0Þψ −

1

Λ
ψ̄ðc0ψ1 þ ic0ψ2γ5ÞψH†Hþ % % % ;

ð11Þ

333 where the ellipsis denotes terms suppressed by higher
334 powers of Λ, the scale associated with a heavy mediator.
335 Let us further assume ψ to have massM0 ≪ mW , and hence
336 organize the matching by a power counting employing a
337 scale separation M0 ≪ mW ≪ Λ.
338 Upon integrating out the physical Higgs field h and the
339 top quark t, and performing the field redefinition,

ψ → e−iϕγ5ψ ; tan 2ϕ ¼
c0ψ2v

2

c0ψ1v
2 þM0Λ

; ð12Þ

340 to retain a positive real mass convention for ψ, we obtain
341 the effective Lagrangian below the weak scale,

Lψ ;SM ¼ 1

2
ψ̄ði∂ −MÞψ þ 1

m3
W

!
ψ̄ðcψ7 þ icψ8γ5Þψ

X

q

mqq̄q

þ ψ̄ðcψ17 þ icψ18γ5ÞψGA
μνGAμν

"
þ % % % ; ð13Þ

342 where the sum runs over the active quark mass eigenstates
343 q ¼ u; d; s; c; b, and the ellipsis denotes higher-order
344 perturbative and power corrections. The physical DM mass
345 and the effective couplings in the low-energy theory are
346 given at leading order by

M ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi$
M0 þ

c0ψ1v
2

Λ

%2

þ
$
c0ψ2v

2

Λ

%2
s

;

fcψ7; cψ8g ¼ m3
WM

0

m2
hΛM

&
c0ψ1 þ

v2

M0Λ
½c02ψ1 þ c02ψ2'; c0ψ2

'
;

fcψ17; cψ18g ¼ −
αsðmWÞ
12π

fcψ7; cψ8g: ð14Þ

347 Note that avanishingc0ψ1 doesnot implyavelocity-suppressed
348 spin-independent cross section forWIMP-nucleon scattering,
349 since a nonvanishing cψ8 ∼ ðv2=M0ΛÞc02ψ2 is induced in the
350 low-energy theory.6 While we do not pursue a detailed
351 phenomenology of the model (13), this example illustrates
352 somegeneric featuresofweak-scalematching.First,particular

353UV completions may have nontrivial correlations and
354suppression factors amongst coefficients; e.g., cψ3;4;9;10 are
355suppressed by loop (∼g2) or power (∼1=Λ) corrections.
356Second, effects that are naively absent from the high scale
357Lagrangian are nonetheless present once a complete analysis
358is performed. It is essential to include a complete basis that is
359closed under renormalization and contains all operators not
360forbidden by symmetry.
361Weak-scale matching for an electroweak-singlet Dirac
362fermion or (real or complex) scalar can be similarly
363performed. Weak-scale matching for the case of electro-
364weak-charged dark matter requires a more intricate analysis
365as detailed in Ref. [4].

366III. OPERATOR RENORMALIZATION,
367SCALE EVOLUTION AND MATCHING
368AT HEAVY-QUARK THRESHOLDS

369Having determined the basis of effective operators
370and their coefficients at the weak scale, we may proceed
371to map onto a theory valid at lower energy scales. We
372identify the relevant QCD operators and compute their
373anomalous dimensions. We then solve the corresponding
374renormalization group evolution equations and enforce
375matching conditions at heavy-quark thresholds, passing
376from nf ¼ 5 renormalized at μ ∼mW to nf ¼ 3 (or nf ¼ 4)
377renormalized below the charm (or bottom) threshold.

378A. QCD operator basis

379Inspection of the low-energy SM building blocks in (1)
380shows that, up to field redefinitions, the strong interaction
381matrix elements relevant for WIMP-SM interactions
382through dimension seven involve seven QCD operator
383classes collected in Table II: at dimension three we have
384the vector and axial-vector currents; at dimension four
385we have the antisymmetric tensor currents, the scalar
386operators, the pseudoscalar operators, the C-even spin-2
387operators and the C-odd spin-2 operators. Each of these
388classes transforms irreducibly under continuous and dis-
389crete Lorentz transformations, and is separately closed
390under renormalization.

391B. Renormalization constants

392Let us denote byOi a generic operator with coefficient ci
393belonging to one of the seven operator classes closed under
394renormalization. The relations between bare and renormal-
395ized operators and coefficients are given by

Obare
i ¼ ZijðμÞOren

j ðμÞ; creni ðμÞ ¼ ZjiðμÞcbarej ; ð15Þ

396with an implicit sum over repeated indices. We define the
397operator renormalization constants Zij in the MS scheme,
398except for the axial-vector and pseudoscalar operators
399where we consider an additional finite renormalization to
400retain a conventional axial-vector current divergence and

6This observation has been employed in [18,37]. Also, spin-
dependent interactions may generate spin-independent inter-
actions at loop level [38].
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445 available from Refs. [43,44]. For the C-odd spin-2 oper-
446 ators, the two-loop anomalous dimension may be obtained
447 from Ref. [45].

448 C. Anomalous dimensions and renormalization
449 group evolution

450 From the relations between bare and renormalized
451 quantities in Eq. (15), we obtain the scale evolution
452 equations

d
d log μ

Oi ¼ −γijOj;

d
d log μ

ci ¼ γjicj;

γij ≡ Z−1
ik

d
d log μ

Zkj; ð20Þ

453 where the scale dependence and superscript “ren” on
454 renormalized quantities in (15) have been suppressed,
455 and we have defined the anomalous dimension matrix
456 γij. In the MS scheme the anomalous dimension is given to
457 all orders in αs in terms of the coefficient of 1=ϵ in Zij,

γij ¼ −g
∂
∂g Zð1Þij; Zij ¼ δij þ

X∞

n¼1

ZðnÞij

ϵn
: ð21Þ

458 The renormalization constants for axial-vector currents and
459 pseudoscalar operators include a finite contribution beyond
460 MS, and hence we employ the general definition in (20) to
461 determine their anomalous dimensions.
462 For vector currents, axial-vector currents, tensor currents
463 and C-odd spin-2 operators, the anomalous dimensions

464have the form γij ¼ γδij, with γ listed in Table IV. For
465scalar, pseudoscalar and C-even spin-2 operators, the
466anomalous dimensions, in the basis ðu; d; s;…jgÞ, have
467the form

γ ¼

0

BBBBB@

γqq γqg

. .
. ..

.

γqq γqg

γgq % % % γgq γgg

1

CCCCCA
; ð22Þ

468with elements γij listed in Table IV.
469It is straightforward to solve for the evolution of
470coefficients from a high scale μh down to a low scale μl,
471employing the anomalous dimension for each of the seven
472operator classes. Let us express the solutions as

ciðμlÞ ¼ Rijðμl; μhÞcjðμhÞ: ð23Þ

473For vector currents, axial-vector currents, tensor currents
474and C-odd spin-2 operators, the solutions have the form
475Rij ¼ Rδij, with R listed in Table V. For scalar, pseudo-
476scalar operators and C-even spin-2 operators, the solutions
477in the basis ðu; d; s;…jgÞ have the form

TABLE IV. Anomalous dimensions for the seven operator
classes arising in the low-energy effective theory for the DM
particle. Here we denote X0 ≡ g ∂

∂g X.

Operator Anomalous dimension

Vq γV ¼ 0

Aq γðsingletÞA ¼ ðαs4πÞ
216nf þOðα3sÞ,

γðnonsingletÞA ¼ 0

Tq γT ¼ − αs
4π

32
3 þOðα2sÞ,

Oð0Þ
q ; Oð0Þ

g γð0Þqq ¼ 0, γð0Þqg ¼ 0,

γð0Þgq ¼ −2γ0m, γ
ð0Þ
gg ¼ ~β0

Oð0Þ
5q ; O

ð0Þ
5g γð0Þ5;qq ¼ 0, γð0Þ5;qg ¼ 0

γð0Þ5;gq ¼ − αs
4π 32þOðα2sÞ, γ

ð0Þ
5;gg ¼ − αs

4π 2β0 þOðα2sÞ

Oð2Þ
q ; Oð2Þ

g γð2Þqq ¼ αs
4π

64
9 þOðα2sÞ, γ

ð2Þ
qg ¼ − αs

4π
4
3 þOðα2sÞ,

γð2Þgq ¼ − αs
4π

64
9 þOðα2sÞ, γ

ð2Þ
gg ¼ αs

4π
4nf
3 þOðα2sÞ

Oð2Þ
5q γð2Þ5 ¼ αs

4π
64
9 þOðα2sÞ

TABLE V. Solutions to coefficient running for each of the
seven operator classes arising in the low-energy effective theory
for the DM particle. The coefficient running for C-even spin-2
operators are given in terms of the function rðtÞ defined in
Eq. (25).

Operator Solution to coefficient running

Vq RV ¼ 1

Aq RðsingletÞ
A ¼ expf2nfπβ0

½αsðμhÞ − αsðμlÞ' þOðα2sÞg,

RðnonsingletÞ
A ¼ 1

Tq RT ¼ ðαsðμlÞαsðμhÞÞ
− 16
3β0 ½1þOðαsÞ'

Oð0Þ
q ; Oð0Þ

g Rð0Þ
qq ¼ 1, Rð0Þ

qg ¼ 2½γmðμhÞ − γmðμlÞ'= ~βðμhÞ;

Rð0Þ
gq ¼ 0, Rð0Þ

gg ¼ ~βðμlÞ= ~βðμhÞ

Oð0Þ
5q ; O

ð0Þ
5g Rð0Þ

5;qq ¼ 1, Rð0Þ
5;qg ¼ 16

β0
ðαsðμlÞαsðμhÞ − 1Þ þOðαsÞ;

Rð0Þ
5;gq ¼ 0, Rð0Þ

5;gg ¼
αsðμlÞ
αsðμhÞ þOðαsÞ

Oð2Þ
q ; Oð2Þ

g Rð2Þ
qq − Rð2Þ

qq0 ¼ rð0Þ þOðαsÞ,

Rð2Þ
qq0 ¼

1
nf
½16rðnfÞþ3nf

16þ3nf
− rð0Þ' þOðαsÞ,

Rð2Þ
qg ¼ 16½1−rðnfÞ'

16þ3nf
þOðαsÞ,

Rð2Þ
gq ¼ 3½1−rðnfÞ'

16þ3nf
þOðαsÞ, R

ð2Þ
gg ¼ 16þ3nfrðnfÞ

16þ3nf
þOðαsÞ

Oð2Þ
5q Rð2Þ

5 ¼ ðαsðμlÞαsðμhÞ
Þ−

32
9β0 ½1þOðαsÞ'
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Wilson coefficient renormalization

14

1024 where xi ¼ mi=mW , yi ¼ mi=mZ and

cðUÞ
V ¼ 1 −

8

3
s2W; cðDÞ

V ¼ −1þ 4

3
s2W;

cðUÞ
A ¼ −1; cðDÞ

A ¼ 1: ð94Þ

1025 We denote generic up- and down-type quarks by U and D, respectively, and the Kronecker delta δDb is equal to unity for
1026 D ¼ b and vanishes for D ¼ d; s. We have used CKM unitarity,

P
DjVUDj2 ¼ 1, to simplify the results; in practice it is

1027 sufficient to set Vtb ¼ 1 for the numerical analysis. Beyond the specification of the WIMP electroweak quantum numbers
1028 isospin J and hypercharge Y through the constants
1029

CW ¼ ½JðJ þ 1Þ − Y2&; CZ ¼ Y2; ð95Þ

1030 the matching coefficients are completely given by SM parameters in the heavy WIMP limit. The pure wino and pure
1031 Higgsino results are obtained by setting CW ¼ 2; CZ ¼ 0 and CW ¼ 1=2; CZ ¼ 1=4, respectively.
1032 Let us now consider the evolution down to low energies for these weak-scale coefficients, and the subsequent evaluation
1033 of hadronic matrix elements to obtain the benchmark low-velocity single-nucleon scattering cross section.
1034
1035 1. Coefficient renormalization

1036 Let us employ Zð0Þ and Zð2Þ through OðαsÞ given in Table III to derive the relation between bare and renormalized
1037 coefficients at first nonvanishing order. From the definition in (15), the renormalized coefficients for the scalar operators are

cð0Þq ðμÞ ¼
X

q0
Zð0Þ
q0qðμÞc

ð0Þbare
q0 þ Zð0Þ

gq ðμÞcð0Þbareg ¼ cð0Þbareq þOðα2sÞ;

cð0Þg ðμÞ ¼
X

q0
Zð0Þ
q0gðμÞc

ð0Þbare
q0 þ Zð0Þ

gg ðμÞcð0Þbareg ¼ cð0Þbareg þOðα2sÞ; ð96Þ

1038 while for the C-even spin-2 operators, we find

cð2Þq ðμÞ ¼
X

q0
Zð2Þ
q0qðμÞc

ð2Þbare
q0 þ Zð2Þ

gq ðμÞcð2Þbareg ¼ cð2Þbareq þOðαsÞ;

cð2Þg ðμÞ ¼
X

q0
Zð2Þ
q0gðμÞc

ð2Þbare
q0 þ Zð2Þ

gg ðμÞcð2Þbareg ¼
X

q

1

ϵ
αs
6π

cð2Þbareq þ cð2Þbareg þOðα2sÞ: ð97Þ

1039 In particular, a nontrivial subtraction requiring the OðϵÞ part of the coefficients cð2Þbareq is necessary to obtain the

1040 renormalized coefficient cð2Þg ðμÞ. Employing (96) and (97), we find the renormalized coefficients

cð0ÞU ðμÞ ¼ πα22
m3

W

!
−

1

2x2h

"
CW þ CZ

c3W

#
þ CZ
8cW

"
cðUÞ2
V − cðUÞ2

A

#$
;

cð0ÞD ðμÞ ¼ πα22
m3

W

!
−

1

2x2h

"
CW þ CZ

c3W

#
þ CZ
8cW

½cðDÞ2
V − cðDÞ2

A & − δDbCW
xt

8ðxt þ 1Þ3

$
;

cð0Þg ðμÞ ¼ πα22
m3

W

αsðμÞ
4π

!
1

2

"
1

3x2h

"
CW þ CZ

c3W

#
þ CW

"
1

3
þ 1

6ðxt þ 1Þ2

##

þ CZ
64cW

"
4½cðDÞ2

V þ cðDÞ2
A & þ ½cðUÞ2

V þ cðUÞ2
A &

"
8

3
þ 32y6t ð8y2t − 7Þ

ð4y2t − 1Þ7=2
arctan

% ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4y2t − 1

q '

− πyt þ
4ð48y6t − 2y4t þ 9y2t − 1Þ

3ð4y2t − 1Þ3

#
þ ½cðUÞ2

V − cðUÞ2
A &

"
3πyt −

4ð144y6t − 70y4t þ 9y2t − 2Þ
3ð4y2t − 1Þ3

−
32y4t ð24y4t − 21y2t þ 5Þ

ð4y2t − 1Þ7=2
arctan

% ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4y2t − 1

q '##$
;
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1024 where xi ¼ mi=mW , yi ¼ mi=mZ and

cðUÞ
V ¼ 1 −

8

3
s2W; cðDÞ

V ¼ −1þ 4

3
s2W;

cðUÞ
A ¼ −1; cðDÞ

A ¼ 1: ð94Þ

1025 We denote generic up- and down-type quarks by U and D, respectively, and the Kronecker delta δDb is equal to unity for
1026 D ¼ b and vanishes for D ¼ d; s. We have used CKM unitarity,

P
DjVUDj2 ¼ 1, to simplify the results; in practice it is

1027 sufficient to set Vtb ¼ 1 for the numerical analysis. Beyond the specification of the WIMP electroweak quantum numbers
1028 isospin J and hypercharge Y through the constants
1029

CW ¼ ½JðJ þ 1Þ − Y2&; CZ ¼ Y2; ð95Þ

1030 the matching coefficients are completely given by SM parameters in the heavy WIMP limit. The pure wino and pure
1031 Higgsino results are obtained by setting CW ¼ 2; CZ ¼ 0 and CW ¼ 1=2; CZ ¼ 1=4, respectively.
1032 Let us now consider the evolution down to low energies for these weak-scale coefficients, and the subsequent evaluation
1033 of hadronic matrix elements to obtain the benchmark low-velocity single-nucleon scattering cross section.
1034
1035 1. Coefficient renormalization

1036 Let us employ Zð0Þ and Zð2Þ through OðαsÞ given in Table III to derive the relation between bare and renormalized
1037 coefficients at first nonvanishing order. From the definition in (15), the renormalized coefficients for the scalar operators are

cð0Þq ðμÞ ¼
X

q0
Zð0Þ
q0qðμÞc

ð0Þbare
q0 þ Zð0Þ

gq ðμÞcð0Þbareg ¼ cð0Þbareq þOðα2sÞ;

cð0Þg ðμÞ ¼
X

q0
Zð0Þ
q0gðμÞc

ð0Þbare
q0 þ Zð0Þ

gg ðμÞcð0Þbareg ¼ cð0Þbareg þOðα2sÞ; ð96Þ

1038 while for the C-even spin-2 operators, we find

cð2Þq ðμÞ ¼
X

q0
Zð2Þ
q0qðμÞc

ð2Þbare
q0 þ Zð2Þ

gq ðμÞcð2Þbareg ¼ cð2Þbareq þOðαsÞ;

cð2Þg ðμÞ ¼
X

q0
Zð2Þ
q0gðμÞc

ð2Þbare
q0 þ Zð2Þ

gg ðμÞcð2Þbareg ¼
X

q

1

ϵ
αs
6π

cð2Þbareq þ cð2Þbareg þOðα2sÞ: ð97Þ

1039 In particular, a nontrivial subtraction requiring the OðϵÞ part of the coefficients cð2Þbareq is necessary to obtain the

1040 renormalized coefficient cð2Þg ðμÞ. Employing (96) and (97), we find the renormalized coefficients

cð0ÞU ðμÞ ¼ πα22
m3

W

!
−

1

2x2h

"
CW þ CZ

c3W

#
þ CZ
8cW

"
cðUÞ2
V − cðUÞ2

A

#$
;

cð0ÞD ðμÞ ¼ πα22
m3

W

!
−

1

2x2h

"
CW þ CZ

c3W

#
þ CZ
8cW

½cðDÞ2
V − cðDÞ2

A & − δDbCW
xt

8ðxt þ 1Þ3

$
;

cð0Þg ðμÞ ¼ πα22
m3

W

αsðμÞ
4π

!
1

2

"
1

3x2h

"
CW þ CZ

c3W

#
þ CW

"
1

3
þ 1

6ðxt þ 1Þ2

##

þ CZ
64cW

"
4½cðDÞ2

V þ cðDÞ2
A & þ ½cðUÞ2

V þ cðUÞ2
A &

"
8

3
þ 32y6t ð8y2t − 7Þ

ð4y2t − 1Þ7=2
arctan

% ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4y2t − 1

q '

− πyt þ
4ð48y6t − 2y4t þ 9y2t − 1Þ

3ð4y2t − 1Þ3

#
þ ½cðUÞ2

V − cðUÞ2
A &

"
3πyt −

4ð144y6t − 70y4t þ 9y2t − 2Þ
3ð4y2t − 1Þ3

−
32y4t ð24y4t − 21y2t þ 5Þ

ð4y2t − 1Þ7=2
arctan

% ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4y2t − 1

q '##$
;
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Heavy quark thresholds

15

mb
Lnf=5QCD

Lnf=4QCD

R ¼

0

BBBBB@

Rqg

1ðRqq − Rqq0Þ þ JRqq0
..
.

Rqg

Rgq % % % Rgq Rgg

1

CCCCCA
; ð24Þ

478 where the nf × nf matrices 1 and J are, respectively, the
479 identity matrix and the matrix with all elements equal to
480 unity. For the scalar and pseudoscalar operators, Rqq0 ¼ 0.
481 The elements Rij are specified in Table V, where the results
482 for the C-even spin-2 operators involve the function

rðtÞ ¼
!
αsðμlÞ
αsðμhÞ

"− 1
2β0

ð649þ
4
3tÞ
: ð25Þ

483
484 The vector and nonsinglet axial-vector currents have
485 vanishing anomalous dimension and hence trivial scale
486 evolution. For the singlet axial-vector current, nontrivial
487 renormalization begins at two-loop order. For the tensor
488 current and C-odd spin-2 operator, we have presented the
489 leading logarithmic order solutions. The chosen renorm-
490 alization prescription ensures scale invariance of the quark
491 pseudoscalar operators to all orders.
492 For most phenomenological applications we may simply
493 evaluate the matrix elements of the C-even spin-2 operators
494 in terms of parton distribution functions (PDFs) at the weak
495 scale μh ∼mW . This avoids the need for renormalization
496 group analysis (apart from matching to a convenient scale
497 to evaluate matrix elements) and heavy-quark threshold
498 matching conditions. Nonetheless, we include the above
499 results for future analyses which may require an evaluation
500 of tensor matrix elements at low scales, such as in
501 considering multinucleon contributions to matrix elements
502 [26,46,47] or in investigating the power-suppressed mixing
503 between scalar and tensor operators.

504 D. Heavy-quark threshold matching

505 After evolving to the scale μQ ∼mQ, we integrate out the
506 heavyquark, i.e., the bottomor charmquark, ofmassmQ. The
507 coefficients in thenf- and ðnf þ 1Þ-flavor theories are related
508 by matching physical matrix elements. In terms of renormal-
509 ized coefficients and operators, the matching condition is

c0ihO0
ii ¼ cihOiiþOð1=mQÞ; ð26Þ

510 where primed and unprimed quantities are in the ðnf þ 1Þ-
511 and nf-flavor theories, respectively.8 Let us express the
512 solution to the matching condition as

ciðμQÞ ¼ MijðμQÞc0jðμQÞ: ð27Þ

513514The vector currents have trivial matching conditions up to
515power corrections, while the axial-vector currents, tensor
516currents and C-odd spin-2 operators receive threshold
517matching corrections beginning at Oðα2sÞ. Since the latter
518operator classes have nuclear spin-dependent and/or veloc-
519ity-suppressed matrix elements in physical WIMP-nucleon
520processes at small relative velocity, we restrict our attention
521to the leading effects of renormalization scale evolution as
522detailed in the previous section, and neglect heavy-quark
523threshold matching conditions which are suppressed in each
524case by a further power of αs.

9 In terms of Eq. (27), we
525express these solutions in the basis ðu; d; s;…jQÞ as the
526nf × ðnf þ 1Þ matrix Mij ¼ Mδij, with i ¼ u; d; s;… and
527j ¼ u; d; s;…; Q. The constantsM are collected inTableVI.
528For the scalar, pseudoscalar andC-even spin-2 operators,
529threshold matching involving gluon operators begins at
530OðαsÞ, and the solution to the matching condition may be
531expressed in terms of an ðnf þ 1Þ × ðnf þ 2Þ matrix in the
532basis ðu; d; s;…jQjgÞ as

M ¼

0

BBBBB@

1 0 0

. .
. ..

. ..
.

1 0 0

0 % % % 0 MgQ Mgg

1

CCCCCA
: ð28Þ

533This parametrization is sufficient for matching at NLO
534for scalar operators [50] and at LO for pseudoscalar and
535C-even spin-2 operators.10 The elements Mij are given in

TABLE VI. Heavy-quark threshold matching relations for the
seven operator classes. The strong coupling in the ðnf þ 1Þ-flavor
theory is denoted α0s.

Operator Solution to matching condition

Vq MV ¼ 1

Aq MA ¼ 1þOðα2sÞ
Tq MT ¼ 1þOðα2sÞ

Oð0Þ
q ; Oð0Þ

g Mð0Þ
gQ ¼ − α0sðμQÞ

12π f1þ α0sðμQÞ
4π ½11 − 4

3 log
μQ
mQ
' þOðα2sÞg,

Mð0Þ
gg ¼ 1 − α0sðμQÞ

3π log μQ
mQ

þOðα2sÞ

Oð0Þ
5q ; O

ð0Þ
5g Mð0Þ

5;gQ ¼ α0sðμQÞ
8π þOðα2sÞ, M

ð0Þ
5;gg ¼ 1þOðαsÞ

Oð2Þ
q ; Oð2Þ

g Mð2Þ
gQ ¼ α0s

3π log
μQ
mQ

þOðα2sÞ, M
ð2Þ
gg ¼ 1þOðαsÞ

Oð2Þ
5q Mð2Þ

5 ¼ 1þOðα2sÞ

8For example, the matching condition for scalar operators,
between physical matrix elements in the five- and four-flavor
theories, is given by cð0Þ0g hOð0Þ0

g iþ
P

q¼u;d;s;c;bc
ð0Þ0
q hOð0Þ0

q i ¼
cð0Þg hOð0Þ

g iþ
P

q¼u;d;s;cc
ð0Þ
q hOð0Þ

q iþOð1=mbÞ, where primed
and unprimed quantities are in the five- and four-flavor theories,
respectively, and the scale dependence is implicit.

9For explicit results at two- and three-loop order, see [48,49].
10In the next section we generalize the parametrization of Mij

for higher-order matching in the case of scalar operators.
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..
.

Rqg
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; ð24Þ
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"− 1
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4
3tÞ
: ð25Þ
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516currents and C-odd spin-2 operators receive threshold
517matching corrections beginning at Oðα2sÞ. Since the latter
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520processes at small relative velocity, we restrict our attention
521to the leading effects of renormalization scale evolution as
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523threshold matching conditions which are suppressed in each
524case by a further power of αs.

9 In terms of Eq. (27), we
525express these solutions in the basis ðu; d; s;…jQÞ as the
526nf × ðnf þ 1Þ matrix Mij ¼ Mδij, with i ¼ u; d; s;… and
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529threshold matching involving gluon operators begins at
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534for scalar operators [50] and at LO for pseudoscalar and
535C-even spin-2 operators.10 The elements Mij are given in

TABLE VI. Heavy-quark threshold matching relations for the
seven operator classes. The strong coupling in the ðnf þ 1Þ-flavor
theory is denoted α0s.

Operator Solution to matching condition

Vq MV ¼ 1

Aq MA ¼ 1þOðα2sÞ
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Sum rule constraints on scalar matrix elements
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Figure 2: Matching condition onto gluon operators. The notation is as in Fig. 1.

Matching conditions onto gluon operators are from the diagrams of Fig. (2):

c(0)
2 (µt) = C�s(µt)

4⇤

�
1

3x2
h

+
3 + 4xt + 2x2

t

6(1 + xt)2

⇥
,

c(2)
2 (µt) = C�s(µt)

4⇤

�
� 32

9
log

µt

mW
� 4� 4(2 + 3xt)

9(1 + xt)3
log

µt

mW (1 + xt)

� 4(12x5
t � 36x4

t + 36x3
t � 12x2

t + 3xt � 2)

9(xt � 1)3
log

xt

1 + xt
� 8xt(�3 + 7x2

t )

9(x2
t � 1)3

log 2

� 48x6
t + 24x5

t � 104x4
t � 35x3

t + 20x2
t + 13xt + 18

9(x2
t � 1)2(1 + xt)

⇥
. (22)

There is no dependence of c(0)
2 or c(2)

2 on CKM matrix elements in the limit of vanishing
d, s, b quark masses. The renormalized coe⇤cients are computed in the MS scheme. We have
employed Fock-Schwinger (x · A = 0) gauge [10] to compute the full-theory amplitudes for
gluonic operators in Fig. 2. The e�ective theory subtractions are e⇤ciently performed in
a scheme with massless light quarks, using dimensional regularization as infrared regulator.
We have verified that the same results are obtained using finite masses and taking the limit
mq/mW ⇤ 0. Details of this computation will be presented elsewhere.

5 RG evolution to hadronic scales

To account for perturbative corrections involving large logarithms, e.g. �s(µ0) log mt/µ0, we
employ renormalization group evolution to sum leading logarithms to all orders.

7

+ + +

"
+ . . .

#
+ . . .

= c(0)
2

1BE

+ c(0)
1q 1BE

Figure 3: Gluon matching condition for one-boson exchange. The notation is as in Fig. 2. Ellipses
denote diagrams not shown explicitly (cf. Fig. 2). We neglect the gauge-invariant class of diagrams
within the square brackets, which is always suppressed relative to the one-loop diagram. We sum
over active quarks running in the loop (including the top quark in the full theory).

top quark contribution to h ! gg. In terms of quark matching coe�cients from one-boson exchange,
the bare gluon matching coe�cient is thus

c(0)
2

1BE

= �↵s(µt)

12⇡
c(0)
1q 1BE

. (53)

We neglect one-boson exchange contributions containing O(↵1

2

) corrections to the ⇠ h(GA
µ⌫)

2 SM
coupling, drawn within square brackets in Fig. 3. This gauge-invariant class of diagrams is always
loop-suppressed relative to the one-loop contribution.

4.3 Quark matching: two-boson exchange

+ + + + . . .

= c(0)
1q 2BE

+ c(2)
1q 2BE

Figure 4: Quark matching condition for two-boson exchange. The notation is as in Fig. 2. The full
theory diagrams illustrate the possible types of two-boson exchange. Crossed diagrams and time
reversed diagrams are not shown.

Let us now consider quark matching from two-boson exchange (2BE), as displayed in Fig. 4. The full
theory includes diagrams with exchange of two gauge bosons (Z or W ), two Goldstone bosons (�Z

or �W ), one gauge and one Goldstone boson, or two Higgs bosons. In terms of these contributions
the total amplitude is

Mq = MZZ
q +MWW

q +MW�W
q +MZ�Z

q +M�W�W
q +M�Z�Z

q +Mhh
q , (54)
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Figure 2: Matching condition onto gluon operators. The notation is as in Fig. 1.

Matching conditions onto gluon operators are from the diagrams of Fig. (2):
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There is no dependence of c(0)
2 or c(2)

2 on CKM matrix elements in the limit of vanishing
d, s, b quark masses. The renormalized coe⇤cients are computed in the MS scheme. We have
employed Fock-Schwinger (x · A = 0) gauge [10] to compute the full-theory amplitudes for
gluonic operators in Fig. 2. The e�ective theory subtractions are e⇤ciently performed in
a scheme with massless light quarks, using dimensional regularization as infrared regulator.
We have verified that the same results are obtained using finite masses and taking the limit
mq/mW ⇤ 0. Details of this computation will be presented elsewhere.

5 RG evolution to hadronic scales

To account for perturbative corrections involving large logarithms, e.g. �s(µ0) log mt/µ0, we
employ renormalization group evolution to sum leading logarithms to all orders.
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Figure 3: Gluon matching condition for one-boson exchange. The notation is as in Fig. 2. Ellipses
denote diagrams not shown explicitly (cf. Fig. 2). We neglect the gauge-invariant class of diagrams
within the square brackets, which is always suppressed relative to the one-loop diagram. We sum
over active quarks running in the loop (including the top quark in the full theory).

top quark contribution to h ! gg. In terms of quark matching coe�cients from one-boson exchange,
the bare gluon matching coe�cient is thus

c(0)
2

1BE

= �↵s(µt)

12⇡
c(0)
1q 1BE

. (53)

We neglect one-boson exchange contributions containing O(↵1

2

) corrections to the ⇠ h(GA
µ⌫)

2 SM
coupling, drawn within square brackets in Fig. 3. This gauge-invariant class of diagrams is always
loop-suppressed relative to the one-loop contribution.

4.3 Quark matching: two-boson exchange
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Figure 4: Quark matching condition for two-boson exchange. The notation is as in Fig. 2. The full
theory diagrams illustrate the possible types of two-boson exchange. Crossed diagrams and time
reversed diagrams are not shown.

Let us now consider quark matching from two-boson exchange (2BE), as displayed in Fig. 4. The full
theory includes diagrams with exchange of two gauge bosons (Z or W ), two Goldstone bosons (�Z

or �W ), one gauge and one Goldstone boson, or two Higgs bosons. In terms of these contributions
the total amplitude is

Mq = MZZ
q +MWW

q +MW�W
q +MZ�Z

q +M�W�W
q +M�Z�Z

q +Mhh
q , (54)
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We neglect one-boson exchange contributions containing O(↵1
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) corrections to the ⇠ h(GA
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coupling, drawn within square brackets in Fig. 3. This gauge-invariant class of diagrams is always
loop-suppressed relative to the one-loop contribution.
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Figure 4: Quark matching condition for two-boson exchange. The notation is as in Fig. 2. The full
theory diagrams illustrate the possible types of two-boson exchange. Crossed diagrams and time
reversed diagrams are not shown.

Let us now consider quark matching from two-boson exchange (2BE), as displayed in Fig. 4. The full
theory includes diagrams with exchange of two gauge bosons (Z or W ), two Goldstone bosons (�Z

or �W ), one gauge and one Goldstone boson, or two Higgs bosons. In terms of these contributions
the total amplitude is

Mq = MZZ
q +MWW

q +MW�W
q +MZ�Z

q +M�W�W
q +M�Z�Z

q +Mhh
q , (54)
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Figure 2: Matching condition onto gluon operators. The notation is as in Fig. 1.

Matching conditions onto gluon operators are from the diagrams of Fig. (2):
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There is no dependence of c(0)
2 or c(2)

2 on CKM matrix elements in the limit of vanishing
d, s, b quark masses. The renormalized coe⇤cients are computed in the MS scheme. We have
employed Fock-Schwinger (x · A = 0) gauge [10] to compute the full-theory amplitudes for
gluonic operators in Fig. 2. The e�ective theory subtractions are e⇤ciently performed in
a scheme with massless light quarks, using dimensional regularization as infrared regulator.
We have verified that the same results are obtained using finite masses and taking the limit
mq/mW ⇤ 0. Details of this computation will be presented elsewhere.

5 RG evolution to hadronic scales

To account for perturbative corrections involving large logarithms, e.g. �s(µ0) log mt/µ0, we
employ renormalization group evolution to sum leading logarithms to all orders.
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Figure 3: Gluon matching condition for one-boson exchange. The notation is as in Fig. 2. Ellipses
denote diagrams not shown explicitly (cf. Fig. 2). We neglect the gauge-invariant class of diagrams
within the square brackets, which is always suppressed relative to the one-loop diagram. We sum
over active quarks running in the loop (including the top quark in the full theory).

top quark contribution to h ! gg. In terms of quark matching coe�cients from one-boson exchange,
the bare gluon matching coe�cient is thus

c(0)
2

1BE

= �↵s(µt)

12⇡
c(0)
1q 1BE

. (53)

We neglect one-boson exchange contributions containing O(↵1

2

) corrections to the ⇠ h(GA
µ⌫)

2 SM
coupling, drawn within square brackets in Fig. 3. This gauge-invariant class of diagrams is always
loop-suppressed relative to the one-loop contribution.

4.3 Quark matching: two-boson exchange
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Figure 4: Quark matching condition for two-boson exchange. The notation is as in Fig. 2. The full
theory diagrams illustrate the possible types of two-boson exchange. Crossed diagrams and time
reversed diagrams are not shown.

Let us now consider quark matching from two-boson exchange (2BE), as displayed in Fig. 4. The full
theory includes diagrams with exchange of two gauge bosons (Z or W ), two Goldstone bosons (�Z

or �W ), one gauge and one Goldstone boson, or two Higgs bosons. In terms of these contributions
the total amplitude is

Mq = MZZ
q +MWW

q +MW�W
q +MZ�Z

q +M�W�W
q +M�Z�Z

q +Mhh
q , (54)
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There is no dependence of c(0)
2 or c(2)

2 on CKM matrix elements in the limit of vanishing
d, s, b quark masses. The renormalized coe⇤cients are computed in the MS scheme. We have
employed Fock-Schwinger (x · A = 0) gauge [10] to compute the full-theory amplitudes for
gluonic operators in Fig. 2. The e�ective theory subtractions are e⇤ciently performed in
a scheme with massless light quarks, using dimensional regularization as infrared regulator.
We have verified that the same results are obtained using finite masses and taking the limit
mq/mW ⇤ 0. Details of this computation will be presented elsewhere.

5 RG evolution to hadronic scales

To account for perturbative corrections involving large logarithms, e.g. �s(µ0) log mt/µ0, we
employ renormalization group evolution to sum leading logarithms to all orders.
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There is no dependence of c(0)
2 or c(2)

2 on CKM matrix elements in the limit of vanishing
d, s, b quark masses. The renormalized coe⇤cients are computed in the MS scheme. We have
employed Fock-Schwinger (x · A = 0) gauge [10] to compute the full-theory amplitudes for
gluonic operators in Fig. 2. The e�ective theory subtractions are e⇤ciently performed in
a scheme with massless light quarks, using dimensional regularization as infrared regulator.
We have verified that the same results are obtained using finite masses and taking the limit
mq/mW ⇤ 0. Details of this computation will be presented elsewhere.

5 RG evolution to hadronic scales

To account for perturbative corrections involving large logarithms, e.g. �s(µ0) log mt/µ0, we
employ renormalization group evolution to sum leading logarithms to all orders.
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Figure 3: Gluon matching condition for one-boson exchange. The notation is as in Fig. 2. Ellipses
denote diagrams not shown explicitly (cf. Fig. 2). We neglect the gauge-invariant class of diagrams
within the square brackets, which is always suppressed relative to the one-loop diagram. We sum
over active quarks running in the loop (including the top quark in the full theory).

top quark contribution to h ! gg. In terms of quark matching coe�cients from one-boson exchange,
the bare gluon matching coe�cient is thus
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We neglect one-boson exchange contributions containing O(↵1

2

) corrections to the ⇠ h(GA
µ⌫)

2 SM
coupling, drawn within square brackets in Fig. 3. This gauge-invariant class of diagrams is always
loop-suppressed relative to the one-loop contribution.

4.3 Quark matching: two-boson exchange
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Figure 4: Quark matching condition for two-boson exchange. The notation is as in Fig. 2. The full
theory diagrams illustrate the possible types of two-boson exchange. Crossed diagrams and time
reversed diagrams are not shown.

Let us now consider quark matching from two-boson exchange (2BE), as displayed in Fig. 4. The full
theory includes diagrams with exchange of two gauge bosons (Z or W ), two Goldstone bosons (�Z

or �W ), one gauge and one Goldstone boson, or two Higgs bosons. In terms of these contributions
the total amplitude is

Mq = MZZ
q +MWW

q +MW�W
q +MZ�Z

q +M�W�W
q +M�Z�Z

q +Mhh
q , (54)
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Matching conditions onto gluon operators are from the diagrams of Fig. (2):
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There is no dependence of c(0)
2 or c(2)

2 on CKM matrix elements in the limit of vanishing
d, s, b quark masses. The renormalized coe⇤cients are computed in the MS scheme. We have
employed Fock-Schwinger (x · A = 0) gauge [10] to compute the full-theory amplitudes for
gluonic operators in Fig. 2. The e�ective theory subtractions are e⇤ciently performed in
a scheme with massless light quarks, using dimensional regularization as infrared regulator.
We have verified that the same results are obtained using finite masses and taking the limit
mq/mW ⇤ 0. Details of this computation will be presented elsewhere.

5 RG evolution to hadronic scales

To account for perturbative corrections involving large logarithms, e.g. �s(µ0) log mt/µ0, we
employ renormalization group evolution to sum leading logarithms to all orders.
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536 Table VI. Scheme dependence for the heavy-quark mass
537 (e.g., pole versus MS) appears at higher order.
538 Due to the lightness of the charm quark, and correspond-
539 ingly poorly convergent αsðmcÞ expansion, WIMP-nucleon
540 cross sections can depend sensitively on threshold correc-
541 tions for the scalar operator. Contributions from matrix
542 elements of the heavy-quark operator, i.e., the column

543 vector Mð0Þ
iðnfþ1Þ, are known through Oðα3sÞ [51]. In the next

544 section, we employ a sum rule for matrix elements of scalar
545 operators, derived from the QCD energy momentum tensor,
546 to obtain new relations amongst the elements of Mð0Þ, thus
547 extending the available results at higher orders.

548 E. Sum rule constraints on scale evolution
549 and heavy-quark threshold matching

550 The equivalence of physical matrix elements determined
551 in theories defined at different scales or with different
552 numbers of active quark flavors, together with the solutions
553 for coefficient evolution and matching at heavy-quark
554 thresholds given in Eqs. (23) and (27), imply relations
555 between operator matrix elements:

hO0ðSÞ
i iðμhÞ ¼ RðSÞ

ji ðμ; μhÞhO
ðSÞ
j iðμÞ;

hO0ðSÞ
i iðμbÞ ¼ MðSÞ

ji ðμbÞhO
ðSÞ
j iðμbÞ þOð1=mbÞ;

ð29Þ

556 where h·i≡ hNj · jNi denotes a physical matrix element
557 (for definiteness, we consider the matrix element in a
558 nucleon state jNi). The first relation links operator matrix
559 elements at different scales but with the same number of
560 active quarks, while the second relation links operator
561 matrix elements at the same scale (here taken to be the
562 bottom threshold for definiteness) but with nf þ 1 (primed)
563 and nf (unprimed) active flavors.
564 The matrix elements hOðSÞ

i i are not independent but linked
565 by sum rules derived from the trace and traceless parts of the

566(symmetric and conserved) QCD energy momentum tensor
567θμν. Let us focus on the scalar case, S ¼ 0, where the sum
568rule for nf flavors is given by the trace part as

hθμμi ¼ mN ¼ ð1 − γmÞ
Xnf

q¼u;d;s;…

hOð0Þ
q iþ

~β
2
hOð0Þ

g i: ð30Þ

569The sum rule relating matrix elements hO0ðSÞ
i i in a theory

570with nf þ 1 flavors has the analogous form.
571Consistency between Eqs. (29) and (30) yields a system
572of equations which imposes constraints on the matrices Rð0Þ

573and Mð0Þ. In the following, we drop the superscript (0) for
574brevity. In the case of scale evolution, the sum rule
575determines R. Starting from the general form,

Rðμ; μhÞ ¼

0

BBBBB@

1 Rqg

. .
. ..

.

1 Rqg

0 % % % 0 Rgg

1

CCCCCA
; ð31Þ

576which follows from the scale invariance of hOð0Þ
q i, the

577functions Rqg and Rgg are determined by the system of
578equations derived from Eqs. (29) and (30):

2

~βðμÞ
Rgg ¼

2

~βðμhÞ
;

Rqg −
2

~βðμÞ
½1 − γmðμÞ'Rgg ¼ −

2

~βðμhÞ
½1 − γmðμhÞ': ð32Þ

579This yields the results given in Table V.
580In the case of heavy-quark threshold matching, relations
581between elements of the matrixM can be similarly derived.
582Consider the general form

583584

MðμQÞ ¼

0

BBBBB@

MqQ Mqg

1ðMqq −Mqq0Þ þ JMqq0
..
. ..

.

MqQ Mqg

Mgq % % % Mgq MgQ Mgg

1

CCCCCA
; ð33Þ

585 where the nf × nf matrices 1 and J are, respectively, the identity matrix and the matrix with all elements equal to unity. The
586 system of equations derived from Eqs. (29) and (30) yields the following relations:

0 ¼ ~βðnfÞ − ~βðnfþ1ÞMgg − 2½1 − γ
ðnfþ1Þ
m 'ðMgQ þ nfMgqÞ;

0 ¼ 2f1 − γ
ðnfÞ
m − ½1 − γ

ðnfþ1Þ
m 'ðMqQ þMqq þ ðnf − 1ÞMqq0Þg − ~βðnfþ1ÞMqg; ð34Þ

587 where the superscripts on γm and ~β denote the nf dependence, while the μQ dependence is implicit.
588 We may further simplify the matrix (33). By dimensional analysis, the gauge-invariant operator mqq̄q matches onto
589 ðGA

μνÞ2 with power suppression, ∼mq=mQ, and hence Mgq ≡ 0. Conserved global chiral symmetries, qL;R → eiϵL;RqL;R
590 whenmq → 0, imply that integrating out the heavy quarkQ in the presence ofmqq̄q does not inducemq0 q̄0q0 for q0 ≠ q, i.e.,

RICHARD J. HILL AND MIKHAIL P. SOLON PHYSICAL REVIEW D 90, 000000 (XXXX)

10

536 Table VI. Scheme dependence for the heavy-quark mass
537 (e.g., pole versus MS) appears at higher order.
538 Due to the lightness of the charm quark, and correspond-
539 ingly poorly convergent αsðmcÞ expansion, WIMP-nucleon
540 cross sections can depend sensitively on threshold correc-
541 tions for the scalar operator. Contributions from matrix
542 elements of the heavy-quark operator, i.e., the column

543 vector Mð0Þ
iðnfþ1Þ, are known through Oðα3sÞ [51]. In the next

544 section, we employ a sum rule for matrix elements of scalar
545 operators, derived from the QCD energy momentum tensor,
546 to obtain new relations amongst the elements of Mð0Þ, thus
547 extending the available results at higher orders.

548 E. Sum rule constraints on scale evolution
549 and heavy-quark threshold matching

550 The equivalence of physical matrix elements determined
551 in theories defined at different scales or with different
552 numbers of active quark flavors, together with the solutions
553 for coefficient evolution and matching at heavy-quark
554 thresholds given in Eqs. (23) and (27), imply relations
555 between operator matrix elements:

hO0ðSÞ
i iðμhÞ ¼ RðSÞ

ji ðμ; μhÞhO
ðSÞ
j iðμÞ;

hO0ðSÞ
i iðμbÞ ¼ MðSÞ

ji ðμbÞhO
ðSÞ
j iðμbÞ þOð1=mbÞ;

ð29Þ

556 where h·i≡ hNj · jNi denotes a physical matrix element
557 (for definiteness, we consider the matrix element in a
558 nucleon state jNi). The first relation links operator matrix
559 elements at different scales but with the same number of
560 active quarks, while the second relation links operator
561 matrix elements at the same scale (here taken to be the
562 bottom threshold for definiteness) but with nf þ 1 (primed)
563 and nf (unprimed) active flavors.
564 The matrix elements hOðSÞ

i i are not independent but linked
565 by sum rules derived from the trace and traceless parts of the

566(symmetric and conserved) QCD energy momentum tensor
567θμν. Let us focus on the scalar case, S ¼ 0, where the sum
568rule for nf flavors is given by the trace part as

hθμμi ¼ mN ¼ ð1 − γmÞ
Xnf

q¼u;d;s;…

hOð0Þ
q iþ

~β
2
hOð0Þ

g i: ð30Þ

569The sum rule relating matrix elements hO0ðSÞ
i i in a theory

570with nf þ 1 flavors has the analogous form.
571Consistency between Eqs. (29) and (30) yields a system
572of equations which imposes constraints on the matrices Rð0Þ

573and Mð0Þ. In the following, we drop the superscript (0) for
574brevity. In the case of scale evolution, the sum rule
575determines R. Starting from the general form,

Rðμ; μhÞ ¼

0

BBBBB@

1 Rqg

. .
. ..

.

1 Rqg

0 % % % 0 Rgg

1

CCCCCA
; ð31Þ

576which follows from the scale invariance of hOð0Þ
q i, the

577functions Rqg and Rgg are determined by the system of
578equations derived from Eqs. (29) and (30):

2

~βðμÞ
Rgg ¼

2

~βðμhÞ
;

Rqg −
2

~βðμÞ
½1 − γmðμÞ'Rgg ¼ −

2

~βðμhÞ
½1 − γmðμhÞ': ð32Þ

579This yields the results given in Table V.
580In the case of heavy-quark threshold matching, relations
581between elements of the matrixM can be similarly derived.
582Consider the general form

583584

MðμQÞ ¼

0

BBBBB@

MqQ Mqg

1ðMqq −Mqq0Þ þ JMqq0
..
. ..

.

MqQ Mqg

Mgq % % % Mgq MgQ Mgg

1

CCCCCA
; ð33Þ

585 where the nf × nf matrices 1 and J are, respectively, the identity matrix and the matrix with all elements equal to unity. The
586 system of equations derived from Eqs. (29) and (30) yields the following relations:

0 ¼ ~βðnfÞ − ~βðnfþ1ÞMgg − 2½1 − γ
ðnfþ1Þ
m 'ðMgQ þ nfMgqÞ;

0 ¼ 2f1 − γ
ðnfÞ
m − ½1 − γ

ðnfþ1Þ
m 'ðMqQ þMqq þ ðnf − 1ÞMqq0Þg − ~βðnfþ1ÞMqg; ð34Þ

587 where the superscripts on γm and ~β denote the nf dependence, while the μQ dependence is implicit.
588 We may further simplify the matrix (33). By dimensional analysis, the gauge-invariant operator mqq̄q matches onto
589 ðGA

μνÞ2 with power suppression, ∼mq=mQ, and hence Mgq ≡ 0. Conserved global chiral symmetries, qL;R → eiϵL;RqL;R
590 whenmq → 0, imply that integrating out the heavy quarkQ in the presence ofmqq̄q does not inducemq0 q̄0q0 for q0 ≠ q, i.e.,

RICHARD J. HILL AND MIKHAIL P. SOLON PHYSICAL REVIEW D 90, 000000 (XXXX)

10

536 Table VI. Scheme dependence for the heavy-quark mass
537 (e.g., pole versus MS) appears at higher order.
538 Due to the lightness of the charm quark, and correspond-
539 ingly poorly convergent αsðmcÞ expansion, WIMP-nucleon
540 cross sections can depend sensitively on threshold correc-
541 tions for the scalar operator. Contributions from matrix
542 elements of the heavy-quark operator, i.e., the column

543 vector Mð0Þ
iðnfþ1Þ, are known through Oðα3sÞ [51]. In the next

544 section, we employ a sum rule for matrix elements of scalar
545 operators, derived from the QCD energy momentum tensor,
546 to obtain new relations amongst the elements of Mð0Þ, thus
547 extending the available results at higher orders.

548 E. Sum rule constraints on scale evolution
549 and heavy-quark threshold matching

550 The equivalence of physical matrix elements determined
551 in theories defined at different scales or with different
552 numbers of active quark flavors, together with the solutions
553 for coefficient evolution and matching at heavy-quark
554 thresholds given in Eqs. (23) and (27), imply relations
555 between operator matrix elements:

hO0ðSÞ
i iðμhÞ ¼ RðSÞ

ji ðμ; μhÞhO
ðSÞ
j iðμÞ;

hO0ðSÞ
i iðμbÞ ¼ MðSÞ

ji ðμbÞhO
ðSÞ
j iðμbÞ þOð1=mbÞ;

ð29Þ

556 where h·i≡ hNj · jNi denotes a physical matrix element
557 (for definiteness, we consider the matrix element in a
558 nucleon state jNi). The first relation links operator matrix
559 elements at different scales but with the same number of
560 active quarks, while the second relation links operator
561 matrix elements at the same scale (here taken to be the
562 bottom threshold for definiteness) but with nf þ 1 (primed)
563 and nf (unprimed) active flavors.
564 The matrix elements hOðSÞ

i i are not independent but linked
565 by sum rules derived from the trace and traceless parts of the

566(symmetric and conserved) QCD energy momentum tensor
567θμν. Let us focus on the scalar case, S ¼ 0, where the sum
568rule for nf flavors is given by the trace part as

hθμμi ¼ mN ¼ ð1 − γmÞ
Xnf

q¼u;d;s;…

hOð0Þ
q iþ

~β
2
hOð0Þ

g i: ð30Þ

569The sum rule relating matrix elements hO0ðSÞ
i i in a theory

570with nf þ 1 flavors has the analogous form.
571Consistency between Eqs. (29) and (30) yields a system
572of equations which imposes constraints on the matrices Rð0Þ

573and Mð0Þ. In the following, we drop the superscript (0) for
574brevity. In the case of scale evolution, the sum rule
575determines R. Starting from the general form,

Rðμ; μhÞ ¼

0

BBBBB@

1 Rqg

. .
. ..

.

1 Rqg

0 % % % 0 Rgg

1

CCCCCA
; ð31Þ

576which follows from the scale invariance of hOð0Þ
q i, the

577functions Rqg and Rgg are determined by the system of
578equations derived from Eqs. (29) and (30):

2

~βðμÞ
Rgg ¼

2

~βðμhÞ
;

Rqg −
2

~βðμÞ
½1 − γmðμÞ'Rgg ¼ −

2

~βðμhÞ
½1 − γmðμhÞ': ð32Þ

579This yields the results given in Table V.
580In the case of heavy-quark threshold matching, relations
581between elements of the matrixM can be similarly derived.
582Consider the general form

583584

MðμQÞ ¼

0

BBBBB@

MqQ Mqg

1ðMqq −Mqq0Þ þ JMqq0
..
. ..

.

MqQ Mqg

Mgq % % % Mgq MgQ Mgg

1

CCCCCA
; ð33Þ

585 where the nf × nf matrices 1 and J are, respectively, the identity matrix and the matrix with all elements equal to unity. The
586 system of equations derived from Eqs. (29) and (30) yields the following relations:

0 ¼ ~βðnfÞ − ~βðnfþ1ÞMgg − 2½1 − γ
ðnfþ1Þ
m 'ðMgQ þ nfMgqÞ;

0 ¼ 2f1 − γ
ðnfÞ
m − ½1 − γ

ðnfþ1Þ
m 'ðMqQ þMqq þ ðnf − 1ÞMqq0Þg − ~βðnfþ1ÞMqg; ð34Þ

587 where the superscripts on γm and ~β denote the nf dependence, while the μQ dependence is implicit.
588 We may further simplify the matrix (33). By dimensional analysis, the gauge-invariant operator mqq̄q matches onto
589 ðGA

μνÞ2 with power suppression, ∼mq=mQ, and hence Mgq ≡ 0. Conserved global chiral symmetries, qL;R → eiϵL;RqL;R
590 whenmq → 0, imply that integrating out the heavy quarkQ in the presence ofmqq̄q does not inducemq0 q̄0q0 for q0 ≠ q, i.e.,

RICHARD J. HILL AND MIKHAIL P. SOLON PHYSICAL REVIEW D 90, 000000 (XXXX)

10

536 Table VI. Scheme dependence for the heavy-quark mass
537 (e.g., pole versus MS) appears at higher order.
538 Due to the lightness of the charm quark, and correspond-
539 ingly poorly convergent αsðmcÞ expansion, WIMP-nucleon
540 cross sections can depend sensitively on threshold correc-
541 tions for the scalar operator. Contributions from matrix
542 elements of the heavy-quark operator, i.e., the column

543 vector Mð0Þ
iðnfþ1Þ, are known through Oðα3sÞ [51]. In the next

544 section, we employ a sum rule for matrix elements of scalar
545 operators, derived from the QCD energy momentum tensor,
546 to obtain new relations amongst the elements of Mð0Þ, thus
547 extending the available results at higher orders.

548 E. Sum rule constraints on scale evolution
549 and heavy-quark threshold matching

550 The equivalence of physical matrix elements determined
551 in theories defined at different scales or with different
552 numbers of active quark flavors, together with the solutions
553 for coefficient evolution and matching at heavy-quark
554 thresholds given in Eqs. (23) and (27), imply relations
555 between operator matrix elements:

hO0ðSÞ
i iðμhÞ ¼ RðSÞ

ji ðμ; μhÞhO
ðSÞ
j iðμÞ;

hO0ðSÞ
i iðμbÞ ¼ MðSÞ

ji ðμbÞhO
ðSÞ
j iðμbÞ þOð1=mbÞ;

ð29Þ

556 where h·i≡ hNj · jNi denotes a physical matrix element
557 (for definiteness, we consider the matrix element in a
558 nucleon state jNi). The first relation links operator matrix
559 elements at different scales but with the same number of
560 active quarks, while the second relation links operator
561 matrix elements at the same scale (here taken to be the
562 bottom threshold for definiteness) but with nf þ 1 (primed)
563 and nf (unprimed) active flavors.
564 The matrix elements hOðSÞ

i i are not independent but linked
565 by sum rules derived from the trace and traceless parts of the

566(symmetric and conserved) QCD energy momentum tensor
567θμν. Let us focus on the scalar case, S ¼ 0, where the sum
568rule for nf flavors is given by the trace part as

hθμμi ¼ mN ¼ ð1 − γmÞ
Xnf

q¼u;d;s;…

hOð0Þ
q iþ

~β
2
hOð0Þ

g i: ð30Þ

569The sum rule relating matrix elements hO0ðSÞ
i i in a theory

570with nf þ 1 flavors has the analogous form.
571Consistency between Eqs. (29) and (30) yields a system
572of equations which imposes constraints on the matrices Rð0Þ

573and Mð0Þ. In the following, we drop the superscript (0) for
574brevity. In the case of scale evolution, the sum rule
575determines R. Starting from the general form,

Rðμ; μhÞ ¼

0

BBBBB@

1 Rqg

. .
. ..

.

1 Rqg

0 % % % 0 Rgg

1

CCCCCA
; ð31Þ

576which follows from the scale invariance of hOð0Þ
q i, the

577functions Rqg and Rgg are determined by the system of
578equations derived from Eqs. (29) and (30):

2

~βðμÞ
Rgg ¼

2

~βðμhÞ
;

Rqg −
2

~βðμÞ
½1 − γmðμÞ'Rgg ¼ −

2

~βðμhÞ
½1 − γmðμhÞ': ð32Þ

579This yields the results given in Table V.
580In the case of heavy-quark threshold matching, relations
581between elements of the matrixM can be similarly derived.
582Consider the general form

583584

MðμQÞ ¼

0

BBBBB@

MqQ Mqg

1ðMqq −Mqq0Þ þ JMqq0
..
. ..

.

MqQ Mqg

Mgq % % % Mgq MgQ Mgg

1

CCCCCA
; ð33Þ

585 where the nf × nf matrices 1 and J are, respectively, the identity matrix and the matrix with all elements equal to unity. The
586 system of equations derived from Eqs. (29) and (30) yields the following relations:

0 ¼ ~βðnfÞ − ~βðnfþ1ÞMgg − 2½1 − γ
ðnfþ1Þ
m 'ðMgQ þ nfMgqÞ;

0 ¼ 2f1 − γ
ðnfÞ
m − ½1 − γ

ðnfþ1Þ
m 'ðMqQ þMqq þ ðnf − 1ÞMqq0Þg − ~βðnfþ1ÞMqg; ð34Þ

587 where the superscripts on γm and ~β denote the nf dependence, while the μQ dependence is implicit.
588 We may further simplify the matrix (33). By dimensional analysis, the gauge-invariant operator mqq̄q matches onto
589 ðGA

μνÞ2 with power suppression, ∼mq=mQ, and hence Mgq ≡ 0. Conserved global chiral symmetries, qL;R → eiϵL;RqL;R
590 whenmq → 0, imply that integrating out the heavy quarkQ in the presence ofmqq̄q does not inducemq0 q̄0q0 for q0 ≠ q, i.e.,

RICHARD J. HILL AND MIKHAIL P. SOLON PHYSICAL REVIEW D 90, 000000 (XXXX)

10

536 Table VI. Scheme dependence for the heavy-quark mass
537 (e.g., pole versus MS) appears at higher order.
538 Due to the lightness of the charm quark, and correspond-
539 ingly poorly convergent αsðmcÞ expansion, WIMP-nucleon
540 cross sections can depend sensitively on threshold correc-
541 tions for the scalar operator. Contributions from matrix
542 elements of the heavy-quark operator, i.e., the column

543 vector Mð0Þ
iðnfþ1Þ, are known through Oðα3sÞ [51]. In the next

544 section, we employ a sum rule for matrix elements of scalar
545 operators, derived from the QCD energy momentum tensor,
546 to obtain new relations amongst the elements of Mð0Þ, thus
547 extending the available results at higher orders.

548 E. Sum rule constraints on scale evolution
549 and heavy-quark threshold matching

550 The equivalence of physical matrix elements determined
551 in theories defined at different scales or with different
552 numbers of active quark flavors, together with the solutions
553 for coefficient evolution and matching at heavy-quark
554 thresholds given in Eqs. (23) and (27), imply relations
555 between operator matrix elements:

hO0ðSÞ
i iðμhÞ ¼ RðSÞ

ji ðμ; μhÞhO
ðSÞ
j iðμÞ;

hO0ðSÞ
i iðμbÞ ¼ MðSÞ

ji ðμbÞhO
ðSÞ
j iðμbÞ þOð1=mbÞ;

ð29Þ

556 where h·i≡ hNj · jNi denotes a physical matrix element
557 (for definiteness, we consider the matrix element in a
558 nucleon state jNi). The first relation links operator matrix
559 elements at different scales but with the same number of
560 active quarks, while the second relation links operator
561 matrix elements at the same scale (here taken to be the
562 bottom threshold for definiteness) but with nf þ 1 (primed)
563 and nf (unprimed) active flavors.
564 The matrix elements hOðSÞ

i i are not independent but linked
565 by sum rules derived from the trace and traceless parts of the

566(symmetric and conserved) QCD energy momentum tensor
567θμν. Let us focus on the scalar case, S ¼ 0, where the sum
568rule for nf flavors is given by the trace part as

hθμμi ¼ mN ¼ ð1 − γmÞ
Xnf

q¼u;d;s;…

hOð0Þ
q iþ

~β
2
hOð0Þ

g i: ð30Þ

569The sum rule relating matrix elements hO0ðSÞ
i i in a theory

570with nf þ 1 flavors has the analogous form.
571Consistency between Eqs. (29) and (30) yields a system
572of equations which imposes constraints on the matrices Rð0Þ

573and Mð0Þ. In the following, we drop the superscript (0) for
574brevity. In the case of scale evolution, the sum rule
575determines R. Starting from the general form,

Rðμ; μhÞ ¼

0

BBBBB@

1 Rqg

. .
. ..

.

1 Rqg

0 % % % 0 Rgg

1

CCCCCA
; ð31Þ

576which follows from the scale invariance of hOð0Þ
q i, the

577functions Rqg and Rgg are determined by the system of
578equations derived from Eqs. (29) and (30):

2

~βðμÞ
Rgg ¼

2

~βðμhÞ
;

Rqg −
2

~βðμÞ
½1 − γmðμÞ'Rgg ¼ −

2

~βðμhÞ
½1 − γmðμhÞ': ð32Þ

579This yields the results given in Table V.
580In the case of heavy-quark threshold matching, relations
581between elements of the matrixM can be similarly derived.
582Consider the general form

583584

MðμQÞ ¼

0

BBBBB@

MqQ Mqg

1ðMqq −Mqq0Þ þ JMqq0
..
. ..

.

MqQ Mqg

Mgq % % % Mgq MgQ Mgg

1

CCCCCA
; ð33Þ

585 where the nf × nf matrices 1 and J are, respectively, the identity matrix and the matrix with all elements equal to unity. The
586 system of equations derived from Eqs. (29) and (30) yields the following relations:

0 ¼ ~βðnfÞ − ~βðnfþ1ÞMgg − 2½1 − γ
ðnfþ1Þ
m 'ðMgQ þ nfMgqÞ;

0 ¼ 2f1 − γ
ðnfÞ
m − ½1 − γ

ðnfþ1Þ
m 'ðMqQ þMqq þ ðnf − 1ÞMqq0Þg − ~βðnfþ1ÞMqg; ð34Þ

587 where the superscripts on γm and ~β denote the nf dependence, while the μQ dependence is implicit.
588 We may further simplify the matrix (33). By dimensional analysis, the gauge-invariant operator mqq̄q matches onto
589 ðGA

μνÞ2 with power suppression, ∼mq=mQ, and hence Mgq ≡ 0. Conserved global chiral symmetries, qL;R → eiϵL;RqL;R
590 whenmq → 0, imply that integrating out the heavy quarkQ in the presence ofmqq̄q does not inducemq0 q̄0q0 for q0 ≠ q, i.e.,
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591 Mqq0 ≡ 0.11 Finally, since the quark masses in the nf and
592 nf − 1-flavor theories are defined to include the induced
593 effects of the heavy quark, we have simplyMqq ≡ 1. These
594 arguments imply from (33) a solution for all elements in
595 terms of MgQ and MqQ:

Mqq ≡ 1; Mqq0 ≡ 0; Mgq ≡ 0;

Mgg ¼
~βðnfÞ

~βðnfþ1Þ −
2

~βðnfþ1Þ ½1 − γ
ðnfþ1Þ
m &MgQ;

Mgq ¼
2

~βðnfþ1Þ ½γ
ðnfþ1Þ
m − γ

ðnfÞ
m & − 2

~βðnfþ1Þ ½1 − γ
ðnfþ1Þ
m &MqQ:

ð35Þ

596597 Let us consider solutions for the elements of Mð0Þ

598 expanded in powers of αs,

M ¼
X∞

n¼0

!
α
ðnfþ1Þ
s ðμQÞ

π

"n

MðnÞ; ð36Þ

599where the superscript signifies that the strong coupling
600constant is defined in the ðnf þ 1Þ-flavor theory. Employing
601thisαs counting and theOðα4sÞ results forMgQ andMqQ from
602Ref. [51], we may solve the relations in Eq. (34) order by
603order.12 Let us work in the MS scheme, employing results
604for MgQ and MqQ, as well as for the nontrivial matching

605condition between α
ðnfÞ
s ðμQÞ and α

ðnfþ1Þ
s ðμQÞ found in

606Ref. [51], expressed in terms of the heavy-quark mass
607mQ defined in this scheme. Working through NLO, we
608recover the result in Table VI. At NNLO, we find

Mð2Þ
gg ¼ 11

36
−
11

6
log

μQ
mQ

þ 1

9
log2

μQ
mQ

: ð37Þ

609At NNNLO, we find

Mð3Þ
gg ¼ 564731

41472
−
2821

288
log

μQ
mQ

þ 3

16
log2

μQ
mQ

−
1

27
log3

μQ
mQ

−
82043

9216
ζð3Þ

þ nf

#
− 2633

10368
þ 67

96
log

μQ
mQ

− 1

3
log2

μQ
mQ

$
;

Mð2Þ
qg ¼ −

89

54
þ 20

9
log

μQ
mQ

−
8

3
log2

μQ
mQ

: ð38Þ

610611 Conversely, if M is known, the relation in Eq. (29) determines quark matrix elements in the ðnf þ 1Þ-flavor theory in
612 terms of those in the nf-flavor theory, up to power corrections. Employing the results forMgQ andMqQ from Ref. [51], the
613 matrix element for the heavy quark in the ðnf þ 1Þ-flavor theory is given by

hO0ð0Þ
Q i=mN ¼ MqQλþMgQ

2

~βðnfÞ
½1 − ð1 − γ

ðnfÞ
m Þλ&

¼ 1

3β
ðnfÞ
0

f2 − 2λgþ
α
ðnfþ1Þ
s ðμQÞ

π

!
1

3β
ðnfÞ
0

"
2
%
57

2
− 321λ

2
þ 8nf

&

þ
!
α
ðnfþ1Þ
s ðμQÞ

π

"2!
1

3β
ðnfÞ
0

"
3
%
9145

8
− 90985λ

8
þ 19437

4
log

μQ
mQ

− 109461λ
4

log
μQ
mQ

þ nf

#
374

3
þ 1420λ

3
þ 756 log

μQ
mQ

þ 3424λ log
μQ
mQ

$
þ n2f

#
7661

144
−
7469λ
144

−
455

3
log

μQ
mQ

− 107λ log
μQ
mQ

$
þ n3f

#
−
77

72
þ 77λ

72
þ 16

3
log

μQ
mQ

$&

þ
!
α
ðnfþ1Þ
s ðμQÞ

π

"3!
1

3β
ðnfÞ
0

"
4

hO0ð0Þ
Q i4 þOðα4sÞ; ð39Þ

11We are free to assume here an anticommuting γ5 prescription, since γ5 does not enter the QCD analysis of the scalar operators. The
assumption of diagonal quark matching underlies the light-quark mass decoupling analysis [51,52]. For an explicit comparison of
decoupling relations for pseudoscalar and axial-vector currents using different γ5 prescriptions, see [49].

12In the notation of Ref. [51], MgQ ¼ C1 and MqQ ¼ C2 − 1. Scheme dependence of C1 and C2 enters at Oðα3sÞ.
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Sum rule constraints on scalar matrix elements

18

787 a conservative 50% uncertainty compared to their estimate
788 of 25%.
789 For models with identical couplings to up and
790 down quarks, it is sufficient to take as input

791 mNðf
ð0Þ
u;N þ fð0Þd;NÞ ¼ ΣπN − Σ−=2 ≈ ΣπN , neglecting the

792 small contribution from Σ−. For general applications
793 requiring separately the up and down quark scalar matrix
794 elements, let us write

fð0Þu;N ¼ Rud

1þ Rud

ΣπN

mN
ð1þ ξÞ;

fð0Þd;N ¼ 1

1þ Rud

ΣπN

mN
ð1 − ξÞ; ξ ¼ 1þ Rud

1 − Rud

Σ−
2ΣπN

; ð59Þ

795 where we employ the quark mass ratios adopted from PDG
796 values [71] (symmetrizing errors),

Rud ≡mu

md
¼ 0.49% 0.13; Rsd ≡ ms

md
¼ 19.5% 2.5:

ð60Þ
797 The resulting numerical values for the light-quark scalar
798 matrix elements are collected in Table X. The uncertain-

799 ties in fð0Þu;N and fð0Þd;N are highly correlated, and for
800 applications we use Eq. (59), varying the inputs ΣπN ,
801 Rud and Σ− whose uncertainties are taken as uncorrelated.
802 For both the proton and the neutron, the gluon matrix

803 element fð0Þg;N is obtained from the quark matrix elements
804 via the sum rule in Eq. (56).
805 From the analysis of heavy-quark matching conditions in
806 Sec. III E, we may determine the scalar matrix elements of
807 heavy-quark flavors. For definiteness, let us consider four-
808 flavor QCD with a heavy charm quark. Denoting quantities
809 in the four-flavor (three-flavor) theory with (without) a
810 prime, the results in Eqs. (39) and (40) yield

fð0Þ0c;N ¼ 0.083 − 0.103λþOðα4s ; 1=mcÞ
¼ 0.073ð3Þ þOðα4s ; 1=mcÞ;

fð0Þ0q;N ¼ fð0Þq;N þOð1=mcÞ; ð61Þ

811where we use λ ≈ ΣπN=mN þ fð0Þs;N ¼ 0.089ð26Þ , neglect-
812ing the small contribution from Σ−. An expression for fð0Þ0c;N
813in terms of α0sðμcÞ is given in Appendix B; in particular, the
814Oðα3sÞ term in fð0Þ0c;N employs hO0ð0Þ

Q i4 derived in Sec. III E.

815The uncertainty in fð0Þ0c;N is presently dominated by hadronic
816inputs, and in (61) we neglect the small uncertainty (< 1%)
817from scale variation of μc. Recent lattice measurements of
818the charm matrix element in Refs. [77] and [78] have
819determined

fð0Þ0c;N ¼
!
0.10ð3Þ ½77'
0.07ð3Þ ½78';

ð62Þ

820which are consistent within large errors with (61). As
821discussed below (39), we find discrepancies with previous
822determinations of the heavy-quark scalar matrix elements
823[54,55].15 Nonetheless, due to a large Oð30%Þ uncertainty
824in λ, the resulting numerical values are consistent. A
825nonperturbative determination of the charm and light-quark
826matrix elements in four-flavor lattice QCD would avoid
827uncertainties associated with the charm scale μc ∼mc, such
828as Oð1=mcÞ power corrections and OðαsÞ perturbative
829corrections. In Sec. VI, we investigate the evaluation of
830the spin-independent cross section for heavy electroweak-
831charged WIMPs in the four-flavor theory.

832E. Pseudoscalar matrix elements

833For the quark and gluon pseudoscalar operators we
834parametrize the matrix elements as

hNðk0ÞjOð0Þ
5q jNðkÞi≡mNf

ð0Þ
5q;Nðq2Þūðk0Þiγ5uðkÞ;

hNðk0ÞjOð0Þ
5g jNðkÞi≡mNf

ð0Þ
5g;Nðq2; μÞūðk0Þiγ5uðkÞ; ð63Þ

835where the quark pseudoscalar operators have been defined
836independent of renormalization scale, while the gluon
837operators have a weak-scale dependence. The matrix
838elements in Eq. (63) are related to the matrix elements
839of the axial-vector current through the axial anomaly in
840Eq. (18). Employing the matrix elements for the nonsinglet
841axial-vector currents in Eq. (49), together with the addi-
842tional definition,

X

q¼u;d;s

hNðk0Þjq̄iγ5qjNðkÞi≡ κðq2; μÞūðk0Þiγ5uðkÞ; ð64Þ

843we find the following quark pseudoscalar form factors at
844q2 ¼ 0:

TABLE X. Scale-independent scalar form factors for the proton
and neutron for light-quark flavors u; d; s. The first, second and
third uncertainties are from ΣπN , mu=md and Σ−, respectively. As
discussed below Eq. (60), the parametrization in Eq. (59) leads to
highly correlated uncertainties in fð0Þu;N and fð0Þd;N .

q fð0Þq;p fð0Þq;n

u 0.016(5)(3)(1)
0.014ð5Þ

"þ2

−3
#
ð1Þ

d 0.029(9)(3)(2)
0.034ð9Þ

"þ3

−2
#
ð2Þ

s 0.043(21) 0.043(21)

15In Ref. [76], the result of Ref. [55] was presented with
updated inputs.
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Equivalently, we have the best perturbative QCD 
estimate of the charm scalar matrix element.

Reduces dominant theoretical uncertainty, which comes from ↵s(µc)

 For heavy WIMP scattering this is an O(50-70%) reductions, 
and the remaining uncertainty comes from                , 
requiring higher order matching at the weak scale.

↵s(µt)

787 a conservative 50% uncertainty compared to their estimate
788 of 25%.
789 For models with identical couplings to up and
790 down quarks, it is sufficient to take as input

791 mNðf
ð0Þ
u;N þ fð0Þd;NÞ ¼ ΣπN − Σ−=2 ≈ ΣπN , neglecting the

792 small contribution from Σ−. For general applications
793 requiring separately the up and down quark scalar matrix
794 elements, let us write

fð0Þu;N ¼ Rud

1þ Rud

ΣπN

mN
ð1þ ξÞ;

fð0Þd;N ¼ 1

1þ Rud

ΣπN

mN
ð1 − ξÞ; ξ ¼ 1þ Rud

1 − Rud

Σ−
2ΣπN

; ð59Þ

795 where we employ the quark mass ratios adopted from PDG
796 values [71] (symmetrizing errors),

Rud ≡mu

md
¼ 0.49% 0.13; Rsd ≡ ms

md
¼ 19.5% 2.5:

ð60Þ
797 The resulting numerical values for the light-quark scalar
798 matrix elements are collected in Table X. The uncertain-

799 ties in fð0Þu;N and fð0Þd;N are highly correlated, and for
800 applications we use Eq. (59), varying the inputs ΣπN ,
801 Rud and Σ− whose uncertainties are taken as uncorrelated.
802 For both the proton and the neutron, the gluon matrix

803 element fð0Þg;N is obtained from the quark matrix elements
804 via the sum rule in Eq. (56).
805 From the analysis of heavy-quark matching conditions in
806 Sec. III E, we may determine the scalar matrix elements of
807 heavy-quark flavors. For definiteness, let us consider four-
808 flavor QCD with a heavy charm quark. Denoting quantities
809 in the four-flavor (three-flavor) theory with (without) a
810 prime, the results in Eqs. (39) and (40) yield

fð0Þ0c;N ¼ 0.083 − 0.103λþOðα4s ; 1=mcÞ
¼ 0.073ð3Þ þOðα4s ; 1=mcÞ;

fð0Þ0q;N ¼ fð0Þq;N þOð1=mcÞ; ð61Þ

811where we use λ ≈ ΣπN=mN þ fð0Þs;N ¼ 0.089ð26Þ , neglect-
812ing the small contribution from Σ−. An expression for fð0Þ0c;N
813in terms of α0sðμcÞ is given in Appendix B; in particular, the
814Oðα3sÞ term in fð0Þ0c;N employs hO0ð0Þ

Q i4 derived in Sec. III E.

815The uncertainty in fð0Þ0c;N is presently dominated by hadronic
816inputs, and in (61) we neglect the small uncertainty (< 1%)
817from scale variation of μc. Recent lattice measurements of
818the charm matrix element in Refs. [77] and [78] have
819determined

fð0Þ0c;N ¼
!
0.10ð3Þ ½77'
0.07ð3Þ ½78';

ð62Þ

820which are consistent within large errors with (61). As
821discussed below (39), we find discrepancies with previous
822determinations of the heavy-quark scalar matrix elements
823[54,55].15 Nonetheless, due to a large Oð30%Þ uncertainty
824in λ, the resulting numerical values are consistent. A
825nonperturbative determination of the charm and light-quark
826matrix elements in four-flavor lattice QCD would avoid
827uncertainties associated with the charm scale μc ∼mc, such
828as Oð1=mcÞ power corrections and OðαsÞ perturbative
829corrections. In Sec. VI, we investigate the evaluation of
830the spin-independent cross section for heavy electroweak-
831charged WIMPs in the four-flavor theory.

832E. Pseudoscalar matrix elements

833For the quark and gluon pseudoscalar operators we
834parametrize the matrix elements as

hNðk0ÞjOð0Þ
5q jNðkÞi≡mNf

ð0Þ
5q;Nðq2Þūðk0Þiγ5uðkÞ;

hNðk0ÞjOð0Þ
5g jNðkÞi≡mNf

ð0Þ
5g;Nðq2; μÞūðk0Þiγ5uðkÞ; ð63Þ

835where the quark pseudoscalar operators have been defined
836independent of renormalization scale, while the gluon
837operators have a weak-scale dependence. The matrix
838elements in Eq. (63) are related to the matrix elements
839of the axial-vector current through the axial anomaly in
840Eq. (18). Employing the matrix elements for the nonsinglet
841axial-vector currents in Eq. (49), together with the addi-
842tional definition,

X

q¼u;d;s

hNðk0Þjq̄iγ5qjNðkÞi≡ κðq2; μÞūðk0Þiγ5uðkÞ; ð64Þ

843we find the following quark pseudoscalar form factors at
844q2 ¼ 0:

TABLE X. Scale-independent scalar form factors for the proton
and neutron for light-quark flavors u; d; s. The first, second and
third uncertainties are from ΣπN , mu=md and Σ−, respectively. As
discussed below Eq. (60), the parametrization in Eq. (59) leads to
highly correlated uncertainties in fð0Þu;N and fð0Þd;N .

q fð0Þq;p fð0Þq;n

u 0.016(5)(3)(1)
0.014ð5Þ

"þ2

−3
#
ð1Þ

d 0.029(9)(3)(2)
0.034ð9Þ

"þ3

−2
#
ð2Þ

s 0.043(21) 0.043(21)

15In Ref. [76], the result of Ref. [55] was presented with
updated inputs.
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Hadronic matrix elements: vector, axial-vector, 
antisymmetric tensor

19

614 where the scale-independent quantity λ≡
615

P
q¼u;d;s;…hOð0Þ

q i=mN is the sum of light-quark scalar
616 matrix elements in the nf-flavor theory. The result for

617 hO0ð0Þ
Q i4 can be found in Appendix B. The functions MgQ,

618 MqQ and the relation between αðnfÞs ðμQÞ and α
ðnfþ1Þ
s ðμQÞ are

619 also given in Ref. [51] in terms of the pole massmðpoleÞ
Q , and

620 we check that the resulting matrix element hO0ð0Þ
Q i is

621 consistent with the relation between mQ and mðpoleÞ
Q given

622 in Ref. [53].
623 In Sec. IV, we employ this solution to determine the
624 charm scalar matrix element in the four-flavor theory in
625 terms of light-quark scalar matrix elements measured in
626 three-flavor lattice QCD. We note that the solutions for
627 Mqq,Mqq0 andMgq imply the equality of light-quark scalar
628 nucleon matrix elements in nf- and nf þ 1-flavor theories,
629 up to power corrections,

hO0ð0Þ
q i ¼ hOð0Þ

q iþOð1=mQÞ: ð40Þ

630 Further iteration of these solutions determine scalar matrix
631 elements for the bottom and top quarks.
632 Our result in Eq. (39) disagrees with the result given in
633 Eq. (B9) in Appendix B of Ref. [54]. In particular, the

634 expression for hO0ð0Þ
Q i given there implies results for MgQ

635 and MqQ that do not agree with those of Ref. [51] beyond
636 leading order. Moreover, employing the result of Ref. [54]
637 in (34) yields the NLO result for arbitrary μQ,
638 Mgg ¼ 1þOðα2sÞ, in disagreement with Ref. [50]. A
639 complete comparison cannot be made since Ref. [54] does
640 not specify a scheme choice for the heavy-quark mass;
641 however, MgQ at Oðα2sÞ, MqQ at Oðα3sÞ and Mgg at OðαsÞ
642 are independent of scheme choice. In terms of the matrix

643 element hO0ð0Þ
Q i, the OðαsÞ piece differs by terms propor-

644 tional to log μQ
mQ
, while the Oðα2sÞ, Oðα3sÞ and Oðα4sÞ pieces

645 disagree even at μQ ¼ mQ. The scalar matrix element for a
646 heavy quark was also determined in Ref. [55]; however, a
647 clear comparison is not straightforward given the details
648 presented there.13

649 F. Low-energy coefficients

650 To summarize, the matricesR given in Table Vof Sec. III
651 C and M given in Table VI of Sec. III D and in Sec. III E
652 completely specify the mapping of coefficients down to low
653 energies. For example, coefficients ciðμtÞ defined in the five-
654 flavor theory at scale μt are mapped onto coefficients ciðμ0Þ
655 defined in the three-flavor theory at scale μ0 as

cjðμ0Þ ¼ Rjkðμ0; μcÞMklðμcÞRlmðμc; μbÞ
×MmnðμbÞRniðμb; μtÞciðμtÞ: ð41Þ

656Having determined these coefficients, we proceed to analyze
657the relevant nucleon matrix elements.

658IV. HADRONIC MATRIX ELEMENTS

659Having determined the structure of the effective theory in
660terms of quark and gluon degrees of freedom in nf ¼ 3- (or
661nf ¼ 4-) flavor QCD, we may evaluate the resulting
662nuclear matrix elements at a renormalization scale
663μ ∼ 1–2 GeV. As a natural handoff point to nuclear
664modeling, the subsequent section identifies these matrix
665elements with matching coefficients of a nucleon-level
666effective theory.
667In this section, we use nonrelativistic normalization
668ūðkÞuðkÞ ¼ mN=Ek for nucleon spinors. For the matrix
669elements of the vector, axial-vector, C-even spin-2 and C-
670odd spin-2 operators, we employ approximate isospin
671symmetry, neglecting small corrections proportional to
672mu −md and α, to relate proton and neutron matrix
673elements as

hpjOujpi ¼ hnjOdjni; hpjOdjpi ¼ hnjOujni;

hpjOsjpi ¼ hnjOsjni:
ð42Þ

674The proton and neutron tensor charges tq;N defined in
675Eqs. (52) and (53) are also related by (42), while the matrix
676element of the tensor current Tq itself requires the appro-
677priate quark mass factor. For the scalar and pseudoscalar
678matrix elements, we tabulate both the proton and neutron
679form factors. The corrections to zero momentum transfer
680(q2 → 0) are suppressed in the nonrelativistic regime of
681typical WIMP-nucleon scattering processes. We discuss
682these corrections in Appendix B.

683A. Vector current matrix elements

684For vector currents we parametrize matrix elements as

hNðk0ÞjVðqÞ
μ jNðkÞi

≡ ūðk0Þ
!
FðN;qÞ
1 ðq2Þγμ þ

i
2mN

FðN;qÞ
2 ðq2Þσμνqν

"
uðkÞ;

ð43Þ

685where q≡ k0 − k and N denotes a proton (p) or neutron

686(n). The Dirac FðN;qÞ
1 form factors are normalized according

687to quark content. The Pauli form factors FðN;qÞ
2 ð0Þ give the

688contribution of quark flavor q to the nucleon anomalous
689magnetic moment aN ,

13The result in Ref. [55] has the scaling hOð0Þ
Q i ∝ ð1 − λÞ,

which does not agree with Eq. (39) and Ref. [54].
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ap ≡ FðpÞ
2 ð0Þ ¼ 2

3
Fðp;uÞ
2 ð0Þ − 1

3
Fðp;dÞ
2 ð0Þ − 1

3
Fðp;sÞ
2 ð0Þ;

an ≡ FðnÞ
2 ð0Þ ¼ 2

3
Fðn;uÞ
2 ð0Þ − 1

3
Fðn;dÞ
2 ð0Þ − 1

3
Fðn;sÞ
2 ð0Þ;

ð44Þ

690 where ap ≈ 1.79 and an ≈ −1.91. A phenomenological
691 analysis employing lattice data [56] and a direct lattice
692 simulation with nf ¼ 2þ 1 dynamical quarks [57] support
693 a small value for the strange contribution to the proton
694 magnetic moment [58],

Fðp;sÞ
2 ð0Þ≡ μs ¼

(
−0.046ð19Þ ½56&
−0.017ð25Þð70Þ ½57&:

ð45Þ

695 Equations (44) and (45), together with the approximate

696 isospin symmetry expressed in (42), yield Fðp;uÞ
2 ð0Þ ¼

697 2ap þ an þ μs and Fðp;dÞ
2 ð0Þ ¼ ap þ 2an þ μs. Numerical

698 values for the proton form factors are collected in Table VII.

699 The q2 dependence of Fðp;qÞ
1 ðq2Þ is described in

700 Appendix B. Following from (42), the neutron form factors
701 for i ¼ 1; 2 are

Fðn;dÞ
i ¼ Fðp;uÞ

i ; Fðn;uÞ
i ¼ Fðp;dÞ

i ; Fðn;sÞ
i ¼ Fðp;sÞ

i :
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703 B. Axial-vector current matrix elements

704 For the axial-vector currents we parametrize matrix
705 elements as

hNðk0ÞjAðqÞ
μ jNðkÞi

≡ ūðNÞðk0Þ
!
FðN;qÞ
A ðq2Þγμγ5þ

1

2mN
FðN;qÞ
P0 ðq2Þγ5qμ

"
uðNÞðkÞ;

ð47Þ

706 and it is convenient to consider flavor nonsinglet (Að3Þ,
707 Að8Þ) and flavor-singlet (Að0Þ) linear combinations,

Að3Þ
μ ¼ Q̄γμγ5T3Q ¼ 1

2
½ūγμγ5u − d̄γμγ5d&;

Að8Þ
μ ¼ Q̄γμγ5T8Q ¼ 1

2
ffiffiffi
3

p ½ūγμγ5uþ d̄γμγ5d − 2s̄γμγ5s&;

Að0Þ
μ ¼ 1

3
Q̄γμγ5Q ¼ 1

3
½ūγμγ5uþ d̄γμγ5dþ s̄γμγ5s&: ð48Þ

708In the limit of SUð3Þ flavor symmetry, the q2 ¼ 0 limit for
709these matrix elements can be extracted from hyperon
710semileptonic decay and νp scattering [59],

Fðp;3Þ
A ð0Þ ¼ ðF þDÞ

2
¼ 0.63ð2Þ;

Fðp;8Þ
A ð0Þ ¼ ð3F −DÞ

2
ffiffiffi
3

p ¼ 0.16ð2Þ;

Fðp;0Þ
A ð0; μÞ ¼ 0.03ð8Þ; ð49Þ

711where D ¼ 0.80ð2Þ and F ¼ 0.45ð2Þ. The nonsinglet
712currents are scale independent, but the flavor-singlet
713current has weak-scale dependence governed by the

714anomalous dimension γðsingletÞA in Table IV, corresponding

715to the solution RðsingletÞ
A in Table V. In particular, with

716nf ¼ 3, running from μ ¼ 2 GeV to μ ¼ 1 GeV gives a

717factor of RðsingletÞ
A ð1 GeV; 2 GeVÞ ¼ 0.96, and we may thus

718consider Fðp;0Þ
A in Eq. (49) to be evaluated at μ ¼ 1–2 GeV.

719The first line of Table VIII lists the matrix elements of
720definite quark flavor from solving (48) and employing
721numerical values in (49).
722The q2 ¼ 0 limit of these form factors may also be
723constrained by observables of polarized deep inelastic
724scattering, via

Fðp;qÞ
A ð0Þ ¼

Z
1

0
dx ½Δqðx; μÞ þ Δq̄ðx; μÞ&; ð50Þ

725where Δqðx; μÞ is the quark helicity distribution evaluated
726at scale μ. Numerical values for these matrix elements
727extracted from the NNPDF Collaboration’s parametrization
728of Δq in Ref. [60] are listed in Table VIII, showing
729a negligible scale dependence. Results from lattice

TABLE VII. Scale-independent vector form factors for the
proton at q2 ¼ 0 for light-quark flavors u; d; s. For Fðp;qÞ

2 ð0Þ
we present values in the second and third columns employing μs
from Refs. [56] and [57], respectively. The uncertainties are
combined in quadrature and symmetrized. The vector form
factors for the neutron follow from approximate isospin sym-
metry expressed in (42).

q Fðp;qÞ
1 ð0Þ Fðp;qÞ

2 ð0Þ Fðp;qÞ
2 ð0Þ

u 2 1.62(2) 1.65(7)
d 1 −2.08ð2Þ −2.05ð7Þ
s 0 −0.046ð19Þ −0.017ð74Þ

TABLE VIII. Axial-vector form factors for the proton at q2 ¼ 0
for light-quark flavors u; d; s. The form factors in the first line are
extracted from the nonsinglet and singlet form factors in Eq. (49),
while the form factors in the second and third lines are from the
NNPDF parametrization [60] at indicated values of μ. The axial-
vector form factors for the neutron follow from approximate
isospin symmetry expressed in (42).

μ (GeV) Fðp;uÞ
A ð0Þ Fðp;dÞ

A ð0Þ Fðp;sÞ
A ð0Þ Reference

1–2 0.75(8) −0.51ð8Þ −0.15ð8Þ [59]
1 0.80(3) −0.46ð4Þ −0.12ð8Þ [60]
2 0.79(5) −0.46ð5Þ −0.13ð10Þ [60]
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730 calculations [61,62] are numerically similar. The q2

731 dependence of Fðp;aÞ
A is described in Appendix B.

732 Following from (42), the neutron form factors are

Fðn;dÞ
A ¼ Fðp;uÞ

A ; Fðn;uÞ
A ¼ Fðp;dÞ

A ; Fðn;sÞ
A ¼ Fðp;sÞ

A :

ð51Þ

733734 The terms parametrized by induced pseudoscalar form
735 factors FP0 in (47) are suppressed by two powers of jkj=mN
736 and lead to numerically small contributions in typical
737 WIMP-nucleus scattering processes. For completeness
738 we describe the leading contributions to these form factors
739 in Appendix B.

740 C. Antisymmetric tensor current matrix element

741 For the antisymmetric tensor currents, we parametrize
742 the matrix element as

Ek

mN
hNðkÞjTðqÞ

μν jNðkÞi≡ 2

mN
s½μkν%mqðμÞtq;NðμÞ; ð52Þ

743 where sμ ¼ −ðEk=2m2
NÞϵμνρσkνūðkÞσρσuðkÞ is the covari-

744 ant spin vector satisfying kμsμ ¼ 0 and s2 ¼ −1. In terms of
745 structure functions appearing in polarized deep inelastic
746 scattering, the tensor charges are given as

tq;NðμÞ ¼
Z

1

−1
dx δqNðx; μÞ: ð53Þ

747 The functions δqðx; μÞ are not yet well constrained exper-
748 imentally. Table IX lists values for the proton tensor
749 charges tq;p from a nonrelativistic quark model with
750 SUð6Þ spin flavor symmetry and from a lattice measure-
751 ment [63]. Other estimates of tu;p, td;p or tu;p − td;p have
752 been obtained using lattice QCD methods [64–66], QCD
753 sum rules [67], modeling [68,69] and semi-inclusive deep
754 inelastic scattering data [70].
755 The tensor charges at μ ¼ 1, 2 GeV in Table IX are
756 obtained by scale evolution of the tensor charges at μ ¼
757 1.4 GeV using the anomalous dimension γT − γm with γT
758 given in Table IV and γm the quark mass anomalous

759dimension given in Appendix A. Together with mqðμÞ,
760e.g., taken from the PDG [71] or Ref. [72], the tensor
761charges in Table IX specify the matrix element of the
762antisymmetric tensor current Tμν

q . Following from (42), the
763neutron tensor charges are

td;n ¼ tu;p; tu;n ¼ td;p; ts;n ¼ ts;p: ð54Þ

764
765D. Scalar matrix elements

766For the dimension four scalar operators, we restrict our
767attention to forward nucleon matrix elements. Let us define

Ek

mN
hNðkÞjOð0Þ

q jNðkÞi≡mNf
ð0Þ
q;N;

−9αsðμÞ
8π

Ek

mN
hNðkÞjOð0Þ

g ðμÞjNðkÞi≡mNf
ð0Þ
g;NðμÞ; ð55Þ

768where the appearance of the numerical factor involving
769αsðμÞ is purely conventional. The operator matrix elements
770are not independent, being linked by the sum rule in
771Eq. (30) as

mNūðkÞuðkÞ ¼ ð1 − γmÞ
X

q

hNðkÞjmqq̄qjNðkÞi

þ
~β
2
hNðkÞjðGa

μνÞ2jNðkÞi; ð56Þ

772ignoringOð1=mNÞ power corrections. Combining (55) and
773(56) we have

fð0Þg;N ¼ −
9αs
4π ~β

f1 − ð1 − γmÞλg ¼ 1 − λþOðαsÞ; ð57Þ

774where λ ¼
P

q¼u;d;sf
ð0Þ
q;N , the scale dependence is implicit,

775and the second equality is obtained by neglecting γm and
776Oðα2sÞ contributions to ~β. In Sec. VI, we will see that
777corrections to the leading-order relation are numerically
778important in the case of electroweak-charged WIMPs.
779We may extract the up and down quark scalar nucleon
780matrix elements from the scale-invariant combinations,

ΣπN ¼ mu þmd

2
hNjðūuþ d̄dÞjNi ¼ 44ð13Þ MeV;

Σ− ¼ ðmd −muÞhNjðūu − d̄dÞjNi ¼ '2ð2Þ MeV; ð58Þ

781where the upper (lower) sign in Σ− is for the proton
782(neutron) [73].14 The numerical value for the pion-nucleon
783sigma term ΣπN is the lattice result from Ref. [75]
784with errors symmetrized. For the strange scalar nucleon
785matrix element, we use the updated lattice result

786mNf
ð0Þ
s;N ¼ 40' 20 MeV from Ref. [76], where we assume

TABLE IX. Tensor charges from a nonrelativistic quark model
(μ unspecified) and the lattice measurement in Ref. [63] at μ ≈
1.4 GeV for a proton. The values at μ ¼ 1; 2 GeV are obtained by
scale evolution of the tensor charges from μ ¼ 1.4 GeV. The
tensor charges for the neutron follow from approximate isospin
symmetry expressed in (42).

μ (GeV) tu;pðμÞ td;pðμÞ ts;pðμÞ Reference

… 4=3 −1=3 0 …
1 0.88(6) −0.24ð5Þ −0.05ð3Þ …
1.4 0.84(6) −0.23ð5Þ −0.05ð3Þ [63]
2 0.81(6) −0.22ð5Þ −0.05ð3Þ …

14A smaller uncertainty, Σ− ¼ '2ð1ÞMeV, is implied by the
analysis in Ref. [74].
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771Eq. (30) as

mNūðkÞuðkÞ ¼ ð1 − γmÞ
X

q

hNðkÞjmqq̄qjNðkÞi

þ
~β
2
hNðkÞjðGa

μνÞ2jNðkÞi; ð56Þ

772ignoringOð1=mNÞ power corrections. Combining (55) and
773(56) we have

fð0Þg;N ¼ −
9αs
4π ~β

f1 − ð1 − γmÞλg ¼ 1 − λþOðαsÞ; ð57Þ

774where λ ¼
P

q¼u;d;sf
ð0Þ
q;N , the scale dependence is implicit,

775and the second equality is obtained by neglecting γm and
776Oðα2sÞ contributions to ~β. In Sec. VI, we will see that
777corrections to the leading-order relation are numerically
778important in the case of electroweak-charged WIMPs.
779We may extract the up and down quark scalar nucleon
780matrix elements from the scale-invariant combinations,

ΣπN ¼ mu þmd

2
hNjðūuþ d̄dÞjNi ¼ 44ð13Þ MeV;

Σ− ¼ ðmd −muÞhNjðūu − d̄dÞjNi ¼ '2ð2Þ MeV; ð58Þ

781where the upper (lower) sign in Σ− is for the proton
782(neutron) [73].14 The numerical value for the pion-nucleon
783sigma term ΣπN is the lattice result from Ref. [75]
784with errors symmetrized. For the strange scalar nucleon
785matrix element, we use the updated lattice result

786mNf
ð0Þ
s;N ¼ 40' 20 MeV from Ref. [76], where we assume

TABLE IX. Tensor charges from a nonrelativistic quark model
(μ unspecified) and the lattice measurement in Ref. [63] at μ ≈
1.4 GeV for a proton. The values at μ ¼ 1; 2 GeV are obtained by
scale evolution of the tensor charges from μ ¼ 1.4 GeV. The
tensor charges for the neutron follow from approximate isospin
symmetry expressed in (42).

μ (GeV) tu;pðμÞ td;pðμÞ ts;pðμÞ Reference

… 4=3 −1=3 0 …
1 0.88(6) −0.24ð5Þ −0.05ð3Þ …
1.4 0.84(6) −0.23ð5Þ −0.05ð3Þ [63]
2 0.81(6) −0.22ð5Þ −0.05ð3Þ …

14A smaller uncertainty, Σ− ¼ '2ð1ÞMeV, is implied by the
analysis in Ref. [74].
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730 calculations [61,62] are numerically similar. The q2

731 dependence of Fðp;aÞ
A is described in Appendix B.

732 Following from (42), the neutron form factors are

Fðn;dÞ
A ¼ Fðp;uÞ

A ; Fðn;uÞ
A ¼ Fðp;dÞ

A ; Fðn;sÞ
A ¼ Fðp;sÞ

A :

ð51Þ

733734 The terms parametrized by induced pseudoscalar form
735 factors FP0 in (47) are suppressed by two powers of jkj=mN
736 and lead to numerically small contributions in typical
737 WIMP-nucleus scattering processes. For completeness
738 we describe the leading contributions to these form factors
739 in Appendix B.

740 C. Antisymmetric tensor current matrix element
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742 the matrix element as

Ek

mN
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mN
s½μkν%mqðμÞtq;NðμÞ; ð52Þ
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Z

1

−1
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749 charges tq;p from a nonrelativistic quark model with
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q . Following from (42), the
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764
765D. Scalar matrix elements

766For the dimension four scalar operators, we restrict our
767attention to forward nucleon matrix elements. Let us define

Ek

mN
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q jNðkÞi≡mNf
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−9αsðμÞ
8π
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g ðμÞjNðkÞi≡mNf
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g;NðμÞ; ð55Þ

768where the appearance of the numerical factor involving
769αsðμÞ is purely conventional. The operator matrix elements
770are not independent, being linked by the sum rule in
771Eq. (30) as

mNūðkÞuðkÞ ¼ ð1 − γmÞ
X

q
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772ignoringOð1=mNÞ power corrections. Combining (55) and
773(56) we have

fð0Þg;N ¼ −
9αs
4π ~β

f1 − ð1 − γmÞλg ¼ 1 − λþOðαsÞ; ð57Þ

774where λ ¼
P

q¼u;d;sf
ð0Þ
q;N , the scale dependence is implicit,

775and the second equality is obtained by neglecting γm and
776Oðα2sÞ contributions to ~β. In Sec. VI, we will see that
777corrections to the leading-order relation are numerically
778important in the case of electroweak-charged WIMPs.
779We may extract the up and down quark scalar nucleon
780matrix elements from the scale-invariant combinations,

ΣπN ¼ mu þmd

2
hNjðūuþ d̄dÞjNi ¼ 44ð13Þ MeV;

Σ− ¼ ðmd −muÞhNjðūu − d̄dÞjNi ¼ '2ð2Þ MeV; ð58Þ

781where the upper (lower) sign in Σ− is for the proton
782(neutron) [73].14 The numerical value for the pion-nucleon
783sigma term ΣπN is the lattice result from Ref. [75]
784with errors symmetrized. For the strange scalar nucleon
785matrix element, we use the updated lattice result

786mNf
ð0Þ
s;N ¼ 40' 20 MeV from Ref. [76], where we assume

TABLE IX. Tensor charges from a nonrelativistic quark model
(μ unspecified) and the lattice measurement in Ref. [63] at μ ≈
1.4 GeV for a proton. The values at μ ¼ 1; 2 GeV are obtained by
scale evolution of the tensor charges from μ ¼ 1.4 GeV. The
tensor charges for the neutron follow from approximate isospin
symmetry expressed in (42).

μ (GeV) tu;pðμÞ td;pðμÞ ts;pðμÞ Reference

… 4=3 −1=3 0 …
1 0.88(6) −0.24ð5Þ −0.05ð3Þ …
1.4 0.84(6) −0.23ð5Þ −0.05ð3Þ [63]
2 0.81(6) −0.22ð5Þ −0.05ð3Þ …

14A smaller uncertainty, Σ− ¼ '2ð1ÞMeV, is implied by the
analysis in Ref. [74].
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787 a conservative 50% uncertainty compared to their estimate
788 of 25%.
789 For models with identical couplings to up and
790 down quarks, it is sufficient to take as input

791 mNðf
ð0Þ
u;N þ fð0Þd;NÞ ¼ ΣπN − Σ−=2 ≈ ΣπN , neglecting the

792 small contribution from Σ−. For general applications
793 requiring separately the up and down quark scalar matrix
794 elements, let us write

fð0Þu;N ¼ Rud

1þ Rud

ΣπN

mN
ð1þ ξÞ;

fð0Þd;N ¼ 1

1þ Rud

ΣπN

mN
ð1 − ξÞ; ξ ¼ 1þ Rud

1 − Rud

Σ−
2ΣπN

; ð59Þ

795 where we employ the quark mass ratios adopted from PDG
796 values [71] (symmetrizing errors),

Rud ≡mu

md
¼ 0.49% 0.13; Rsd ≡ ms

md
¼ 19.5% 2.5:

ð60Þ
797 The resulting numerical values for the light-quark scalar
798 matrix elements are collected in Table X. The uncertain-

799 ties in fð0Þu;N and fð0Þd;N are highly correlated, and for
800 applications we use Eq. (59), varying the inputs ΣπN ,
801 Rud and Σ− whose uncertainties are taken as uncorrelated.
802 For both the proton and the neutron, the gluon matrix

803 element fð0Þg;N is obtained from the quark matrix elements
804 via the sum rule in Eq. (56).
805 From the analysis of heavy-quark matching conditions in
806 Sec. III E, we may determine the scalar matrix elements of
807 heavy-quark flavors. For definiteness, let us consider four-
808 flavor QCD with a heavy charm quark. Denoting quantities
809 in the four-flavor (three-flavor) theory with (without) a
810 prime, the results in Eqs. (39) and (40) yield

fð0Þ0c;N ¼ 0.083 − 0.103λþOðα4s ; 1=mcÞ
¼ 0.073ð3Þ þOðα4s ; 1=mcÞ;

fð0Þ0q;N ¼ fð0Þq;N þOð1=mcÞ; ð61Þ

811where we use λ ≈ ΣπN=mN þ fð0Þs;N ¼ 0.089ð26Þ , neglect-
812ing the small contribution from Σ−. An expression for fð0Þ0c;N
813in terms of α0sðμcÞ is given in Appendix B; in particular, the
814Oðα3sÞ term in fð0Þ0c;N employs hO0ð0Þ

Q i4 derived in Sec. III E.

815The uncertainty in fð0Þ0c;N is presently dominated by hadronic
816inputs, and in (61) we neglect the small uncertainty (< 1%)
817from scale variation of μc. Recent lattice measurements of
818the charm matrix element in Refs. [77] and [78] have
819determined

fð0Þ0c;N ¼
!
0.10ð3Þ ½77'
0.07ð3Þ ½78';

ð62Þ

820which are consistent within large errors with (61). As
821discussed below (39), we find discrepancies with previous
822determinations of the heavy-quark scalar matrix elements
823[54,55].15 Nonetheless, due to a large Oð30%Þ uncertainty
824in λ, the resulting numerical values are consistent. A
825nonperturbative determination of the charm and light-quark
826matrix elements in four-flavor lattice QCD would avoid
827uncertainties associated with the charm scale μc ∼mc, such
828as Oð1=mcÞ power corrections and OðαsÞ perturbative
829corrections. In Sec. VI, we investigate the evaluation of
830the spin-independent cross section for heavy electroweak-
831charged WIMPs in the four-flavor theory.

832E. Pseudoscalar matrix elements

833For the quark and gluon pseudoscalar operators we
834parametrize the matrix elements as

hNðk0ÞjOð0Þ
5q jNðkÞi≡mNf

ð0Þ
5q;Nðq2Þūðk0Þiγ5uðkÞ;

hNðk0ÞjOð0Þ
5g jNðkÞi≡mNf

ð0Þ
5g;Nðq2; μÞūðk0Þiγ5uðkÞ; ð63Þ

835where the quark pseudoscalar operators have been defined
836independent of renormalization scale, while the gluon
837operators have a weak-scale dependence. The matrix
838elements in Eq. (63) are related to the matrix elements
839of the axial-vector current through the axial anomaly in
840Eq. (18). Employing the matrix elements for the nonsinglet
841axial-vector currents in Eq. (49), together with the addi-
842tional definition,

X

q¼u;d;s

hNðk0Þjq̄iγ5qjNðkÞi≡ κðq2; μÞūðk0Þiγ5uðkÞ; ð64Þ

843we find the following quark pseudoscalar form factors at
844q2 ¼ 0:

TABLE X. Scale-independent scalar form factors for the proton
and neutron for light-quark flavors u; d; s. The first, second and
third uncertainties are from ΣπN , mu=md and Σ−, respectively. As
discussed below Eq. (60), the parametrization in Eq. (59) leads to
highly correlated uncertainties in fð0Þu;N and fð0Þd;N .

q fð0Þq;p fð0Þq;n

u 0.016(5)(3)(1)
0.014ð5Þ

"þ2

−3
#
ð1Þ

d 0.029(9)(3)(2)
0.034ð9Þ

"þ3

−2
#
ð2Þ

s 0.043(21) 0.043(21)

15In Ref. [76], the result of Ref. [55] was presented with
updated inputs.
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787 a conservative 50% uncertainty compared to their estimate
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790 down quarks, it is sufficient to take as input

791 mNðf
ð0Þ
u;N þ fð0Þd;NÞ ¼ ΣπN − Σ−=2 ≈ ΣπN , neglecting the

792 small contribution from Σ−. For general applications
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795 where we employ the quark mass ratios adopted from PDG
796 values [71] (symmetrizing errors),
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md
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md
¼ 19.5% 2.5:
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797 The resulting numerical values for the light-quark scalar
798 matrix elements are collected in Table X. The uncertain-

799 ties in fð0Þu;N and fð0Þd;N are highly correlated, and for
800 applications we use Eq. (59), varying the inputs ΣπN ,
801 Rud and Σ− whose uncertainties are taken as uncorrelated.
802 For both the proton and the neutron, the gluon matrix

803 element fð0Þg;N is obtained from the quark matrix elements
804 via the sum rule in Eq. (56).
805 From the analysis of heavy-quark matching conditions in
806 Sec. III E, we may determine the scalar matrix elements of
807 heavy-quark flavors. For definiteness, let us consider four-
808 flavor QCD with a heavy charm quark. Denoting quantities
809 in the four-flavor (three-flavor) theory with (without) a
810 prime, the results in Eqs. (39) and (40) yield

fð0Þ0c;N ¼ 0.083 − 0.103λþOðα4s ; 1=mcÞ
¼ 0.073ð3Þ þOðα4s ; 1=mcÞ;

fð0Þ0q;N ¼ fð0Þq;N þOð1=mcÞ; ð61Þ

811where we use λ ≈ ΣπN=mN þ fð0Þs;N ¼ 0.089ð26Þ , neglect-
812ing the small contribution from Σ−. An expression for fð0Þ0c;N
813in terms of α0sðμcÞ is given in Appendix B; in particular, the
814Oðα3sÞ term in fð0Þ0c;N employs hO0ð0Þ

Q i4 derived in Sec. III E.

815The uncertainty in fð0Þ0c;N is presently dominated by hadronic
816inputs, and in (61) we neglect the small uncertainty (< 1%)
817from scale variation of μc. Recent lattice measurements of
818the charm matrix element in Refs. [77] and [78] have
819determined

fð0Þ0c;N ¼
!
0.10ð3Þ ½77'
0.07ð3Þ ½78';

ð62Þ

820which are consistent within large errors with (61). As
821discussed below (39), we find discrepancies with previous
822determinations of the heavy-quark scalar matrix elements
823[54,55].15 Nonetheless, due to a large Oð30%Þ uncertainty
824in λ, the resulting numerical values are consistent. A
825nonperturbative determination of the charm and light-quark
826matrix elements in four-flavor lattice QCD would avoid
827uncertainties associated with the charm scale μc ∼mc, such
828as Oð1=mcÞ power corrections and OðαsÞ perturbative
829corrections. In Sec. VI, we investigate the evaluation of
830the spin-independent cross section for heavy electroweak-
831charged WIMPs in the four-flavor theory.

832E. Pseudoscalar matrix elements

833For the quark and gluon pseudoscalar operators we
834parametrize the matrix elements as

hNðk0ÞjOð0Þ
5q jNðkÞi≡mNf
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5q;Nðq2Þūðk0Þiγ5uðkÞ;
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5g jNðkÞi≡mNf
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5g;Nðq2; μÞūðk0Þiγ5uðkÞ; ð63Þ

835where the quark pseudoscalar operators have been defined
836independent of renormalization scale, while the gluon
837operators have a weak-scale dependence. The matrix
838elements in Eq. (63) are related to the matrix elements
839of the axial-vector current through the axial anomaly in
840Eq. (18). Employing the matrix elements for the nonsinglet
841axial-vector currents in Eq. (49), together with the addi-
842tional definition,

X

q¼u;d;s

hNðk0Þjq̄iγ5qjNðkÞi≡ κðq2; μÞūðk0Þiγ5uðkÞ; ð64Þ

843we find the following quark pseudoscalar form factors at
844q2 ¼ 0:

TABLE X. Scale-independent scalar form factors for the proton
and neutron for light-quark flavors u; d; s. The first, second and
third uncertainties are from ΣπN , mu=md and Σ−, respectively. As
discussed below Eq. (60), the parametrization in Eq. (59) leads to
highly correlated uncertainties in fð0Þu;N and fð0Þd;N .
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u 0.016(5)(3)(1)
0.014ð5Þ
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#
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d 0.029(9)(3)(2)
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#
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730 calculations [61,62] are numerically similar. The q2

731 dependence of Fðp;aÞ
A is described in Appendix B.

732 Following from (42), the neutron form factors are

Fðn;dÞ
A ¼ Fðp;uÞ

A ; Fðn;uÞ
A ¼ Fðp;dÞ

A ; Fðn;sÞ
A ¼ Fðp;sÞ

A :

ð51Þ

733734 The terms parametrized by induced pseudoscalar form
735 factors FP0 in (47) are suppressed by two powers of jkj=mN
736 and lead to numerically small contributions in typical
737 WIMP-nucleus scattering processes. For completeness
738 we describe the leading contributions to these form factors
739 in Appendix B.

740 C. Antisymmetric tensor current matrix element

741 For the antisymmetric tensor currents, we parametrize
742 the matrix element as

Ek

mN
hNðkÞjTðqÞ

μν jNðkÞi≡ 2

mN
s½μkν%mqðμÞtq;NðμÞ; ð52Þ

743 where sμ ¼ −ðEk=2m2
NÞϵμνρσkνūðkÞσρσuðkÞ is the covari-

744 ant spin vector satisfying kμsμ ¼ 0 and s2 ¼ −1. In terms of
745 structure functions appearing in polarized deep inelastic
746 scattering, the tensor charges are given as

tq;NðμÞ ¼
Z

1

−1
dx δqNðx; μÞ: ð53Þ

747 The functions δqðx; μÞ are not yet well constrained exper-
748 imentally. Table IX lists values for the proton tensor
749 charges tq;p from a nonrelativistic quark model with
750 SUð6Þ spin flavor symmetry and from a lattice measure-
751 ment [63]. Other estimates of tu;p, td;p or tu;p − td;p have
752 been obtained using lattice QCD methods [64–66], QCD
753 sum rules [67], modeling [68,69] and semi-inclusive deep
754 inelastic scattering data [70].
755 The tensor charges at μ ¼ 1, 2 GeV in Table IX are
756 obtained by scale evolution of the tensor charges at μ ¼
757 1.4 GeV using the anomalous dimension γT − γm with γT
758 given in Table IV and γm the quark mass anomalous

759dimension given in Appendix A. Together with mqðμÞ,
760e.g., taken from the PDG [71] or Ref. [72], the tensor
761charges in Table IX specify the matrix element of the
762antisymmetric tensor current Tμν

q . Following from (42), the
763neutron tensor charges are

td;n ¼ tu;p; tu;n ¼ td;p; ts;n ¼ ts;p: ð54Þ

764
765D. Scalar matrix elements

766For the dimension four scalar operators, we restrict our
767attention to forward nucleon matrix elements. Let us define

Ek

mN
hNðkÞjOð0Þ

q jNðkÞi≡mNf
ð0Þ
q;N;

−9αsðμÞ
8π

Ek

mN
hNðkÞjOð0Þ

g ðμÞjNðkÞi≡mNf
ð0Þ
g;NðμÞ; ð55Þ

768where the appearance of the numerical factor involving
769αsðμÞ is purely conventional. The operator matrix elements
770are not independent, being linked by the sum rule in
771Eq. (30) as

mNūðkÞuðkÞ ¼ ð1 − γmÞ
X

q

hNðkÞjmqq̄qjNðkÞi

þ
~β
2
hNðkÞjðGa

μνÞ2jNðkÞi; ð56Þ

772ignoringOð1=mNÞ power corrections. Combining (55) and
773(56) we have

fð0Þg;N ¼ −
9αs
4π ~β

f1 − ð1 − γmÞλg ¼ 1 − λþOðαsÞ; ð57Þ

774where λ ¼
P

q¼u;d;sf
ð0Þ
q;N , the scale dependence is implicit,

775and the second equality is obtained by neglecting γm and
776Oðα2sÞ contributions to ~β. In Sec. VI, we will see that
777corrections to the leading-order relation are numerically
778important in the case of electroweak-charged WIMPs.
779We may extract the up and down quark scalar nucleon
780matrix elements from the scale-invariant combinations,

ΣπN ¼ mu þmd

2
hNjðūuþ d̄dÞjNi ¼ 44ð13Þ MeV;

Σ− ¼ ðmd −muÞhNjðūu − d̄dÞjNi ¼ '2ð2Þ MeV; ð58Þ

781where the upper (lower) sign in Σ− is for the proton
782(neutron) [73].14 The numerical value for the pion-nucleon
783sigma term ΣπN is the lattice result from Ref. [75]
784with errors symmetrized. For the strange scalar nucleon
785matrix element, we use the updated lattice result

786mNf
ð0Þ
s;N ¼ 40' 20 MeV from Ref. [76], where we assume

TABLE IX. Tensor charges from a nonrelativistic quark model
(μ unspecified) and the lattice measurement in Ref. [63] at μ ≈
1.4 GeV for a proton. The values at μ ¼ 1; 2 GeV are obtained by
scale evolution of the tensor charges from μ ¼ 1.4 GeV. The
tensor charges for the neutron follow from approximate isospin
symmetry expressed in (42).

μ (GeV) tu;pðμÞ td;pðμÞ ts;pðμÞ Reference

… 4=3 −1=3 0 …
1 0.88(6) −0.24ð5Þ −0.05ð3Þ …
1.4 0.84(6) −0.23ð5Þ −0.05ð3Þ [63]
2 0.81(6) −0.22ð5Þ −0.05ð3Þ …

14A smaller uncertainty, Σ− ¼ '2ð1ÞMeV, is implied by the
analysis in Ref. [74].
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730 calculations [61,62] are numerically similar. The q2

731 dependence of Fðp;aÞ
A is described in Appendix B.

732 Following from (42), the neutron form factors are
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A ; Fðn;sÞ
A ¼ Fðp;sÞ

A :
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733734 The terms parametrized by induced pseudoscalar form
735 factors FP0 in (47) are suppressed by two powers of jkj=mN
736 and lead to numerically small contributions in typical
737 WIMP-nucleus scattering processes. For completeness
738 we describe the leading contributions to these form factors
739 in Appendix B.

740 C. Antisymmetric tensor current matrix element

741 For the antisymmetric tensor currents, we parametrize
742 the matrix element as

Ek

mN
hNðkÞjTðqÞ

μν jNðkÞi≡ 2

mN
s½μkν%mqðμÞtq;NðμÞ; ð52Þ

743 where sμ ¼ −ðEk=2m2
NÞϵμνρσkνūðkÞσρσuðkÞ is the covari-

744 ant spin vector satisfying kμsμ ¼ 0 and s2 ¼ −1. In terms of
745 structure functions appearing in polarized deep inelastic
746 scattering, the tensor charges are given as

tq;NðμÞ ¼
Z

1

−1
dx δqNðx; μÞ: ð53Þ

747 The functions δqðx; μÞ are not yet well constrained exper-
748 imentally. Table IX lists values for the proton tensor
749 charges tq;p from a nonrelativistic quark model with
750 SUð6Þ spin flavor symmetry and from a lattice measure-
751 ment [63]. Other estimates of tu;p, td;p or tu;p − td;p have
752 been obtained using lattice QCD methods [64–66], QCD
753 sum rules [67], modeling [68,69] and semi-inclusive deep
754 inelastic scattering data [70].
755 The tensor charges at μ ¼ 1, 2 GeV in Table IX are
756 obtained by scale evolution of the tensor charges at μ ¼
757 1.4 GeV using the anomalous dimension γT − γm with γT
758 given in Table IV and γm the quark mass anomalous

759dimension given in Appendix A. Together with mqðμÞ,
760e.g., taken from the PDG [71] or Ref. [72], the tensor
761charges in Table IX specify the matrix element of the
762antisymmetric tensor current Tμν

q . Following from (42), the
763neutron tensor charges are

td;n ¼ tu;p; tu;n ¼ td;p; ts;n ¼ ts;p: ð54Þ

764
765D. Scalar matrix elements

766For the dimension four scalar operators, we restrict our
767attention to forward nucleon matrix elements. Let us define

Ek

mN
hNðkÞjOð0Þ

q jNðkÞi≡mNf
ð0Þ
q;N;

−9αsðμÞ
8π

Ek

mN
hNðkÞjOð0Þ

g ðμÞjNðkÞi≡mNf
ð0Þ
g;NðμÞ; ð55Þ

768where the appearance of the numerical factor involving
769αsðμÞ is purely conventional. The operator matrix elements
770are not independent, being linked by the sum rule in
771Eq. (30) as

mNūðkÞuðkÞ ¼ ð1 − γmÞ
X

q

hNðkÞjmqq̄qjNðkÞi

þ
~β
2
hNðkÞjðGa

μνÞ2jNðkÞi; ð56Þ

772ignoringOð1=mNÞ power corrections. Combining (55) and
773(56) we have

fð0Þg;N ¼ −
9αs
4π ~β

f1 − ð1 − γmÞλg ¼ 1 − λþOðαsÞ; ð57Þ

774where λ ¼
P

q¼u;d;sf
ð0Þ
q;N , the scale dependence is implicit,

775and the second equality is obtained by neglecting γm and
776Oðα2sÞ contributions to ~β. In Sec. VI, we will see that
777corrections to the leading-order relation are numerically
778important in the case of electroweak-charged WIMPs.
779We may extract the up and down quark scalar nucleon
780matrix elements from the scale-invariant combinations,

ΣπN ¼ mu þmd

2
hNjðūuþ d̄dÞjNi ¼ 44ð13Þ MeV;

Σ− ¼ ðmd −muÞhNjðūu − d̄dÞjNi ¼ '2ð2Þ MeV; ð58Þ

781where the upper (lower) sign in Σ− is for the proton
782(neutron) [73].14 The numerical value for the pion-nucleon
783sigma term ΣπN is the lattice result from Ref. [75]
784with errors symmetrized. For the strange scalar nucleon
785matrix element, we use the updated lattice result

786mNf
ð0Þ
s;N ¼ 40' 20 MeV from Ref. [76], where we assume

TABLE IX. Tensor charges from a nonrelativistic quark model
(μ unspecified) and the lattice measurement in Ref. [63] at μ ≈
1.4 GeV for a proton. The values at μ ¼ 1; 2 GeV are obtained by
scale evolution of the tensor charges from μ ¼ 1.4 GeV. The
tensor charges for the neutron follow from approximate isospin
symmetry expressed in (42).

μ (GeV) tu;pðμÞ td;pðμÞ ts;pðμÞ Reference

… 4=3 −1=3 0 …
1 0.88(6) −0.24ð5Þ −0.05ð3Þ …
1.4 0.84(6) −0.23ð5Þ −0.05ð3Þ [63]
2 0.81(6) −0.22ð5Þ −0.05ð3Þ …

14A smaller uncertainty, Σ− ¼ '2ð1ÞMeV, is implied by the
analysis in Ref. [74].
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lattice
Lattice determination of charm is 

interesting, and would assess 
impact of power corrections

787 a conservative 50% uncertainty compared to their estimate
788 of 25%.
789 For models with identical couplings to up and
790 down quarks, it is sufficient to take as input

791 mNðf
ð0Þ
u;N þ fð0Þd;NÞ ¼ ΣπN − Σ−=2 ≈ ΣπN , neglecting the

792 small contribution from Σ−. For general applications
793 requiring separately the up and down quark scalar matrix
794 elements, let us write

fð0Þu;N ¼ Rud

1þ Rud

ΣπN

mN
ð1þ ξÞ;

fð0Þd;N ¼ 1

1þ Rud

ΣπN

mN
ð1 − ξÞ; ξ ¼ 1þ Rud

1 − Rud

Σ−
2ΣπN

; ð59Þ

795 where we employ the quark mass ratios adopted from PDG
796 values [71] (symmetrizing errors),

Rud ≡mu

md
¼ 0.49% 0.13; Rsd ≡ ms

md
¼ 19.5% 2.5:

ð60Þ
797 The resulting numerical values for the light-quark scalar
798 matrix elements are collected in Table X. The uncertain-

799 ties in fð0Þu;N and fð0Þd;N are highly correlated, and for
800 applications we use Eq. (59), varying the inputs ΣπN ,
801 Rud and Σ− whose uncertainties are taken as uncorrelated.
802 For both the proton and the neutron, the gluon matrix

803 element fð0Þg;N is obtained from the quark matrix elements
804 via the sum rule in Eq. (56).
805 From the analysis of heavy-quark matching conditions in
806 Sec. III E, we may determine the scalar matrix elements of
807 heavy-quark flavors. For definiteness, let us consider four-
808 flavor QCD with a heavy charm quark. Denoting quantities
809 in the four-flavor (three-flavor) theory with (without) a
810 prime, the results in Eqs. (39) and (40) yield

fð0Þ0c;N ¼ 0.083 − 0.103λþOðα4s ; 1=mcÞ
¼ 0.073ð3Þ þOðα4s ; 1=mcÞ;

fð0Þ0q;N ¼ fð0Þq;N þOð1=mcÞ; ð61Þ

811where we use λ ≈ ΣπN=mN þ fð0Þs;N ¼ 0.089ð26Þ , neglect-
812ing the small contribution from Σ−. An expression for fð0Þ0c;N
813in terms of α0sðμcÞ is given in Appendix B; in particular, the
814Oðα3sÞ term in fð0Þ0c;N employs hO0ð0Þ

Q i4 derived in Sec. III E.

815The uncertainty in fð0Þ0c;N is presently dominated by hadronic
816inputs, and in (61) we neglect the small uncertainty (< 1%)
817from scale variation of μc. Recent lattice measurements of
818the charm matrix element in Refs. [77] and [78] have
819determined

fð0Þ0c;N ¼
!
0.10ð3Þ ½77'
0.07ð3Þ ½78';

ð62Þ

820which are consistent within large errors with (61). As
821discussed below (39), we find discrepancies with previous
822determinations of the heavy-quark scalar matrix elements
823[54,55].15 Nonetheless, due to a large Oð30%Þ uncertainty
824in λ, the resulting numerical values are consistent. A
825nonperturbative determination of the charm and light-quark
826matrix elements in four-flavor lattice QCD would avoid
827uncertainties associated with the charm scale μc ∼mc, such
828as Oð1=mcÞ power corrections and OðαsÞ perturbative
829corrections. In Sec. VI, we investigate the evaluation of
830the spin-independent cross section for heavy electroweak-
831charged WIMPs in the four-flavor theory.

832E. Pseudoscalar matrix elements

833For the quark and gluon pseudoscalar operators we
834parametrize the matrix elements as

hNðk0ÞjOð0Þ
5q jNðkÞi≡mNf

ð0Þ
5q;Nðq2Þūðk0Þiγ5uðkÞ;

hNðk0ÞjOð0Þ
5g jNðkÞi≡mNf

ð0Þ
5g;Nðq2; μÞūðk0Þiγ5uðkÞ; ð63Þ

835where the quark pseudoscalar operators have been defined
836independent of renormalization scale, while the gluon
837operators have a weak-scale dependence. The matrix
838elements in Eq. (63) are related to the matrix elements
839of the axial-vector current through the axial anomaly in
840Eq. (18). Employing the matrix elements for the nonsinglet
841axial-vector currents in Eq. (49), together with the addi-
842tional definition,

X

q¼u;d;s

hNðk0Þjq̄iγ5qjNðkÞi≡ κðq2; μÞūðk0Þiγ5uðkÞ; ð64Þ

843we find the following quark pseudoscalar form factors at
844q2 ¼ 0:

TABLE X. Scale-independent scalar form factors for the proton
and neutron for light-quark flavors u; d; s. The first, second and
third uncertainties are from ΣπN , mu=md and Σ−, respectively. As
discussed below Eq. (60), the parametrization in Eq. (59) leads to
highly correlated uncertainties in fð0Þu;N and fð0Þd;N .

q fð0Þq;p fð0Þq;n

u 0.016(5)(3)(1)
0.014ð5Þ

"þ2

−3
#
ð1Þ

d 0.029(9)(3)(2)
0.034ð9Þ

"þ3

−2
#
ð2Þ

s 0.043(21) 0.043(21)

15In Ref. [76], the result of Ref. [55] was presented with
updated inputs.
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811where we use λ ≈ ΣπN=mN þ fð0Þs;N ¼ 0.089ð26Þ , neglect-
812ing the small contribution from Σ−. An expression for fð0Þ0c;N
813in terms of α0sðμcÞ is given in Appendix B; in particular, the
814Oðα3sÞ term in fð0Þ0c;N employs hO0ð0Þ

Q i4 derived in Sec. III E.

815The uncertainty in fð0Þ0c;N is presently dominated by hadronic
816inputs, and in (61) we neglect the small uncertainty (< 1%)
817from scale variation of μc. Recent lattice measurements of
818the charm matrix element in Refs. [77] and [78] have
819determined

fð0Þ0c;N ¼
!
0.10ð3Þ ½77'
0.07ð3Þ ½78';

ð62Þ

820which are consistent within large errors with (61). As
821discussed below (39), we find discrepancies with previous
822determinations of the heavy-quark scalar matrix elements
823[54,55].15 Nonetheless, due to a large Oð30%Þ uncertainty
824in λ, the resulting numerical values are consistent. A
825nonperturbative determination of the charm and light-quark
826matrix elements in four-flavor lattice QCD would avoid
827uncertainties associated with the charm scale μc ∼mc, such
828as Oð1=mcÞ power corrections and OðαsÞ perturbative
829corrections. In Sec. VI, we investigate the evaluation of
830the spin-independent cross section for heavy electroweak-
831charged WIMPs in the four-flavor theory.

832E. Pseudoscalar matrix elements

833For the quark and gluon pseudoscalar operators we
834parametrize the matrix elements as

hNðk0ÞjOð0Þ
5q jNðkÞi≡mNf

ð0Þ
5q;Nðq2Þūðk0Þiγ5uðkÞ;
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5g jNðkÞi≡mNf

ð0Þ
5g;Nðq2; μÞūðk0Þiγ5uðkÞ; ð63Þ

835where the quark pseudoscalar operators have been defined
836independent of renormalization scale, while the gluon
837operators have a weak-scale dependence. The matrix
838elements in Eq. (63) are related to the matrix elements
839of the axial-vector current through the axial anomaly in
840Eq. (18). Employing the matrix elements for the nonsinglet
841axial-vector currents in Eq. (49), together with the addi-
842tional definition,

X

q¼u;d;s

hNðk0Þjq̄iγ5qjNðkÞi≡ κðq2; μÞūðk0Þiγ5uðkÞ; ð64Þ

843we find the following quark pseudoscalar form factors at
844q2 ¼ 0:

TABLE X. Scale-independent scalar form factors for the proton
and neutron for light-quark flavors u; d; s. The first, second and
third uncertainties are from ΣπN , mu=md and Σ−, respectively. As
discussed below Eq. (60), the parametrization in Eq. (59) leads to
highly correlated uncertainties in fð0Þu;N and fð0Þd;N .

q fð0Þq;p fð0Þq;n

u 0.016(5)(3)(1)
0.014ð5Þ
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−3
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ð1Þ

d 0.029(9)(3)(2)
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−2
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15In Ref. [76], the result of Ref. [55] was presented with
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401 the scale independence of the quark pseudoscalar matrix
402 elements.
403 For vector currents, axial-vector currents, tensor currents
404 and C-odd spin-2 operators, the renormalization constants
405 are quark flavor diagonal and have the form Zij ¼ Zδij,
406 with Z listed in Table III. For scalar, pseudoscalar and
407 C-even spin-2 operators, the renormalization constants, in
408 the basis ðu; d; s;…jgÞ, have the form

Z ¼

0

BBBBB@

Zqq Zqg

. .
. ..

.

Zqq Zqg

Zgq $ $ $ Zgq Zgg

1

CCCCCA
; ð16Þ

409 with elements Zij listed in Table III.
410 The vector currents, representing conserved quark num-
411 ber, ∂μV

μ
q ¼ 0, evolve trivially under QCD renormaliza-

412 tion. For the axial-vector currents, we consider separately
413 the quark-flavor singlet and nonsinglet combinations (see
414 Eq. (48)) and work in the ’t Hooft-Veltman scheme with the
415 convention ϵ0123 ¼ þ1,

γ5 ¼ iγ0γ1γ2γ3 ¼ −
i
4!
ϵμνρσγμγνγργσ: ð17Þ

416 The renormalization constants ZðsingletÞ
A and ZðnonsingletÞ

A
417 include a finite correction in addition to the MS scheme
418 [39] (see Appendix A for details), which retains the one-
419 loop anomaly condition,

X

q

∂μA
μ
q ¼

X

q

2imqq̄γ5q −
g2nf
32π2

ϵμνρσGa
μνGa

ρσ; ð18Þ

420
421for the singlet combination, and imposes a vanishing
422anomalous dimension for the nonsinglet combination.
423Terms contributing to the one-loop matching and two-loop
424anomalous dimension have been retained in both

425ZðnonsingletÞ
A and ZðsingletÞ

A . Corrections through three-loop
426order are also available [39].
427For the tensor current, the renormalization constant
428includes the contribution Zm (given in Appendix A) from
429the quark mass appearing in the definition of Tq. Two-loop
430corrections to ZT are also available [40–42]. For the scalar
431operators, the all-orders expression for the coefficient of the
4321=ϵ term of Zð0Þ is specified in terms of coupling and mass
433renormalization functions,7

~β ¼ β=g; β ¼ dg
d log μ

; γm ¼
d logmq

d log μ
; ð19Þ

434which are given explicitly in Appendix A.
435For the pseudoscalar operators, we employ the γ5 scheme
436in Eq. (17) and have included the contribution Zm from the

437quark mass appearing in the definition of Oð0Þ
5q . The

438renormalization constant Zð0Þ
5 also includes an additional

439finite renormalization constant that ensures nonrenormal-
440ization of the pseudoscalar quark operators [39] (see
441Appendix A for details). Terms contributing to the one-
442loop matching and two-loop anomalous dimension have

443been retained in Zð0Þ
5 . For the C-even spin-2 operators,

444three-loop corrections to the renormalization constant are

TABLE II. The seven operator classes: vector ðVqÞ, axial-
vector ðAqÞ, tensor ðTqÞ, scalar ðOð0Þ

q ; Oð0Þ
g Þ, pseudoscalar

ðOð0Þ
5q ; O

ð0Þ
5g Þ, C-even spin-2 ðOð2Þ

q ; Oð2Þ
g Þ and C-odd spin-2

ðOð2Þ
5q Þ. Here A½μBν' ≡ ðAμBν − AνBμÞ=2 and AfμBνg ≡ ðAμBν þ

AνBμÞ=2 respectively denote antisymmetrization and symmetri-
zation, and the subscript q denotes an active quark flavor. The
antisymmetric tensor current Tq and the quark pseudoscalar

operator Oð0Þ
5q both include a conventional quark mass prefactor.

d QCD operator basis

3 Vμ
q ¼ q̄γμq

Aμ
q ¼ q̄γμγ5q

4 Tμν
q ¼ imqq̄σμνγ5q

Oð0Þ
q ¼ mqq̄q, O

ð0Þ
g ¼ GA

μνGAμν

Oð0Þ
5q ¼ mqq̄iγ5q, O

ð0Þ
5g ¼ ϵμνρσGA

μνGA
ρσ

Oð2Þμν
q ¼ 1

2 q̄ðγ
fμiDνg

− − gμν
4 iD−Þq,

Oð2Þμν
g ¼ −GAμλGAν

λ þ gμν
4 ðGA

αβÞ2

Oð2Þμν
5q ¼ 1

2 q̄γ
fμiDνg

− γ5q

TABLE III. Renormalization constants for each of the seven
operator classes arising in the low-energy effective theory for the
DM particle. Here nf is the number of active quark flavors and
β0 ¼ 11 − 2nf=3.

Operator Renormalization constant

Vq ZV ¼ 1

Aq ZðsingletÞ
A ¼ 1þ αs

4π
16
3 − ðαs4πÞ

2 1
ϵ ð

20
9 nf þ

88
3 Þ þOðα3sÞ,

ZðnonsingletÞ
A ¼ 1þ αs

4π
16
3 þ ðαs4πÞ

2 1
ϵ ð

16
9 nf −

88
3 Þ þOðα3sÞ

Tq ZT ¼ 1 − αs
4π

1
ϵ
16
3 þOðα2sÞ

Oð0Þ
q ; Oð0Þ

g Zð0Þ
qq ¼ 1, Zð0Þ

qg ¼ 0,

Zð0Þ
gq ¼ 2γm

ϵ , Z
ð0Þ
gg ¼ 1 − ~β

ϵ

Oð0Þ
5q ; O

ð0Þ
5g Zð0Þ

5;qq ¼ 1þ αs
4π

32
3 þOðα2sÞ, Z

ð0Þ
5;qg ¼ 0þOðα2sÞ,

Zð0Þ
5;gq ¼

αs
4π

1
ϵ 16þOðα2sÞ, Z

ð0Þ
5;gg ¼ 1þ αs

4π
1
ϵ β0 þOðα2sÞ

Oð2Þ
q ; Oð2Þ

g Zð2Þ
qq ¼ 1 − αs

4π
1
ϵ
32
9 þOðα2sÞ, Z

ð2Þ
qg ¼ αs

4π
1
ϵ
2
3 þOðα2sÞ,

Zð2Þ
gq ¼ αs

4π
1
ϵ
32
9 þOðα2sÞ, Z

ð2Þ
gg ¼ 1 − αs

4π
1
ϵ
2nf
3 þOðα2sÞ

Oð2Þ
5q Zð2Þ

5 ¼ 1 − αs
4π

1
ϵ
32
9 þOðα2sÞ

7A typo appears in the expression after Eq. (24) of [15], which
should read g−1β ¼ g−1dg=d log μ ≈ −β0αs=4π.
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fð0Þ5u;pð0Þ¼
Rudð

ffiffiffi
3

p
Fðp;8Þ
A ð0Þþ½1þ2Rsd&F

ðp;3Þ
A ð0ÞÞ

RsdþRudþRsdRud
þ ω;

fð0Þ5d;pð0Þ¼
ffiffiffi
3

p
Fðp;8Þ
A ð0ÞRud− ½Rudþ2Rsd&F

ðp;3Þ
A ð0Þ

RsdþRudþRsdRud
þ ω;

fð0Þ5s;pð0Þ¼
Rsdð−

ffiffiffi
3

p
½1þRud&F

ðp;8Þ
A ð0Þ− ½1−Rud&F

ðp;3Þ
A ð0ÞÞ

RsdþRudþRsdRud

þω; ð65Þ

845 where the quark mass ratios Rqq0 ¼ mq=mq0 are given in
846 (60) and ω is the scale-independent quantity,

ω ¼ κð0; μÞmdðμÞRsdRud

mNðRsd þ Rud þ RsdRudÞ
: ð66Þ

847 In the absence of better information on the quantity
848 κðq2; μÞ, we list numerical values for the quark form factors
849 in Table XI, setting κð0; μÞ ¼ 0, as motivated by large Nc
850 arguments [79]. This standard ansatz should be revisited if
851 observables are found to be sensitive to nonzero ω. The
852 matrix element for the pseudoscalar gluon operator may
853 then be obtained through Eq. (18),

fð0Þ5g;Nð0; μÞ ¼
16π
αsðμÞ

"
1

3

X

q

fð0Þ5q;Nð0Þ − Fðp;0Þ
A ð0; μÞ

#
: ð67Þ

854 As discussed below (49), the scale dependence from the

855 singlet axial-vector form factor Fðp;0Þ
A ð0; μÞ is weak. The

856 neutron form factors presented in Table XI were obtained

857using approximate isospin symmetry for the axial-vector
858currents, i.e., taking Fðn;3Þ

A ¼ −Fðp;3Þ
A in (65).

859F. C-even spin-2 matrix elements

860For C-even spin-2 operators, the forward matrix ele-
861ments are parametrized as

Ek

mN
hNðkÞjOð2Þμν

q ðμÞjNðkÞi≡ 1

mN

$
kμkν −

gμν

4
m2

N

%
fð2Þq;NðμÞ;

Ek

mN
hNðkÞjOð2Þμν

g ðμÞjNðkÞi≡ 1

mN

$
kμkν −

gμν

4
m2

N

%
fð2Þg;NðμÞ;

ð68Þ

862and are identified as moments of PDFs constrained in
863unpolarized deep inelastic scattering,

fð2Þq;pðμÞ ¼
Z

1

0
dx x½qðx; μÞ þ q̄ðx; μÞ&; ð69Þ

864where qðx; μÞ is the PDF evaluated at scale μ. Neglecting
865power corrections, the sum of spin-2 operators is
866identified as the traceless part of the QCD energy momen-
867tum tensor,

X

q¼u;d;s

fð2Þq;pðμÞ þ fð2Þg;pðμÞ ¼ 1: ð70Þ

868Table XII lists coefficient values for renormalization scales
869μ ¼ 1; 1.2; 1.4; 2; mW=

ffiffiffi
2

p
; 100; mt

ffiffiffi
2

p
GeV using the para-

870metrization and analysis of MSTW [80]. Following from
871(42), the neutron form factors are

fð2Þu;n ¼ fð2Þd;p; fð2Þd;n ¼ fð2Þu;p; fð2Þs;n ¼ fð2Þs;p: ð71Þ
872

873G. C-odd, spin-2 matrix elements

874For C-odd spin-2 operators, we parametrize the matrix
875elements as [81]

Ek

mN
hNðkÞjOð2Þμν

5q ðμÞjNðkÞi≡ sfμkνgfð2Þ5q;NðμÞ; ð72Þ

TABLE XI. Scale-invariant quark pseudoscalar form factors
evaluated at κð0; μÞ ¼ 0. We list numbers for the proton and
neutron obtained from (65) with inputs from (60) and (49), and
compare them to the values in Table II of Ref. [79]. The first,
second and third uncertainties are, respectively, from Rud, F

ðp;3Þ
A

and Fðp;8Þ
A ; negligible uncertainties are not shown.

q fð0Þ5q;p
Reference [79] fð0Þ5q;n

Reference [79]

u 0.42(8)(1) 0.43 −0.41ð8Þð1Þ −0.42
d −0.84ð8Þð3Þ −0.84 0.85(8)(3) 0.85
s −0.48ð8Þð1Þð3Þ −0.50 −0.06ð8Þð1Þð3Þ −0.08

TABLE XII. Form factors for C-even spin-2 operators derived from MSTW analysis [80] at different values of μ.
The neutron form factors follow from the approximate isospin symmetry expressed in (42).

μ (GeV) fð2Þu;pðμÞ fð2Þd;pðμÞ fð2Þs;pðμÞ fð2Þc;pðμÞ fð2Þb;pðμÞ fð2Þg;pðμÞ

1 0.404(9) 0.217(8) 0.024(4) … … 0.356(29)
1.2 0.383(8) 0.208(8) 0.027(4) … … 0.381(25)
1.4 0.370(8) 0.202(7) 0.030(4) … … 0.398(23)
2 0.346(7) 0.192(6) 0.034(3) … … 0.419(19)
80.4=

ffiffiffi
2

p
0.260(4) 0.158(4) 0.053(2) 0.036(1) 0.0219(4) 0.470(8)

100 0.253(4) 0.156(4) 0.055(2) 0.038(1) 0.0246(5) 0.472(8)
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Hadronic matrix elements: CP-even and CP-odd tensors
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RsdþRudþRsdRud
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fð0Þ5d;pð0Þ¼
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A ð0ÞRud− ½Rudþ2Rsd&F
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RsdþRudþRsdRud
þ ω;
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A ð0Þ− ½1−Rud&F

ðp;3Þ
A ð0ÞÞ
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þω; ð65Þ

845 where the quark mass ratios Rqq0 ¼ mq=mq0 are given in
846 (60) and ω is the scale-independent quantity,

ω ¼ κð0; μÞmdðμÞRsdRud

mNðRsd þ Rud þ RsdRudÞ
: ð66Þ

847 In the absence of better information on the quantity
848 κðq2; μÞ, we list numerical values for the quark form factors
849 in Table XI, setting κð0; μÞ ¼ 0, as motivated by large Nc
850 arguments [79]. This standard ansatz should be revisited if
851 observables are found to be sensitive to nonzero ω. The
852 matrix element for the pseudoscalar gluon operator may
853 then be obtained through Eq. (18),

fð0Þ5g;Nð0; μÞ ¼
16π
αsðμÞ

"
1

3

X

q

fð0Þ5q;Nð0Þ − Fðp;0Þ
A ð0; μÞ

#
: ð67Þ

854 As discussed below (49), the scale dependence from the

855 singlet axial-vector form factor Fðp;0Þ
A ð0; μÞ is weak. The

856 neutron form factors presented in Table XI were obtained

857using approximate isospin symmetry for the axial-vector
858currents, i.e., taking Fðn;3Þ

A ¼ −Fðp;3Þ
A in (65).

859F. C-even spin-2 matrix elements

860For C-even spin-2 operators, the forward matrix ele-
861ments are parametrized as
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862and are identified as moments of PDFs constrained in
863unpolarized deep inelastic scattering,

fð2Þq;pðμÞ ¼
Z

1

0
dx x½qðx; μÞ þ q̄ðx; μÞ&; ð69Þ

864where qðx; μÞ is the PDF evaluated at scale μ. Neglecting
865power corrections, the sum of spin-2 operators is
866identified as the traceless part of the QCD energy momen-
867tum tensor,

X

q¼u;d;s

fð2Þq;pðμÞ þ fð2Þg;pðμÞ ¼ 1: ð70Þ

868Table XII lists coefficient values for renormalization scales
869μ ¼ 1; 1.2; 1.4; 2; mW=

ffiffiffi
2

p
; 100; mt

ffiffiffi
2

p
GeV using the para-

870metrization and analysis of MSTW [80]. Following from
871(42), the neutron form factors are

fð2Þu;n ¼ fð2Þd;p; fð2Þd;n ¼ fð2Þu;p; fð2Þs;n ¼ fð2Þs;p: ð71Þ
872

873G. C-odd, spin-2 matrix elements

874For C-odd spin-2 operators, we parametrize the matrix
875elements as [81]

Ek

mN
hNðkÞjOð2Þμν

5q ðμÞjNðkÞi≡ sfμkνgfð2Þ5q;NðμÞ; ð72Þ

TABLE XI. Scale-invariant quark pseudoscalar form factors
evaluated at κð0; μÞ ¼ 0. We list numbers for the proton and
neutron obtained from (65) with inputs from (60) and (49), and
compare them to the values in Table II of Ref. [79]. The first,
second and third uncertainties are, respectively, from Rud, F

ðp;3Þ
A

and Fðp;8Þ
A ; negligible uncertainties are not shown.

q fð0Þ5q;p
Reference [79] fð0Þ5q;n

Reference [79]

u 0.42(8)(1) 0.43 −0.41ð8Þð1Þ −0.42
d −0.84ð8Þð3Þ −0.84 0.85(8)(3) 0.85
s −0.48ð8Þð1Þð3Þ −0.50 −0.06ð8Þð1Þð3Þ −0.08

TABLE XII. Form factors for C-even spin-2 operators derived from MSTW analysis [80] at different values of μ.
The neutron form factors follow from the approximate isospin symmetry expressed in (42).

μ (GeV) fð2Þu;pðμÞ fð2Þd;pðμÞ fð2Þs;pðμÞ fð2Þc;pðμÞ fð2Þb;pðμÞ fð2Þg;pðμÞ

1 0.404(9) 0.217(8) 0.024(4) … … 0.356(29)
1.2 0.383(8) 0.208(8) 0.027(4) … … 0.381(25)
1.4 0.370(8) 0.202(7) 0.030(4) … … 0.398(23)
2 0.346(7) 0.192(6) 0.034(3) … … 0.419(19)
80.4=
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845 where the quark mass ratios Rqq0 ¼ mq=mq0 are given in
846 (60) and ω is the scale-independent quantity,

ω ¼ κð0; μÞmdðμÞRsdRud

mNðRsd þ Rud þ RsdRudÞ
: ð66Þ

847 In the absence of better information on the quantity
848 κðq2; μÞ, we list numerical values for the quark form factors
849 in Table XI, setting κð0; μÞ ¼ 0, as motivated by large Nc
850 arguments [79]. This standard ansatz should be revisited if
851 observables are found to be sensitive to nonzero ω. The
852 matrix element for the pseudoscalar gluon operator may
853 then be obtained through Eq. (18),

fð0Þ5g;Nð0; μÞ ¼
16π
αsðμÞ

"
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3

X

q

fð0Þ5q;Nð0Þ − Fðp;0Þ
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#
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854 As discussed below (49), the scale dependence from the

855 singlet axial-vector form factor Fðp;0Þ
A ð0; μÞ is weak. The

856 neutron form factors presented in Table XI were obtained

857using approximate isospin symmetry for the axial-vector
858currents, i.e., taking Fðn;3Þ

A ¼ −Fðp;3Þ
A in (65).

859F. C-even spin-2 matrix elements

860For C-even spin-2 operators, the forward matrix ele-
861ments are parametrized as

Ek
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hNðkÞjOð2Þμν
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862and are identified as moments of PDFs constrained in
863unpolarized deep inelastic scattering,

fð2Þq;pðμÞ ¼
Z

1

0
dx x½qðx; μÞ þ q̄ðx; μÞ&; ð69Þ

864where qðx; μÞ is the PDF evaluated at scale μ. Neglecting
865power corrections, the sum of spin-2 operators is
866identified as the traceless part of the QCD energy momen-
867tum tensor,

X

q¼u;d;s

fð2Þq;pðμÞ þ fð2Þg;pðμÞ ¼ 1: ð70Þ

868Table XII lists coefficient values for renormalization scales
869μ ¼ 1; 1.2; 1.4; 2; mW=

ffiffiffi
2

p
; 100; mt

ffiffiffi
2

p
GeV using the para-

870metrization and analysis of MSTW [80]. Following from
871(42), the neutron form factors are

fð2Þu;n ¼ fð2Þd;p; fð2Þd;n ¼ fð2Þu;p; fð2Þs;n ¼ fð2Þs;p: ð71Þ
872

873G. C-odd, spin-2 matrix elements

874For C-odd spin-2 operators, we parametrize the matrix
875elements as [81]

Ek

mN
hNðkÞjOð2Þμν

5q ðμÞjNðkÞi≡ sfμkνgfð2Þ5q;NðμÞ; ð72Þ

TABLE XI. Scale-invariant quark pseudoscalar form factors
evaluated at κð0; μÞ ¼ 0. We list numbers for the proton and
neutron obtained from (65) with inputs from (60) and (49), and
compare them to the values in Table II of Ref. [79]. The first,
second and third uncertainties are, respectively, from Rud, F

ðp;3Þ
A

and Fðp;8Þ
A ; negligible uncertainties are not shown.

q fð0Þ5q;p
Reference [79] fð0Þ5q;n

Reference [79]

u 0.42(8)(1) 0.43 −0.41ð8Þð1Þ −0.42
d −0.84ð8Þð3Þ −0.84 0.85(8)(3) 0.85
s −0.48ð8Þð1Þð3Þ −0.50 −0.06ð8Þð1Þð3Þ −0.08

TABLE XII. Form factors for C-even spin-2 operators derived from MSTW analysis [80] at different values of μ.
The neutron form factors follow from the approximate isospin symmetry expressed in (42).

μ (GeV) fð2Þu;pðμÞ fð2Þd;pðμÞ fð2Þs;pðμÞ fð2Þc;pðμÞ fð2Þb;pðμÞ fð2Þg;pðμÞ

1 0.404(9) 0.217(8) 0.024(4) … … 0.356(29)
1.2 0.383(8) 0.208(8) 0.027(4) … … 0.381(25)
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80.4=

ffiffiffi
2

p
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845 where the quark mass ratios Rqq0 ¼ mq=mq0 are given in
846 (60) and ω is the scale-independent quantity,

ω ¼ κð0; μÞmdðμÞRsdRud

mNðRsd þ Rud þ RsdRudÞ
: ð66Þ

847 In the absence of better information on the quantity
848 κðq2; μÞ, we list numerical values for the quark form factors
849 in Table XI, setting κð0; μÞ ¼ 0, as motivated by large Nc
850 arguments [79]. This standard ansatz should be revisited if
851 observables are found to be sensitive to nonzero ω. The
852 matrix element for the pseudoscalar gluon operator may
853 then be obtained through Eq. (18),
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854 As discussed below (49), the scale dependence from the

855 singlet axial-vector form factor Fðp;0Þ
A ð0; μÞ is weak. The

856 neutron form factors presented in Table XI were obtained

857using approximate isospin symmetry for the axial-vector
858currents, i.e., taking Fðn;3Þ

A ¼ −Fðp;3Þ
A in (65).

859F. C-even spin-2 matrix elements

860For C-even spin-2 operators, the forward matrix ele-
861ments are parametrized as

Ek

mN
hNðkÞjOð2Þμν

q ðμÞjNðkÞi≡ 1

mN

$
kμkν −

gμν

4
m2

N

%
fð2Þq;NðμÞ;

Ek

mN
hNðkÞjOð2Þμν

g ðμÞjNðkÞi≡ 1

mN

$
kμkν −

gμν

4
m2

N

%
fð2Þg;NðμÞ;

ð68Þ

862and are identified as moments of PDFs constrained in
863unpolarized deep inelastic scattering,

fð2Þq;pðμÞ ¼
Z

1

0
dx x½qðx; μÞ þ q̄ðx; μÞ&; ð69Þ

864where qðx; μÞ is the PDF evaluated at scale μ. Neglecting
865power corrections, the sum of spin-2 operators is
866identified as the traceless part of the QCD energy momen-
867tum tensor,

X

q¼u;d;s

fð2Þq;pðμÞ þ fð2Þg;pðμÞ ¼ 1: ð70Þ

868Table XII lists coefficient values for renormalization scales
869μ ¼ 1; 1.2; 1.4; 2; mW=

ffiffiffi
2

p
; 100; mt

ffiffiffi
2

p
GeV using the para-

870metrization and analysis of MSTW [80]. Following from
871(42), the neutron form factors are

fð2Þu;n ¼ fð2Þd;p; fð2Þd;n ¼ fð2Þu;p; fð2Þs;n ¼ fð2Þs;p: ð71Þ
872

873G. C-odd, spin-2 matrix elements

874For C-odd spin-2 operators, we parametrize the matrix
875elements as [81]

Ek

mN
hNðkÞjOð2Þμν

5q ðμÞjNðkÞi≡ sfμkνgfð2Þ5q;NðμÞ; ð72Þ

TABLE XI. Scale-invariant quark pseudoscalar form factors
evaluated at κð0; μÞ ¼ 0. We list numbers for the proton and
neutron obtained from (65) with inputs from (60) and (49), and
compare them to the values in Table II of Ref. [79]. The first,
second and third uncertainties are, respectively, from Rud, F

ðp;3Þ
A

and Fðp;8Þ
A ; negligible uncertainties are not shown.

q fð0Þ5q;p
Reference [79] fð0Þ5q;n

Reference [79]

u 0.42(8)(1) 0.43 −0.41ð8Þð1Þ −0.42
d −0.84ð8Þð3Þ −0.84 0.85(8)(3) 0.85
s −0.48ð8Þð1Þð3Þ −0.50 −0.06ð8Þð1Þð3Þ −0.08

TABLE XII. Form factors for C-even spin-2 operators derived from MSTW analysis [80] at different values of μ.
The neutron form factors follow from the approximate isospin symmetry expressed in (42).

μ (GeV) fð2Þu;pðμÞ fð2Þd;pðμÞ fð2Þs;pðμÞ fð2Þc;pðμÞ fð2Þb;pðμÞ fð2Þg;pðμÞ

1 0.404(9) 0.217(8) 0.024(4) … … 0.356(29)
1.2 0.383(8) 0.208(8) 0.027(4) … … 0.381(25)
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876 where sμ is the nucleon spin defined below (52). The
877 coefficients are moments of polarized structure functions

fð2Þ5q;NðμÞ ¼
Z

1

0
dx x½Δqðx; μÞ þ Δq̄ðx; μÞ&: ð73Þ

878 Table XIII lists coefficient values for the proton, at
879 renormalization scales μ ¼ 1; 1.2; 1.4; 2 GeV using the
880 parametrization and analysis of NNPDF [60]. Following
881 from (42), the neutron form factors are

fð2Þ5u;n ¼ fð2Þ5d;p; fð2Þ5d;n ¼ fð2Þ5u;p; fð2Þ5s;n ¼ fð2Þ5s;p:

ð74Þ

882

883V. NUCLEON LEVEL EFFECTIVE THEORY

884At energy scales much lower than ΛQCD; mπ , it is useful
885to employ an effective description in terms of nucleon
886degrees of freedom. We consider WIMP-hadron inter-
887actions given either through electromagnetic couplings
888or by contact operators with contractions of Lorentz vector
889indices (perhaps including heavy-particle reference vectors
890vμ) and the QCD operators of the previous section. The
891heavy nucleon Lagrangian is given by

LN ¼ N̄u

!
iu ·D −

D2
⊥

2mN
þ…

"
Nu; ð75Þ

892where Dμ ¼ ∂μ − ieQAμ is the electromagnetic gauge
893covariant derivative, and we have introduced the time-
894like-invariant vector uμ for the nucleonNu, in addition to vμ

895for the WIMP.

896A. Matching conditions in single nucleon sector

897We begin by constructing the heavy particle representa-
898tion of the nucleon. For the SM current, at d ¼ 2we require
899the representation for the photon Fμν, which is trivial. At
900d ¼ 3 we have the vector and axial-vector currents which
901match to

902903
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1

8
FðqÞ
P0 ð0Þ

$
ϵαβγδuγN̄uð∂μ

⊥∂α
⊥ þ ∂⃖μ

⊥∂⃖α
⊥Þσ

βδ
⊥Nu

þ
#
−
1

8
FðqÞ
A ð0Þ − 1

8
FðqÞ
P0 ð0Þ

$
ϵαβγδuγN̄uð∂μ

⊥∂⃖α
⊥ þ ∂⃖μ

⊥∂α
⊥Þσ

βδ
⊥Nu

þ
#
−
1

4
FðqÞ
A ð0Þ

$
iϵμναβuνN̄u∂⊥α∂⃖⊥βNu

"
þOð1=m4

NÞ; ð76Þ

TABLE XIII. Form factors for C-odd spin-2 operators derived
from NNPDF analysis [60] at different values of μ. The neutron
form factors follow from approximate isospin symmetry ex-
pressed in (42).

μ (GeV) fð2Þ5u;pðμÞ fð2Þ5d;pðμÞ fð2Þ5s;pðμÞ

1 0.186(7) −0.069ð8Þ −0.007ð6Þ
1.2 0.175(6) −0.065ð7Þ −0.006ð6Þ
1.4 0.167(6) −0.062ð7Þ −0.006ð5Þ
2 0.154(5) −0.056ð6Þ −0.005ð5Þ
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904 where we have expressed the matching coefficients (the
905 quantities in square brackets) in terms of the form factors of
906 the previous section and decomposed the currents into
907 components along and perpendicular to uμ. At d ¼ 4, we
908 work through Oð1=mNÞ, i.e., first derivative order, and
909 have the antisymmetric tensor currents, the scalar and
910 pseudoscalar operators, and the C-even and C-odd spin-
911 2 operators. Employing the notation in Table II and
912 expressing results in terms of matrix elements of the
913 previous section, the matching conditions are

Tμν
q ¼ mN

!"
mqtq
mN

#
ϵαβγ½μuν%uαN̄σ⊥βγN þOð1=m2

NÞ
$
;

Oð0Þ
q ¼ mN ½f

ð0Þ
q N̄uNu þOð1=m2

NÞ%;

Oð0Þ
g ¼ mN

!"
−8π
9αs

#
fð0Þg N̄uNu þOð1=m2

NÞ
$
;

Oð0Þ
5q;5g ¼

1

4
fð0Þ5q;5gϵ

μνρσuμ∂⊥νðN̄σ⊥ρσNÞ þOð1=m2
NÞ;

uμuνO
ð2Þμν
q;g ¼ mN

!
3

4
fð2Þq;gN̄uNu þOð1=m2

NÞ
$
;

Oð2Þμν
5q ¼ mN

!
1

2
fð2Þ5q ϵ

αβγfμuνguαN̄σ⊥βγN þOð1=m2
NÞ
$
;

ð77Þ

914 where the subscript label N on form factors has been
915 suppressed.

916B. Nucleon effective theory for light mediators

917The forgoing analysis, with additional matching onto
918multinucleon operators, provides a general framework for
919WIMP-nucleus scattering in the case where all new states in
920the dark sector have mass ≫ ΛQCD, such that below this
921scale, a complete description is possible in terms of a
922systematic expansion of operators in nf ¼ 3-flavor QCD.
923Subsequent matching onto nucleon operators is given
924simply by evaluating the necessary form factors, whose
925low-q2 behavior may be determined by lattice QCD, chiral
926perturbation theory or other nonperturbative methods.
927For completeness let us consider a more general situation
928allowing for light degrees of freedom, with mass only
929assumed large compared to a typical WIMP-nucleon
930momentum transfer.16 We assume that all new states of
931the dark sector are integrated out, and we consider the
932resulting basis of operators in the one-nucleon sector.
933Specializing to the choice vμ ¼ uμ ¼ ð1; 0; 0; 0Þ, and
934neglecting electromagnetic interactions, the kinetic terms
935may be written

LN ¼ N†
%
i∂t þ

∂2

2mN
þ…

&
N;

Lχ ¼ χ†
%
i∂t þ

∂2

2mχ
þ…

&
χ; ð78Þ

936where N and χ denote the nonrelativistic nucleon and
937WIMP fields, respectively. For interactions even under P
938and T, we find through dimension eight the opera-
939tors [36,82]

940941

LNχ;PT ¼ 1

m2
N
fd1N†σiNχ†σiχ þ d2N†Nχ†χgþ 1

m4
N
fd3N†∂i

þNχ†∂i
þχ þ d4N†∂i

−Nχ†∂i
−χ

þ d5N†ð∂2 þ ∂⃖2ÞNχ†χ þ d6N†Nχ†ð∂2 þ ∂⃖2Þχ þ id8ϵijkN†σi∂j
−Nχ†∂k

þχ

þ id9ϵijkN†σi∂j
þNχ†∂k

−χ þ id11ϵijkN†∂k
þNχ†σi∂j

−χ þ id12ϵijkN†∂k
−Nχ†σi∂j

þχ

þ d13N†σi∂j
þNχ†σi∂j

þχ þ d14N†σi∂j
−Nχ†σi∂j

−χ þ d15N†σ · ∂þNχ†σ · ∂þχ

þ d16N†σ · ∂−Nχ†σ · ∂−χ þ d17N†σi∂j
−Nχ†σj∂i

−χ

þ d18N†σið∂2 þ ∂⃖2ÞNχ†σiχ þ d19N†σið∂i∂j þ ∂⃖j∂⃖iÞNχ†σjχ

þ d20N†σiNχ†σið∂2 þ ∂⃖2Þχ þ d21N†σiNχ†σjð∂i∂j þ ∂⃖j∂⃖iÞχgþOð1=m6
NÞ; ð79Þ

942 where the naming scheme for Wilson coefficients is from Ref. [36]. (Note, in particular, that di for i ¼ 7; 10 are absent in
943 (79), since these operators are proportional to electromagnetic field strength.) Lorentz symmetry is imposed by enforcing
944 invariance under the infinitesimal boost η [33,36],

N → eimNη·x

!
1 −

iη · ∂
2mN

þ σ × η · ∂
4mN

þ…
$
N; χ → eimχη·x

!
1 −

iη · ∂
2mχ

þ σ × η · ∂
4mχ

þ…
$
χ;

∂t → ∂t − η · ∂; ∂ → ∂ − η∂t: ð80Þ

16Here, we are also assuming that the considered momentum transfers are small enough that pions may be integrated out.
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876 where sμ is the nucleon spin defined below (52). The
877 coefficients are moments of polarized structure functions

fð2Þ5q;NðμÞ ¼
Z

1

0
dx x½Δqðx; μÞ þ Δq̄ðx; μÞ&: ð73Þ

878 Table XIII lists coefficient values for the proton, at
879 renormalization scales μ ¼ 1; 1.2; 1.4; 2 GeV using the
880 parametrization and analysis of NNPDF [60]. Following
881 from (42), the neutron form factors are

fð2Þ5u;n ¼ fð2Þ5d;p; fð2Þ5d;n ¼ fð2Þ5u;p; fð2Þ5s;n ¼ fð2Þ5s;p:

ð74Þ

882

883V. NUCLEON LEVEL EFFECTIVE THEORY

884At energy scales much lower than ΛQCD; mπ , it is useful
885to employ an effective description in terms of nucleon
886degrees of freedom. We consider WIMP-hadron inter-
887actions given either through electromagnetic couplings
888or by contact operators with contractions of Lorentz vector
889indices (perhaps including heavy-particle reference vectors
890vμ) and the QCD operators of the previous section. The
891heavy nucleon Lagrangian is given by

LN ¼ N̄u

!
iu ·D −

D2
⊥

2mN
þ…

"
Nu; ð75Þ

892where Dμ ¼ ∂μ − ieQAμ is the electromagnetic gauge
893covariant derivative, and we have introduced the time-
894like-invariant vector uμ for the nucleonNu, in addition to vμ

895for the WIMP.

896A. Matching conditions in single nucleon sector

897We begin by constructing the heavy particle representa-
898tion of the nucleon. For the SM current, at d ¼ 2we require
899the representation for the photon Fμν, which is trivial. At
900d ¼ 3 we have the vector and axial-vector currents which
901match to

902903

uμV
μ
q ¼ ½FðqÞ

1 ð0Þ&N̄uNu þ
1

m2
N

!#
− 1

8
FðqÞ
1 ð0Þ −m2

NF
ðqÞ0
1 ð0Þ − 1

4
FðqÞ
2 ð0Þ

$
∂2
⊥ðN̄uNuÞ

þ
#
−
1

4
FðqÞ
1 ð0Þ − 1

2
FðqÞ
2 ð0Þ

$
iN̄u∂μ

⊥∂⃖ν
⊥σ⊥μνNu

"
þOð1=m4

NÞ;

Vμ
q⊥ ¼ 1

mN

!#
1

2
FðqÞ
1 ð0Þ

$
iN̄u ∂

↔
μ
⊥Nu þ

#
1

2
FðqÞ
1 ð0Þ þ 1

2
FðqÞ
2 ð0Þ

$
∂⊥νðN̄uσ

μν
⊥NuÞ

"
þOð1=m3

NÞ;

uμA
μ
q ¼

1

mN

!#
−
1

4
FðqÞ
A ð0Þ

$
iϵμνρσuμN̄u∂

↔

⊥νσ⊥ρσNu

"
þOð1=m3

NÞ;

Aμ
q⊥ ¼

#
−
1

2
FðqÞ
A ð0Þ

$
ϵμνρσuνN̄uσ⊥ρσNu

þ 1

m2
N

!#
1

8
FðqÞ
A ð0Þ þm2

NF
ðqÞ0
A ð0Þ

$
ϵμνρσuνN̄u∂⃖α

⊥∂⊥ασ⊥ρσNu

þ
#
−

1

16
FðqÞ
A ð0Þ þ 1

2
m2

NF
ðqÞ0
A ð0Þ

$
ϵμνρσuνN̄uð∂⃖2 þ ∂2

⊥Þσ⊥ρσNu

þ
#
−
1

8
FðqÞ
P0 ð0Þ

$
ϵαβγδuγN̄uð∂μ

⊥∂α
⊥ þ ∂⃖μ

⊥∂⃖α
⊥Þσ

βδ
⊥Nu

þ
#
−
1

8
FðqÞ
A ð0Þ − 1

8
FðqÞ
P0 ð0Þ

$
ϵαβγδuγN̄uð∂μ

⊥∂⃖α
⊥ þ ∂⃖μ

⊥∂α
⊥Þσ

βδ
⊥Nu

þ
#
−
1

4
FðqÞ
A ð0Þ

$
iϵμναβuνN̄u∂⊥α∂⃖⊥βNu

"
þOð1=m4

NÞ; ð76Þ

TABLE XIII. Form factors for C-odd spin-2 operators derived
from NNPDF analysis [60] at different values of μ. The neutron
form factors follow from approximate isospin symmetry ex-
pressed in (42).

μ (GeV) fð2Þ5u;pðμÞ fð2Þ5d;pðμÞ fð2Þ5s;pðμÞ

1 0.186(7) −0.069ð8Þ −0.007ð6Þ
1.2 0.175(6) −0.065ð7Þ −0.006ð6Þ
1.4 0.167(6) −0.062ð7Þ −0.006ð5Þ
2 0.154(5) −0.056ð6Þ −0.005ð5Þ
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904 where we have expressed the matching coefficients (the
905 quantities in square brackets) in terms of the form factors of
906 the previous section and decomposed the currents into
907 components along and perpendicular to uμ. At d ¼ 4, we
908 work through Oð1=mNÞ, i.e., first derivative order, and
909 have the antisymmetric tensor currents, the scalar and
910 pseudoscalar operators, and the C-even and C-odd spin-
911 2 operators. Employing the notation in Table II and
912 expressing results in terms of matrix elements of the
913 previous section, the matching conditions are

Tμν
q ¼ mN

!"
mqtq
mN

#
ϵαβγ½μuν%uαN̄σ⊥βγN þOð1=m2

NÞ
$
;

Oð0Þ
q ¼ mN ½f

ð0Þ
q N̄uNu þOð1=m2

NÞ%;

Oð0Þ
g ¼ mN

!"
−8π
9αs

#
fð0Þg N̄uNu þOð1=m2

NÞ
$
;

Oð0Þ
5q;5g ¼

1

4
fð0Þ5q;5gϵ

μνρσuμ∂⊥νðN̄σ⊥ρσNÞ þOð1=m2
NÞ;

uμuνO
ð2Þμν
q;g ¼ mN

!
3

4
fð2Þq;gN̄uNu þOð1=m2

NÞ
$
;

Oð2Þμν
5q ¼ mN

!
1

2
fð2Þ5q ϵ

αβγfμuνguαN̄σ⊥βγN þOð1=m2
NÞ
$
;

ð77Þ

914 where the subscript label N on form factors has been
915 suppressed.

916B. Nucleon effective theory for light mediators

917The forgoing analysis, with additional matching onto
918multinucleon operators, provides a general framework for
919WIMP-nucleus scattering in the case where all new states in
920the dark sector have mass ≫ ΛQCD, such that below this
921scale, a complete description is possible in terms of a
922systematic expansion of operators in nf ¼ 3-flavor QCD.
923Subsequent matching onto nucleon operators is given
924simply by evaluating the necessary form factors, whose
925low-q2 behavior may be determined by lattice QCD, chiral
926perturbation theory or other nonperturbative methods.
927For completeness let us consider a more general situation
928allowing for light degrees of freedom, with mass only
929assumed large compared to a typical WIMP-nucleon
930momentum transfer.16 We assume that all new states of
931the dark sector are integrated out, and we consider the
932resulting basis of operators in the one-nucleon sector.
933Specializing to the choice vμ ¼ uμ ¼ ð1; 0; 0; 0Þ, and
934neglecting electromagnetic interactions, the kinetic terms
935may be written

LN ¼ N†
%
i∂t þ

∂2

2mN
þ…

&
N;

Lχ ¼ χ†
%
i∂t þ

∂2

2mχ
þ…

&
χ; ð78Þ

936where N and χ denote the nonrelativistic nucleon and
937WIMP fields, respectively. For interactions even under P
938and T, we find through dimension eight the opera-
939tors [36,82]

940941

LNχ;PT ¼ 1

m2
N
fd1N†σiNχ†σiχ þ d2N†Nχ†χgþ 1

m4
N
fd3N†∂i

þNχ†∂i
þχ þ d4N†∂i

−Nχ†∂i
−χ

þ d5N†ð∂2 þ ∂⃖2ÞNχ†χ þ d6N†Nχ†ð∂2 þ ∂⃖2Þχ þ id8ϵijkN†σi∂j
−Nχ†∂k

þχ

þ id9ϵijkN†σi∂j
þNχ†∂k

−χ þ id11ϵijkN†∂k
þNχ†σi∂j

−χ þ id12ϵijkN†∂k
−Nχ†σi∂j

þχ

þ d13N†σi∂j
þNχ†σi∂j

þχ þ d14N†σi∂j
−Nχ†σi∂j

−χ þ d15N†σ · ∂þNχ†σ · ∂þχ

þ d16N†σ · ∂−Nχ†σ · ∂−χ þ d17N†σi∂j
−Nχ†σj∂i

−χ

þ d18N†σið∂2 þ ∂⃖2ÞNχ†σiχ þ d19N†σið∂i∂j þ ∂⃖j∂⃖iÞNχ†σjχ

þ d20N†σiNχ†σið∂2 þ ∂⃖2Þχ þ d21N†σiNχ†σjð∂i∂j þ ∂⃖j∂⃖iÞχgþOð1=m6
NÞ; ð79Þ

942 where the naming scheme for Wilson coefficients is from Ref. [36]. (Note, in particular, that di for i ¼ 7; 10 are absent in
943 (79), since these operators are proportional to electromagnetic field strength.) Lorentz symmetry is imposed by enforcing
944 invariance under the infinitesimal boost η [33,36],

N → eimNη·x

!
1 −

iη · ∂
2mN

þ σ × η · ∂
4mN

þ…
$
N; χ → eimχη·x

!
1 −

iη · ∂
2mχ

þ σ × η · ∂
4mχ

þ…
$
χ;

∂t → ∂t − η · ∂; ∂ → ∂ − η∂t: ð80Þ

16Here, we are also assuming that the considered momentum transfers are small enough that pions may be integrated out.
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904 where we have expressed the matching coefficients (the
905 quantities in square brackets) in terms of the form factors of
906 the previous section and decomposed the currents into
907 components along and perpendicular to uμ. At d ¼ 4, we
908 work through Oð1=mNÞ, i.e., first derivative order, and
909 have the antisymmetric tensor currents, the scalar and
910 pseudoscalar operators, and the C-even and C-odd spin-
911 2 operators. Employing the notation in Table II and
912 expressing results in terms of matrix elements of the
913 previous section, the matching conditions are

Tμν
q ¼ mN

!"
mqtq
mN

#
ϵαβγ½μuν%uαN̄σ⊥βγN þOð1=m2

NÞ
$
;

Oð0Þ
q ¼ mN ½f

ð0Þ
q N̄uNu þOð1=m2

NÞ%;

Oð0Þ
g ¼ mN

!"
−8π
9αs

#
fð0Þg N̄uNu þOð1=m2

NÞ
$
;

Oð0Þ
5q;5g ¼

1

4
fð0Þ5q;5gϵ

μνρσuμ∂⊥νðN̄σ⊥ρσNÞ þOð1=m2
NÞ;

uμuνO
ð2Þμν
q;g ¼ mN

!
3

4
fð2Þq;gN̄uNu þOð1=m2

NÞ
$
;

Oð2Þμν
5q ¼ mN

!
1

2
fð2Þ5q ϵ

αβγfμuνguαN̄σ⊥βγN þOð1=m2
NÞ
$
;

ð77Þ

914 where the subscript label N on form factors has been
915 suppressed.

916B. Nucleon effective theory for light mediators

917The forgoing analysis, with additional matching onto
918multinucleon operators, provides a general framework for
919WIMP-nucleus scattering in the case where all new states in
920the dark sector have mass ≫ ΛQCD, such that below this
921scale, a complete description is possible in terms of a
922systematic expansion of operators in nf ¼ 3-flavor QCD.
923Subsequent matching onto nucleon operators is given
924simply by evaluating the necessary form factors, whose
925low-q2 behavior may be determined by lattice QCD, chiral
926perturbation theory or other nonperturbative methods.
927For completeness let us consider a more general situation
928allowing for light degrees of freedom, with mass only
929assumed large compared to a typical WIMP-nucleon
930momentum transfer.16 We assume that all new states of
931the dark sector are integrated out, and we consider the
932resulting basis of operators in the one-nucleon sector.
933Specializing to the choice vμ ¼ uμ ¼ ð1; 0; 0; 0Þ, and
934neglecting electromagnetic interactions, the kinetic terms
935may be written

LN ¼ N†
%
i∂t þ

∂2

2mN
þ…

&
N;

Lχ ¼ χ†
%
i∂t þ

∂2

2mχ
þ…

&
χ; ð78Þ

936where N and χ denote the nonrelativistic nucleon and
937WIMP fields, respectively. For interactions even under P
938and T, we find through dimension eight the opera-
939tors [36,82]

940941

LNχ;PT ¼ 1

m2
N
fd1N†σiNχ†σiχ þ d2N†Nχ†χgþ 1

m4
N
fd3N†∂i

þNχ†∂i
þχ þ d4N†∂i

−Nχ†∂i
−χ

þ d5N†ð∂2 þ ∂⃖2ÞNχ†χ þ d6N†Nχ†ð∂2 þ ∂⃖2Þχ þ id8ϵijkN†σi∂j
−Nχ†∂k

þχ

þ id9ϵijkN†σi∂j
þNχ†∂k

−χ þ id11ϵijkN†∂k
þNχ†σi∂j

−χ þ id12ϵijkN†∂k
−Nχ†σi∂j

þχ

þ d13N†σi∂j
þNχ†σi∂j

þχ þ d14N†σi∂j
−Nχ†σi∂j

−χ þ d15N†σ · ∂þNχ†σ · ∂þχ

þ d16N†σ · ∂−Nχ†σ · ∂−χ þ d17N†σi∂j
−Nχ†σj∂i

−χ

þ d18N†σið∂2 þ ∂⃖2ÞNχ†σiχ þ d19N†σið∂i∂j þ ∂⃖j∂⃖iÞNχ†σjχ

þ d20N†σiNχ†σið∂2 þ ∂⃖2Þχ þ d21N†σiNχ†σjð∂i∂j þ ∂⃖j∂⃖iÞχgþOð1=m6
NÞ; ð79Þ

942 where the naming scheme for Wilson coefficients is from Ref. [36]. (Note, in particular, that di for i ¼ 7; 10 are absent in
943 (79), since these operators are proportional to electromagnetic field strength.) Lorentz symmetry is imposed by enforcing
944 invariance under the infinitesimal boost η [33,36],

N → eimNη·x

!
1 −

iη · ∂
2mN

þ σ × η · ∂
4mN

þ…
$
N; χ → eimχη·x

!
1 −

iη · ∂
2mχ

þ σ × η · ∂
4mχ

þ…
$
χ;

∂t → ∂t − η · ∂; ∂ → ∂ − η∂t: ð80Þ

16Here, we are also assuming that the considered momentum transfers are small enough that pions may be integrated out.
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945 This implies the constraints

rd4 þ d5 ¼
d2
4
; d5 ¼ r2d6; 8rðd8 þ rd9Þ ¼ −rd2 þ d1; 8rðrd11 þ d12Þ ¼ −d2 þ rd1;

rd14 þ d18 ¼
d1
4
; d18 ¼ r2d20; 2rd16 þ d19 ¼

d1
4
; rðd16 þ d17Þ þ d19 ¼ 0; d19 ¼ r2d21; ð81Þ

946 where r ¼ mχ=mN . With these constraints in place there are ten independent P and T conserving four-fermion operators
947 through dimension eight, including two operators at dimension six.
948 Operators even under T but odd under P are

LNχ;P ¼ 1

m3
N
fd01iN†σ · ∂−Nχ†χ þ d02iN

†σiNχ†∂i
−χ þ d03iN

†∂i
−Nχ†σiχ þ d04iN

†Nχ†σ · ∂−χ

þ d05ϵ
ijkN†σi∂j

þNχ†σkχgþOð1=m5
NÞ: ð82Þ

949 Relativistic invariance enforces the constraints

d01 þ rd02 ¼ d03 þ rd04 ¼ 0; ð83Þ

950 leaving three independent operators. Operators odd under both P and T are

LNχ;PT ¼ 1

m3
N
ff01N†σ · ∂þNχ†χ þ f02N

†Nχ†σ · ∂þχ þ f03iϵ
ijkN†σi∂j

−Nχ†σkχ

þ f04iϵ
ijkN†σiNχ†σj∂k

−χgþOð1=m5
NÞ: ð84Þ

951 Relativistic invariance enforces the constraints

f03 ¼ rf04; ð85Þ

952 leaving three independent operators. Operators even under P and odd under T are

LNχ;T ¼ 1

m4
N
fif1N†∂þ · ∂−Nχ†χ þ if2N†Nχ†∂þ · ∂−χ þ f3ϵijkN†σi∂j

−Nχ†∂k
−χ

þ f4ϵijkN†∂i
−Nχ†σj∂k

−χ þ if5N†∂þ · ∂−σiNχ†σiχ þ if6N†σ · ∂þ∂i
−Nχ†σiχ

þ if7N†σ · ∂−Nχ†σ · ∂þχ þ if8N†σiNχ†σi∂þ · ∂−χ þ if9N†σiNχ†σ · ∂þ∂i
−χ

þ if10N†σ · ∂þNχ†σ · ∂−χgþOð1=m6
NÞ: ð86Þ

953 Relativistic invariance enforces the constraints

f1 þ rf2 ¼ f5 þ rf8 ¼ f7 þ rf9 ¼ f6 þ rf10 ¼ f3

¼ f4 ¼ 0; ð87Þ

954 leaving four independent operators.

955 1. Lorentz versus Galilean invariance

956 We remark that the basis of operators in Eq. (79) under
957 the constraints in (81) is Lorentz invariant. If in place of the
958 transformations in (80) we instead enforced Galilean
959 symmetry [21], defined by

N → eimNη·xN; χ → eimχη·xχ;

∂t → ∂t − η · ∂; ∂ → ∂; ð88Þ

960we would obtain constraints on dimension eight operators
961different from (81).17 These constraints would imply that all
962Hermitian operators are constructed from the combinations
963of derivatives corresponding to

vrel ≡ 1

2

!
pþ p0

mN
−
kþ k0

mχ

"
; q≡ p0 − p ¼ k − k0; ð89Þ

964where p and k (p0 and k0) are the incoming (outgoing)
965momenta of N and χ, respectively. In particular, the
966violation of Lorentz symmetry obtained by using (88) in
967place of (80) would manifest itself as the absence of
968operators coupling to total momentum P,

17Galilean constraints would be given by the formal limit d1 ¼
d2 ¼ 0 in (81).

STANDARD MODEL … . II. QCD ANALYSIS AND … PHYSICAL REVIEW D 90, 000000 (XXXX)

19

945 This implies the constraints

rd4 þ d5 ¼
d2
4
; d5 ¼ r2d6; 8rðd8 þ rd9Þ ¼ −rd2 þ d1; 8rðrd11 þ d12Þ ¼ −d2 þ rd1;

rd14 þ d18 ¼
d1
4
; d18 ¼ r2d20; 2rd16 þ d19 ¼

d1
4
; rðd16 þ d17Þ þ d19 ¼ 0; d19 ¼ r2d21; ð81Þ

946 where r ¼ mχ=mN . With these constraints in place there are ten independent P and T conserving four-fermion operators
947 through dimension eight, including two operators at dimension six.
948 Operators even under T but odd under P are

LNχ;P ¼ 1

m3
N
fd01iN†σ · ∂−Nχ†χ þ d02iN

†σiNχ†∂i
−χ þ d03iN

†∂i
−Nχ†σiχ þ d04iN

†Nχ†σ · ∂−χ

þ d05ϵ
ijkN†σi∂j

þNχ†σkχgþOð1=m5
NÞ: ð82Þ

949 Relativistic invariance enforces the constraints

d01 þ rd02 ¼ d03 þ rd04 ¼ 0; ð83Þ

950 leaving three independent operators. Operators odd under both P and T are

LNχ;PT ¼ 1

m3
N
ff01N†σ · ∂þNχ†χ þ f02N

†Nχ†σ · ∂þχ þ f03iϵ
ijkN†σi∂j

−Nχ†σkχ

þ f04iϵ
ijkN†σiNχ†σj∂k

−χgþOð1=m5
NÞ: ð84Þ

951 Relativistic invariance enforces the constraints

f03 ¼ rf04; ð85Þ

952 leaving three independent operators. Operators even under P and odd under T are

LNχ;T ¼ 1

m4
N
fif1N†∂þ · ∂−Nχ†χ þ if2N†Nχ†∂þ · ∂−χ þ f3ϵijkN†σi∂j

−Nχ†∂k
−χ

þ f4ϵijkN†∂i
−Nχ†σj∂k

−χ þ if5N†∂þ · ∂−σiNχ†σiχ þ if6N†σ · ∂þ∂i
−Nχ†σiχ

þ if7N†σ · ∂−Nχ†σ · ∂þχ þ if8N†σiNχ†σi∂þ · ∂−χ þ if9N†σiNχ†σ · ∂þ∂i
−χ

þ if10N†σ · ∂þNχ†σ · ∂−χgþOð1=m6
NÞ: ð86Þ

953 Relativistic invariance enforces the constraints

f1 þ rf2 ¼ f5 þ rf8 ¼ f7 þ rf9 ¼ f6 þ rf10 ¼ f3

¼ f4 ¼ 0; ð87Þ

954 leaving four independent operators.

955 1. Lorentz versus Galilean invariance

956 We remark that the basis of operators in Eq. (79) under
957 the constraints in (81) is Lorentz invariant. If in place of the
958 transformations in (80) we instead enforced Galilean
959 symmetry [21], defined by

N → eimNη·xN; χ → eimχη·xχ;

∂t → ∂t − η · ∂; ∂ → ∂; ð88Þ

960we would obtain constraints on dimension eight operators
961different from (81).17 These constraints would imply that all
962Hermitian operators are constructed from the combinations
963of derivatives corresponding to

vrel ≡ 1

2

!
pþ p0

mN
−
kþ k0

mχ

"
; q≡ p0 − p ¼ k − k0; ð89Þ

964where p and k (p0 and k0) are the incoming (outgoing)
965momenta of N and χ, respectively. In particular, the
966violation of Lorentz symmetry obtained by using (88) in
967place of (80) would manifest itself as the absence of
968operators coupling to total momentum P,

17Galilean constraints would be given by the formal limit d1 ¼
d2 ¼ 0 in (81).
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P≡ pþ k ¼ p0 þ k0: ð90Þ

969 Note that Lorentz symmetry links a leading-order nucleon
970 spin-dependent operator (d1) to subleading nucleon spin-
971 independent operators. The phenomenological impact of
972 such terms remains to be investigated. Note that Lorentz
973 symmetry cannot be obtained by enforcing additional con-
974 straints on operators present in theGalilean-invariant theory.

975 VI. PHENOMENOLOGICAL ILLUSTRATIONS

976 The forgoing analysis provides a framework to system-
977 atically evolve coefficients defined at the weak scale, to
978 obtain the effective low-energy theory where nuclear matrix
979 elements are evaluated. As an illustration we focus our
980 attention on two cases: first, the specification of contact
981 interactions at or above the weak scale, and second, the
982 specification of the complete basis of coefficients at the weak
983 scale by the leading order of the heavy WIMP expansion.

984 A. Contact interactions

985 Consider the contact interactions between a Majorana
986 fermion WIMP and SM fields given in Eq. (6). As a simple
987 illustration, let us focus on the set of operators

Lχ;SM ¼ 1

Λ2
χ̄χ

!
buūuþ bdd̄dþ

bg
Λ
ðGa

μνÞ2
"
; ð91Þ

988 where coefficients bu;d;g may be constrained by collider
989 production bounds [17] or engineered to produce a desired
990 WIMP-nucleus scattering phenomenology [83]. An
991 observable of interest for the latter is the ratio fn=fp of
992 the effective spin-independent WIMP-neutron (fn) and
993 WIMP-proton (fp) couplings.
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994We show in Fig. 1 predictions for fn=fp from the model
995in Eq. (91), highlighting large effects from hadronic matrix
996element uncertainties and the choice of QCD renormaliza-
997tion scale. The left panel illustrates uncertainties from
998varying the SM quantities Σ− and Rud ¼ mu=md given in
999(58) and (60).19 The right panel illustrates the uncertainty

1000from not specifying the renormalization scale at which the
1001coefficients bi are defined. Meaningful predictions for
1002fn=fp require both a precise knowledge of hadronic inputs
1003and a careful treatment of renormalization effects. Similar
1004considerations apply to other applications that relate con-
1005straints on contact interactions at the electroweak scale to
1006low-energy observables such as direct detection cross
1007sections or annihilation rates for low mass WIMPs.

1008B. Heavy, electroweak-charged WIMPs

1009We consider the heavy WIMP limit (M ≫ mW) for the
1010cases of a self-conjugate electroweak triplet of hypercharge
1011zero (“pure wino”) and an electroweak doublet of hyper-
1012charge 1=2 (“pure Higgsino”). For the latter, we assume
1013mass perturbations that cause the mass eigenstates after
1014EWSB to be self-conjugate combinations, thus forbidding a
1015phenomenologically disfavored tree-level vector coupling
1016between the lightest electrically neutral state and Z0 (see
1017Sec. 4 of Ref. [4] for details). The bare effective Lagrangian
1018at the weak scale describing interactions of the lightest
1019electrically neutral self-conjugate WIMP (of arbitrary spin)
1020with low-energy SM degrees of freedom is given by

Lχv;SM ¼ χ̄vχv

# X

q¼u;d;s;c;b

½cð0Þq Oð0Þ
q þ cð2Þq vμvνO

ð2Þμν
q &

þ cð0Þg Oð0Þ
g þ cð2Þg vμvνO

ð2Þμν
g

$
þ…; ð92Þ

mu md
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F1:1 FIG. 1 (color online). The ratio fn=fp of the effective WIMP-neutron (fn) and WIMP-proton (fp) couplings in terms of the
F1:2 parameters bi in Eq. (91). For bg ¼ 0 (left panel), fn=fp is independent of Λ and depends on only the ratio bu=bd. The uncertainty bands
F1:3 are from variation of the matrix element Σ− (gray) and the ratio Rud ¼ mu=md (red), with ranges given in (58) and (60). We illustrate the
F1:4 effect of nonzero bg in the right panel, with bd ¼ −bu ¼ 0.01 and Λ ¼ 400 GeV. The solid (dashed) line is the prediction assuming that
F1:5 the coefficients bi are defined at a high (low) scale μ ∼mt (μ ∼mc). The inset shows the curves over the same vertical range, including
F1:6 uncertainty bands for the solid line from variation of Σ− (gray) and Rud (red). In both cases the variation from ΣπN is subdominant.

18In terms of the couplings in (79), fp and fn are propor-
tional to dðpÞ2 and dðnÞ2 , respectively.

19The point −bu=bd ¼ 1.08 was highlighted in [83]. Hadronic
uncertainties are severe at this point.
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904 where we have expressed the matching coefficients (the
905 quantities in square brackets) in terms of the form factors of
906 the previous section and decomposed the currents into
907 components along and perpendicular to uμ. At d ¼ 4, we
908 work through Oð1=mNÞ, i.e., first derivative order, and
909 have the antisymmetric tensor currents, the scalar and
910 pseudoscalar operators, and the C-even and C-odd spin-
911 2 operators. Employing the notation in Table II and
912 expressing results in terms of matrix elements of the
913 previous section, the matching conditions are

Tμν
q ¼ mN

!"
mqtq
mN

#
ϵαβγ½μuν%uαN̄σ⊥βγN þOð1=m2

NÞ
$
;

Oð0Þ
q ¼ mN ½f

ð0Þ
q N̄uNu þOð1=m2

NÞ%;

Oð0Þ
g ¼ mN

!"
−8π
9αs

#
fð0Þg N̄uNu þOð1=m2

NÞ
$
;

Oð0Þ
5q;5g ¼

1

4
fð0Þ5q;5gϵ

μνρσuμ∂⊥νðN̄σ⊥ρσNÞ þOð1=m2
NÞ;

uμuνO
ð2Þμν
q;g ¼ mN

!
3

4
fð2Þq;gN̄uNu þOð1=m2

NÞ
$
;

Oð2Þμν
5q ¼ mN

!
1

2
fð2Þ5q ϵ

αβγfμuνguαN̄σ⊥βγN þOð1=m2
NÞ
$
;

ð77Þ

914 where the subscript label N on form factors has been
915 suppressed.

916B. Nucleon effective theory for light mediators

917The forgoing analysis, with additional matching onto
918multinucleon operators, provides a general framework for
919WIMP-nucleus scattering in the case where all new states in
920the dark sector have mass ≫ ΛQCD, such that below this
921scale, a complete description is possible in terms of a
922systematic expansion of operators in nf ¼ 3-flavor QCD.
923Subsequent matching onto nucleon operators is given
924simply by evaluating the necessary form factors, whose
925low-q2 behavior may be determined by lattice QCD, chiral
926perturbation theory or other nonperturbative methods.
927For completeness let us consider a more general situation
928allowing for light degrees of freedom, with mass only
929assumed large compared to a typical WIMP-nucleon
930momentum transfer.16 We assume that all new states of
931the dark sector are integrated out, and we consider the
932resulting basis of operators in the one-nucleon sector.
933Specializing to the choice vμ ¼ uμ ¼ ð1; 0; 0; 0Þ, and
934neglecting electromagnetic interactions, the kinetic terms
935may be written

LN ¼ N†
%
i∂t þ

∂2

2mN
þ…

&
N;

Lχ ¼ χ†
%
i∂t þ

∂2

2mχ
þ…

&
χ; ð78Þ

936where N and χ denote the nonrelativistic nucleon and
937WIMP fields, respectively. For interactions even under P
938and T, we find through dimension eight the opera-
939tors [36,82]

940941

LNχ;PT ¼ 1

m2
N
fd1N†σiNχ†σiχ þ d2N†Nχ†χgþ 1

m4
N
fd3N†∂i

þNχ†∂i
þχ þ d4N†∂i

−Nχ†∂i
−χ

þ d5N†ð∂2 þ ∂⃖2ÞNχ†χ þ d6N†Nχ†ð∂2 þ ∂⃖2Þχ þ id8ϵijkN†σi∂j
−Nχ†∂k

þχ

þ id9ϵijkN†σi∂j
þNχ†∂k

−χ þ id11ϵijkN†∂k
þNχ†σi∂j

−χ þ id12ϵijkN†∂k
−Nχ†σi∂j

þχ

þ d13N†σi∂j
þNχ†σi∂j

þχ þ d14N†σi∂j
−Nχ†σi∂j

−χ þ d15N†σ · ∂þNχ†σ · ∂þχ

þ d16N†σ · ∂−Nχ†σ · ∂−χ þ d17N†σi∂j
−Nχ†σj∂i

−χ

þ d18N†σið∂2 þ ∂⃖2ÞNχ†σiχ þ d19N†σið∂i∂j þ ∂⃖j∂⃖iÞNχ†σjχ

þ d20N†σiNχ†σið∂2 þ ∂⃖2Þχ þ d21N†σiNχ†σjð∂i∂j þ ∂⃖j∂⃖iÞχgþOð1=m6
NÞ; ð79Þ

942 where the naming scheme for Wilson coefficients is from Ref. [36]. (Note, in particular, that di for i ¼ 7; 10 are absent in
943 (79), since these operators are proportional to electromagnetic field strength.) Lorentz symmetry is imposed by enforcing
944 invariance under the infinitesimal boost η [33,36],

N → eimNη·x

!
1 −

iη · ∂
2mN

þ σ × η · ∂
4mN

þ…
$
N; χ → eimχη·x

!
1 −

iη · ∂
2mχ

þ σ × η · ∂
4mχ

þ…
$
χ;

∂t → ∂t − η · ∂; ∂ → ∂ − η∂t: ð80Þ

16Here, we are also assuming that the considered momentum transfers are small enough that pions may be integrated out.
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945 This implies the constraints

rd4 þ d5 ¼
d2
4
; d5 ¼ r2d6; 8rðd8 þ rd9Þ ¼ −rd2 þ d1; 8rðrd11 þ d12Þ ¼ −d2 þ rd1;

rd14 þ d18 ¼
d1
4
; d18 ¼ r2d20; 2rd16 þ d19 ¼

d1
4
; rðd16 þ d17Þ þ d19 ¼ 0; d19 ¼ r2d21; ð81Þ

946 where r ¼ mχ=mN . With these constraints in place there are ten independent P and T conserving four-fermion operators
947 through dimension eight, including two operators at dimension six.
948 Operators even under T but odd under P are

LNχ;P ¼ 1

m3
N
fd01iN†σ · ∂−Nχ†χ þ d02iN

†σiNχ†∂i
−χ þ d03iN

†∂i
−Nχ†σiχ þ d04iN

†Nχ†σ · ∂−χ

þ d05ϵ
ijkN†σi∂j

þNχ†σkχgþOð1=m5
NÞ: ð82Þ

949 Relativistic invariance enforces the constraints

d01 þ rd02 ¼ d03 þ rd04 ¼ 0; ð83Þ

950 leaving three independent operators. Operators odd under both P and T are

LNχ;PT ¼ 1

m3
N
ff01N†σ · ∂þNχ†χ þ f02N

†Nχ†σ · ∂þχ þ f03iϵ
ijkN†σi∂j

−Nχ†σkχ

þ f04iϵ
ijkN†σiNχ†σj∂k

−χgþOð1=m5
NÞ: ð84Þ

951 Relativistic invariance enforces the constraints

f03 ¼ rf04; ð85Þ

952 leaving three independent operators. Operators even under P and odd under T are

LNχ;T ¼ 1

m4
N
fif1N†∂þ · ∂−Nχ†χ þ if2N†Nχ†∂þ · ∂−χ þ f3ϵijkN†σi∂j

−Nχ†∂k
−χ

þ f4ϵijkN†∂i
−Nχ†σj∂k

−χ þ if5N†∂þ · ∂−σiNχ†σiχ þ if6N†σ · ∂þ∂i
−Nχ†σiχ

þ if7N†σ · ∂−Nχ†σ · ∂þχ þ if8N†σiNχ†σi∂þ · ∂−χ þ if9N†σiNχ†σ · ∂þ∂i
−χ

þ if10N†σ · ∂þNχ†σ · ∂−χgþOð1=m6
NÞ: ð86Þ

953 Relativistic invariance enforces the constraints

f1 þ rf2 ¼ f5 þ rf8 ¼ f7 þ rf9 ¼ f6 þ rf10 ¼ f3

¼ f4 ¼ 0; ð87Þ

954 leaving four independent operators.

955 1. Lorentz versus Galilean invariance

956 We remark that the basis of operators in Eq. (79) under
957 the constraints in (81) is Lorentz invariant. If in place of the
958 transformations in (80) we instead enforced Galilean
959 symmetry [21], defined by

N → eimNη·xN; χ → eimχη·xχ;

∂t → ∂t − η · ∂; ∂ → ∂; ð88Þ

960we would obtain constraints on dimension eight operators
961different from (81).17 These constraints would imply that all
962Hermitian operators are constructed from the combinations
963of derivatives corresponding to

vrel ≡ 1

2

!
pþ p0

mN
−
kþ k0

mχ

"
; q≡ p0 − p ¼ k − k0; ð89Þ

964where p and k (p0 and k0) are the incoming (outgoing)
965momenta of N and χ, respectively. In particular, the
966violation of Lorentz symmetry obtained by using (88) in
967place of (80) would manifest itself as the absence of
968operators coupling to total momentum P,

17Galilean constraints would be given by the formal limit d1 ¼
d2 ¼ 0 in (81).
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impose Lorentz symmetry

or Galilean?



LDM + LSM
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= c2 + c1

⇤
+
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Figure 2: Matching condition onto gluon operators. The notation is as in Fig. 1.

Matching conditions onto gluon operators are from the diagrams of Fig. (2):

c(0)
2 (µt) = C�s(µt)

4⇤

�
1

3x2
h

+
3 + 4xt + 2x2

t

6(1 + xt)2

⇥
,

c(2)
2 (µt) = C�s(µt)

4⇤

�
� 32

9
log

µt

mW
� 4� 4(2 + 3xt)

9(1 + xt)3
log

µt

mW (1 + xt)

� 4(12x5
t � 36x4

t + 36x3
t � 12x2

t + 3xt � 2)

9(xt � 1)3
log

xt

1 + xt
� 8xt(�3 + 7x2

t )

9(x2
t � 1)3

log 2

� 48x6
t + 24x5

t � 104x4
t � 35x3

t + 20x2
t + 13xt + 18

9(x2
t � 1)2(1 + xt)

⇥
. (22)

There is no dependence of c(0)
2 or c(2)

2 on CKM matrix elements in the limit of vanishing
d, s, b quark masses. The renormalized coe⇤cients are computed in the MS scheme. We have
employed Fock-Schwinger (x · A = 0) gauge [10] to compute the full-theory amplitudes for
gluonic operators in Fig. 2. The e�ective theory subtractions are e⇤ciently performed in
a scheme with massless light quarks, using dimensional regularization as infrared regulator.
We have verified that the same results are obtained using finite masses and taking the limit
mq/mW ⇤ 0. Details of this computation will be presented elsewhere.

5 RG evolution to hadronic scales

To account for perturbative corrections involving large logarithms, e.g. �s(µ0) log mt/µ0, we
employ renormalization group evolution to sum leading logarithms to all orders.

7

|NihN |
+ = c1 + . . .

Figure 1: Matching condition for quark operators. Double lines denote heavy scalars, zigzag
lines denote W bosons, dashed lines denote Higgs bosons, single lines with arrows denote
quarks, and the solid square denotes an e�ective theory vertex. Diagrams with crossed W
lines are not displayed.

with derivatives acting on ⌃v or involving ⇥5, since these lead to spin-dependent interactions
that are suppressed for low-velocity scattering. The basis of operators is then

L⌃0,SM =
1

m3
W

⌃�
v⌃v

⇧ ⌥

q

⇤
c(0)
1q O(0)

1q + c(2)
1q vµv⇧O

(2)µ⇧
1q

⌅
+ c(0)

2 O(0)
2 + c(2)

2 vµv⇧O
(2)µ⇧
2

⌃
+ . . . , (19)

where we have chosen QCD operators of definite spin,

O(0)
1q = mq q̄q , O(0)

2 = (GA
µ⇧)

2 ,

O(2)µ⇧
1q = q̄

�
⇥{µiD⇧} � 1

d
gµ⇧iD/

⇥
q , O(2)µ⇧

2 = �GAµ⇤GA⇧
⇤ +

1

d
gµ⇧(GA

�⇥)2 . (20)

Here A{µB⇧} ⇥ (AµB⇧ + A⇧Bµ)/2 denotes symmetrization. We employ dimensional regu-
larization with d = 4 � 2⇤ the spacetime dimension. We use the background field method
for gluons in the e�ective theory thus ignoring gauge-variant operators, and assume that ap-
propriate field redefinitions are employed to eliminate operators that vanish by leading order
equations of motion. The matrix elements of the gluonic operators, O(S)

2 , are numerically
large, representing a substantial contribution of gluons to the energy and momentum of the
nucleon. To account for the leading contributions from both quark and gluon operators, we
compute the coe⌅cients c(S)

2 through O(�s) and c(S)
1q through O(�0

s).

4 Weak scale matching

The matching conditions for quark operators in the nf = 5 flavor theory at renormalization
scale µ = µt ⇤ mt ⇤ mW ⇤ mh are obtained from the diagrams in Fig. (1):

c(0)
1U(µt) = C

⇤
� 1

x2
h

⌅
, c(0)

1D(µt) = C
⇤
� 1

x2
h

� |VtD|2
xt

4(1 + xt)3

⌅
,

c(2)
1U(µt) = C

⇤
2

3

⌅
, c(2)

1D(µt) = C
⇤
2

3
� |VtD|2

xt(3 + 6xt + 2x2
t )

3(1 + xt)3

⌅
, (21)

where subscript U denotes u or c and subscript D denotes d, s or b. Here C = [⇧�2
2(µt)][J(J +

1)/2], xh ⇥ mh/mW and xt ⇥ mt/mW . We ignore corrections of order mq/mW for q =
u, d, s, c, b, and have used CKM unitarity to simplify the results.
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Example: Isospin violating dark matter

P≡ pþ k ¼ p0 þ k0: ð90Þ

969 Note that Lorentz symmetry links a leading-order nucleon
970 spin-dependent operator (d1) to subleading nucleon spin-
971 independent operators. The phenomenological impact of
972 such terms remains to be investigated. Note that Lorentz
973 symmetry cannot be obtained by enforcing additional con-
974 straints on operators present in theGalilean-invariant theory.

975 VI. PHENOMENOLOGICAL ILLUSTRATIONS

976 The forgoing analysis provides a framework to system-
977 atically evolve coefficients defined at the weak scale, to
978 obtain the effective low-energy theory where nuclear matrix
979 elements are evaluated. As an illustration we focus our
980 attention on two cases: first, the specification of contact
981 interactions at or above the weak scale, and second, the
982 specification of the complete basis of coefficients at the weak
983 scale by the leading order of the heavy WIMP expansion.

984 A. Contact interactions

985 Consider the contact interactions between a Majorana
986 fermion WIMP and SM fields given in Eq. (6). As a simple
987 illustration, let us focus on the set of operators
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988 where coefficients bu;d;g may be constrained by collider
989 production bounds [17] or engineered to produce a desired
990 WIMP-nucleus scattering phenomenology [83]. An
991 observable of interest for the latter is the ratio fn=fp of
992 the effective spin-independent WIMP-neutron (fn) and
993 WIMP-proton (fp) couplings.

18

994We show in Fig. 1 predictions for fn=fp from the model
995in Eq. (91), highlighting large effects from hadronic matrix
996element uncertainties and the choice of QCD renormaliza-
997tion scale. The left panel illustrates uncertainties from
998varying the SM quantities Σ− and Rud ¼ mu=md given in
999(58) and (60).19 The right panel illustrates the uncertainty

1000from not specifying the renormalization scale at which the
1001coefficients bi are defined. Meaningful predictions for
1002fn=fp require both a precise knowledge of hadronic inputs
1003and a careful treatment of renormalization effects. Similar
1004considerations apply to other applications that relate con-
1005straints on contact interactions at the electroweak scale to
1006low-energy observables such as direct detection cross
1007sections or annihilation rates for low mass WIMPs.

1008B. Heavy, electroweak-charged WIMPs

1009We consider the heavy WIMP limit (M ≫ mW) for the
1010cases of a self-conjugate electroweak triplet of hypercharge
1011zero (“pure wino”) and an electroweak doublet of hyper-
1012charge 1=2 (“pure Higgsino”). For the latter, we assume
1013mass perturbations that cause the mass eigenstates after
1014EWSB to be self-conjugate combinations, thus forbidding a
1015phenomenologically disfavored tree-level vector coupling
1016between the lightest electrically neutral state and Z0 (see
1017Sec. 4 of Ref. [4] for details). The bare effective Lagrangian
1018at the weak scale describing interactions of the lightest
1019electrically neutral self-conjugate WIMP (of arbitrary spin)
1020with low-energy SM degrees of freedom is given by

Lχv;SM ¼ χ̄vχv
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F1:1 FIG. 1 (color online). The ratio fn=fp of the effective WIMP-neutron (fn) and WIMP-proton (fp) couplings in terms of the
F1:2 parameters bi in Eq. (91). For bg ¼ 0 (left panel), fn=fp is independent of Λ and depends on only the ratio bu=bd. The uncertainty bands
F1:3 are from variation of the matrix element Σ− (gray) and the ratio Rud ¼ mu=md (red), with ranges given in (58) and (60). We illustrate the
F1:4 effect of nonzero bg in the right panel, with bd ¼ −bu ¼ 0.01 and Λ ¼ 400 GeV. The solid (dashed) line is the prediction assuming that
F1:5 the coefficients bi are defined at a high (low) scale μ ∼mt (μ ∼mc). The inset shows the curves over the same vertical range, including
F1:6 uncertainty bands for the solid line from variation of Σ− (gray) and Rud (red). In both cases the variation from ΣπN is subdominant.

18In terms of the couplings in (79), fp and fn are propor-
tional to dðpÞ2 and dðnÞ2 , respectively.

19The point −bu=bd ¼ 1.08 was highlighted in [83]. Hadronic
uncertainties are severe at this point.
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990 WIMP-nucleus scattering phenomenology [83]. An
991 observable of interest for the latter is the ratio fn=fp of
992 the effective spin-independent WIMP-neutron (fn) and
993 WIMP-proton (fp) couplings.

18

994We show in Fig. 1 predictions for fn=fp from the model
995in Eq. (91), highlighting large effects from hadronic matrix
996element uncertainties and the choice of QCD renormaliza-
997tion scale. The left panel illustrates uncertainties from
998varying the SM quantities Σ− and Rud ¼ mu=md given in
999(58) and (60).19 The right panel illustrates the uncertainty

1000from not specifying the renormalization scale at which the
1001coefficients bi are defined. Meaningful predictions for
1002fn=fp require both a precise knowledge of hadronic inputs
1003and a careful treatment of renormalization effects. Similar
1004considerations apply to other applications that relate con-
1005straints on contact interactions at the electroweak scale to
1006low-energy observables such as direct detection cross
1007sections or annihilation rates for low mass WIMPs.

1008B. Heavy, electroweak-charged WIMPs

1009We consider the heavy WIMP limit (M ≫ mW) for the
1010cases of a self-conjugate electroweak triplet of hypercharge
1011zero (“pure wino”) and an electroweak doublet of hyper-
1012charge 1=2 (“pure Higgsino”). For the latter, we assume
1013mass perturbations that cause the mass eigenstates after
1014EWSB to be self-conjugate combinations, thus forbidding a
1015phenomenologically disfavored tree-level vector coupling
1016between the lightest electrically neutral state and Z0 (see
1017Sec. 4 of Ref. [4] for details). The bare effective Lagrangian
1018at the weak scale describing interactions of the lightest
1019electrically neutral self-conjugate WIMP (of arbitrary spin)
1020with low-energy SM degrees of freedom is given by

Lχv;SM ¼ χ̄vχv
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F1:1 FIG. 1 (color online). The ratio fn=fp of the effective WIMP-neutron (fn) and WIMP-proton (fp) couplings in terms of the
F1:2 parameters bi in Eq. (91). For bg ¼ 0 (left panel), fn=fp is independent of Λ and depends on only the ratio bu=bd. The uncertainty bands
F1:3 are from variation of the matrix element Σ− (gray) and the ratio Rud ¼ mu=md (red), with ranges given in (58) and (60). We illustrate the
F1:4 effect of nonzero bg in the right panel, with bd ¼ −bu ¼ 0.01 and Λ ¼ 400 GeV. The solid (dashed) line is the prediction assuming that
F1:5 the coefficients bi are defined at a high (low) scale μ ∼mt (μ ∼mc). The inset shows the curves over the same vertical range, including
F1:6 uncertainty bands for the solid line from variation of Σ− (gray) and Rud (red). In both cases the variation from ΣπN is subdominant.

18In terms of the couplings in (79), fp and fn are propor-
tional to dðpÞ2 and dðnÞ2 , respectively.

19The point −bu=bd ¼ 1.08 was highlighted in [83]. Hadronic
uncertainties are severe at this point.
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975 VI. PHENOMENOLOGICAL ILLUSTRATIONS

976 The forgoing analysis provides a framework to system-
977 atically evolve coefficients defined at the weak scale, to
978 obtain the effective low-energy theory where nuclear matrix
979 elements are evaluated. As an illustration we focus our
980 attention on two cases: first, the specification of contact
981 interactions at or above the weak scale, and second, the
982 specification of the complete basis of coefficients at the weak
983 scale by the leading order of the heavy WIMP expansion.
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988 where coefficients bu;d;g may be constrained by collider
989 production bounds [17] or engineered to produce a desired
990 WIMP-nucleus scattering phenomenology [83]. An
991 observable of interest for the latter is the ratio fn=fp of
992 the effective spin-independent WIMP-neutron (fn) and
993 WIMP-proton (fp) couplings.

18

994We show in Fig. 1 predictions for fn=fp from the model
995in Eq. (91), highlighting large effects from hadronic matrix
996element uncertainties and the choice of QCD renormaliza-
997tion scale. The left panel illustrates uncertainties from
998varying the SM quantities Σ− and Rud ¼ mu=md given in
999(58) and (60).19 The right panel illustrates the uncertainty

1000from not specifying the renormalization scale at which the
1001coefficients bi are defined. Meaningful predictions for
1002fn=fp require both a precise knowledge of hadronic inputs
1003and a careful treatment of renormalization effects. Similar
1004considerations apply to other applications that relate con-
1005straints on contact interactions at the electroweak scale to
1006low-energy observables such as direct detection cross
1007sections or annihilation rates for low mass WIMPs.

1008B. Heavy, electroweak-charged WIMPs

1009We consider the heavy WIMP limit (M ≫ mW) for the
1010cases of a self-conjugate electroweak triplet of hypercharge
1011zero (“pure wino”) and an electroweak doublet of hyper-
1012charge 1=2 (“pure Higgsino”). For the latter, we assume
1013mass perturbations that cause the mass eigenstates after
1014EWSB to be self-conjugate combinations, thus forbidding a
1015phenomenologically disfavored tree-level vector coupling
1016between the lightest electrically neutral state and Z0 (see
1017Sec. 4 of Ref. [4] for details). The bare effective Lagrangian
1018at the weak scale describing interactions of the lightest
1019electrically neutral self-conjugate WIMP (of arbitrary spin)
1020with low-energy SM degrees of freedom is given by

Lχv;SM ¼ χ̄vχv
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F1:1 FIG. 1 (color online). The ratio fn=fp of the effective WIMP-neutron (fn) and WIMP-proton (fp) couplings in terms of the
F1:2 parameters bi in Eq. (91). For bg ¼ 0 (left panel), fn=fp is independent of Λ and depends on only the ratio bu=bd. The uncertainty bands
F1:3 are from variation of the matrix element Σ− (gray) and the ratio Rud ¼ mu=md (red), with ranges given in (58) and (60). We illustrate the
F1:4 effect of nonzero bg in the right panel, with bd ¼ −bu ¼ 0.01 and Λ ¼ 400 GeV. The solid (dashed) line is the prediction assuming that
F1:5 the coefficients bi are defined at a high (low) scale μ ∼mt (μ ∼mc). The inset shows the curves over the same vertical range, including
F1:6 uncertainty bands for the solid line from variation of Σ− (gray) and Rud (red). In both cases the variation from ΣπN is subdominant.

18In terms of the couplings in (79), fp and fn are propor-
tional to dðpÞ2 and dðnÞ2 , respectively.

19The point −bu=bd ¼ 1.08 was highlighted in [83]. Hadronic
uncertainties are severe at this point.
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974 straints on operators present in theGalilean-invariant theory.
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978 obtain the effective low-energy theory where nuclear matrix
979 elements are evaluated. As an illustration we focus our
980 attention on two cases: first, the specification of contact
981 interactions at or above the weak scale, and second, the
982 specification of the complete basis of coefficients at the weak
983 scale by the leading order of the heavy WIMP expansion.
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988 where coefficients bu;d;g may be constrained by collider
989 production bounds [17] or engineered to produce a desired
990 WIMP-nucleus scattering phenomenology [83]. An
991 observable of interest for the latter is the ratio fn=fp of
992 the effective spin-independent WIMP-neutron (fn) and
993 WIMP-proton (fp) couplings.
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994We show in Fig. 1 predictions for fn=fp from the model
995in Eq. (91), highlighting large effects from hadronic matrix
996element uncertainties and the choice of QCD renormaliza-
997tion scale. The left panel illustrates uncertainties from
998varying the SM quantities Σ− and Rud ¼ mu=md given in
999(58) and (60).19 The right panel illustrates the uncertainty

1000from not specifying the renormalization scale at which the
1001coefficients bi are defined. Meaningful predictions for
1002fn=fp require both a precise knowledge of hadronic inputs
1003and a careful treatment of renormalization effects. Similar
1004considerations apply to other applications that relate con-
1005straints on contact interactions at the electroweak scale to
1006low-energy observables such as direct detection cross
1007sections or annihilation rates for low mass WIMPs.

1008B. Heavy, electroweak-charged WIMPs

1009We consider the heavy WIMP limit (M ≫ mW) for the
1010cases of a self-conjugate electroweak triplet of hypercharge
1011zero (“pure wino”) and an electroweak doublet of hyper-
1012charge 1=2 (“pure Higgsino”). For the latter, we assume
1013mass perturbations that cause the mass eigenstates after
1014EWSB to be self-conjugate combinations, thus forbidding a
1015phenomenologically disfavored tree-level vector coupling
1016between the lightest electrically neutral state and Z0 (see
1017Sec. 4 of Ref. [4] for details). The bare effective Lagrangian
1018at the weak scale describing interactions of the lightest
1019electrically neutral self-conjugate WIMP (of arbitrary spin)
1020with low-energy SM degrees of freedom is given by

Lχv;SM ¼ χ̄vχv
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F1:1 FIG. 1 (color online). The ratio fn=fp of the effective WIMP-neutron (fn) and WIMP-proton (fp) couplings in terms of the
F1:2 parameters bi in Eq. (91). For bg ¼ 0 (left panel), fn=fp is independent of Λ and depends on only the ratio bu=bd. The uncertainty bands
F1:3 are from variation of the matrix element Σ− (gray) and the ratio Rud ¼ mu=md (red), with ranges given in (58) and (60). We illustrate the
F1:4 effect of nonzero bg in the right panel, with bd ¼ −bu ¼ 0.01 and Λ ¼ 400 GeV. The solid (dashed) line is the prediction assuming that
F1:5 the coefficients bi are defined at a high (low) scale μ ∼mt (μ ∼mc). The inset shows the curves over the same vertical range, including
F1:6 uncertainty bands for the solid line from variation of Σ− (gray) and Rud (red). In both cases the variation from ΣπN is subdominant.

18In terms of the couplings in (79), fp and fn are propor-
tional to dðpÞ2 and dðnÞ2 , respectively.

19The point −bu=bd ¼ 1.08 was highlighted in [83]. Hadronic
uncertainties are severe at this point.
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Example: Heavy WIMP scattering
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Figure 12: Matching condition onto gluon operators. The notation is as in Fig. 11.

We can decompose T into spin components

T = T (0) + T (2) + T (4) , (133)

where

T (0)
�⇥⇤⌅ = O(0)(g�⇤g⇥⌅ � g�⌅g⇥⇤) ,

T (2)
�⇥⇤⌅ = g�⇤O(2)

⇥⌅ � g�⌅O
(2)
⇥⇤ + g⇥⌅O(2)

�⇤ � g⇥⇤O
(2)
�⌅ , (134)

and T (4) is not needed for the present analysis. The scalar and two-index symmetric tensors that we
can build from T are g�⇤g⇥⌅T�⇥⇤⌅ and g⇥⌅T�⇥⇤⌅. Contracting (134) with g�⇤g⇥⌅ or v�v⇤g⇥⌅ gives the
proportionality constants,
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. (135)

2.6 Gluon matching coe�cients

For eventual insertion into the boson loop, we require

vµv⌃�
µ⌃
(WW ) ⇥

�ig2

4

1

2

⌃
O(0)I(0)(WW ) +O(2)�⇥I(2)(WW )�⇥ + . . .

⌥
, (136)

and similar decompositions for vµv⌃�
⌃µ
(ZZ)(L), vµ�

µ
(W⌥±)(L), vµ�

µ
(Z⌥2)

(L), �(⌥±⌥±)(L) and�(W⌥±)(L),

where the ellipsis denotes T (4) contributions that are irrelevant to our analysis.
Let us write each contribution schematically as

I =

⇧
(dp)ND . (137)

For the denominators we have (p� = p� L)
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32
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Figure 1: Matching condition for quark operators. Double lines denote heavy scalars, zigzag
lines denote W bosons, dashed lines denote Higgs bosons, single lines with arrows denote
quarks, and the solid square denotes an e�ective theory vertex. Diagrams with crossed W
lines are not displayed.

with derivatives acting on ⌃v or involving ⇥5, since these lead to spin-dependent interactions
that are suppressed for low-velocity scattering. The basis of operators is then
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where we have chosen QCD operators of definite spin,
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Here A{µB⇧} ⇥ (AµB⇧ + A⇧Bµ)/2 denotes symmetrization. We employ dimensional regu-
larization with d = 4 � 2⇤ the spacetime dimension. We use the background field method
for gluons in the e�ective theory thus ignoring gauge-variant operators, and assume that ap-
propriate field redefinitions are employed to eliminate operators that vanish by leading order
equations of motion. The matrix elements of the gluonic operators, O(S)

2 , are numerically
large, representing a substantial contribution of gluons to the energy and momentum of the
nucleon. To account for the leading contributions from both quark and gluon operators, we
compute the coe⌅cients c(S)

2 through O(�s) and c(S)
1q through O(�0

s).

4 Weak scale matching

The matching conditions for quark operators in the nf = 5 flavor theory at renormalization
scale µ = µt ⇤ mt ⇤ mW ⇤ mh are obtained from the diagrams in Fig. (1):
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where subscript U denotes u or c and subscript D denotes d, s or b. Here C = [⇧�2
2(µt)][J(J +

1)/2], xh ⇥ mh/mW and xt ⇥ mt/mW . We ignore corrections of order mq/mW for q =
u, d, s, c, b, and have used CKM unitarity to simplify the results.
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Thus, composing the two e↵ects, the mapping of coe�cients in the nf = 5 theory at the high scale
µt onto coe�cients in the nf = 3 theory at the low scale µ0 is given by

~c
(S)
(3) (µ0) = R

(S)
(3) (µ0, µc)M

(S)
(3,4)(µc)R

(S)
(4) (µc, µb)M

(S)
(4,5)(µb)R

(S)
(5) (µb, µt)~c

(S)
(5) (µt) . (34)

Collecting the results in Eqs. (27) and (31) for the scalar operators, the (nf +1)⇥ (nf +1) matrix

R
(0)
(nf )

(µ, µh) is given by

R
(0)
(nf )

(µ, µh) =

0

BBBB@

1 2[�m(µh)� �m(µ)]/�̃(µh)
. . .

...

1 2[�m(µh)� �m(µ)]/�̃(µh)

0 · · · 0 �̃(µ)/�̃(µh)

1

CCCCA
, (35)

while the nf ⇥ (nf + 1) matrix M
(0)
(nf�1,nf )

(µq) is given by

M
(0)
(nf�1,nf )

(µq) =

0

BBBBBBB@

1 0 0
. . .

...
...

1 0 0

0 · · · 0 �↵s(µq)
12⇡

"
1 + ↵s(µq)

4⇡

h
11� 4

3 log
µq

mq

i #
1� ↵s(µq)

3⇡ log µq

mq

1

CCCCCCCA

, (36)

with mq the mass of the heavy quark associated with the threshold at µq. We may similarly collect

the results in Eqs. (28) and (32) for the tensor operators. The (nf +1)⇥ (nf +1) matrix R
(2)
(nf )

(µ, µh)

is given by

R
(2)
(nf )

(µ, µh) =

0

BBBBBB@

16[1�r(nf )]
16+3nf

r(0)1 + 1
nf

h
16r(nf )+3nf

16+3nf
� r(0)

i
J

...
16[1�r(nf )]
16+3nf

3[1�r(nf )]
16+3nf

· · · 3[1�r(nf )]
16+3nf

16+3nf r(nf )
16+3nf

1

CCCCCCA
, (37)

where the nf ⇥nf matrices 1 and J are respectively the identity and the matrix with all elements 1,
and we have used the factor

r(n) =

✓
↵s(µ)

↵s(µh)

◆� 2
3�0

( 16
3 +n)

. (38)

The nf ⇥ (nf + 1) matrix M
(2)
(nf�1,nf )

(µq) is given by

M
(2)
(nf�1,nf )

(µq) =

0

BBBB@

1 0 0
. . .

...
...

1 0 0

0 · · · 0 ↵s(µq)
3⇡ log µ

mq
1

1

CCCCA
. (39)

In Sec. ?? below, we investigate the numerical impact of these corrections.
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µt

µc

µb

µ0

J=1, Y=0u d s c b g

c(0)(µt, 5) -0.407 -0.407 -0.407 -0.407 -0.424 0.004

c(0)(µb, 5) -0.418 -0.418 -0.418 -0.418 -0.436 0.009

c(0)(µb, 4) -0.418 -0.418 -0.418 -0.418 - 0.012

c(0)(µc, 4) -0.443 -0.443 -0.443 -0.443 - 0.022

c(0)(µc, 3) -0.443 -0.443 -0.443 - - 0.028

c(0)(µ0, 3) -0.458 -0.458 -0.458 - - 0.033

hN |c(0)(µ0, 3)O(0)|Ni (MeV) -8 -13 -18 - - -128

Table 6.1: Scalar coe�cients at each stage of the e↵ective theory, labelled by the scale µ and the
number of active quark flavors nf , with overall factors ⇡↵2

2/m3
W extracted. The final line shows the

proton matrix elements (including coe�cient) for each contribution to the total scalar amplitude.

and tensor coe�cients from high to low scales, illustrating the impact of renormalization group

running, heavy quark threshold contributions, and nucleon matrix elements. In Sec. 6.2, we survey

the uncertainties from perturbative corrections and hadronic inputs. Section 6.3 presents cross section

predictions for spin-independent low-velocity scattering on a proton. The sensitivity of cross sections

and their fractional uncertainty are illustrated, and several cross checks are performed.

6.1 Cross section assembly line

We may now put together the ingredients for mapping weak scale parameters onto coe�cients of

operators in nf = 3 or nf = 4 flavor QCD. Let us illustrate the numerical coe�cients at di↵erent

stages of the low-energy e↵ective theory. For studying the e↵ects of renormalization group running,

threshold matching and the sizes of the nucleon matrix elements, we focus on default “central” values.

Analysis of perturbative and hadronic uncertainties is necessary for robust determination of cross

section predictions, and will be discussed in the following section.

For definiteness, let us illustrate with the following evaluation. The renormalization group running

and heavy quark matching for spin-2 operators are evaluated at LO. The RG running from µc

to µ0 from (5.24) is evaluated with NNNLO corrections, including contributions to �/g through

O(↵4
s) and �m through O(↵4

s). Accordingly, the spin-0 gluonic matrix element from (5.41) is also

evaluated at NNNLO, including contributions to �/g through O(↵4
s) and �m through O(↵3

s). We

perform the RG running and heavy quark matching from µt to µc at NLO. The motivation for
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where c(0)g (µc, 3) is the scalar gluon coe�cient at the charm scale µc with nf = 3 flavors. The sum of

the above contributions is independent of the low scale µ0, and hence we may fix µ0 in our evaluation,

taking µ0 = mc = 1.4 GeV for definiteness. We find a large residual uncertainty at LO from µc and

µb scale variation. The RG running from µc to µ0 from (5.24) is thus evaluated with NNNLO

corrections, including contributions to �/g through O(↵4
s) and �m through O(↵4

s). Accordingly,

the scalar gluon matrix element from (5.41) is also evaluated at NNNLO, including contributions

to �/g through O(↵4
s) and �m through O(↵3

s). The impact of these higher order corrections will

be illustrated for the pure triplet in the following section. We perform the RG running and heavy

quark matching from µt to µc at NLO, and ignore power corrections appearing at relative order

↵s(mc)⇤2
QCD/m2

c ; typical numerical prefactors appearing in the coe�cients of the corresponding

power-suppressed operators [79] suggest that these e↵ects are small. For the scalar amplitude (with

overall factors ⇡↵2
2/m3

W extracted), we find

M(0)
p = �167

�
+1
�1

��
+0
�1

��
+5
�14

��
2
��

3
��

5
�
MeV , (6.5)

where the first three uncertainties are from the scale variation of µt, µb and µc, respectively, and the

last three are respectively from the up, down and strange matrix elements in Eq. 5.44. The residual

perturbative uncertainty is dominated by the charm scale. In the next section, we will investigate

the impact of higher order ↵(µc) corrections in the running from µb to µc and in the matching

condition at the charm threshold. We will also consider an alternative evaluation of matrix elements

in nf = 4-flavor QCD.

For the tensor operators, the renormalization group running and heavy quark matching are eval-

uated at LO. We find the tensor amplitude (with overall factors ⇡↵2
2/m3

W extracted)

M(2)
p = 216

�
+11
�7

��
2
��

2
��

1
��

2
�
MeV , (6.6)

where the first uncertainty is from scale variation of µt, and we have neglected other scale uncertainties

being much smaller. The sensitivity to µt is from log terms, ⇠ log µt, in the high-scale matching

coe�cients, and its reduction would require a NLO weak-scale matching computation. The remaining

uncertainties in Eq. (6.10) are from PDF inputs for up, down, strange, and glue, respectively. Up
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u d s c b g

c(2)(µt, 5) 0.667 0.667 0.667 0.667 0.091 -0.050

c(2)(µb, 5) 0.498 0.498 0.498 0.498 0.073 0.080

c(2)(µb, 4) 0.498 0.498 0.498 0.498 - 0.080

c(2)(µc, 4) 0.418 0.418 0.418 0.418 - 0.140

c(2)(µc, 3) 0.418 0.418 0.418 - - 0.140

c(2)(µ0, 3) 0.405 0.405 0.405 - - 0.147

hN |c(2)(70, 5)O(2)|Ni (MeV) 116 71 24 17 1 -9

hN |c(2)(µ0, 3)O(2)|Ni (MeV) 109 59 8 - - 40

Table 6.2: Tensor coe�cients at each stage of the e↵ective theory, labelled by the scale µ and the
number of active quark flavors nf , with overall factors ⇡↵2

2/m3
W extracted. The final lines show the

proton matrix elements (including coe�cient) for each contribution to the total scalar amplitude for
a high- and low-scale evaluation.

these choices will be explained in the following section. Tables 6.1 and 6.2 show the results for the

scalar and tensor coe�cients of the pure triplet case, with overall factors ⇡↵2
2/m3

W extracted. The

coe�cients are labelled by the scale µ and number of active quark flavors nf . We take µt = 126,

µb = mb, µc = mc and µ0 = 1.2 as default values. Coe�cients at the weak scale are obtained from

renormalization of the bare matching coe�cients (first line). Renormalization group evolution is

performed down to the bottom threshold (second line). The bottom quark is integrated out (third

line). Renormalization group evolution is performed down to the charm threshold (fourth line). The

charm quark is integrated out (fifth line). Renormalization group evolution is performed down to the

low scale (sixth line). The final line shows an evaluation of the amplitude, i.e., the operator matrix

element including the coe�cient.

For the scalar case, the total amplitude is,

M(0)
N = m�3

W hN |
0

@
X

q=u,d,s

h
c(0)q O(0)

q

i
+ c(0)g O(0)

g

1

A |Ni = �167 MeV , (6.1)

where the overall factors ⇡↵2
2/m3

W have been extracted in the right hand side. The gluon contri-

bution is dominant, gaining an order of magnitude from the coe�cient running and heavy quark

contributions, and having a large matrix element reflecting the gluon content of the nucleon.

For the tensor case, the gluon coe�cient flips in sign at scale µ ⇠ 34 GeV, during the running
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where c(0)g (µc, 3) is the scalar gluon coe�cient at the charm scale µc with nf = 3 flavors. The sum of

the above contributions is independent of the low scale µ0, and hence we may fix µ0 in our evaluation,

taking µ0 = mc = 1.4 GeV for definiteness. We find a large residual uncertainty at LO from µc and

µb scale variation. The RG running from µc to µ0 from (5.24) is thus evaluated with NNNLO

corrections, including contributions to �/g through O(↵4
s) and �m through O(↵4

s). Accordingly,

the scalar gluon matrix element from (5.41) is also evaluated at NNNLO, including contributions

to �/g through O(↵4
s) and �m through O(↵3

s). The impact of these higher order corrections will

be illustrated for the pure triplet in the following section. We perform the RG running and heavy

quark matching from µt to µc at NLO, and ignore power corrections appearing at relative order

↵s(mc)⇤2
QCD/m2

c ; typical numerical prefactors appearing in the coe�cients of the corresponding

power-suppressed operators [79] suggest that these e↵ects are small. For the scalar amplitude (with

overall factors ⇡↵2
2/m3

W extracted), we find

M(0)
p = �167

�
+1
�1

��
+0
�1

��
+5
�14

��
2
��

3
��

5
�
MeV , (6.5)

where the first three uncertainties are from the scale variation of µt, µb and µc, respectively, and the

last three are respectively from the up, down and strange matrix elements in Eq. 5.44. The residual

perturbative uncertainty is dominated by the charm scale. In the next section, we will investigate

the impact of higher order ↵(µc) corrections in the running from µb to µc and in the matching

condition at the charm threshold. We will also consider an alternative evaluation of matrix elements

in nf = 4-flavor QCD.

For the tensor operators, the renormalization group running and heavy quark matching are eval-

uated at LO. We find the tensor amplitude (with overall factors ⇡↵2
2/m3

W extracted)

M(2)
p = 216

�
+11
�7

��
2
��

2
��

1
��

2
�
MeV , (6.6)

where the first uncertainty is from scale variation of µt, and we have neglected other scale uncertainties

being much smaller. The sensitivity to µt is from log terms, ⇠ log µt, in the high-scale matching

coe�cients, and its reduction would require a NLO weak-scale matching computation. The remaining

uncertainties in Eq. (6.10) are from PDF inputs for up, down, strange, and glue, respectively. Up
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where c(0)g (µc, 3) is the scalar gluon coe�cient at the charm scale µc with nf = 3 flavors. The sum of

the above contributions is independent of the low scale µ0, and hence we may fix µ0 in our evaluation,

taking µ0 = mc = 1.4 GeV for definiteness. We find a large residual uncertainty at LO from µc and

µb scale variation. The RG running from µc to µ0 from (5.24) is thus evaluated with NNNLO

corrections, including contributions to �/g through O(↵4
s) and �m through O(↵4

s). Accordingly,

the scalar gluon matrix element from (5.41) is also evaluated at NNNLO, including contributions

to �/g through O(↵4
s) and �m through O(↵3

s). The impact of these higher order corrections will

be illustrated for the pure triplet in the following section. We perform the RG running and heavy

quark matching from µt to µc at NLO, and ignore power corrections appearing at relative order

↵s(mc)⇤2
QCD/m2

c ; typical numerical prefactors appearing in the coe�cients of the corresponding

power-suppressed operators [79] suggest that these e↵ects are small. For the scalar amplitude (with

overall factors ⇡↵2
2/m3

W extracted), we find
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MeV , (6.5)

where the first three uncertainties are from the scale variation of µt, µb and µc, respectively, and the

last three are respectively from the up, down and strange matrix elements in Eq. 5.44. The residual

perturbative uncertainty is dominated by the charm scale. In the next section, we will investigate

the impact of higher order ↵(µc) corrections in the running from µb to µc and in the matching

condition at the charm threshold. We will also consider an alternative evaluation of matrix elements

in nf = 4-flavor QCD.

For the tensor operators, the renormalization group running and heavy quark matching are eval-

uated at LO. We find the tensor amplitude (with overall factors ⇡↵2
2/m3

W extracted)

M(2)
p = 216

�
+11
�7

��
2
��

2
��

1
��

2
�
MeV , (6.6)

where the first uncertainty is from scale variation of µt, and we have neglected other scale uncertainties

being much smaller. The sensitivity to µt is from log terms, ⇠ log µt, in the high-scale matching

coe�cients, and its reduction would require a NLO weak-scale matching computation. The remaining

uncertainties in Eq. (6.10) are from PDF inputs for up, down, strange, and glue, respectively. Up
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where c(0)g (µc, 3) is the scalar gluon coe�cient at the charm scale µc with nf = 3 flavors. The sum of

the above contributions is independent of the low scale µ0, and hence we may fix µ0 in our evaluation,

taking µ0 = mc = 1.4 GeV for definiteness. We find a large residual uncertainty at LO from µc and

µb scale variation. The RG running from µc to µ0 from (5.24) is thus evaluated with NNNLO

corrections, including contributions to �/g through O(↵4
s) and �m through O(↵4

s). Accordingly,

the scalar gluon matrix element from (5.41) is also evaluated at NNNLO, including contributions

to �/g through O(↵4
s) and �m through O(↵3

s). The impact of these higher order corrections will

be illustrated for the pure triplet in the following section. We perform the RG running and heavy

quark matching from µt to µc at NLO, and ignore power corrections appearing at relative order

↵s(mc)⇤2
QCD/m2

c ; typical numerical prefactors appearing in the coe�cients of the corresponding

power-suppressed operators [79] suggest that these e↵ects are small. For the scalar amplitude (with

overall factors ⇡↵2
2/m3

W extracted), we find
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where the first three uncertainties are from the scale variation of µt, µb and µc, respectively, and the

last three are respectively from the up, down and strange matrix elements in Eq. 5.44. The residual

perturbative uncertainty is dominated by the charm scale. In the next section, we will investigate

the impact of higher order ↵(µc) corrections in the running from µb to µc and in the matching

condition at the charm threshold. We will also consider an alternative evaluation of matrix elements

in nf = 4-flavor QCD.

For the tensor operators, the renormalization group running and heavy quark matching are eval-

uated at LO. We find the tensor amplitude (with overall factors ⇡↵2
2/m3

W extracted)

M(2)
p = 216

�
+11
�7
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2
��

2
��

1
��

2
�
MeV , (6.6)

where the first uncertainty is from scale variation of µt, and we have neglected other scale uncertainties

being much smaller. The sensitivity to µt is from log terms, ⇠ log µt, in the high-scale matching

coe�cients, and its reduction would require a NLO weak-scale matching computation. The remaining

uncertainties in Eq. (6.10) are from PDF inputs for up, down, strange, and glue, respectively. Up
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� ⇠ |M(0) +M(2)|2

Transparency of WIMPs to nucleons

to power corrections and subleading O(↵s) corrections, our evaluation is equivalent to an evaluation

in either the nf = 4 or nf = 5 flavors theories, taking the c- and b-quark momentum fractions of

the proton as input. We have verified this with matrix elements taken from [93]; e.g., the numerical

di↵erence between the result in Eq. (6.10) and the high-scale evaluation in Table. 6.2 is within our

error budget.

For the combined, scalar and tensor amplitudes (with overall factors ⇡↵2
2/m3

W extracted), we find

M(2)
p + M(0)

p = 49
�
+19
�10

��
7
�
MeV , (6.7)

where the first and second uncertainties represent the total (combined in quadrature) scale and

hadronic uncertainties, respectively. The cancellation between scalar and tensor contributions leads

to a small total amplitude (and hence cross section), with large fractional uncertainties. For the pure

doublet case, the cancellation is stronger, giving

M(2)
p + M(0)

p = 1.5
�
+7
�4

��
3
�
MeV . (6.8)

In the next section we translate these amplitudes into cross section predictions with estimated un-

certainties.

6.3 Cross section predictions and consistency checks

The low-velocity, spin-independent, cross section for WIMP scattering on a nucleus of mass number

A and charge Z may be written

�A,Z =
m2

r

⇡
|ZMp + (A � Z)Mn|2 ⇡ m2

rA
2

⇡
|Mp|2 , (6.9)

where Mp and Mn are the matrix elements for scattering on a proton or neutron respectively and

mr = MmN/(M + mN ) denotes the reduced mass of the dark-matter nucleus system. These matrix

elements are the sum of the scalar and tensor matrix elements, M(0)
N and M(2)

N , studied in the
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Model-independent uncertainties
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amplitude contributions [5, 6]. Therefore, a robust determination of DM-nucleon scattering cross
sections demands a careful analysis of the complete set of leading operators in (3).

The coe�cient c(2)g has been omitted in previous works [3, 5]. Due to a cancellation between

spin-0 and spin-2 amplitude contributions to cross sections, the e↵ect of neglecting c(2)g ranges from
a factor of a few to an order of magnitude di↵erence in cross sections. For the pure-doublet and

pure-triplet states, neglecting c(2)g leads to an O(10� 20%) shift in the spin-2 amplitude, depending
on the choice of renormalization scale, and an underestimation of its perturbative uncertainty by

O(70%). For comparison, neglecting c(2)q for q = b, c, s, d, u shifts the spin-2 amplitude by O(1%),
O(10%), O(10%), O(30%), and O(50%), respectively.

8 Summary

The present analysis focused on weak-scale matching conditions necessary for robustly computing
WIMP-nucleon interactions, both in specified UV completions involving electroweak-charged DM,
and in the model-independent heavyWIMP limit. Careful computation of competing Standard Model
contributions is necessary to estimate the correct order of magnitude of scattering cross sections in
many simple and motivated models of DM. For example, a simple dimensional estimate of the cross
section for spin-independent, low-velocity scattering of a pure-state WIMP on a nucleon yields11

�
SI

⇠ ↵4

2

m4

N

m2

W

✓
1

m2

W

,
1

m2

h

◆
2

⇠ 10�45 cm2 . (111)

Cross sections of this order of magnitude are currently being probed by direct detection searches
(e.g., see Refs. [22] for detection prospects computed using tree-level cross sections). However, a
cancellation between spin-0 and spin-2 amplitude contributions leads to much smaller cross section
values for motivated candidates such as the pure wino (�

SI

⇠ 10�47 cm2) and the pure higgsino
(�

SI

. 10�48 cm2) of supersymmetric SM extensions. This cancellation demands a careful analysis of
perturbative contributions from weak-scale matching amplitudes presented here, e.g., the inclusion
of the spin-2 gluon contribution, and of remaining theoretical and input uncertainties, which will be
discussed in a companion paper [34]. Robust predictions for the cross sections of the pure triplet,
pure doublet, singlet-doublet admixture, and triplet-doublet admixture can be found in Refs. [6].
Given the matching coe�cients in (110), the cross sections for pure states with arbitrary electroweak
quantum numbers can also be computed.

Although we find that cancellations are generic, their severity depends on SM parameters and
on properties of DM such as its electroweak quantum numbers. The presence of additional low-lying
states could also have impact, and the formalism for weak-scale matching presented here can be
readily extended to investigate such scenarios. For example, including a second Higgs doublet in
the pure-state analysis simply requires modification of the vertices in the amplitudes computed in
Figs. 2 and 3. An extra Higgs boson modifies the spin-0 amplitude, and could potentially weaken
the cancellation between spin-0 and spin-2 amplitudes. The case where the second Higgs-like doublet
itself plays the role of DM (e.g., “inert Higgs DM” [7]) is related to the pure-doublet case in the
heavy WIMP limit by heavy particle universality.

While we have focused here on the case of a heavy, self-conjugate WIMP, deriving from one or two
electroweak multiplets, much of the formalism applies more generally. The construction of the heavy

11
Cross sections of this magnitude were obtained in previous estimates that missed the cancellation between spin-0

and spin-2 amplitude contributions (and ignored gluon contributions) [2].
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Model-independent uncertainties

1135 extend this result to NNNLO. For illustration, we include in
1136 Fig. 2 the amplitudes corresponding to the LO and NLO
1137 results in Eq. (101), labeled 6 and 7, respectively. The LO
1138 result has no scale variation, while the NLO result gives an
1139 estimate of perturbative corrections that is consistent with
1140 amplitudes 2 and 5, albeit smaller.23

1141 The amplitudes 8 and 9 in Fig. 2 are evaluated in the four-
1142 flavor theory, employing the charmmatrix elements given in
1143 (62). The large hadronic uncertainty reflects those of the
1144 lattice measurements, while the scale uncertainty is small,
1145 having avoided a perturbative treatment of the scale μc.
1146 The cross section for scattering on a nucleon target is
1147 obtained from the amplitudes as

σSI ¼
m2

N

π
jMð0Þ

N þMð2Þ
N j2: ð102Þ

1148 In the case of heavy electroweak-charged WIMPs, opposite
1149 signs of the scalar and C-even spin-2 amplitudes lead to
1150 destructive interference. There is a large cancellation for
1151 scalar amplitudes near the vertical lines denoting the

1152magnitude of the C-even spin-2 amplitude in the upper
1153panels of Fig. 2. Cross section predictions are shown in the
1154lower panels with labels corresponding to the scalar
1155amplitude employed.
1156For the triplet, the cross section prediction given in
1157Ref. [16] corresponds to amplitude 4 in Fig. 2 and gives a
1158conservative estimate of scale uncertainty. An improved
1159estimate with reduced scale uncertainty is given by the
1160cross section corresponding to amplitude 5,

σTSI ¼ 8
þ6

−3
þ3

−3 × 10−48 cm2; ð103Þ

1161where the first (second) uncertainty is from scale variation
1162(hadronic inputs). The remaining scale uncertainty is
1163dominated by μt variation in the C-even spin-2 amplitude,
1164and its reduction requires higher-order matching at the
1165weak scale.
1166For the doublet case, the improved estimates lead to the
1167same conclusion in Ref. [16],

σDSI ≲ 10−48 cm2 ð95% C:L:Þ: ð104Þ

1168In the case of strong destructive interference, the cross
1169section prediction and its fractional uncertainty become
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23For amplitudes 2 and 5, we employ R and M matrices
expanded order by order in αs, and the residual scale uncertainty
can be traced to spurious terms appearing in the product of these
matrices.
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For the scalar strange content of the nucleon, the current state of results is such that a
simple weighted average of good (green star) results can not be performed in a meaningful
way. As can be seen in Fig. 8, there is good consistency between most of the results.
There are not a large number of orange circle results, so we chose to include all results in
the average. Moreover, we believe despite their red-square assignment, these results o�er
valuable information which should not be ignored at this time.

A simple weighted average, using the quoted uncertainties as the inverse weights, pro-
duces an unbelievably small final uncertainty. This also ignores the fact that systematic
uncertainties are typically non-Gaussian, and in the case of lattice QCD calculations, not
cleanly separable from the statistical uncertainties. Moreover, it does not account for the
quality of the results, judged using the rubric of the FLAG working group. In an attempt
to include all these issues, the following ad hoc procedure is used to perform a weighted
average of all the results (presented in Figure 8):

i) for each of the Nlatt = 11 results, fi ± �±
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17

Junnarkar, Walker-Loud [1301.1114]

SpN, S0

SpNlat, Sslat

100 120 140 160 180 200
10-49

10-48

10-47

10-46

mhHGeVL

s
Hcm

2 L

doublet

triplet

had
pert

110 115 120 125 130 135
10�51

10�50

10�49

10�48

10�47

triplet

had
pert

doublet

triplet

20 40 60 80 100 12010-51

10-50

10-49

10-48

10-47

�
S
I(

cm
2
)

�N |mcc̄c|N⇥

Sensitivity to model-independent inputs



33

�SI = 1.3+1.2
�0.5

+0.4
�0.3 � 10�47 cm2

�SI � 10�48 cm2 (95% C.L.)

J=1,Y=0:

J=1/2,Y=1/2:

22

10 Direct Detection Program Roadmap 39

1 10 100 1000 104
10!50
10!49
10!48
10!47
10!46
10!45
10!44
10!43
10!42
10!41
10!40
10!39

10!14
10!13
10!12
10!11
10!10
10!9
10!8
10!7
10!6
10!5
10!4
10!3

WIMP Mass !GeV"c2#

W
IM
P!
nu
cl
eo
n
cr
os
ss
ec
tio
n
!cm2 #

W
IM
P!
nu
cl
eo
n
cr
os
ss
ec
tio
n
!pb#

7Be
Neutrinos

  NEUTRINO C OHER ENT SCATTERING 
 

 
 

 

  
 

NEUTRINO COHERENT SCATTERING
(Green&ovals)&Asymmetric&DM&&
(Violet&oval)&Magne7c&DM&
(Blue&oval)&Extra&dimensions&&
(Red&circle)&SUSY&MSSM&
&&&&&MSSM:&Pure&Higgsino&&
&&&&&MSSM:&A&funnel&
&&&&&MSSM:&BinoEstop&coannihila7on&
&&&&&MSSM:&BinoEsquark&coannihila7on&
&

8B
Neutrinos

Atmospheric and DSNB Neutrinos

CDMS II Ge  (2009)

Xenon100 (2012)

CRESST

CoGeNT
(2012)

CDMS Si
(2013)

EDELWEISS (2011)

DAMA SIMPLE (2012)

ZEPLIN-III (2012)COUPP (2012)

SuperCDMS Soudan Low Threshold
SuperCDMS Soudan CDMS-lite

XENON 10 S2 (2013)
CDMS-II Ge Low Threshold (2011)

SuperCDMS Soudan

Xenon1T

LZ

LUX

DarkSide G2

DarkSide 50

DEAP3600

PICO250-CF3I

PICO
250-C3F8

SNOLAB

SuperCDMS

Figure 26. A compilation of WIMP-nucleon spin-independent cross section limits (solid curves), hints
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We believe that any proposed new direct detection experiment must demonstrate that it meets at least one
of the following two criteria:

• Provide at least an order of magnitude improvement in cross section sensitivity for some range of
WIMP masses and interaction types.

• Demonstrate the capability to confirm or deny an indication of a WIMP signal from another experiment.

The US has a clear leadership role in the field of direct dark matter detection experiments, with most
major collaborations having major involvement of US groups. In order to maintain this leadership role, and
to reduce the risk inherent in pushing novel technologies to their limits, a variety of US-led direct search
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P≡ pþ k ¼ p0 þ k0: ð90Þ

969 Note that Lorentz symmetry links a leading-order nucleon
970 spin-dependent operator (d1) to subleading nucleon spin-
971 independent operators. The phenomenological impact of
972 such terms remains to be investigated. Note that Lorentz
973 symmetry cannot be obtained by enforcing additional con-
974 straints on operators present in theGalilean-invariant theory.

975 VI. PHENOMENOLOGICAL ILLUSTRATIONS

976 The forgoing analysis provides a framework to system-
977 atically evolve coefficients defined at the weak scale, to
978 obtain the effective low-energy theory where nuclear matrix
979 elements are evaluated. As an illustration we focus our
980 attention on two cases: first, the specification of contact
981 interactions at or above the weak scale, and second, the
982 specification of the complete basis of coefficients at the weak
983 scale by the leading order of the heavy WIMP expansion.

984 A. Contact interactions

985 Consider the contact interactions between a Majorana
986 fermion WIMP and SM fields given in Eq. (6). As a simple
987 illustration, let us focus on the set of operators

Lχ;SM ¼ 1

Λ2
χ̄χ

!
buūuþ bdd̄dþ

bg
Λ
ðGa

μνÞ2
"
; ð91Þ

988 where coefficients bu;d;g may be constrained by collider
989 production bounds [17] or engineered to produce a desired
990 WIMP-nucleus scattering phenomenology [83]. An
991 observable of interest for the latter is the ratio fn=fp of
992 the effective spin-independent WIMP-neutron (fn) and
993 WIMP-proton (fp) couplings.

18

994We show in Fig. 1 predictions for fn=fp from the model
995in Eq. (91), highlighting large effects from hadronic matrix
996element uncertainties and the choice of QCD renormaliza-
997tion scale. The left panel illustrates uncertainties from
998varying the SM quantities Σ− and Rud ¼ mu=md given in
999(58) and (60).19 The right panel illustrates the uncertainty

1000from not specifying the renormalization scale at which the
1001coefficients bi are defined. Meaningful predictions for
1002fn=fp require both a precise knowledge of hadronic inputs
1003and a careful treatment of renormalization effects. Similar
1004considerations apply to other applications that relate con-
1005straints on contact interactions at the electroweak scale to
1006low-energy observables such as direct detection cross
1007sections or annihilation rates for low mass WIMPs.

1008B. Heavy, electroweak-charged WIMPs

1009We consider the heavy WIMP limit (M ≫ mW) for the
1010cases of a self-conjugate electroweak triplet of hypercharge
1011zero (“pure wino”) and an electroweak doublet of hyper-
1012charge 1=2 (“pure Higgsino”). For the latter, we assume
1013mass perturbations that cause the mass eigenstates after
1014EWSB to be self-conjugate combinations, thus forbidding a
1015phenomenologically disfavored tree-level vector coupling
1016between the lightest electrically neutral state and Z0 (see
1017Sec. 4 of Ref. [4] for details). The bare effective Lagrangian
1018at the weak scale describing interactions of the lightest
1019electrically neutral self-conjugate WIMP (of arbitrary spin)
1020with low-energy SM degrees of freedom is given by

Lχv;SM ¼ χ̄vχv

# X

q¼u;d;s;c;b

½cð0Þq Oð0Þ
q þ cð2Þq vμvνO
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F1:1 FIG. 1 (color online). The ratio fn=fp of the effective WIMP-neutron (fn) and WIMP-proton (fp) couplings in terms of the
F1:2 parameters bi in Eq. (91). For bg ¼ 0 (left panel), fn=fp is independent of Λ and depends on only the ratio bu=bd. The uncertainty bands
F1:3 are from variation of the matrix element Σ− (gray) and the ratio Rud ¼ mu=md (red), with ranges given in (58) and (60). We illustrate the
F1:4 effect of nonzero bg in the right panel, with bd ¼ −bu ¼ 0.01 and Λ ¼ 400 GeV. The solid (dashed) line is the prediction assuming that
F1:5 the coefficients bi are defined at a high (low) scale μ ∼mt (μ ∼mc). The inset shows the curves over the same vertical range, including
F1:6 uncertainty bands for the solid line from variation of Σ− (gray) and Rud (red). In both cases the variation from ΣπN is subdominant.

18In terms of the couplings in (79), fp and fn are propor-
tional to dðpÞ2 and dðnÞ2 , respectively.

19The point −bu=bd ¼ 1.08 was highlighted in [83]. Hadronic
uncertainties are severe at this point.
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1003and a careful treatment of renormalization effects. Similar
1004considerations apply to other applications that relate con-
1005straints on contact interactions at the electroweak scale to
1006low-energy observables such as direct detection cross
1007sections or annihilation rates for low mass WIMPs.

1008B. Heavy, electroweak-charged WIMPs

1009We consider the heavy WIMP limit (M ≫ mW) for the
1010cases of a self-conjugate electroweak triplet of hypercharge
1011zero (“pure wino”) and an electroweak doublet of hyper-
1012charge 1=2 (“pure Higgsino”). For the latter, we assume
1013mass perturbations that cause the mass eigenstates after
1014EWSB to be self-conjugate combinations, thus forbidding a
1015phenomenologically disfavored tree-level vector coupling
1016between the lightest electrically neutral state and Z0 (see
1017Sec. 4 of Ref. [4] for details). The bare effective Lagrangian
1018at the weak scale describing interactions of the lightest
1019electrically neutral self-conjugate WIMP (of arbitrary spin)
1020with low-energy SM degrees of freedom is given by
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F1:1 FIG. 1 (color online). The ratio fn=fp of the effective WIMP-neutron (fn) and WIMP-proton (fp) couplings in terms of the
F1:2 parameters bi in Eq. (91). For bg ¼ 0 (left panel), fn=fp is independent of Λ and depends on only the ratio bu=bd. The uncertainty bands
F1:3 are from variation of the matrix element Σ− (gray) and the ratio Rud ¼ mu=md (red), with ranges given in (58) and (60). We illustrate the
F1:4 effect of nonzero bg in the right panel, with bd ¼ −bu ¼ 0.01 and Λ ¼ 400 GeV. The solid (dashed) line is the prediction assuming that
F1:5 the coefficients bi are defined at a high (low) scale μ ∼mt (μ ∼mc). The inset shows the curves over the same vertical range, including
F1:6 uncertainty bands for the solid line from variation of Σ− (gray) and Rud (red). In both cases the variation from ΣπN is subdominant.

18In terms of the couplings in (79), fp and fn are propor-
tional to dðpÞ2 and dðnÞ2 , respectively.

19The point −bu=bd ¼ 1.08 was highlighted in [83]. Hadronic
uncertainties are severe at this point.
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1004considerations apply to other applications that relate con-
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1006low-energy observables such as direct detection cross
1007sections or annihilation rates for low mass WIMPs.
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1009We consider the heavy WIMP limit (M ≫ mW) for the
1010cases of a self-conjugate electroweak triplet of hypercharge
1011zero (“pure wino”) and an electroweak doublet of hyper-
1012charge 1=2 (“pure Higgsino”). For the latter, we assume
1013mass perturbations that cause the mass eigenstates after
1014EWSB to be self-conjugate combinations, thus forbidding a
1015phenomenologically disfavored tree-level vector coupling
1016between the lightest electrically neutral state and Z0 (see
1017Sec. 4 of Ref. [4] for details). The bare effective Lagrangian
1018at the weak scale describing interactions of the lightest
1019electrically neutral self-conjugate WIMP (of arbitrary spin)
1020with low-energy SM degrees of freedom is given by
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# X

q¼u;d;s;c;b

½cð0Þq Oð0Þ
q þ cð2Þq vμvνO

ð2Þμν
q &

þ cð0Þg Oð0Þ
g þ cð2Þg vμvνO

ð2Þμν
g

$
þ…; ð92Þ

mu md

0.0 0.5 1.0 1.5
2

1

0

1

2

 ~ mt

 ~ mc 6 4 2 0 2 4

2.0 1.5 1.0 0.5 0.0 0.5 1.0
2.0

1.5

1.0

0.5

0.0

0.5

F1:1 FIG. 1 (color online). The ratio fn=fp of the effective WIMP-neutron (fn) and WIMP-proton (fp) couplings in terms of the
F1:2 parameters bi in Eq. (91). For bg ¼ 0 (left panel), fn=fp is independent of Λ and depends on only the ratio bu=bd. The uncertainty bands
F1:3 are from variation of the matrix element Σ− (gray) and the ratio Rud ¼ mu=md (red), with ranges given in (58) and (60). We illustrate the
F1:4 effect of nonzero bg in the right panel, with bd ¼ −bu ¼ 0.01 and Λ ¼ 400 GeV. The solid (dashed) line is the prediction assuming that
F1:5 the coefficients bi are defined at a high (low) scale μ ∼mt (μ ∼mc). The inset shows the curves over the same vertical range, including
F1:6 uncertainty bands for the solid line from variation of Σ− (gray) and Rud (red). In both cases the variation from ΣπN is subdominant.

18In terms of the couplings in (79), fp and fn are propor-
tional to dðpÞ2 and dðnÞ2 , respectively.

19The point −bu=bd ¼ 1.08 was highlighted in [83]. Hadronic
uncertainties are severe at this point.
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Figure 26. A compilation of WIMP-nucleon spin-independent cross section limits (solid curves), hints
for WIMP signals (shaded closed contours) and projections (dot and dot-dashed curves) for US-led direct
detection experiments that are expected to operate over the next decade. Also shown is an approximate
band where coherent scattering of 8B solar neutrinos, atmospheric neutrinos and di↵use supernova neutrinos
with nuclei will begin to limit the sensitivity of direct detection experiments to WIMPs. Finally, a suite of
theoretical model predictions is indicated by the shaded regions, with model references included.

We believe that any proposed new direct detection experiment must demonstrate that it meets at least one
of the following two criteria:

• Provide at least an order of magnitude improvement in cross section sensitivity for some range of
WIMP masses and interaction types.

• Demonstrate the capability to confirm or deny an indication of a WIMP signal from another experiment.

The US has a clear leadership role in the field of direct dark matter detection experiments, with most
major collaborations having major involvement of US groups. In order to maintain this leadership role, and
to reduce the risk inherent in pushing novel technologies to their limits, a variety of US-led direct search
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